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Abstract. By the Suslinian number Sln(X) of a continuum X we understand the
smallest cardinal number κ such that X contains no disjoint family C of non-degenerate
subcontinua of size |C| > κ. For a compact space X, Sln(X) is the smallest Suslinian
number of a continuum which contains a homeomorphic copy of X. Our principal result
asserts that each compact space X has weight ≤ Sln(X)+ and is the limit of an inverse
well-ordered spectrum of length ≤ Sln(X)+, consisting of compacta with weight ≤ Sln(X)
and monotone bonding maps. Moreover, w(X) ≤ Sln(X) if no Sln(X)+-Suslin tree exists.
This implies that under the Suslin Hypothesis all Suslinian continua are metrizable, which
answers a question of Daniel et al. [Canad. Math. Bull. 48 (2005)]. On the other hand, the
negation of the Suslin Hypothesis is equivalent to the existence of a hereditarily separable
non-metrizable Suslinian continuum. If X is a continuum with Sln(X) < 2ℵ0 , then X is
1-dimensional, has rim-weight ≤ Sln(X) and weight w(X) ≥ Sln(X). Our main tool is the
inequality w(X) ≤ Sln(X) · w(f(X)) holding for any light map f : X → Y .

In this paper we introduce a new cardinal invariant related to the Suslin-
ian property of continua. By a continuum we understand any compact con-
nected Hausdorff space. Following Lelek [7], we define a continuum X to
be Suslinian if it contains no uncountable family of pairwise disjoint non-
degenerate subcontinua. The simplest example of a Suslinian continuum
is the usual interval I = [0, 1]. On the other hand, the existence of non-
metrizable Suslinian continua is a subtle problem. The properties of such
continua were considered in [1]. It was shown in [1] that each Suslinian con-
tinuum X is perfectly normal, rim-metrizable, and 1-dimensional. Moreover,
a locally connected Suslinian continuum has weight ≤ ω1.

The simplest examples of non-metrizable Suslinian continua are Suslin
lines. However this class of examples has a consistency flavor since no Suslin
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line exists in some models of ZFC (for example, in models satisfying (MA +
¬CH)). It turns out that any example of a non-metrizable locally connected
Suslinian continuum necessarily has consistency nature: the existence of such
a continuum is equivalent to the existence of a Suslin line (see [1]). This
implies that under the Suslin Hypothesis (asserting that no Suslin line exists)
each locally connected Suslinian continuum is metrizable.

It is clear that each Suslinian continuum X has countable Suslin num-
ber c(X). At this point we recall the definition of some known topological
cardinal invariants. Given a topological space X let

• c(X) = sup{|U| : U is a disjoint family of non-empty open subsets of
X} be the Suslin number of X;
• l(X) = min{κ : each open cover of X contains a subcover of size ≤ κ}

be the Lindelöf number of X;
• d(X) = min{|D| : D is a dense set in X} be the density of X;
• hl(X) = sup{l(Y ) : Y ⊂ X} be the hereditary Lindelöf number of X;
• hd(X) = sup{d(Y ) : Y ⊂ X} be the hereditary density of X;
• w(X) = min{|B| : B is a base of the topology of X} be the weight

of X;
• rim-w(X) = min{supU∈B w(∂U) : B is a base of the topology of X}

be the rim-weight of X.

In the context of Suslinian continua, by analogy with the Suslin number
c(X) it is natural to introduce a new cardinal invariant

Sln(X) = sup{|C| : C is a disjoint family of
non-degenerate subcontinua of X}

defined for any continuum X and called the Suslinian number of X. Thus a
continuum X is Suslinian if and only if Sln(X) ≤ ℵ0.

It is clear that Sln(X) ≤ Sln(Y ) for any pair X ⊂ Y of continua. It
will be convenient to extend the definition of Sln(X) to all Tikhonov spaces
letting

Sln(X) = min{Sln(Y ) : Y is a continuum containing X}
for a Tikhonov space X.

Like many other cardinal invariants the Suslinian number is monotone.

Proposition 1. If X is a Tikhonov space and Y is a subspace of X,
then Sln(Y ) ≤ Sln(X).

The cardinal invariant Sln(X) is not trivial since it can attain any infinite
value.

Proposition 2. Sln(X) = c(X) = w(X) = κ for the hedgehog X =
{(xα)α<κ : |{α < κ : xα 6= 0}| ≤ 1} ⊂ [0, 1]κ with κ needles.
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Note that each hedgehog is rim-finite in the sense that it has a base
of the topology consisting of sets with finite boundaries. Let us remark
that a rim-finite continuum X with uncountable Suslinian number must be
non-metrizable (because rim-countable metrizable continua are Suslinian,
see [7]).

The Suslinian number cannot increase under monotone maps. We recall
that a map f : X → Y is monotone if f−1(y) is connected for any y ∈ Y .

Proposition 3. If X and Y are compact spaces and f : X → Y is a
surjective monotone map, then Sln(Y ) ≤ Sln(X).

