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Abstract. We provide a full classification of postcritically finite polynomials as dy-
namical systems by means of Hubbard trees. The information encoded in these objects
is solid enough to allow us recover all the relevant statical and dynamical aspects of the
corresponding Julia sets.

1. Introduction. In their joint 1984–1985 work, Douady and Hubbard
[DH] suggested a combinatorial description for the dynamics of postcriti-
cally finite polynomials by means of a tree-like structure, a Hubbard tree
(see also [D]). In this introduction we recall their original construction and
isolate the basic features. Then we proceed backwards and impose necessary
and sufficient conditions on a dynamical tree for it to become the Hubbard
tree of some postcritically finite polynomial. For the sake of completeness
we recollect also some elementary, but nevertheless important, properties
associated to the Julia set of postcritically finite polynomials.

Given a degree d ≥ 2 polynomial f , we consider its filled Julia set K(f)
defined as the set of points whose orbit remains bounded. This set is known
to be compact and full (i.e., its complement consists of a unique unbounded
component). The behavior under iteration of the critical points dramatically
influences the topology of K(f). For example, this set is connected if and
only if it traps all critical orbits. We are interested in the special case where
the orbit of every critical point is finite, or what is the same, the case when
all critical orbits are periodic or eventually periodic. We call such polyno-
mials postcritically finite. For them, the filled Julia set K(f), besides being
connected, is also locally connected (cf. [M]).

The boundary ∂K(f) of the filled Julia set, denoted by J(f), is the Julia
set and its elements are Julia points. Its complement F (f) = C − J(f) is
the Fatou set. A periodic orbit that contains a critical member is a critical
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cycle. In the postcritically finite setting, a periodic orbit belongs to F (f) if
and only if it is a critical cycle (for details we refer to [M, Corollary 14.5]).

In this postcritically finite case, the dynamics admits a further decom-
position. When restricted to the interior of K(f) (which happens to be
nonempty only under the appearance of a critical cycle), the polynomial
f maps each bounded Fatou component—always simply connected—onto
some other as a branched covering map. Furthermore, all are eventually pe-
riodic (see [M, Theorem 16.4]). Each component can be uniformized so that
in local charts f reads z 7→ zm for some m ≥ 1 (see [M, Theorem 9.1]). More
is true. If U is a periodic bounded Fatou component, then the first return
map is conjugated to z 7→ zk, this time with k ≥ 2. In particular, loops of
components are in perfect correspondence with critical cycles. Also, in each
component there is a unique point which eventually maps to a critical point
(precisely the one marked as 0 in local coordinates), referred to in the future
as the center.

It is well known (see for instance [DH, Corollary VII.4.2, p. 64]) that
given a degree d ≥ 2 postcritically finite polynomial f , for any z ∈ K(f) the
sets K(f)−{z} and J(f)−{z} consist each of a finite number of connected
pieces. In this way, the filled Julia set can be thought of as arranged in a
tree like fashion.

To prune this object of inessentials, we pick a finite invariant set M
that contains all critical points. Within K(f) we interconnect M by arcs
subject to the extra condition that when a Fatou component is met, then this
intersection consists of radial segments in the associated coordinate. Douady
and Hubbard proved that this construction defines a finite topological tree
T (M) when M together with the intrinsic branching points are considered
vertices.

The vertex dynamics is invariant and carries the endpoints of any edge
to distinct elements, so that it can be extended to a function from T (M) to
itself which is one-to-one on each edge and is isotopic to f , the original map.
We also keep record of the local degree at every vertex v as d(v). In addition,
if three or more edges meet at a vertex, then their cyclic order should be
remembered. In other words, we specify how this tree is embedded in the
complex plane, again, up to isotopy.

Unfortunately, this data alone is not enough to determine the affine
conjugacy class of f . For example, the left and right hand sides of Figure
4.6 illustrate Julia sets which are mirror images of each other (hence, are
non-equivalent) yet they render the same minimal tree. Douady and Hub-
bard noticed that if we append enough information to recover the inverse
tree—and there are several ways to state this unambiguously—then differ-
ent postcritically finite polynomials yield different structures. No criterion
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for realization was given at the time. (The only previous partial results in
this direction are stated in Lavaurs’ thesis [L].)

To formally deal with this condition we introduce angles around vertices
(this again should be credited to [DH, p. 46]). In what follows we measure
angles in turns, so that 1 degree is priced 1/360 of a turn. At the center of a
component the angle between edges is measured using the local chart. Near
Julia vertices, where m components of K(f) intersect, the angle is naturally
defined as a multiple of 1/m.

These angles satisfy two obvious conditions. First, they are compatible
with the embedding of the tree. Second, they satisfy the identity

∠f(v)(f(e), f(e′)) ≡ d(v)∠v(e, e′) (mod 1),

where d(v) is the local degree at v, and e, e′ are edges incident at v. When
this further structure is provided, we are facing a Hubbard tree, denoted
by Hf,M .

Next we move in reverse: we start with an abstract dynamical tree and
we reconstruct the appropriate postcritically finite polynomial.

Abstract Hubbard trees. An angled tree H is a finite simplicial tree
together with a function e, e′ 7→ ∠v(e, e′) ∈ Q/Z which assigns a rational
modulo 1 to each pair of edges e, e′ incident at a vertex v. This angle ∠v(e, e′)
is skew symmetric with ∠v(e, e′) = 0 if and only if e = e′, and is subject
to ∠v(e, e′′) = ∠v(e, e′) + ∠v(e′, e′′) whenever applicable. This mechanism
determines a preferred isotopy class of embeddings of H into C.

Let V be the set of vertices in H. We specify a vertex dynamics f :V →V
subject to f(v) 6= f(v′) whenever v, v′ are contiguous through an edge e.
We also consider a local degree d : V → {1, 2, . . . }. We require the total
degree dH = 1+

∑
v∈V (d(v)−1) to be greater than 1. By definition a vertex

is critical if d(v) > 1 and noncritical otherwise. The critical set is, thus,
nonvoid.

We require that f and the degree d be related as follows. Extend f to a
map f : H → H that carries each edge homeomorphically onto the shortest
path joining the images of its endpoints. We then require ∠f(v)(f(e), f(e′)) =
d(v)∠v(e, e′) whenever e, e′ are incident at v (so that f(e), f(e′) intersect at
f(v), where the angle is measured).

A vertex v is periodic if f◦k(v) = v for some k ≥ 1. The orbit of a periodic
critical point is a critical cycle. A vertex is of Fatou type if it eventually maps
to a critical cycle; else it is of Julia type or a Julia vertex.

The distance distH(v, v′) between vertices in H counts the number of
edges in the shortest path joining v to v′. We call H expanding if for every
edge e whose endpoints v, v′ are Julia vertices there is n ≥ 1 for which we
have distH(f◦n(v), f◦n(v′)) > 1.
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Angles at Julia vertices are rather artificial, so it is better to normalize
them. If m edges e1, . . . , em meet at a periodic Julia vertex v, then each
∠v(ei, ej) should be a multiple of 1/m. (Therefore, angles around a periodic
Julia vertex convey no information beyond the cyclic order of the edges.) An
angled tree that satisfies this condition around each periodic Julia vertex is
said to be normalized.

By an abstract Hubbard tree—or simply a Hubbard tree—we mean a
normalized angled tree that obeys the expanding condition.

The basic existence and uniqueness theorem is stated now as follows. Its
proof is the sole purpose of this paper.

Theorem 1.1. A normalized dynamical angled tree can be realized as
the tree associated to a postcritically finite polynomial if and only if it is ex-
panding. In other words, all Hubbard trees—and only them—can be realized.
Such a realization is unique up to affine conjugation.

A point z ∈ J(f) is an end (or a terminal point) if there is just one
external ray landing at z. Else z is an incidence point. For incidence points
we specialize between branching (where more than two rays land) and non-
branching. For a postcritically finite polynomial f , every branching point
is periodic or preperiodic. Also, every periodic incidence point is already
present as a vertex in any version Hf,M . All this is formalized below.

Proposition 1.2. For a postcritically finite polynomial, any (Julia set)
branching point is either periodic or preperiodic.

Proposition 1.3. Let f be a postcritically finite polynomial and z ∈
J(f) a periodic incidence point. For any finite invariant set M that contains
all the critical points of f we have z ∈ Hf,M . Furthermore, the number of
components of Hf,M − {z} is independent of M and equals the number of
components of J(f)− {z}.

These facts are elementary and are restated as Propositions 3.6 and 3.7,
respectively.

A conceptual overview. This paper is organized in three parts. First
we study actual Hubbard trees, the ones arising from postcritically finite
polynomials. Then we turn our attention to abstract Hubbard trees. Third,
and last, we show how to recover concrete postcritically finite polynomials
from abstract trees.

In Section 2 we introduce the basics. Even if most of the material is
known, from these lines we extract our most valuable asset: the expanding
condition stated as Theorem 2.17. In Section 3 we observe how a Hubbard
tree grows as we take inverses. Among other details we establish that peri-
odic points where two or more external rays land already appear in minimal
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trees, and therefore in all trees. The transition between the first and the
second part is done in Section 4: we exhibit examples of actual trees, and
trees that for one reason or another fail to live up to our expectations. Here
we also hint the consequences of internal symmetries.

In Section 5 we present an abstract counterpart to the theory. There and
in Section 6 we retrace our steps and establish analogues to the key results
in Section 2. For practical reasons Section 7 is devoted to the study of the
local picture around abstract Fatou points. Section 8 mimics Section 3: we
prove that taking inverses is a canonical operation and nothing is risked by
doing so. Section 9 again acts as a buffer, this time between the second and
the third part. Hubbard trees are supposed to provide a concise picture of
the filled Julia set, however, for polynomial dynamics, there is important
information hidden in the basin of attraction of ∞. In fact, as there are
external rays and landing point identifications, we have ahead the task of
assigning potential arguments to “accessible” Julia places.

The realization of Hubbard trees relies now on the theory of critical
portraits (cf. [P3]). As this is a dual framework, our work from Sections 9 and
13 narrows the gap between the two theories. In Section 10 we construct a
formal critical portrait from our data. In Section 11 we promote this portrait
to admissible. Finally, in Section 12 we prove that the postcritically finite
polynomial associated to this admissible critical portrait takes the original
abstract tree as Hubbard tree.

Section 14 includes two appendices. We give necessary and sufficient
conditions for a finite cyclic map to become multiplication by an integer.
Also, and for the benefit of our readers, we survey the main results behind
the theory of critical portraits for postcritically finite polynomials.

2. Regulated trees. We start our work by reviewing some properties
of Hubbard trees as originally introduced by Douady and Hubbard in [DH].

We will manipulate a special kind of regulated arcs. These paths are
compatible with the dynamics in the sense that their images and preimages
under f are piecewise regulated. Once we detect the sole source of conflict
in the folding around critical points, we find inside K(f) the regulated hull
generated by the critical orbit. When we restrict to this invariant tree, we
get a simplified, yet accurate, picture of the dynamics of our postcritically
finite polynomial.