Proof. Embed X in a continuum Z with Sln(Z) = Sln(X). Consider the
following equivalence relation on Z: x ∼ y if either x = y or x, y ∈ X and
f(x) = f(y). Let T = Z/∼ be the quotient space and q : Z → T be the
quotient map. Since all the equivalence classes are connected, the quotient
map q is monotone. Since the preimage of a connected set under a monotone
map is connected, Sln(T ) ≤ Sln(Z). It remains to observe that Y can be
identified with a subspace of T , which yields Sln(Y ) ≤ Sln(T ) ≤ Sln(Z) =
Sln(X). For a similar argument, we also refer the readers to Theorem 2.4.13
in [3].

Proposition 4. If X is a Tikhonov space and K is a compact subset
of X, then Sln(X/K) ≤ Sln(X).

Proof. Let Z be a continuum that contains X and has Sln(Z) = Sln(X).
Since K is a compact subspace of X, the quotient space X/K naturally
embeds into the quotient space Z/K. We claim that Sln(Z/K) ≤ Sln(Z). In
the opposite case we would find a disjoint family C of subcontinua in Z/K
having the cardinality |C| > Sln(Z). At most one subcontinuum C ∈ C can
contain the point K ∈ Z/K = {K} ∪ (Z \K). Deleting this subcontinuum
from the family C, if necessary, we can assume that

⋃
C ⊂ Z \ K. Then

C can be thought of as a disjoint family of subcontinua of Z having size
|C| > Sln(Z), which contradicts the definition of Sln(Z). This contradiction
witnesses that Sln(Z/K) ≤ Sln(Z) and then

Sln(X/K) ≤ Sln(Z/K) ≤ Sln(Z) = Sln(X).

Recall that a map f : X → Y between compact Hausdorff spaces is
called light if f−1(y) is zero-dimensional for each y ∈ Y .

Theorem 1. If X and Y are compact spaces and f : X → Y is a light
map, then w(X) ≤ w(Y ) · Sln(X).

For the proof of this theorem we shall need two lemmas.

Lemma 1. For any point z of a continuum Z there is a family U of closed
neighborhoods of z in Z such that |U| ≤ Sln(Z) and

⋂
U is zero-dimensional.
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Proof. We shall construct a transfinite sequence (Uα)α<α0 of closed
neighborhoods of z and a transfinite sequence (Kα)α<α0 of pairwise disjoint,
non-degenerate subcontinua of Z such that Kα ⊂

⋂
β<α Uβ and Uα∩Kα = ∅

for each α < α0.
To start the construction we choose any subcontinuum K0 ⊂ Z \{z} and

take any closed neighborhood U0 ⊂ Z of z missing the set K0. Then U0 is not
zero-dimensional, and since Z is a continuum, we can find a subcontinuum
K1 ⊂ U0 not containing the point z.

Suppose that for some ordinal α the closed neighborhoods Uβ, β < α,
of z are already selected so that

⋂
β<α Uβ is not zero-dimensional. Choose

any non-degenerate continuum Kα ⊂
⋂
β<α Uβ \ {z}. Then choose a closed

neighborhood Uα of z which is disjoint from Kα. Observe that when β < α,
then Kβ ∩ Uβ = ∅ and Kα ⊂ Uβ, whence Kβ ∩Kα = ∅.

The construction should stop at some ordinal α0 of size |α0| ≤ Sln(Z).
For this ordinal the intersection

⋂
α<α0

Uα is zero-dimensional. Then U =
{Uα : α < α0} is the required family of closed neighborhoods of the point z
in Z.

Lemma 2. For any closed subset K of a continuum Z there is a family U
of closed neighborhoods of K such that |U| ≤ Sln(Z) and

⋂
U \K is zero-

dimensional.

Proof. Consider the quotient space Z/K = {K}∪(Z \K) of Z by K and
let q : Z → Z/K be the quotient map. By Lemma 1, the continuum Z/K
contains a family V of closed neighborhoods of the point K ∈ Z/K such
that |V| ≤ Sln(Z/K) and the intersection

⋂
U is zero-dimensional. It is easy

to see that the family U = {q−1(V ) : V ∈ V} of closed neighborhoods of K
has the desired property: it has cardinality |U| ≤ |V| ≤ Sln(Z/K) ≤ Sln(Z)
and

⋂
U \K is zero-dimensional (being homeomorphic to

⋂
V \ {K}).

Proof of Theorem 1. Let f : X → Y be a light map between compact
Hausdorff spaces. We need to prove that the weight of X satisfies w(X) ≤ κ
where κ = w(Y ) · Sln(X). Let Z be a continuum such that Z ⊃ X and
Sln(X) = Sln(Z). Of course, Sln(Z) ≤ κ.

By Lemma 2, the continuum Z contains a family U of closed neighbor-
hoods of the subset X ⊂ Z such that |U| ≤ Sln(Z) ≤ κ and

⋂
U \ X is

zero-dimensional. The family U can be used to construct a map g : Z → Iκ
such that X ⊂ g−1(0) ⊂

⋂
U , where 0 = {0}κ ∈ [0, 1]κ = Iκ. It follows that

g−1(0) \X ⊂
⋂
U \X is zero-dimensional.

Since w(Y ) ≤ κ, the space Y can be identified with a subset of the
Tikhonov cube Iκ. It follows from the Tietze–Urysohn Theorem that the
map f can be extended to a map f̄ : Z → Iκ. Now consider the map

h = (f̄ , g) : Z → Iκ × Iκ, z 7→ (f̄(z), g(z)),
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and observe that

X ⊂ h−1(Iκ × 0) = g−1(0) ⊂
⋂
U .

It follows that for every y ∈ Iκ × 0 the preimage h−1(y) lies in the union
f−1(y)∪ (

⋂
U \X) of two zero-dimensional spaces and hence is zero-dimen-

sional.
Since Z is a continuum, each component of a non-empty open set U

contains a non-trivial subcontinuum. Consequently, U has at most Sln(X)
components. Denote by CU the family of closures of components of U .

Let B be a base for the topology of h(Z) with |B| ≤ κ. Finally consider
the family C =

⋃
B∈B Ch−1(B) of closed subsets of Z, which has size at most κ.

Because of the compactness of X, the inequality w(X) ≤ κ will follow as
soon as we prove that the family C separates the points of X in the sense
that any two distinct points x, y ∈ X lie in disjoint elements Cx, Cy of the
family C.

If h(x) 6= h(y), then we can find two basic subsets Bx, By ∈ B with dis-
joint closures such that h(x) ∈ Bx and h(y) ∈ By. Let Dx be the component
of h−1(Bx), containing the point x and Dy be the component of h−1(By),
containing the point y. Then Dx, Dy are disjoint elements of C separating
the points x, y.

Next, suppose that h(x) = h(y) = z and observe that z ∈ h(X) ⊂ Iκ×0.
It follows from the zero-dimensionality of

⋂
U\X and the inclusion h−1(z) ⊂

f−1(z) ∪ (
⋂
U \ X) that the set h−1(z) is zero-dimensional. Consequently,

we can find two open subsets Ox, Oy ⊂ Z with disjoint closures such that
x ∈ Ox, y ∈ Oy and h−1(z) ⊂ Ox ∪ Oy. Since the map h is closed, there is
a basic neighborhood Bz ∈ B of z such that h−1(Bz) ⊂ Ox ∪ Oy. Then x
and y lie in the closures of distinct components of h−1(Bz). This completes
the proof that the collection C separates the points of X.

The previous theorem allows us to generalize the classical monotone-light
Factorization Theorem [12, 13.3] asserting that any map f : X → Y between
compact Hausdorff spaces can be represented as the (unique) composition
λ ◦ µ of a monotone map µ : X → Z and a light map λ : Z → Y . Applying
the preceding theorem and two propositions to the calculation of the weight
of the space Z, we conclude that w(Z) ≤ w(Y ) · Sln(Z) ≤ w(Y ) · Sln(X). In
this way we obtain the following corollary.

Corollary 1. Let f : X → Y be a map between compact spaces and
f = λ ◦µ be the monotone-light decomposition of f into a monotone surjec-
tive map µ : X → Z and a light map λ : Z → Y . Then w(Z) ≤ w(Y )·Sln(X)
and the non-degeneracy set Nµ = {z ∈ Z : |µ−1(z)| > 1} of µ has size
|Nµ| ≤ Sln(X).
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In this corollary, if we assume that f is the constant map, then the space
Z is the decomposition of X into its components and it is zero-dimensional.
Thus we obtain the following corollary.

Corollary 2. Each compact Hausdorff space X admits a monotone
map f : X → Z onto a zero-dimensional space Z of weight w(Z) ≤ Sln(X).
In particular, each zero-dimensional compact space Z has weight w(Z) ≤
Sln(Z).

As another application of Theorem 1 we prove that each Suslinian contin-
uum X is hereditarily decomposable, that is, X contains no indecomposable
subcontinuum (a continuum X is indecomposable if X cannot be written as
the union of two proper non-degenerate subcontinua of X).

Proposition 5. If X is a Tikhonov space with Sln(X) ≤ ℵ0, then all
compact zero-dimensional subspaces of X are metrizable and all subcontinua
of X are decomposable.

Proof. If Z is a zero-dimensional compact subset of X, then w(Z) ≤
Sln(Z) ≤ Sln(X) ≤ ℵ0 by the preceding corollary.

Now take any subcontinuum C of X. Then Sln(C) ≤ Sln(X) ≤ ℵ0, which
means that the continuum C is Suslinian. Let f : C → [0, 1] be any non-
constant map. By Theorem 1, the map f can be written as the composition
f = λ ◦ µ of a monotone map µ : C → Z and a light map λ : Z → [0, 1]
of some continuum Z with w(Z) ≤ Sln(C) ≤ ℵ0. Thus, Z is a metrizable
Suslinian continuum. Such a continuum is decomposable. Otherwise, since
each indecomposable continuum has uncountably many composants (see [6,
Theorem 7′, p. 213]), we would have Sln(Z) > ℵ0. Consequently, we can
write Z = A∪B as the sum of two properly smaller subcontinua A,B ⊂ Z.
Their preimages µ−1(A) and µ−1(B) under the monotone map µ are proper
subcontinua of C whose union equals C. This means that the continuum C
is decomposable.