Let f be postcritically finite. Any two points in the closure of a bounded
Fatou component can be joined by a unique arc formed by at most two
radial segments. We call such arcs regulated. The filled Julia set K(f), being
connected and locally connected in a compact subset of the plane, is arcwise
connected. Hence, given two elements z0, z1 in K(f) there exists an arc
γ : I = [0, 1] → K(f) with γ(i) = zi. We will not distinguish between a
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path and its image unless strictly necessary. If the intersection of this arc
with the closure of every Fatou component is regulated, we keep the name
regulated for the arc. For the theory it is crucial that any two points in the
filled Julia set are joined by a unique regulated arc.

Lemma 2.1. Two points in K(f) can be joined by a unique regulated arc.

Proof. To settle existence, we start with an arbitrary arc γ : I → K(f)
and perform a minor surgery without disturbing the endpoints. We enu-
merate all bounded Fatou components as U1, U2, . . . . If γ never touches U i,
where U i stands for the closure of Ui, we forget about Ui. Else, let t0 be
the first time when γ(t0) belongs to U i, and t1 the last. If t0 = t1, we again
ignore Ui. However, if t0 < t1, we modify γ inside [t0, t1] ⊂ [0, 1] so that from
now on it joins γ(t0) to γ(t1) —these points are different since γ is an arc—
in a regulated way. We wind up with a continuous redefinition of γ. In the
limit we are left with a continuous injective function because the diameters
of the Fatou components shrink to zero.

To prove uniqueness, suppose γ1, γ2 : I → K(f) are different regulated
arcs with the same endpoints, so that the set γ1(I)∪ γ2(I) encloses at least
one nonempty connected open set V . For this set V the maximum principle
guarantees V ⊂ K(f). Since nontrivial open connected sets of K(f) are
subsets of a Fatou component U , by construction the portions of γ1, γ2 that
surround V lie in U . This is the desired contradiction because two points in
U are joined by a unique regulated arc.

In what follows we write [z0, z1] for the regulated path between z0, z1. The
following property for regulated arcs is obvious (see also [DH, Chapter 2]).

Lemma 2.2. Any subarc of a regulated arc is regulated. Also, the intersec-
tion of two regulated arcs is regulated. In particular, given z1, z2, z3 ∈ K(f)
there is a unique p ∈ K(f) such that [z1, z2] ∩ [z2, z3] = [z2, p]. In this case
we have z2 = p if and only if [z1, z2] ∪ [z2, z3] is a regulated arc.

A subset X ⊂ K(f) is convex regulated—regulated from now on—if
z0, z1 ∈ X implies [z0, z1] ⊂ X. As the intersection of regulated sets is
regulated, we define the regulated hull [X] of X ⊂ K(f) as the minimal
convex regulated subset of K(f) that contains X. The next result is valid
only because we are working with a special kind of paths.

Lemma 2.3. Two regulated sets with nonempty intersection have regu-
lated union.

Proof. Fix q in the intersection. Any z1, z2 (in either set) can be con-
nected to q by definition. By Lemma 2.2, there is p such that [p, q] =
[z1, q] ∩ [z2, q]. Again by Lemma 2.2, the arc [z1, p] ∪ [p, z2] is regulated.
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We will be manipulating sets generated by a finite number of points, so
it is better to have an adequate picture of the topological layout. In the
lemma below, notice that by definition every end of [z1, . . . , zn] is one of
the zi. The opposite, however, might fail.

Proposition 2.4. The regulated hull of a finite collection of points is a
finite topological tree.

Proof. We proceed by induction. For a single element, there is nothing
to prove as a point is a degenerate tree. Suppose now [z1, . . . , zn] is a finite
topological tree and let zn+1 be arbitrary in K(f). Let p be the first point
in the arc [zn+1, z1] that tops the closed set [z1, . . . , zn]. On the one hand
[z1, . . . , zn+1] contains [z1, . . . , zn] ∪ [p, zn+1] by minimality, while on the
other it is contained within by construction. Knowing the sets are equal,
the result is established.

The next batch of results allows us to produce new regulated arcs from
old ones. Here we use the dynamical stability of the construction.

Lemma 2.5. Let [z1, z2] be a regulated arc with no critical point of f ,
except, possibly, for the endpoints. Then f is injective when restricted to
[z1, z2], and f([z1, z2]) = [f(z1), f(z2)] is regulated.

Proof. Let γ : I → K(f) be the injective map that defines the regulated
arc [z1, z2]. We will prove that f ◦ γ is one-to-one. The second part follows
easily.

First we suppose that f ◦γ is locally one-to-one everywhere. (Local injec-
tivity holds automatically at t0 whenever γ(t0) is noncritical.) In that case
the set ∆ = {(t1, t2) : t1 < t2 and f(γ(t1)) = f(γ(t2))} is compact. So, if ∆
were nonempty, we could find (t1, t2) ∈ ∆ with t2 − t1 > 0 minimal. Then,
by definition, for every s, t subject to 0 < t − s < t2 − t1 the restriction of
f ◦ γ to [s, t] is a regulated arc. If we take t in (t1, t2), the restrictions of
f ◦ γ to [t1, t] and [t, t2] will give different regulated paths between f(γ(t))
and f(γ(t1)) = f(γ(t2)), contrary to Lemma 2.1.

If we manage to show that f ◦ γ is also injective at potential critical
extremes, then we are done. For the sake of argument assume γ(0) to be
critical. Since γ is injective and f is analytic, the set {t ∈ [0, 1] : f(γ(t)) =
f(γ(0))} is discrete. Hence, we can take ε, with 0 < ε < 1, so that t ∈ (0, ε)
implies f(γ(t)) 6= f(γ(0)). If f ◦ γ were not injective near 0, then we can
find t1 < t2 < ε with f(γ(t1)) = f(γ(t2)). In particular, t1 > 0 and we
quickly run into trouble: as there are no critical points in [γ(t1), γ(t2)], the
restriction of f to this regulated arc is injective in light of what was shown
in the first paragraph; but it is not.

Lemma 2.6. Let γ(I) be a regulated arc with no critical value of f except
maybe for the endpoints. Then any lift of γ(I) by f is a regulated arc.
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Proof. Since the image of γ restricted to (0, 1) contains no critical value,
the curve can be lifted in exactly d = deg(f) ways. All are legal.

The following technical result is key to the invariance of trees (compare
Lemma 2.11). Write Ωf for the critical set of f .

Lemma 2.7. For any z0, z1 ∈ K(f) we have

[f(z0), f(z1)] ⊂ f([z0, z1]) ⊂ [f(z0), f(z1), f(Ωf )].

Proof. Let γ represent [z0, z1]. Let 0 ≤ t1 < · · · < tk ≤ 1 be the times
when zti = γ(ti) is critical. Also write zt0 = z0, ztk+1

= z1. Break [z0, z1] as
[zt0 , zt1 ] ∪ · · · ∪ [ztk , ztk+1

]. Then Lemma 2.5 yields the equality f([z0, z1]) =
f([zt0 , zt1 ]) ∪ · · · ∪ f([ztk , ztk+1

]) = [f(zt0), f(zt1)] ∪ · · · ∪ [f(ztk), f(ztk+1
)].

This union, however, due to Lemma 2.3, is a regulated set. As f(z0), f(z1)
already belong to f([z0, z1]), we should have [f(z0), f(z1)] ⊂ f([z0, z1]).

For the other inclusion note that by assumption we have zti ∈{z0, z1, Ωf}.
Hence f(zti), f(zti+1) ∈ [f(z0), f(z1), f(Ωf )]. This, however, implies we have
[f(zti), f(zti+1)] ⊂ [f(z0), f(z1), f(Ωf )]. Pasting together inclusions along
the way we get f([z0, z1]) ⊂ [f(z0), f(z1), f(Ωf )].

Corollary 2.8. The image of a regulated set is regulated.

Proof. Let X be regulated. For any z1, z2 in X, we get [f(z1), f(z2)] ⊂
f([z1, z2]) ⊂ f(X) from Lemma 2.7.

As hinted by the proof of Lemma 2.7, our only worry is an eventual
folding around a critical point. This is explained next.

Proposition 2.9. For X ⊂ K(f) we have

[f(X)] ⊂ f([X]) ⊂ [f(X ∪Ωf )].

Proof. From X ⊂ [X] we get f(X) ⊂ f([X]). As f([X]) is regulated,
this implies [f(X)] ⊂ f([X]).

Given f(z) ∈ f([X]), take z1, z2 ∈ X so that z ∈ [z1, z2]. Then Lemma
2.7 shows f(z) ∈ f([z1, z2]) ⊂ [f(z1), f(z2), f(Ωf )] ⊂ [f(X) ∪ f(Ωf )] =
[f(X ∪Ωf )].

Corollary 2.10. If X contains the critical set, then f([X])=[f(X)].

In general, given X, we denote by

O(X) = {f◦n(x) : n ≥ 0, x ∈ X}
its forward orbit.

Let M be a finite invariant set containing Ωf . Write T (M) for the reg-
ulated hull [M ]. The minimal tree T (M0) is the one generated by M0 =
O(Ωf ), the orbit of the critical set. This last tree is usually referred to in
the literature as the Hubbard tree of f .
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Lemma 2.11. For any invariant set M containing Ωf we have

f(T (M)) = [f(M)] ⊂ T (M) = [M ].

Proof. As M ⊃ Ωf , the first equality is guaranteed by Corollary 2.10.
Also, since M is invariant we have f(M) ⊂ M ⊂ [M ] = T (M), and the
inclusion follows.

To understand the dynamics in a Hubbard tree, it is good to detect
portions where f is injective. We write T̃ (M) for the family of the closures
of the components of T (M)−Ωf . In an informal language, we chop the tree
at the critical places.

Proposition 2.12. The map f induces a continuous function from T (M)
into itself, where the restriction to every member of T̃ (M) is injective.

Proof. The first part follows from Lemma 2.11 and the second from
Lemma 2.5.

Given z ∈ T (M), the incidence νT (M)(z) of T (M) at z is the number of
components of T (M)− {z}. In other words, the value νT (M)(z) counts how
many branches of T (M) stem from z. This number might be different from
the number of connected components of K(f)− {z}, the incidence number
at z for f .

A point z ∈ T (M) is a branching point of T (M) if νT (M)(z) > 2, and an
end if νT (M)(z) = 1. The preferred set of T (M) is VT (M) = M ∪{z ∈ T (M) :
νT (M)(z) > 2}. As there are only a finite number of vertices in those trees,
the collection VT (M) is finite.

Lemma 2.13. The set VT (M) is invariant and its regulated hull is equal
to T (M).

Proof. As M is invariant and contains Ωf , we limit ourselves to check if
the image of a noncritical branching point is also branching. This, however,
is trivial: from νT (M)(z) > 2 and degz f = 1 we jump to νT (M)(f(z)) > 2
because f maps T (M) to itself and f is a local homeomorphism near z.

For the second property, we start with M ⊂ VT (M) ⊂ T (M) = [M ], and
we trivially get [M ] ⊂ [VT (M)] ⊂ T (M) = [M ] by minimality.

Corollary 2.14. Let M,M ′ ⊃ Ωf be finite invariant sets. If VT (M) =
VT (M ′), then T (M) = T (M ′).

The following expanding property is characteristic of dynamical trees
coming from postcritically finite polynomials.