Next we prove that the hereditary Lindelöf number of any space X is
bounded from above by the Suslinian number of X. For Suslinian continua
this result was proved in Theorem 1 of [1].

Theorem 2. hl(X) ≤ Sln(X) for any Tikhonov space X.

Proof. Let κ = Sln(X) and Z ⊃ X be a continuum with Sln(Z) = κ.
First, we prove that each singleton {x0}, x0 ∈ X, is the intersection of

κ many neighborhoods in Z. By Lemma 1, there is a family N of closed
neighborhoods of x0 in Z such that |N | ≤ Sln(Z) = κ and the inter-
section

⋂
N is zero-dimensional. The compactum Y =

⋂
N , being zero-

dimensional, admits a light map onto the singleton. Applying Theorem 1,
we get w(Y ) ≤ Sln(Y ) ≤ Sln(Z) = κ. Consequently, we can find a fam-
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ily N ′ of neighborhoods of the point x0 in Z such that Y ∩
⋂
N ′ = {x0}

and |N ′| ≤ κ. Then the family N ∪ N ′ has size ≤ κ and its intersection
is {x0}.

Now, take any subspace A ⊂ X and let U be a cover of A by open subsets
of Z. Then

⋃
U is an open subset of Z and B = Z \

⋃
U is a closed set in Z.

Consider the quotient space Z/B = (Z \ B) ∪ {B} and let q : Z → Z/B
be the quotient map. Since Sln(Z/B) ≤ Sln(Z) = κ, we may apply the
previous reasoning to find a family V of open neighborhoods of the singleton
{B} ∈ Z/B with {B} =

⋂
V and |V| ≤ κ. Then W = {q−1(V ) : V ∈ V} is a

family of size ≤ κ with
⋂
W = B. The complement Z \W of each W ∈ W is

a compact subset of Z which can be covered by a finite subcollection of U .
Therefore, the union

⋃
W∈W(Z \W ) =

⋃
U can be covered by ≤ κ elements

of the cover U .

According to [3, 3.12.10(l)], w(X) ≤ 2hl(X) for any compact Hausdorff
space. Hence, w(X) ≤ 2Sln(X) for any Tikhonov space. In fact, we shall prove
a stronger upper bound w(X) ≤ Sln(X)+.

The Generalized Suslin Hypothesis asserts that for any regular cardinal κ
there is no κ-Suslin tree, where a tree is called κ-Suslin if it has height κ
but contains no chain or antichain of length κ. We recall that the classical
Suslin Hypothesis asserts that there is no ℵ1-Suslin tree.

Below, for a cardinal κ, we denote by cf(κ) the cofinality of κ and by κ+

the successor cardinal of κ. We identify cardinals with initial ordinals.

Theorem 3. Let X be a Tikhonov space. Then w(X) ≤ Sln(X)+. More-
over, if no κ+-Suslin tree exists for κ = Sln(X), then w(X) ≤ Sln(X).

Proof. Let κ = Sln(X) and embed X into a continuum K with Sln(K) =
Sln(X). Assuming that κ+ < w(X) ≤ w(K), we can find a continuous map
f : K → Z of K onto a continuum Z of weight w(Z) = κ++. Moreover, we
may assume that the map f is monotone. Indeed, if f were not monotone,
then it would factorize as f = λ ◦ µ with µ : K → Z1 monotone and
λ : Z1 → Z light. Then w(Z1) ≤ w(Z) ·Sln(K) = κ++ ·κ = κ++. Now, let us
see that the conditions Sln(Z) ≤ κ and w(Z) = κ++ lead to a contradiction.

Express Z as the inverse limit of a well-ordered transfinite spectrum {Zα :
α < κ++} consisting of continua Zα with w(Zα) ≤ κ+. Let pα : Z → Zα,
α < κ++, denote the (surjective) limit projections of the spectrum.

Consider the family T = {p−1
α (z) : z ∈ Zα, α < κ++, dim p−1

α (z) > 0} of
point-preimages which are not zero-dimensional. Endowed with the inverse
inclusion order, this family forms a tree. This tree has no chains of length
more than κ. Otherwise we would obtain a strictly decreasing sequence of
length > κ consisting of closed subsets of Z, which is impossible as hl(Z) ≤
Sln(Z) = κ.
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The tree also contains no antichain of length > κ since otherwise we
would construct a disjoint family of size > κ consisting of components of
some elements of T . Consequently, the tree T has height ≤ κ+ and all levels
of the tree have size ≤ κ. This implies that the tree T contains at most κ+

elements. Since κ+ < κ++ = cf(κ++), we can find an ordinal α < κ++ such
that for any point z ∈ Zα the preimage p−1

α (z) is zero-dimensional. This
means that the limit projection pα : Z → Zα is light. Applying Theorem 1,
we get a contradiction: w(Z) ≤ w(Zα) · Sln(Z) ≤ κ+.