Proposition 2.15. Let v, v′ ∈ J(f)∩T (M) be periodic. If for all n ≥ 0
the points f◦n(v) and f◦n(v′) belong to the same member of T̃ (M), then
v = v′.
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Proof. The hypothesis implies two noteworthy facts. First, for all n the
regulated arcs [f◦n(v), f◦n(v′)] contain no critical points in their interiors.
Second, in light of Lemma 2.5, all these intervals are pairwise homeomorphic.
If we also assume v 6= v′, then the interval [v, v′] avoids all Fatou components,
since otherwise some iterate will eventually reach a Fatou critical point.
Next, let m be a high common multiple of the periods of v and v′. In this way,
by uniqueness of regulated paths, f◦m maps the interval [v, v′] into itself. By
restriction we can assume that there are no further periodic points of period
m in the interval. But v and v′ are repelling for f◦m, so it is topologically
impossible not to find a third fixed point for f◦m inside [v, v′].

Remark 2.16. The same is true if v, v′ are taken only preperiodic. In
fact, high iterates of them are eventually equal, and then Proposition 2.12
(or Lemma 2.5) implies equality for v, v′.

We define the tree distance distT (M)(v, v′) for v, v′ ∈ VT (M) as the number
of edges between v and v′ (in [v, v′]). We rephrase Proposition 2.15 in a more
combinatorial way.

Theorem 2.17 (Expanding property of Hubbard trees). If v, v′ ∈ VT (M)

∩ J(f) satisfy distT (M)(v, v′) = 1, then distT (M)(f◦n(v)), f◦n(v′)) > 1 for
some n ≥ 1.

Proof. If the distance between successive iterates of v, v′ is 1, they be-
long to the same member of T̃ (M). Because of Proposition 2.15 (really, of
Remark 2.16) at some point this no longer holds and the distance is greater
than 1.

3. Inverses and incidence. In this section we reconstruct the inverse
of a Hubbard tree given knowledge of the set of vertices, its preferred set.
And in fact, the tree generated by the inverse of an invariant set that in-
cludes the critical points matches the inverse tree. This makes it possible to
understand how the incidence grows as we enlarge the tree.

Lemma 3.1. For M ⊃ Ωf finite and invariant we have f−1T (M) =
T (f−1M) = T (f−1VT (M)). The set of vertices of this new tree is given by
VT (f−1M) = f−1VT (M).

Proof. Let us travel around the chain of inclusions. Take z ∈ f−1T (M).
If z ∈ f−1M , then we also have z ∈ T (f−1M). Else z 6∈ f−1M , so f(z) is
in T (M) but not in M . Hence f(z) belongs to a regulated arc that touches
M only at the extremes. By Lemma 2.6 any inverse of this regulated arc is
also regulated and has endpoints in f−1M . Therefore z is in T (f−1M), and
we obtain f−1T (M) ⊂ T (f−1M).

Starting from f−1M ⊂ f−1VT (M) we get T (f−1M) ⊂ T (f−1VT (M)) for
free.
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Finally, as the invariant set f−1VT (M) includes all critical points, Lemma
2.11 implies fT (f−1VT (M)) = [ff−1VT (M)] = [VT (M)] = [M ].

For the extra property, note that except at critical points (which are
already in M , VM , f−1M and VT (f−1M)), everything near v in f−1T (M)
replicates around f(v) in T (M) via f . In particular, for incidence numbers
we have νf−1T (M)(v) = νT (M)(f(v)) at any regular v. This is enough to
certify that preimages of branching points remain branching in the inverse
tree and that no new unexpected branching points appear. In other words,
we have established the equality VT (f−1M) = f−1VT (M).

Corollary 3.2. For M ⊃ Ωf finite and invariant we have f−nT (M) =
T (f−nM) = T (f−nVT (M)). The set of vertices in the corresponding inverse
is given by VT (f−nM) = f−nVT (M).

As we always have T (M) ⊂ T (f−1M), there are several incidence func-
tions to be considered: one for each tree. Write νn,M (z) for the incidence at
z in the tree f−nT (M) whenever this makes sense. Since the incidence can
only grow, these values satisfy ν0,M (z) ≤ ν1,M (z) ≤ · · · . Dynamically they
also keep some logic.

Lemma 3.3. For every z ∈ f−1T (M) we have

ν1,M (z) = ν0,M (f(z)) degz f.

Proof. This is an easy consequence of Lemma 3.1.

The next proposition is a coarse attempt to reconstruct f−1T (M) from
T (M). A subtler version will be given later, in Section 8.

Lemma 3.4. Let X be a member of T̃ (f−1M). Then f induces a homeo-
morphism between X and the component of T (M) cut open along f(X∩Ωf )
that contains f(X).

Proof. By Proposition 2.12, f restricted to X is injective. Furthermore,
f(X) is relatively open in the said component. As it is also compact, it must
be the whole component.

Lemma 3.3 describes how the incidence number behaves dynamically as
the tree grows. For the rest of this section we take a careful look at terminal,
incidence, branching and non-branching points. The potential discrepancy
on the numbers depends on whether we stand in the filled Julia set K(f),
in a Hubbard tree T (M) or in one of its inverses f−nT (M).

A point p ∈ J(f) is terminal if there is only one external ray landing
at p. Else p is an incidence point. For incidence points we specialize between
branching (more than two rays land at p) and nonbranching (exactly two
rays land at p). As we will soon see, in the postcritically finite case every
branching point is periodic or preperiodic. Also, every periodic incidence
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point is present as a preferred member of the minimal tree T (O(Ωf )), and
hence appears in any T (M).

Pick z ∈ J(f). By general principles, every component of J(f) − {z}
eventually gets mapped onto the full Julia set, and therefore contains points
whose orbit catches up with any prescribed element in J(f) (cf. [M]). This
fact will be used in conjunction with the following technical tool.

Lemma 3.5. Take M ⊃ Ωf finite and invariant. Suppose N ⊃ Ωf is
also invariant and satisfies f◦n(N) ⊂M . Then f◦nT (N) ⊂ T (M).

Proof. Because N ⊂ f−n(M), we get T (N) ⊂ T (f−n(M))=f−n(T (M))
thanks to Corollary 3.2.

Proposition 3.6. Let f be postcritically finite and z ∈ J(f) a branching
point. Then z is periodic or preperiodic.

Proof. We consider only z outside O(Ωf ) (else z is already preperiodic).
Fix w ∈ Ωf and grab from three different components of J(f)− {z} points
p1, p2, p3 that sooner or later map to w. As the orbit O({p1, p2, p3}) is finite,
the invariant setN = O(Ωf )∪O({p1, p2, p3}) qualifies to generate a Hubbard
tree. In T (N) the incidence at z is at least three, which makes it a preferred
vertex. But VT (N) is finite and invariant, so we are done.

Proposition 3.7. Let z ∈ J(f) be a periodic incidence point. Then z
appears in the minimal tree T (O(Ωf )) (and hence in all Hubbard trees).
Furthermore, the incidence number νT (M)(z) is independent of M and co-
incides with the number of components of J(f)−{z}. In particular, exactly
νT (M)(z) rays land at z.

Proof. Once we remember that the number of rays landing at z coincides
with the number of connected components of J(f) − {z}, the rest of the
proof reproduces the scheme of the last proposition. Let us be precise. In
each component of J(f)−{z} we choose an element that eventually maps to
a critical point. Next we form the Hubbard tree associated with the union of
the marked set and the orbits of the appended elements. Lemma 3.5 explains
why this augmented tree is swallowed by the original one under iteration.
The result now follows from the fact that, by Lemma 3.3, incidence numbers
at periodic Julia vertices do not decrease after iteration. Further details are
left to the reader.

Corollary 3.8. Let z ∈ J(f) ∩ T (M) be such that f◦n(z) is periodic.
Then νn,M (z) equals the number of components of J(f)−{z}. In particular,
exactly νn,M (z) external rays land at z.

Proof. This follows from Proposition 3.7 and Lemma 3.3.

Corollary 3.9. Every tree T (M) contains a fixed point of f .
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Proof. Let d be the degree of f . If f admits a fixed critical point, then
this point belongs to T (M). Else, as there are only d − 1 fixed rays but d
fixed points, one of them must have incidence. By Proposition 3.7 it already
appears in T (M).

4. Examples and counterexamples. In this section we present ex-
amples of actual Hubbard trees. In particular we settle the case of the tree
consisting of a unique critical vertex. We also justify the importance of all
the items present in the definition. This is done by means of counterexamples
where either existence or uniqueness fails. In other words, we explain why
further structure needs to be imposed. At the end we make two brief ob-
servations indirectly related to uniqueness: we talk about extensions and
internal symmetries.

In the diagrams we will illustrate Julia points with filled dots and Fatou
points with small circles. Also, critical points will be indicated with as many
asterisks as necessary.

Example 4.1 (Hubbard trees of dimension 0). When a Hubbard tree
has just one vertex, this point maps to itself with degree d. For sure, the
only centered monic polynomial that realizes this Hubbard tree is f(z) = zd.
The filled Julia set is the closed unit disk.

From now on, the dynamics in the tree is the edge to edge extension of
the vertex dynamics. This is possible under the nondegeneracy hypothesis.

Example 4.2. For the degree two polynomial f(z) = z2 + c, with c
approximately equal to −0.12+0.74i, known as the rabbit, the critical point
moves around a fixed point in a period three orbit. As captured by the
minimal tree, this is the only interesting dynamical feature.

Fig. 4.1. The rabbit with minimal tree inside

Example 4.3. For the dynamical system z 7→ z2 + i (the parameter
c = i corresponds to one of the tips of the Mandelbrot set), the critical orbit
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moves as
0 7→ i 7→ −1 + i 7→ −i 7→ −1 + i 7→ · · · .

In order to make things a bit more interesting, we take into account also the
period three (Julia) orbit −1.29+0.779i 7→ 1.058−1.011i 7→ 0.097−1.140i 7→
−1.29+0.779i (where the rays of argument 3/7, 6/7, 5/7 land). The Hubbard
tree generated by all those points is exhibited in Figure 4.2. Precise angles
are not mentioned as there are no Fatou critical points.

As a combined consequence of Lemma 3.3 and Proposition 3.6, the
highest incidence for Julia set points already occurs in the minimal tree.
Therefore, in this particular example all other periodic points either are
hidden inside the minimal tree or are ends in some extension. In the lat-
ter case the rays and the landing point share period. Now, there are only
two period three strings under doubling, namely 1/7 7→ 2/7 7→ 4/7 and
3/7 7→ 6/7 7→ 5/7. The rays with argument in the first group come to-
gether at z4 = −0.3 + 0.625i, a rotation three fixed point. The other group
corresponds to the period three orbit just mentioned before. But f has
another period three orbit, namely, 0.10 − 0.349i 7→ −0.112 + 0.930i 7→
−0.852 + 0.792i 7→ 0.10 − 0.349i. However, this one cannot be associated
with a period 3 ray sequence (simply because the two period three ray or-
bits are already accounted for) and as such is not composed of ends. Hence,
this orbit lives inside the minimal tree. Where? Let us see. The tree is ex-
panding, so it should be a simple matter for those familiar with Markov
partition techniques to place correctly the orbit inside our graph. This is an
easy exercise for our readers.
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.........
...

..................................................................................................................

•
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•

• •

•
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• •
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..................................................................................................................