If no κ+-Suslin tree exists, then the tree T constructed above is not
κ+-Suslin and thus has height ≤ κ. In this case we replace the condition
w(Z) = κ++ by w(Z) = κ+ and see that the proof above gives that w(Z) ≤
Sln(Z).

Corollary 3. If the Generalized Suslin Hypothesis holds, then w(X) ≤
Sln(X) for any Tikhonov space X.

Applying Theorem 3 to Suslinian continua, we obtain the answer to the
second part of Problem 1 of [1].

Corollary 4. Under the Suslin Hypothesis all Suslinian continua are
metrizable.

Theorem 3 allows us to describe the structure of compacta X with
w(X) > Sln(X).

Theorem 4. Each compact space X with w(X) > Sln(X) is the in-
verse limit of a well-ordered spectrum {Zα, πβα, α ≤ β < Sln(X)+} consist-
ing of compacta of weight w(Zα) ≤ Sln(X) and monotone bonding maps
πβα : Zβ → Zα.

Proof. Let κ = Sln(X). It follows from Theorem 3 that w(X) = κ+.
Therefore, we can write X as the inverse limit of a well-ordered spectrum
S = {Xα, p

β
α, α ≤ β < κ+} consisting of compacta of weight ≤ κ and surjec-

tive bonding maps. Since hl(X) ≤ Sln(X) ≤ κ, this spectrum is factorizable
in the sense that any continuous map f : X → Z into a compact space Z
of weight w(Z) ≤ κ can be written as a composition f = fα ◦ pα of the
limit projection pα : X → Xα and a continuous map fα : Xα → Z for some
ordinal α < κ+ (see [5, 3.1.6]).

For each ordinal α < κ+ let pα = λα ◦ µα be the (unique) monotone-
light decomposition of the limit projection pα : X → Xα into a monotone
map µα : X → Zα and a light map λα : Zα → Xα. By Proposition 3,
Sln(Zα) ≤ Sln(X) ≤ κ and by Theorem 1, w(Zα) ≤ w(Xα) · Sln(Zα) ≤ κ.
Then there is an ordinal ξ(α) > α such that the monotone map µα : X → Zα

factorizes through Xξ(α) in the sense that µα = µ
ξ(α)
α ◦ pξ(α) for some map

µ
ξ(α)
α : Xξ(α) → Zα.



The Suslinian number 51

Thus we obtain the following commutative diagram:

Zα

X Xξ(α) Xα
- -

6@
@

@
@

@
@R

HH
HHH

HHH
HHH

HHHj

pξ(α) p
ξ(α)
α

λα

µ
ξ(α)
α

µα

Let A be a cofinal subset of ordinals < κ+ such that ξ(α) < β for any
α < β in A. For any α < β in A define a bonding map πβα : Zβ → Zα

letting πβα = µ
ξ(α)
α ◦ pβξ(α) ◦ λβ. We claim that the map πβα is monotone.

This follows from the monotonicity of the map µα = µ
ξ(α)
α ◦ pβξ(α) ◦ pβ =

µ
ξ(α)
α ◦ pβξ(α) ◦ λβ ◦ µβ = πβα ◦ µβ. Indeed, for any point y ∈ Zα, the preimage

(πβα)−1(y) = µβ(µ−1
α (y)) is connected, being the image of the connected set

µ−1
α (y).

It is easy to see that πγα = πβα ◦ πγβ for any ordinals α < β < γ in A,

which means that S ′ = {Zα, πβα : α, β ∈ A} is an inverse spectrum. Let
Z = limS ′ be the limit of this spectrum. Observe that the monotone maps
µα : X → Zα, α ∈ A, induce a surjective map µ : X → Z while the light
maps λα : Zα → Xα, α ∈ A, induce a surjective map λ : Z → X. Since
λα ◦ µα = pα for all α ∈ A, the composition λ ◦ µ : X → X is the identity
map of X. Consequently, both λ and µ are homeomorphisms and thus X
can be identified with the limit Z of the spectrum S ′ of length κ+ consisting
of compacta of weight ≤ κ and monotone bonding maps.

The following particular case of Theorems 3 and 4 answers the remaining
part of Problem 1 from [1].

Corollary 5. Each non-metrizable Suslinian continuum X has
weight ℵ1 and is the limit of an inverse spectrum of length ℵ1 consisting
of metrizable Suslinian continua and monotone bonding maps.

In the subsequent proof we shall refer to properties of the hyperspace
exp(X) of a given compact Hausdorff space X. The hyperspace exp(X) of X
is the space of all non-empty closed subsets of X, endowed with the Vietoris
topology. It is well known that exp(X) is a compact Hausdorff space with
w(exp(X)) = w(X). We denote by expc(X) the subspace of exp(X) consist-
ing of subcontinua of X. It is easy to see that expc(X) is a closed subspace
in exp(X).
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Compacta X with small Suslinian number Sln(X) < c share many prop-
erties of Suslinian continua.

Theorem 5. If X is a continuum with Sln(X) < c, then dimX ≤ 1 and

rim-w(X) ≤ Sln(X) ≤ hl(expc(X)) ≤ w(X) ≤ Sln(X)+.