..............................................

....................
....................

....................
....................

....................
....................
...................
...................
..
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...................
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Fig. 4.2. The minimal tree—thick—is recovered by restricting to the regulated hull of
the critical orbit and then erasing unessential vertices. If we rescale some branches and
slightly rotate near nodes, the resemblance to the actual tree is evident.

Example 4.4. Take f(z) = 0.25z4−(1.24312−0.434889i)z3 +(0.345782
− 0.255665i)z2. This postcritically finite polynomial has two periodic crit-
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ical points with orbits 0 7→ 0 and −1.24565 + 0.339367i 7→ 0.261681 −
0.677055i 7→ −1.24565 + 0.339367i, and one preperiodic Julia critical point
with orbit −2.48372 + 0.965301i 7→ 0.410426 + 0.189372i 7→ 0.410426 +
0.189372i. The Julia set is given in Figure 4.3. The abstract Hubbard tree
is exhibited in Figure 6.1. Its inverse tree is shown in Figure 8.5.

Fig. 4.3

Now we analyze why further conditions are needed in order to guarantee
a complete characterization.

Example 4.5 (Nonuniqueness). Let us take the following minimal tree
and try to realize it by a degree three polynomial. (The double star stands
for a double critical point, that is, of local degree 3.)

........................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................... ••
x0x1 x2 = x3

•• ∗∗

Fig. 4.4. The dynamics is given by x0 7→ x1 7→ x2 7→ x3 = x2.

All degree three polynomials with a double critical point are conjugated
to z 7→ fc(z) = z3 + c for some c, that is, we can assume directly x0 = 0.
Remember also that for polynomials of shape fc(z) = z3 + c, the value c2

represents a complete invariant: fc and fc′ are conjugated if and only if
c2 = c′2.

As the critical dynamics is given by 0 7→ c 7→ c3 + c 7→ c3 + c, the
relation f◦2c (0) = f◦3c (0) is equivalent to c3 + c = (c3 + c)3 + c. Thus, the
parameter c satisfies c5(c4 + 3c2 + 3) = 0. But c3 + c 6= 0 (unless we assume
x2 = x0) implies c 6= 0, and we grab two different acceptable values for c2.
For these two values of c2 the minimal tree is pictured in Figure 4.4. In fact,
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Proposition 2.15 implies that f(0) and f◦2(0) belong to different components
of T − {0}. Nevertheless, the “inverse trees”—determined by f−1(Ωf )—are
quite different. They are sketched below.

..........................................................................................................................................................
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x1 x0 x2 = x3x−1

0 x−1
0

x−1
0

x−1
2

..........................................................................................................................................................

...................................................................................................................................................................
..........................................................................................................................................................• •• •
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•

∗∗
x1 x0 x2 = x3x−1

0x−1
0

x−1
0

x−1
2

Fig. 4.5. The newly added points v−1 map to v. Even if the two trees are isomorphic,
they fail to have the same cyclic order around x0. Since there are no Fatou points, the
disposition of the edges is enough and there is no need for precise angles.

Fig. 4.6. The actual Julia sets

Now we draw attention to two typical cases where existence fails.

Example 4.6 (Nonexistence). The tree below cannot be obtained from
a polynomial map. In fact, there is no degree two polynomial with three
fixed points.

........................................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................................

y0 = y1x0 = x1 z0 = z1
•• ∗ ........

........
.........
..........

..............
...................................................................................... α...........

..
...........

..

Fig. 4.7. All vertices are fixed. Local degrees from left to right are 1, 2, 1.

There is a further obstruction to realizing this tree. If this tree were
to come from a degree two polynomial f , then the edges incident at the
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fixed critical point should materialize as internal rays in the uniformizing
coordinate. Let α be the angle between the segments. After applying f we
obtain 2α ≡ α (mod 1), an equation that can only be solved with α ≡ 0
(mod 1), and the two segments must be identified.

Example 4.7 (Nonexistence). The following minimal tree cannot be ob-
tained from a polynomial map as it fails to satisfy the expanding condition.

......................................................................................•• .........
.........
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z1

x1

y1

x0 = x2

y0 = y2 z0 = z2

Fig. 4.8. For any k there is no vertex between f◦k(x0) and f◦k(x1).

All that can go wrong already happened in the last three examples.
In Example 4.5, uniqueness failed due to lack of information to recover
the tree f−1T (M). In the other two examples we were unable to comply
with necessary conditions: the trees must carry precise angles around Fatou
critical vertices and adjacent Julia vertices should eventually spread apart.

Example 4.8 (Compare Example 4.2). Now we want to consider a cou-
ple of extensions of the minimal tree of the rabbit (Figure 4.9, left).

In Figure 4.9, middle, we are extending the tree so that now it includes
a second fixed point, the place where the ray of argument zero lands.
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Fig. 4.9. The minimal rabbit and two extensions. One works and the other does not.

On the right, however, we have an unfeasible extension. Even if the old
angles are preserved, the presence of nonexpanding pairs spoils everything.
In fact, there are multiple reasons to disregard this dynamics as a Hubbard
tree. For example, the newly appended orbit lives too close to the fixed
points. Also, around the Julia fixed point we detect branches disjoint from
the critical orbit (compare Theorem 5.9). Of course, the latter violation
implies failure to comply with the expanding condition.
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As a consequence of uniqueness, an extension of a dynamical tree has
even less chance to be realized than the original one. In practice, we must
be careful with what we want to call a “legal extension”. Extensions must
be canonical in the sense that they can be reconstructed from the minimal
data.

Example 4.9. If we flip a Hubbard treeH about the x-axis, we get a new
dynamical tree H. Each element has a mirror image. For example a vertex
v ∈ H corresponds to v̄ ∈ H, an edge e, to ē. The vertex dynamics is given by
f(v) = f(v). Degrees do not change. The angle satisfies ∠(ē, ē′) = −∠(e, e′),
etc. Clearly, the expanding condition still holds, so we have a sound Hubbard
tree. If H is realized by F then H is realized by the conjugate F defined as
F (z) = F (z̄).

This is important because everything that we can say or build using a
given orientation remains valid for the opposite. A simple application is the
following. If H itself is symmetric by reflection about the x-axis, then H can
be realized by a real polynomial. In fact, in this case H and H are the same,
so uniqueness implies F = F .

5. Abstract Hubbard trees. Now we study abstract Hubbard trees
as defined in the introduction. The Hubbard tree with a single vertex was
solved as z 7→ zd in Example 4.1. Henceforth we assume that our trees
are one-dimensional. Two recurrent features in the abstract theory are our
capability to assign “Böttcher” coordinates around Fatou points and the
presence of an expanding condition for adjacent Julia elements.

Whenever e is an edge incident at v, inside the set f(e) we can find a
unique edge with f(v) as an endpoint. By abuse of notation we still call this
edge f(e). As we are talking about the induced action on the edges around
a vertex, this should cause no confusion.

We first simplify the local model around periodic Fatou points. When
v0 7→ v1 7→ · · · 7→ vm = v0 is a period m critical cycle, its global degree is
the product d(v0) · · · d(vm−1) of individual degrees.

A Böttcher coordinate along a critical cycle is an assignment ϕv(e) ∈
T = R/Z (for all edges incident at vertices in the loop) so that ∠v(e, e′) =
ϕv(e′)− ϕ(e) and ϕf(v)(f(e)) = d(v)ϕv(e).

Lemma 5.1. For a critical cycle of global degree k there are precisely
k − 1 ways to assign Böttcher coordinates.

Proof. If m is the length of the cycle, then f◦m sends germs of edges at
v to germs of edges at v. Hence, the presence of a good Böttcher coordinate
for e is tantamount to the equality ϕv(fm(e)) = kϕv(e). By definition we
then have

∠v(f◦m(e), e) ≡ (k − 1)ϕv(e) (mod 1).
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There are exactly k− 1 ways to solve this equation for ϕv(e) since the value
∠v(f◦m(e), e) is known a priori.

Once a value ϕv(e) is known, all other assignments are found via the
formula ϕv(e′) = ϕ(e) + ∠v(e, e′). Following the same trend, if we define
ϕf(v)(f(e)) = d(v)ϕv(e), everything is completed in a compatible way along
the cycle.

We can inductively assign coordinates at nonperiodic Fatou vertices in
the usual style. Fix an edge e incident at v and set ϕv(e) = ϕ(f(e))/d(v).
For other vertices write ϕ(e′) = ϕ(e) + ∠v(e′, e). This is again a Böttcher
coordinate.

Our abstract definition already absorbs the essence of “honest” Hubbard
trees. This makes the basic properties of abstract trees even easier to handle.

Remember that thanks to the nondegeneracy condition, the vertex dy-
namics f : V → V extends naturally to the whole tree.

Lemma 5.2. Suppose the segment [z1, z2] ⊂ H contains no critical point
of f , except, perhaps, for the endpoints. Then f is injective when restricted
to [z1, z2], and we have f([z1, z2]) = [f(z1), f(z2)].

Proof. (A no-frills version of Lemma 2.5.) Let γ : I → H be the in-
jective map that defines the arc [z1, z2]. We will focus on proving that
f ◦ γ is one-to-one. As f ◦ γ is locally injective, the set ∆ = {(t1, t2) :
t1 < t2 and f(γ(t1)) = f(γ(t2))} is compact. In case ∆ were nonempty, there
would be (t1, t2) ∈ ∆ with t2− t1 > 0 minimal. In particular, for every s < t
with t − s < t2 − t1 the composition f ◦ γ determines an arc with domain
[s, t]. Whenever we have t ∈ (t1, t2), the restriction of f ◦ γ to both [t1, t]
and [t, t2] gives two different arcs between f(γ(t)) and f(γ(t1)) = f(γ(t2)).
This is impossible in a tree.

WriteΩH for the critical set of the dynamical tree. For a subsetW ⊂ V of
vertices, let [W ]H (or [W ]) be the smallest subtree of H that contains W . Of
course, by definition we already haveH = [V ]H . The idea now is to state—no
proofs are necessary—analogous properties to those given in Section 2 for
Hubbard trees.

Proposition 5.3. For any subset W ⊂ V we have [f(W )] ⊂ f([W ]) ⊂
[f(W ∪ΩH)].

Lemma 5.4. If an invariant set M ⊂ V contains ΩH , then f([M ]) =
[f(M)] ⊂ [M ].

In order to understand the dynamics in a Hubbard tree, we restrict to
portions where f is injective. As in Section 2, we write H̃ for the family
whose members are the closures of the components of H −ΩH .
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Proposition 5.5. The dynamics f induces a continuous map on H
whose restriction to every piece of H̃ is injective.

There is no analog to Proposition 2.15 as it is technically equivalent to
Theorem 2.17, the expanding condition. Recall from the introduction that
the distance distH(v, v′) between vertices in H counts the number of edges
in [v, v′]. Our tree is expanding if for every edge e whose endpoints v, v′ are
Julia vertices there is n ≥ 1 such that distH(f◦n(v), f◦n(v′)) > 1. Evidently,
it is enough to check this condition for adjacent periodic Julia vertices.

We prove that a contextual equivalence of Proposition 2.15 and Theorem
2.17 is also valid.

Proposition 5.6. An angled tree is expanding if and only if given two
Julia vertices v, v′ there is n ≥ 0 such that f◦n(v) and f◦n(v′) do not belong
to the same piece of H̃. Even more, it is enough to test this property for
consecutive periodic vertices to decide whether or not the tree is expanding.

Proof. Suppose the tree is not expanding. Then there are contiguous
periodic Julia vertices v, v′ with distH(f◦n(v), f◦n(v′)) = 1 for all n ≥ 0.
Clearly there is a member of H̃ where we can find those pairs together.

Conversely, take an expanding tree. By contradiction suppose there are
different Julia vertices v, v′ whose successive iterates remain tied to a com-
mon member of H̃. Among such pairs pick one with maximal distH(v, v′).
By assumption, for all n ≥ 0, the arc [f◦n(v), f◦n(v′)] is contained within a
component of H̃. It follows from Lemma 5.2 and maximality that all such
intervals are naturally homeomorphic to each other. We take v′′ ∈ [v, v′]∩V
such that dist(v, v′′) = 1. Since f maps vertices to vertices, we must have
distH(fn(v), fn(v′′)) = 1, for all n. As the tree is expanding and v is of Julia
type, necessarily v′′ is a Fatou vertex. In particular, v′′ is different from v′.
From this we get a contradiction as v′′, being a Fatou vertex, is due sooner
or later to hit a critical point fk(v′′) that will block fk(v) from fk(v′).

Remark 5.7. This last proposition should be regarded as a distance-free
version of the expanding condition. It will prove helpful when we enlarge or
restrict the tree.

Whenever e is an edge incident at v, let Bv(e) be the branch that stems
from e, that is, the closure of the connected component of H−{v} that con-
tains e. Denote by Nv(e) the number of vertices found in Bv(e) (including v,
by convention). Recall that in this context f(e) refers to the only edge one
of whose endpoints is f(v) and which as a set is contained in f(e).

Lemma 5.8. If no critical point belongs to Bv(e), then f is injective
in this branch and satisfies f(Bv(e)) ⊂ Bf(v)(f(e)). In particular, we have
Nv(e) ≤ Nf(v)(f(e)).
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Proof. If [z0, z1] lies in Bv(e), then Lemma 5.2 implies f(z0) 6= f(z1)
(unless z0 = z1, an uninteresting case). Taking z0 = v we get e ⊂ [v, z1], and
therefore also f(e) ⊂ [f(v), f(z1)]. This fact together with the injectivity
of f in [v, z1] is enough to recognize that [f(v), f(z1)] is trapped inside
Bf(v)(f(e)).

The extra property is true because vertices map to vertices.

The next result represents more than the abstract counterpart to Propo-
sitions 3.6 and 3.7. It also tells us that the incidence at periodic Julia points
should be kept unaltered for the expanding condition to hold in an extension.

Theorem 5.9. If v is a periodic Julia vertex, then every branch at v
intersects O(ΩH).

Proof. As v is a regular point (for otherwise it is of Fatou type), we can
suppose that Bv(e) contains no critical point (else there is nothing to prove).

Since along the orbit of v matters are one-to-one, there is a periodic
sequence of pairs (v0, e0), . . . , (vm−1, em−1), where ei is an edge incident
at vi, subject to f(vi) = vi+1 and f(ei) = ei+1. (Here vi = vj does not imply
ei = ej : take for example a fixed point with nontrivial rotation number.)

If for some l < m the branch Bf◦l(v)(el) shelters a critical point, we
take l as large as possible, that is, we also assume that no critical point
appears in Bf◦l+1(v)(el+1), . . . ,Bf◦m−1(v)(em−1). Pick ω ∈ Bf◦l(v)(ek) critical.
By choosing perhaps some other critical point in the same branch we can
assume the absence of further critical points in [f◦l(v), ω]. We first get di-
rectly [f◦l+1(v), f(ω)] ⊂ Bf◦l+1(v)(el+1) since f is injective in [f◦l(v), ω], and
then inductively [f◦l+i(v), f i(ω)] ⊂ Bf◦l+i(v)(el+i) for i = 2, . . . ,m− l, after
applying Lemma 5.8. In particular, f◦m−l(ω) ∈ Bf◦m(v)(em) = Bv(e), and
we are done.

Otherwise, if Bf◦l(v)(el) contains no critical point for all l, the branches
are homeomorphic in view of Lemma 5.8 again. Therefore within each branch
every vertex is periodic. As they are non critical, they are of Julia type. Here
we get plenty of nonexpanding pairs and a contradiction.

Extensions of trees might be hard to construct but they are nonetheless
easy to define. We have to enlarge the tree and in the new graph manipulate
a bigger set of vertices. As we do not want to allow extensions that increase
the global degree, at each new vertex v we must set d(v) = 1. Preexisting
angles (between old edges) are supposed to be preserved. When all these to-
gether with the expanding condition between Julia vertices (of the extended
dynamics) are satisfied we have an extension of H.

Reciprocally, we say that one tree is the restriction of another if the
latter is an extension of the former.
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When thinking of extensions and restrictions, special attention must be
paid to Julia vertices: by definition there is a tight relation between the
value of the angles measured at v and the number of components that make
the complement of v. (Compare Theorem 5.9 and Example 4.8.)

Regarding the expanding condition, when just new Fatou or preperiodic
Julia vertices are appended to an expanding tree, then the extension is
trivially expanding. This happens because no new consecutive periodic Julia
pairs ought to be tested for an obstruction.

Theorem 2.17 reduces our interest to expanding trees. For that reason,
only expanding extensions will be studied. Among them, we focus on those
we call canonical. The idea is that the original tree and the extension convey
the same essential data. To be precise, an extension of H is canonical if
given another [expanding] extension of H there exists a common expanding
extension of both (and therefore of all three).

For expanding trees we have three trivial dynamical results.

Proposition 5.10. A restriction of an expanding abstract tree is ex-
panding.

Proof. This is a corollary to Proposition 5.6.

Proposition 5.11. Let H be an expanding abstract tree. The number of
edges incident at a periodic incidence Julia vertex is the same in H and in
any restriction of H.

Proof. Because of the last proposition, any restriction of H is also ex-
panding. According to Theorem 5.9 in both cases we are talking about the
number of branches that intersect O(ΩH).

An expanding Hubbard tree is minimal if it is generated by the orbit of
the critical set. Therefore, every Hubbard tree is an extension of a unique
minimal tree.

Remark 5.12. A postcritically finite polynomial f and a finite invariant
set M ⊂ Ωf define an abstract Hubbard tree Hf,M . We recall how the angle
function is defined. At Fatou periodic vertices the edges of the tree are radial
segments in a Böttcher coordinate: we measure the angle using this chart.
Near a nonperiodic Fatou vertex we pull back the ones previously defined.
For a Julia set point v, the set J(f) − {v} consists of a finite number of
components, say m. The “angle” between two components is the adequate
multiple of 1/m.

6. Chopping the trees. Previously we attempted to subdivide the
trees by cutting along the critical set. However, the correct way to cut the
tree is less radical (but by no means unique).
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In this section we construct a subdivision of H, denoted by T ∗, consisting
of d = deg(H) subtrees of H (counting possible repetitions). This partition
will have the property that every p in H belongs to d(p) pieces. To achieve
this, the tree is to be somehow unglued near the critical points. We first
label the critical set as ΩH = {v1, . . . , vl}.

Start by writing H0 = {H}. We inductively define partitions Hi (i ≤ l) of
H so that for j ≤ i the critical vertex vj belongs to exactly d(vj) constituents
of Hi, and for j > i the vertex vj belongs to just one member of Hi. The
partition Hi is formed from Hi−1 by replacing the only member T ∈ Hi−1

to which vi belongs with d(vi) subtrees of T as indicated below.
Fix an edge ei incident at vi. For k = 1, . . . , d(vi), write Ek = {e′ :

∠vi(e
′, ei) ∈ [(k − 1)/d, k/d)}. Notice that from where ei stands, we are

grouping edges clockwise. This seemingly unnatural choice will pay later on
(compare Lemma 11.7). Set

T k = T ∩
⋃
e′∈Ek

Bvi(e
′) ∪ {vi}.

(To add vi is redundant unless the branch is void.) The new partition Hi is
defined by removing T from Hi−1 and including all T k. By definition T ∗ is
Hl, the last partition. Clearly, the resulting subtrees depend on the edges ei
(here is where uniqueness breaks down) but not on how we sort the critical
points.

Example 6.1. Consider the expanding Hubbard tree exhibited in Figure
6.1. The points A,C,D have degree 2 while all others are regular. The
relevant dynamical strings are given by A 7→ F 7→ F , of Julia type, and
C 7→ E 7→ C and B 7→ D 7→ D, of Fatou type. The angles are faithfully
depicted.
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Fig. 6.1

Even if it might seem inefficient, we will follow literally the steps given
in the definition. We order the critical elements alphabetically.
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Step 1. Ungluing at A. Take AB as reference near A (no other
choice). We divide the neighborhood of A into two “balanced” parts: in
one we collect the branches that stem clockwise at angles from 0 up to 180
degrees, while in the other those from 180 degrees up to the starting edge
(but not including it). The first subtree takes everything. The second must
be thought of as a decriticalized copy of A.

Step 2. Ungluing at C. As C has degree 2, the subtree in which
it rests should be cut in two. Choose, say, CB as reference. We collect
everything up to the 180 degrees mark, so we only pick the CB branch.
The second tree gets the branch growing in the CD direction (and anything
else). Up to this point we are left with three trees as shown below.
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Fig. 6.2

Step 3. Ungluing at D. This is the first time we pay attention to D,
which still lives in a single subtree. According to the definition, the leftmost
tree should be split in two. Take the edge DC as reference and start measur-
ing. The first group of branches includes everything before the 180◦ mark.
This time we obtain a bouquet consisting of the branches pointing toward
C and F pinned at D. The remainder constitutes the second tree.
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Fig. 6.3
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Lemma 6.2. The vertex dynamics induces a continuous map from the
tree to itself where the restriction to every piece of T ∗ is injective.

Proof. Let T be a piece of T ∗. Take an arc γ : I → T joining different
p1, p2 ∈ T . We first explain why f |T is locally one-to-one also at a potential
critical point c ∈ T . At such point all branches stem at arguments inside
a wedge not broader than 1/d(c) turns. Therefore no folding takes place
around c either. Thus ∆ = {(t1, t2) : t1 < t2 and f(γ(t1)) = f(γ(t2))} is
compact (compare Lemmas 2.5 and 5.2). If we assume f(γ(0)) = f(p1) =
f(p2) = f(γ(1)), then ∆ is nonempty and there exists (t1, t2) ∈ ∆ with
t2 − t1 minimal. Let t ∈ (t1, t2). Then f(γ([t1, t])) and f(γ([t, t2])) are arcs
in a tree with the same endpoints. Hence, they are equal, and t2− t1 cannot
be minimal.

Corollary 6.3. In a degree d Hubbard tree any point has at most d
inverses counting multiplicity.

Since each part of T ∗ is a natural place of injectivity, our next task is to
improve on Proposition 2.15.

Lemma 6.4. Let e, e′ be different edges incident at a periodic critical
Fatou vertex. Then there is n ≥ 0 for which f◦n(e) and f◦n(e′) belong to
different pieces of T ∗.