Proof. Let κ = Sln(X). To show that rim-w(X) ≤ Sln(X), take any
point x ∈ X and a neighborhood U ⊂ X of x0. Let f : X → [0, 1] be any
function with f(x0) = {0} and f−1([0, 1)) ⊂ U . Since Sln(X) < c, the set
{y ∈ (0, 1) : dim f−1(y) > 0} has size ≤ Sln(X) < c. Consequently, we can
find a point y ∈ (0, 1) whose preimage f−1(y) ⊂ Z is zero-dimensional. By
Corollary 2, w(f−1(y)) ≤ Sln(f−1(y)) ≤ Sln(X) = κ.

Now consider the neighborhood V = f−1([0, y)) whose boundary ∂V
lies in f−1(y) and thus has weight w(∂V ) ≤ κ and is zero-dimensional. This
proves the inequality rim-w(X) ≤ κ, and shows that the small inductive
dimension of X satisfies ind(X) ≤ 1. By [3, 7.2.7], dimX ≤ 1.

It remains to prove that κ ≤ hl(expc(X)) ≤ w(X) ≤ Sln(X)+. The third
inequality was proved in Theorem 3 while the second inequality follows from
hl(expc(X)) ≤ w(expc(X)) ≤ w(exp(X)) = w(X). Assuming hl(expc(X))
< κ = Sln(X), let λ = hl(expc(X)) and find a disjoint family C of size
|C| = λ+ consisting of non-degenerate subcontinua of X. This family C can
be considered as a subset of the hyperspace expc(X) of subcontinua of X.
Identify X with the set of all degenerate subcontinua in expc(X). Since
hl(expc(X)) = λ, the set C contains a subset C′ of size |C′| = |C| = λ+ whose
closure in expc(X) misses X.

We claim that C′ is not a scattered subspace of expc(X). Let us recall
that a topological space is scattered if each of its subspaces has an isolated
point. It is known (and can be easily shown) that the size of a scattered
space is equal to its hereditary Lindelöf number. Since |C′| = λ+ > λ =
hl(expc(X)) ≥ hl(C′), the space C′ is not scattered and thus contains a
subspace C′′ having no isolated point.

Now we shall construct a subset {Ct}t∈T ⊂ C′′ indexed by elements of
the binary tree T =

⋃
n∈N{0, 1}n as follows. The binary tree T consists of

finite binary sequences. Given two binary sequences t = (t0, . . . , tn), s =
(s0, . . . , sm) in T we write t ≤ s if n ≤ m and ti = si for all i ≤ n.

Take any distinct elements C0, C1 ∈ C′′ and observe that the subcontinua
C0, C1 are disjoint (because the family C is disjoint). Hence, they have open
neighborhoods U0, U1 ⊂ X with disjoint closures.

Assuming that for some binary sequence s = (s0, . . . , sn) the subcontin-
uum Cs ∈ C′′ and its neighborhood Us ⊂ X are constructed, consider the
open subset Us = {C ∈ C′′ : C ⊂ Us} of the space C′′ and take any two
distinct (and hence disjoint) subcontinua Cŝ 0, Cŝ 1 ∈ Us. Next, choose two
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open neighborhoods Uŝ 0, Uŝ 1 ⊂ Us of Cŝ 0, Cŝ 1 with disjoint closures. This
finishes the inductive step.

Now, for any infinite binary sequence s = (si) let Cs be a cluster point
of the set {C(s|n) : n ∈ N} in exp(X), where s|n = (s0, . . . , sn−1). It is
easy to see that {Cs : s ∈ {0, 1}ω} is a disjoint family of subcontinua of X,
lying in the closure of the set C′′. Since this closure misses the set X, each
continuum Cs, s ∈ {0, 1}ω, is non-degenerate. Thus, κ = Sln(X) ≥ |{Cs :
s ∈ {0, 1}ω}| = c, which is a contradiction.

Problem 1. Is rim-w(X) ≤ Sln(X) for any compact Hausdorff
space X?

Let us remark that all examples of non-metrizable Suslinian continua
considered in the introduction or in [1] contain a copy of a Suslin line and
hence fail to be hereditarily separable. However (consistent) examples of
non-metrizable, hereditarily separable Suslinian continua can be constructed
as well. For such a construction we need the following definitions and the
lemma.

We recall that a surjective map f : X → Y is irreducible if f(Z) 6= Y
for any proper closed subset Z of X. This is equivalent to saying that a set
D ⊂ X is dense in X provided f(D) is dense in Y .

Following [4, III.1.15] we call a monotone map f : X → Y between two
continua atomic if for every non-degenerate subcontinuum Z ⊂ Y the map
f |f−1(Z) : f−1(Z) → Z is irreducible. This is equivalent to saying that
D = f−1(f(D)) for every subset D ⊂ X whose image f(D) is dense in some
non-degenerate subcontinuum of Y . An atomic map f : X → Y will be
called I-atomic if for every y ∈ Y the preimage is a singleton or an arc in X.