Proof. Let k > 1 be the degree of the critical loop v0 = v 7→ v1 7→ · · · 7→
vm = v0. Because kl∠v0(e, e′) blows up to ∞ with l, there is a first integer
n ≥ 1 for which d(v0)d(v1) · · · d(vn)∠v0(e, e′) ≥ 1. This implies

1/d(vn) ≤ d(v0)d(v1) · · · d(vn−1)∠v0(e, e′) = ∠vn(f◦n(e), f◦n(e′)) < 1,

so by definition f◦n(e) and f◦n(e′) belong to different pieces of T ∗ deter-
mined by the critical point vn.

Proposition 6.5. Let v, v′ be different Julia vertices. For some n the
vertices f◦n(v) and f◦n(v′) are not in the same element of T ∗.

Proof. We first settle the case where v, v′ are periodic. Suppose f is not
one-to-one near ω when restricted to the arc [v, v′]. Let e, e′ be the edges
incident at ω that point toward v, v′, respectively. As around ω we have fold-
ing, the angle ∠ω(e, e′) is a nontrivial multiple of 1/d(ω). By construction,
the branches determined by e, e′ always belong to different subtrees in T ∗.

If eventually there is folding between f◦n(v) and f◦n(v′), then everything
is reduced to the previous case.

Otherwise, if f restricted to the segment [f◦n(v), f◦n(v′)] is always injec-
tive, then the distance between successive iterates of v and v′ is persistently
the same, and we must be able to interpose a Fatou periodic vertex ω in
the middle in order not to violate the expanding condition. We now apply
Lemma 6.4 to the two branches at ω and get a contradiction.
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Finally, if v, v′ are not periodic, then thanks to Lemma 6.2 we trans-
fer inductively the question to f(v) and f(v′) until both vertices become
periodic.

7. Fit extensions. In this section we define a class of extensions which
adds nothing essential to a Hubbard tree. Their merit is to help us correctly
draft potential Fatou components. As a by product, we show how to con-
struct canonical extensions with all ends of Julia type. This standardization
will prove useful later on.

Let H be a Hubbard tree. An edge e incident at a Fatou vertex ω is fit
when its other endpoint v is of Julia type and satisfies dist(f◦n(ω), f◦n(v))
= 1 for all n. In plain words, the edge is delineating an internal ray in the
Böttcher coordinate. Likewise, a Fatou vertex is fit if all its incident edges
are fit. Here we are shielding a Fatou component. A Hubbard tree is fit if
all its Fatou vertices are fit. The purpose of this section is to establish the
existence of canonical fitted extensions.

Lemma 7.1. Every Hubbard tree admits a canonical extension with all
periodic Fatou vertices fit. In fact, the underlying topological trees can be
chosen the same, with only new Julia vertices added.

Proof. Let ω be a periodic Fatou vertex and e an edge with endpoints
ω and v.

Suppose first that the germ of e is periodic, say of period k. We distin-
guish two cases: when dist(f◦m(ω), f◦m(v)) = 1 for all m, or not.

In the former case, following Lemma 5.2, all edges em = [f◦m(ω), f◦m(v)]
are homeomorphic. Also, when v is of Julia type, then this edge e is already
fit. If v is of Fatou type, we insert a vertex vm in each em (in the event
of em = el, make sure to have vm = vl even when f◦m(ω) 6= f◦l(ω)), and
define f(vm) = vm+1. Then clearly v0 is periodic of period k or k/2. The
angles at vk are 1/2 because two edges meet there. This gives an expanding
tree since the only new vertices are the vj , of Julia type, inserted between
f◦j(ω) and f◦j(v), both of Fatou type. The extension is canonical due to
Proposition 5.6: inside em there is place for at most one Julia vertex.

Otherwise we will have dist(f◦m(ω), f◦m(v)) > 1 for some m ≥ 1. If
so, we insert different vertices vj , one in each ej , for j = 0, . . . , k − 1, as
close as possible to ωj = f◦j(ω) (this time ej = ej+k/2 implies vj 6= vj+k/2),
and define f(vj) = vj+1. These points vj have exact period k. Again angles
at vk measure 1/2. Next we prove that this new abstract tree is expand-
ing also at the new vertices. Suppose v̂, of Julia type, is contiguous to vj .
This implies v̂ 6= ωj , simply because the types of ωj and v̂ are different. If
distNEW(f◦i(vj), f◦i(v̂)) = 1 for all i (we are talking about the distance in
the new tree), then distNEW(f◦i(ωj), f◦i(v̂)) = 2, for all i, owing to the fact
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that no f◦i(vj) is critical. If v̂ belongs to the old tree, the last relation in
turn forces dist(f◦i(ωj), f◦i(v̂)) = 1 in the original tree, in contradiction to
what was assumed earlier. Else v̂ should be one of the new vertices. Now
the same reasoning as above ensures that in the original tree the distance
between the successive iterates of ωj = f◦j(ω) and f◦j(v)—the endpoints
of ej , where by definition vj and v̂ stand—will remain 1. This is not the
case.

To tackle the general case by induction, suppose the edge f(e) is fit but
e is not. As we already know how to make fit periodic edges, we suppose e
is not periodic. Let f(ω) and v̂ be the endpoints of f(e), and ω and v be
those of e. By assumption v̂ is of Julia type since f(e) is fit. We also have
f(v) 6= v̂ (if not, e is fit). Here we insert a vertex ṽ between ω and v, and
define f(ṽ) = v̂. Notice that ṽ does not belong to the forward orbit of v̂ for
otherwise it will already be present in the old tree, which does not happen.
We copy the angles at ṽ from those at v̂. This tree is expanding as no new
periodic points are added. The extension is canonical since the restriction
of f to e is injective and as such there is precisely one way to choose the
preimage of a point modulo isotopy.

Lemma 7.2. Every Hubbard tree admits a canonical extension with all
Fatou vertices fit. In fact, the underlying topological trees can be chosen to
be the same, with only new Julia vertices added.

Proof. Start with an extension as in Lemma 7.1. Then inductively make
fit any edge that stems from strictly preperiodic Fatou vertices using the
same technique as at the end of the proof of the last lemma. We are never
appending new periodic vertices so expansiveness is granted for free.

For purposes that will become apparent shortly, we need a small im-
provement in the quality of the extensions.

Proposition 7.3. Every Hubbard tree admits a canonical fit extension
where every end is of Julia type.

Proof. We assume directly that our tree is fit. Suppose first that the
Fatou vertex ω is an end but f(ω) is not. If so, let e be the lone edge that
stems from ω. Take any edge e1 other than f(e) at f(ω). Let v1 be the Julia
vertex that is connected to f(ω) via e1. Now extend the tree by adding a new
edge e0 with endpoints ω and v0 making an angle of ∠f(ω)(f(e), e1)/d(ω)
with e—as usual d(ω) is the local degree at ω. When we map v0 to v1, this
fit extension is still expanding.

The only danger is if a periodic Fatou orbit is composed of ends. In such
a case all edges stem at the zero argument in a suitable Böttcher coordinate.
At a critical ω we append an edge at angle 1/d(ω) and make it fold under
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iteration. This critical point is no longer an end and we can repeat the work
of the last paragraph.

8. Canonical inverse trees. We now describe an important class of
canonical extensions. For the Hubbard tree Hf,M generated by a polynomial
f and the invariant set M we reconstruct the tree generated by f−1M
using only Hf,M as data. This section represents the abstract counterpart
to Section 3.

A Hubbard tree of degree d is homogeneous if every vertex with a
preimage—in the vertex dynamics—has d of them (counting multiplicity). In
other words, one preferred inverse implies a full set (compare Corollary 6.3).
A standard count gives the following.

Lemma 8.1. A degree d Hubbard tree with set of vertices V is homoge-
neous if and only if |V |−1 = d(|f(V )|−1). Here | · | stands for cardinality.

The term is justified by the fact that the underlying topological tree
can be chopped into d pieces, each homeomorphic as a graph to the tree
generated by restriction to f(V ).

Lemma 8.2. Let T ∗ be any partition (as in Section 6) of the homogeneous
Hubbard tree H. Then each T ∈ T ∗ is homeomorphic to f(H) = [f(V )].

Proof. Writing VT = V ∩ T we get T = [VT ]. Since the tree is homoge-
neous, we have f(VT ) = f(V ). Thus, the chain of inclusions

[f(V )] = [f(VT )] ⊂ f([VT ]) ⊂ [f(VT ∪Ω)] ⊂ [f(V ∪Ω)] = [f(V )]

guarantees that f maps T = [VT ] onto [f(V )]. As f restricted to T is injec-
tive, the result follows.

Let H ′ be a homogeneous extension of H. If f(VH′) = VH , we say that
H ′ is the inverse of H and write inv(H) = H ′. In fact, inverses are unique.

Proposition 8.3. Every Hubbard tree admits a unique inverse.

We organize the proof in several stages. While attacking uniqueness
through necessary conditions, we will also hint how to handle existence.

Proof of uniqueness. Take two inverses of H. Around each critical ver-
tex in H select an edge as reference. In a synchronized manner chop both
inverses as in Section 6. According to Lemma 8.2, every resulting piece
is homeomorphic to H. After matching corresponding pieces, we find no
structural difference between one set of subtrees and the other. (Around the
critical vertices we must be cautious about angles. However the presence of
a common reference edge in all three trees allows coherence.)

Example 8.4. We will reconstruct from scratch the inverse of the tree
presented in Example 6.1. According to the method just outlined, near each
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critical vertex we pick a reference edge: we grab the ones we choose before, in
Section 6. Before proceeding further, we construct an intermediate extension
Ĥ. As the segment AB is somehow marked, we travel half a turn to find
an empty spot. We append precisely there a segment AB′ where B′ maps
to D, like B. Notice that the segments AB′ and AB fold under iteration.
Furthermore, as B′ is preperiodic, the new tree remains expanding. Near C
the preferred arc CD takes CB as a folding companion (here it is irrelevant
whether or not B and D map to the same point); we take no further action.
Finally, at D the preferred direction is DC. Since the edge pointing at angle
1/2 = 1/deg(D) is missing, we append DC ′ and map C ′ to E = f(C). The
dynamics in this intermediate tree Ĥ is still expanding. As we will confirm
briefly, these newly added segments play the role of mounting arms where
we will assemble subtrees to get the full inverse. This tree H ′ is the one we
subdivide as in Section 6 into T1, T2, T3, T4.

∗

∗

∗ ◦

•

◦

A B

C

D

E

F

..................................................
........
..............

...............
........
.................................................

.................................................................................................. ................
................

................
................

................
...............

................
................

................
................

................
............

........

........

........

........

........

........

........

........

........

........

........

........

.......

...............................................................................................

...........................................

.......
.......

.......
.......

.......
.......

◦

◦

B′

C ′

Fig. 8.1

Now we think of each Tj , for j = 1, . . . , 4, as mapping into a different
copy Hj of the original tree H. In this way, a vertex in Tj rightfully deserves
the name f−1

j (v), where v is a vertex in H. We can even use v−1
j as shorthand

to make figures tractable.
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Fig. 8.2. This is Figure 6.3 after relabeling vertices and appending virtual edges.