The following lemma will be our basic tool in the subsequent inductive
construction.

Lemma 3. For any non-degenerate metrizable Suslinian continuum Y
and any countable set Z ⊂ Y there are a metrizable Suslinian continuum X
and an I-atomic map f : X → Y whose non-degeneracy set N(f) = {y ∈ Y :
|f−1(y)| > 1} equals Z.

Proof. For every z ∈ Z fix a decreasing neighborhood base (On(z))n∈ω
at z such that On+1(z) ⊂ On(z) for all n ∈ ω. Let {qn : n ∈ ω} be a
countable dense set in I = [0, 1]. Fix a map hz : Y \ {z} → I such that
hz(∂On(z)) = {qn} where ∂On(z) stands for the boundary of On(z) in Y .
Such a choice of the map hz guarantees that hz(C \ {z}) = I for any non-
degenerate subcontinuum C ⊂ Y containing z.

Now consider the set X = (Y \ Z) ∪ (Z × I) and the map f : X → Y
which is the identity on Y \ Z and f(z, t) = z for each (z, t) ∈ Z × I ⊂ X.
For every z ∈ Z let rz : X → {z} × I be a unique map such that
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• rz(y) = (z, hz(y)) for every y ∈ Y \ Z ⊂ X;
• rz(y, t) = (z, hz(y)) for every (y, t) ∈ (Z \ {z})× I ⊂ X;
• rz(z, t) = (z, t) for every t ∈ I.

Endow the space X with the weakest topology making the maps f : X → Y
and rz : X → {z} × I, z ∈ Z, continuous. According to [4, III.1.2] the
resulting space X is metrizable and compact. It is easy to check that the
map f is I-atomic (see also [4, III.1.15]).

Using the atomic property of f and the Suslinian property of Y it is easy
to check that X is Suslinian too.

Now, we are ready for the construction of our example. We note that
similar constructions using atomic maps have been done before, for instance
in [8], [10] and [11].

Theorem 6. Under the negation of the Suslin hypothesis there exists
a hereditarily separable non-metrizable Suslinian continuum X. Moreover,
each non-degenerate subcontinuum of X is neither metrizable nor locally
connected.

Proof. Assuming the negation of the Suslin hypothesis, fix a Suslin tree
(T,≤) such that each node t ∈ T has uncountably many successors in T and
infinitely many immediate successors in T . Denote by h(t) the height of a
node t ∈ T and for a countable ordinal α let Tα = {t ∈ T : h(t) = α} stand
for the αth level of T . For two countable ordinals α < β let prβα : Tβ → Tα
denote the map assigning to a node t ∈ Tβ a unique node t′ ∈ Tα with t′ < t.
We may additionally assume that the tree T is continuous in the sense that
for any limit countable ordinal α and distinct nodes t, t′ ∈ Tα there is β < α
such that prαβ(t) 6= prαβ(t′).

We shall use transfinite induction to construct a well-ordered continu-
ous spectrum {Xα, π

β
α : α < β < ω1} consisting of metrizable Suslinian

continua Xα and atomic bonding maps πβα : Xβ → Xα, and a sequence
(iα : Tα → Xα)α<ω1 of injective maps such that

(1) for any countable ordinals α < β the diagram

Tβ
iβ−−−→ Xβ

prβ
α

y yπβ
α

Tα
iα−−−→ Xα

is commutative;
(2) for every t ∈ Tα the set iα+1((prα+1

α )−1(t)) is dense in (πα+1
α )−1(iα(t));

(3) the short projections πα+1
α : Xα+1 → Xα are I-atomic maps with

non-degeneracy set N(πα+1
α ) = iα(Tα).
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We start the induction with a singleton X0 and the injective map i0 :
T0 → X0 assigning to the root of T the only point of X0. Assume that for
some countable ordinal α the Suslinian continua Xβ, atomic bonding maps
πβγ : Xβ → Xγ , and injective maps iβ : Tβ → Xβ have been constructed for
all γ ≤ β < α.

If α is a limit ordinal, let Xα be the inverse limit of the countable spec-
trum {Xβ, π

β
γ : γ ≤ β < α} and let παβ : Xα → Xβ stand for the limit

projections of this spectrum. They are atomic as limits of atomic bond-
ing maps. For every t ∈ Tα let iα(t) be the unique point of Xα such that
παβ (iα(t)) = iβ(prαβ(t)) for every β < α. The continuity of the tree T implies
that the resulting map iα : Tα → Xα is injective. The Suslinian property
of Xα follows from that property of the continua Xβ, β < α, and the atom-
icity of the limit projections παβ .

If α = β + 1 is a successor ordinal, then we can apply Lemma 3 to
find a metrizable Suslinian continuum Xα+1 and an I-atomic map πα+1

α :
Xα+1 → Xα whose non-degeneracy set coincides with iα(Tα). Thus we sat-
isfy the condition (3) of the inductive construction. Since for every t ∈ Tα
the set (πα+1

α )−1(iα(t)) is an arc in Xα+1, we can define an injective map
iα+1 : Tα+1 → Xα+1 so that πα+1

α ◦ iα+1 = iα ◦ prα+1
α and iα+1 satisfies the

condition (2) of the inductive construction.
After completing the inductive construction, consider the inverse limit

X of the spectrum S = {Xα, π
α
β : β < α < ω1}. Using the atomicity of the

bonding projections, one can check that the limit projections πα : X → Xα

are atomic as well.
Now, we establish the desired properties of the continuum X. First, we

show that each non-degenerate subcontinuum C of X is neither metrizable
nor locally connected. Let α be the smallest ordinal such that |πα(C)| > 1.
The continuity of the spectrum S implies that α = β+1 for some ordinal β.
Then πβ(C) is a singleton and hence πβ(C) ⊂ iβ(Tβ) (otherwise C would be
a singleton). Let t ∈ Tβ be a node of T with πβ(C) = {iβ(t)}. It follows that
πα(C) is a non-degenerate subcontinuum of the arc At = (παβ )−1(iβ(t)). The
density of iα(Tα) in At implies the existence of a node t′ ∈ Tα with iα(t′) ∈
πα(C). The atomicity of the projection prα implies that the continuum C =
π−1
α (πα(C)) contains the subcontinuum pr−1

α (iα(t′)) which is not metrizable
(because t′ has uncountably many successors in the tree T ). Consequently,
C is not metrizable either.

To show that C is not locally connected, assume the converse and, given
any two distinct points x, x′ ∈ pr−1(α)(iα(t′)), find a closed connected neigh-
borhood U ⊂ C of x with x′ /∈ U . Since pr−1

α (iα(t′)) is nowhere dense in C,
the set U has non-degenerate projection prα(U). Then the atomicity of prα
implies that x′ ∈ pr−1

α (prα(U)) = U , which is a contradiction.
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Next, we shall prove that the continuum X is Suslinian. Take any fam-
ily C of pairwise disjoint non-degenerate subcontinua in X. Repeating the
preceding argument, for every C ∈ C we can find a countable ordinal α and a
node tC ∈ Tα such that C ⊃ π−1

α (iα(tC)). It follows that the nodes tC , C ∈ C,
are pairwise incomparable in T (otherwise the family C would contain two
intersecting continua). Since T is a Suslin tree, the antichain {tC : C ∈ C} is
at most countable and so is the family C, witnessing the Suslinian property
of X.

It remains to check that the continuum X is hereditarily separable. By
[3, 3.12.9] it suffices to prove that each closed subspace F of X in separable.
By Theorem 2, the continuum X, being Suslinian, is perfectly normal and
hence F = π−1

α (πα(F )) for some countable ordinal α. Let Z = prα(F ). Since

F = π−1
α (Z \ iα(Tα)) ∪

⋃
z∈Z∩iα(Tα)

π−1
α (z)

and π−1
α (Z \ iα(Tα)) is homeomorphic to the metrizable separable space

Z \ iα(Tα), it remains to check that for every z ∈ iα(Tα) the continuum
π−1
α (z) is separable. Consider the arc A = πα+1

α (z) in Xα+1 and observe
that D = A \ iα+1(Tα+1) is a dense subspace of A. It follows from the
construction that π−1

α+1(D) is a topological copy of D, dense in π−1
α+1(A) =

π−1
α (z). Therefore, the continuum π−1

α (z) is separable.

We do not know if the preceding theorem can be generalized to higher
cardinals.

Problem 2. Does the existence of a κ+-Suslin tree imply the existence
of a continuum X with hd(X) ≤ Sln(X) = κ < w(X)?

Remark 1. The existence of a κ+-Suslin tree is equivalent to the exis-
tence of a linearly ordered continuum X with κ = Sln(X) = c(X) < d(X) =
w(X) = κ+.

The non-metrizable hereditarily separable Suslinian continuum con-
structed in Theorem 6 is very far from being locally connected. In [2], it
was proved that separable homogeneous Suslinian continua are metrizable.
This encourages us to recall the following question of [1].

Problem 3. Is each locally connected (hereditarily) separable Suslinian
continuum metrizable?

Acknowledgments. The fourth named author is partially supported
by National Science and Engineering Research Council of Canada grants
No. 141066-2009.



The Suslinian number 57

References

[1] D. Daniel, J. Nikiel, L. Treybig, M. Tuncali and E. D. Tymchatyn, On Suslinian
continua, Canad. Math. Bull. 48 (2005), 195–202.

[2] —, —, —, —, —, Homogeneous Suslinian continua, Canad. Math. Bull., to appear.
[3] R. Engelking, General Topology, PWN, Warszawa, 1977.
[4] V. V. Fedorchuk, Fully closed mappings and their applications, J. Math. Sci. 136

(2006), 4201–4292.
[5] V. V. Fedorchuk and A. Chigogidze, Absolute Retracts and Infinite-Dimensional

Manifolds, Nauka, Moscow, 1992.
[6] K. Kuratowski, Topology, Volume II, PWN, 1968.
[7] A. Lelek, On the topology of curves I, Fund. Math. 67 (1970), 359–367.
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