The original map f is injective when restricted to each piece. Hence, we
can embed Tj into a different copy Hj of H and identify each point with its
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image. In practice, we are filling empty spaces. The subindex j will help us
recall the background.
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Fig. 8.3. How the first and third subtrees are immersed in the inverse. Do not forget the
equalities F−1

1 = A, E−1
3 = C, D−1

3 = D, F−1
3 = F .

Regarding Figure 8.3, for the piece on the left everything looks fine.
However, at first glance something is wrong with the one on the right: the
displayed angles around D = D−1

3 do not match those around D in H, the
raw model. Even if this is not conceptually incorrect (Lemma 6.2 promises
only a topological equivalence with the image), corrective measures will be
enforced.

About a critical point ω angles get multiplied by d(ω). That is why to
keep matters injective, we restrict to sectors of span 1/d(ω) starting from
the benchmark. Therefore, around critical points the picture ought to get
squeezed. This explains visual inconsistencies. Let us work tree by tree.

In the first tree the only critical point is A, recognized in the picture
as F−1

1 . The reference segment, even if only of virtual nature, is AB′, and
here it appears as F−1

1 D−1
1 . However, in the first tree there is no other

segment incident at A, so there are no angles to rectify.
The second tree requires some care as there are two critical points: A =

F−1
2 with preferred direction AB = F−1

2 D−1
2 and C = E−1

2 with preferred di-
rection CB = E−1

2 D−1
2 . Fortunately, there are no other edges in the extended

tree incident at any of these two dangerous points, and there is nothing to fix.
In the third tree the critical vertices are C,D—depicted as E−1

3 , D−1
3 ,

based at CD and DC, respectively. Therefore, taking DF = D−1
3 F−1

3 as
reference, near D = D−1

3 the angles should be halved. [Recall that edges
are recollected finishing at DC, so DF is more vulnerable to changes.] No
action is taken close to C = E−1

3 as we see only one branch.
In the last tree, only D−1

4 = D is critical. The tree must fit inside a
wedge of 180 degrees finishing at the virtual—yet distinguished—direction
DC ′ = D−1

4 E−1
4 .
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Fig. 8.4. The second and fourth subtrees in full

Having now the four homeomorphic images of H (not of Ĥ!), we mount
them upon the original skeleton to get the inverse tree. Of course, a point
of the form v−1

j maps to v under f .
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Fig. 8.5. The inverse tree

Proof of existence. As suggested by the example, we first build an inter-
mediate tree Ĥ. As usual, at every critical point ω we pick a preferred edge
e = eω. If we find no edge making an angle of k/d(ω) turns with e, then we
insert a copy ek of e there. With the obvious dynamics f(e) = f(ek) we still
have a well behaved angled tree. As no new periodic points are added, the
expanding condition is satisfied. Once this precaution is taken at all critical
places, call the resulting expanding tree Ĥ. This tree must be differentiated
from H since it is probably bigger.

Next we subdivide Ĥ as in Section 6. Call the resulting family T ∗. Now,
each Tj ∈ T ∗ is mapped injectively into f(Ĥ) = f(H) as indicated in
Lemma 6.2. Consider different copies Hj of H and embed Tj in Hj fol-
lowing f (cf. Example 8.4). Calibrate the angles at the critical vertices as
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in Example 8.4. Once we reglue all Hj on top of Ĥ, we have a new simpli-
cial complex with well defined angles. If we map each point in Hj to the
actual point from H from which it was cropped, we get a well defined dy-
namics compatible with the angles. Also, an Euler characteristic argument
shows that this new connected graph is a tree, clearly the inverse tree. As
no new periodic vertices are added, the tree is expanding. By Lemma 8.1
this Hubbard tree is homogeneous.

Theorem 8.5. The inverse is a canonical extension.

Proof. If H ′ is an extension of H, we construct the inverse of H ′ as in
the last theorem. This is a common extension of inv(H) and H ′. Indeed, in
inv(H ′) we restrict to [f−1(V )], where V is the original collection of vertices.
This restriction tree should be inv(H) due to uniqueness.

This is the correct moment to review the concept of incidence. We now
carefully study from the dynamical point of view how the number of edges
incident at a Julia vertex grows with the inverse.

LetH be a Hubbard tree. We define the incidence number νH(v) at v ∈ V
as the number of connected components of T − {v} in the underlying topo-
logical tree. In the successive inverse trees inv◦m(H), we also have incidence
functions νH,m = νinv◦m(H). By definition we have νH,0(v) ≤ νH,1(v) when-
ever v ∈ V . Also, by construction of inv(H) we get νH,1(v) = d(v)νH,0(f(v))
for v ∈ inv(H).

Proposition 8.6. For every periodic Julia vertex v ∈ V and integer
m ≥ 0 we have νH,0(v) = νH,m(v).

Proof. Even if this fact is engulfed by Proposition 5.11, we present a
constructive argument. As d(v′) = 1 at every v′ ∈ O(v), no new edges are
added around v in the construction of inv◦m(H).

Corollary 8.7. Let v ∈ V be a Julia vertex such that f◦k(v) is periodic.
Then for every m ≥ k we have νH,k(v) = νH,m(v).

Corollary 8.8. Let H be a Hubbard tree. There is a k ≥ 0 such that for
all m ≥ k we have νH,k(v) = νH,m(v) at every original Julia vertex v ∈ VH .

Proof. In fact, there are only a finite number of vertices in the original
tree.

We denote such numbers by νH,∞(v).

9. Accesses and external coordinates. We now associate an angle
to every Julia based access. In practice this value represents the argument
of a landing ray.

Let us focus on the disposition around a vertex v ∈ V . If e, e′ are consecu-
tive edges next to v, then the triplet A = (v, e, e′) is called the pseudoaccess
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based at v and supported by e. A vertex can be base for multiple pseu-
doacesses. On the other hand, an edge supports exactly two pseudoaccesses:
one for each endpoint.

The edge e′ has endpoints v and some other vertex v′ ∈ V . When e′′

follows e′ around v′, the pseudoaccess A′ = (v′, e′, e′′) becomes the successor
of A = (v, e, e′) (in the pseudoaccess order). This reflects the idea that a
pseudoaccess is barely a way to flip from one edge to another using the
vertex as hinge.

........................................................................• •
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Fig. 9.1. A glimpse at the pseudoaccesses

Of course, when we leap from vertex to vertex around the tree, few
surprises await us. For example, the next properties are somehow trivial.

Lemma 9.1. In a Hubbard tree the pseudoaccesses are arranged in cyclic
order.

Proof. A trivial induction on the size of V , the set of vertices.

Two subsets T ,S of the circle are unlinked if they belong to disjoint
connected subsets of T, or, equivalently, if S is contained in one component
of T − T . In particular, these sets are disjoint. If we identify T with the
boundary of the unit disk, an analogous condition is that the convex hulls
of T and of S are disjoint.

Lemma 9.2. Given p ∈ H, pseudoaccesses based at points belonging to
different components of H − {p} are pairwise unlinked.

Lemma 9.3. Arrange the edges at v as e0, . . . em = e0. Let Ai be any
pseudoaccess whose supporting edge belongs to Bv(ei), the branch that stems
from ei. Then A0 < A1 < · · · < A0 in the cyclic order.

Fix a decomposition T ∗ of H as in Section 6. When e is contained in
T ∈ T ∗, by some abuse of language we even say that the access A = (v, e, e′)
is supported at T .

Lemma 9.4. Pseudoaccesses supported at different pieces of T ∗ are pair-
wise unlinked.

Proof. Let T1, T2 be different members of T ∗. If T1 ∩ T2 = ∅, we find p
so that T1, T2 are included in different components of H − {p}. This case
is then settled by Lemma 9.2. Otherwise T1 and T2 intersect at a critical
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point v. We define T̂i as the union of branches that stem from v and contain
an edge in Ti. Now we get more than we asked for: a pair of pseudoaccesses
supported in T̂1 is unlinked from a pair supported at T̂2 due to Lemma 9.3,
because each bouquet is the union of cyclically arranged branches.

A pseudoaccess (v, e, e′) becomes an access if νH,0(v) = νH,∞(v), that is,
if the number of edges around v is stable. By definition, at Fatou vertices
there are no possible accesses whatsoever since the incidence keeps growing
with the inverses. Clearly, an access at v is periodic if and only if v is periodic
and of Julia type. In what follows, wheneverA is an access (or pseudoaccess),
we write vA for the base point.

Lemma 9.5. Let H be a Hubbard tree of degree d. Then f induces a
degree d orientation preserving covering mapping between the pseudoaccesses
of inv(H) and H. Furthermore, accesses in inv(H) map to accesses in H.

Proof. If (v, e, e′) is a pseudoaccess in inv(H), then (f(v), f(e), f(e′)) is
by construction a pseudoaccess in H. Clearly the correspondence is d-to-1
and order preserving. The second part is obvious.

Remark 9.6. For the access A = (v, e, e′) there is a mild psychological
preponderance of e over e′. This is a consequence of fixing an orientation. (In
fact, in the mirror Hubbard tree, the access A corresponds to A = (v̄, ē′, ē)
and successor becomes predecessor.)

Now we are ready to build a bridge between the theory of Hubbard trees
and the dual theory of critical portraits. The angle associated to an access
at the end will be that of a landing ray.

Proposition 9.7. Let H be a homogeneous Hubbard tree of degree d > 1
with at least one Julia vertex. There exist an embedding φH of the accesses of
H into T for which the induced map between accesses becomes multiplication
by d (modulo 1). Furthermore, φH is uniquely defined up to a global addition
of a multiple of 1/(d− 1).

Proof. In order to assign an argument to each access of H, we can work
in a larger tree inv◦m(H), where m is large enough. Even more, we assume
without loss of generality that every end is of Julia type (compare Proposi-
tion 7.3). We still call this tree H.

By Lemma 9.5 the induced map between accesses is an orientation pre-
serving covering of degree d. To assign an argument we prove that this finite
map is expanding (compare the first appendix in Section 14). Take in H two
adjacent periodic accesses Ai = (vi, ei, e′i), i = 0, 1. The idea is to show that
for some m large enough these accesses cannot be consecutive in inv◦m(H).
As no new periodic Julia vertices are added in the construction of inv◦m(H),
no new periodic accesses appear and the conditions of Theorem 14.4 are triv-



Hubbard trees 227

ially met; this will establish the result. We distinguish between v0 = v1 and
v0 6= v1.

If v0 = v1, then part of the cyclic string around this vertex is e0 < e′0 ≤
e1 < e′1 ≤ e0 (actually e′0 = e1, but this is irrelevant). Due to Lemma 9.3, it
is enough to find m ≥ 0 so that inv◦m(H) allows an access inside the branch
Bv0,inv◦m(H)(e′0). But this is easy. As every end of the tree is of Julia type,
one of them already belongs to Bv0,H(e′0). Now we apply Corollary 8.7 to
make sure there is an access in place.

Now suppose v0, v1 are different periodic Julia points. For some m > 0
there is a vertex v′ ∈ inv◦m(H) inside the segment [v0, v1] for otherwise
our Hubbard tree will not be expanding. If v′ is of Julia type, we grow
the tree until all pseudoaccesses at v′ turn accesses. Then A and A′ are
no longer consecutive in the cyclic arrangement. Else, based at the Fatou
vertex v′ ∈ inv◦m(H), let (v′, e, e′) be a pseudoaccess between A0, A1 in the
cyclic order. Find an argument θ between ϕ(e) and ϕ(e′) (in the Böttcher
coordinate ϕ at v′) which via multiplication by the step by step degrees of
the Fatou critical points along the orbit of v′ catches up with either ϕ(e) or
ϕ(e′). Then eventually (that is, in some appropriate inverse tree) a branch
will stem from this direction. As all ends should be of Julia type, we can
work as before to grow an access on the said branch.

In all cases we have proved that between periodic accesses we can inter-
polate a nonperiodic one. In this way the map is shown to be expanding.
By Theorem 14.4, it can be angled precisely in d− 1 ways.

As every abstract Hubbard tree H has a canonical extension satisfying
the conditions of Proposition 9.7, we can associate to every access a coordi-
nate compatible with the dynamics. No secret that such external coordinate
φH will be a Böttcher coordinate in the basin of attraction of ∞.

Lemma 9.8. In some inverse inv◦m(H), at all Julia vertices of the orig-
inal tree pseudoaccesses become accesses.

Proof. This is a way to rephrase Corollary 8.8.

Now let θ 7→ dθ 7→ · · · 7→ dkθ = θ, be a periodic orbit under the standard
d-fold multiplication in T. An important question is whether there is a canon-
ical extension of H where the accesses corresponding to {θ, dθ, . . . , dk−1θ}
are present. For this we have the following.

Proposition 9.9. Let H be a homogeneous abstract Hubbard tree with
at least one Julia vertex. For any choice of external coordinate φH and
periodic orbit θ 7→ dθ 7→ · · · 7→ dkθ = θ under d-fold multiplication in T,
there is a canonical extension of H in which the accesses corresponding to
{θ, dθ, . . . , dk−1θ} are present.
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We defer the proof until the end. In fact, Section 13 is entirely devoted
to it. For the time being we take this fact for granted and move speedily
toward the realization of Hubbard trees.

10. From Hubbard trees to formal critical portraits. Now we em-
ploy canonical extensions to mimic the construction associated with critical
portraits. The main concepts and results of this theory are reviewed in the
second appendix of Section 14.

Every Hubbard tree admits a canonical fit extension. In it, given a Fatou
vertex ω and an edge e with endpoints ω and v, the vertex v is of Julia type
and the distance between iterates of ω and v is persistently 1.

Around a Fatou periodic orbit consider a system of Böttcher coordinates.
About this critical cycle we extend the tree by appending an edge and a
vertex at every zero argument (if they are not already present). This kind of
extensions is canonical since either the periodic points are already in place
or, else, we are just pasting ends contiguous to Fatou points. For any other
Fatou vertex, say w, we suppose that the zero segment is present in the local
chart for f(w) and proceed by backward induction: we insert a new vertex
and a new edge as preimages of the ones just given above. Since this last
construction can also be worked out by restriction in the inverse tree, we
still move in canonical territory. Near a Fatou vertex, the appearance of a
preferred “natural” edge will make our lives easier when the time comes to
split the tree according to the methodology introduced in Section 6.

Corollary 8.8 guarantees that pseudoaccesses defined at the endpoints of
all such zero internal rays are accesses in a suitable inverse. Any extension
satisfying that condition is supporting.

Let ω be a Fatou vertex. An access (v, ẽ, e) is said to support ω if the
endpoints of e are v, ω and for all k ≥ 0 they obey distH(f◦k(v), f◦k(ω)) = 1.
This is another way of saying that e is fit, yet this time with emphasis on the
access. Clearly f(v, ẽ, e) = (f(v), f(ẽ), f(e)) supports f(ω). When (v, ẽ, e)
supports ω we rewrite it as D(ω, e). (Compare Figure 10.1.)

Let H be a supporting abstract Hubbard tree. Applying Corollary 8.8
we pick a suitable inverse inv◦m(H) in which at every original Julia vertex
v ∈ VH the incidence is already stable: for them we have νH,m(v) = νH,∞(v).
We list the Fatou and the Julia critical points as ω1, . . . , ωl and c1, . . . , ck, re-
spectively. Now we are ready to select hierarchic accesses as in the appendix.

Let ω be a periodic Fatou vertex. If e0 is the edge with Böttcher argu-
ment 0, then D(ω, e0) has the same period as ω. Map it as f(D(ω, e0)) and
then pull it back to get d(ω) supporting accesses at ω (work in the inverse
tree if you wish); of course, the originalD(ω, e0) is among them. Collect them
together in the “preargument” set Fω. As the choice of a preferred edge is
compatible along the cycle, the selection of preferred accesses is hierarchic.
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For nonperiodic Fatou critical points, again denote by D(ω, e0) the access
that hangs from the zero internal segment. Push it forward and then pull it
back to form Fω, a set with d(ω) elements.

For a Julia critical vertex c we start the closest to a periodic orbit. Find
an access based at f(c) and pull it back. Keep record of those d(c) accesses
as Jc. Choose a hierarchic element in the way. For future reference, the edge
where the original access is supported will be the preferred edge around c.
Continue inductively.

There is a slight difference in the two constructions: at a Julia vertex the
marked accesses are based at the critical point, while for Fatou vertices the
accesses are taken at the other end of the preferred internal edge.

In this way, we have constructed two families

F = {Fω1 , . . . ,Fωl
}, J = {Jc1 , . . . ,Jck}

of accesses. We will not distinguish between the access itself and the corre-
sponding external coordinate assigned by φH (compare Proposition 9.7).

The following is a trivial consequence of all we have done.

Proposition 10.1. The marking Θ = (F ,J ) represents a formal criti-
cal portrait.

Of course, we still have to verify if this critical portrait is admissible.
Having set out goals, here are two easy properties we want to isolate. Their
purpose is to place in T a given access (the argument associated to it, re-
ally) relative to the preferred sets Fω,Jc. Remember we are working in a
supporting tree.

Lemma 10.2. Given a Fatou critical point ω of local degree n > 1,
write ei for the edge that stems from the internal angle of value i/n, so
that Fω = {D(ω, e0), . . . ,D(ω, en−1)} is displayed in cyclic order. Suppose
C is an access supported in the branch Bω(e). If ei−1 < e ≤ ei (in the cyclic
order around ω), then D(ω, ei−1) < C ≤ D(ω, ei).

Proof. If ei−1 < e < ei, then Lemma 9.3 gives directly D(ω, e′) < C <
D(ω, e) < D(ω, e′). Else we have e = ei and we are just capturing the idea
that D(ω, ei) is the last among all accesses supported at Bω(ei).

Lemma 10.3. Let c be a Julia type critical point of degree n. Write Jc =
{A0, . . . ,An−1}, where Ai = (c, ei, e′i), in such a way that e0 < e1 < · · · <
en = e0 reflects the cyclic order of the supporting edges. Suppose C is an
accesses supported in a branch Bc(e). If ei−1 < e ≤ ei, then Ai−1 < C ≤ Ai.

Proof. This is the Julia-like version of Lemma 10.2.

The choice of a preferred access related to a Fatou or a Julia point is
equivalent to the choice of a preferred edge incident at the said critical point.
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Fig. 10.1. Lemma 10.2 at work. Obligatorily we have vC 6= ω as one is a Fatou vertex
while the other is of Julia type.

Near a Fatou critical point the edges in the zero direction are taken, while
at Julia critical points we have the supporting edge of the preferred access.
This is just the information we needed in Section 6 to construct a family
of subtrees T ∗. As a consequence, a supporting Hubbard tree automatically
comes with a partition T ∗.

In Section 6 we made the apparently unnatural decision to pick edges
clockwise in the construction of T ∗. This was done in order to make useful
Lemmas 10.2 and 10.3. For example, they will render obvious Lemma 11.7.

11. From Hubbard trees to admissible critical portraits. Here
we confirm the admissibility of the formal critical portrait constructed in
the last section. For this we verify conditions (c6) and (c7) from Section 14.
We first attack (c6). While we check (c7), the intermediate steps will help
us show that any polynomial with critical marking (F ,J ) has Hubbard tree
equivalent to the starting one. This is how Theorem 1.1 gets established.

In a sense, we only have to mimic the theory of critical portraits. There-
fore, to fully understand this section, it is helpful to be familiar with ad-
dresses and symbol sequences. We will freely use the notation in Section 14.
The goal is to prove that the formal critical portrait Θ = (F ,J ) constructed
so far is admissible.

Lemma 11.1. Let Ai,Bi be accesses based at vi for i = 1, 2. If v1 6= v2,
then {A1,B1} and {A2,B2} are unlinked.

Proof. Let p be any point between v1 and v2. Then {Ai,Bi} are located
at different sides of T − {p} and we can apply Lemma 9.2.

First we study right symbol sequences. Fortunately they only have rele-
vance for periodic arguments. We isolate some trivial facts.

Lemma 11.2. Let A,A′ be distinct periodic accesses. If for some k ≥ 0
we can find a Julia type critical point in the segment [f◦k(vA), f◦k(vA′)],
then s+Θ(A) 6= s+Θ(A′).
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Proof. As vA, vA′ are periodic and of Julia type, none of their iterates is
critical. If a Julia critical point c interposes between f◦k(vA) and f◦k(vA′),
then according to Lemma 10.3 the accesses f◦k(A) and f◦k(A′) belong to
different components of T−Jc. The kth right addresses of the initial accesses
are then different.

Lemma 11.3. Let A = D(ω, e0) be the periodic supporting access asso-
ciated with the periodic Fatou critical point ω. Suppose A′ is supported in
a branch Bω(e′) where ∠ω(e0, e′) > 1/d(ω). Then A and A′ have different
right address.

Proof. Write Fω = {D(ω, ei)} with the edges ei ordered as e0 < e1 <
· · · < ed(ω) = e0. Then e1 < e < e0 implies D(ω, e1) < A′ < D(ω, e0) in view
of Lemma 10.2. From this we get D(ω, e0) = A < A+ ε < D(ω, e1) and the
desired conclusion.

Lemma 11.4. Let A,A′ be periodic accesses. If s+Θ(A) = s+Θ(A′), then
vA = vA′.

Proof. By contradiction suppose vA 6= vA′ . As both vertices are periodic,
we have f◦n(vA) 6= f◦n(vA′) for all n. The expanding condition (compare
Proposition 5.6) guarantees that sooner or later we will find a critical point
interior to [f◦k(vA), f◦k(vA′)]. According to Lemma 11.2, it cannot be of
Julia type. There are several routine cases to handle.

First suppose that f restricted to all such intervals is injective. Then
the number of vertices inside these segments is persistently the same, and
all are periodic. With Proposition 6.5 at hand we can suppose further
that vA, vA′ belong to different pieces of the canonical decomposition T ∗.
Therefore at a Fatou critical point ω ∈ [vA, vA′ ] we find different edges
e, e′ pointing to vA, vA′ . They have periodic endpoints, and thus corre-
spond to periodic internal angles in the Böttcher coordinate. When we
write e0, e1, . . . , ed(ω)−1 for the preferred supporting edges at ω, just one,
say e0, is periodic. If e, e′ are both different from e0, then they are inter-
calated in between e0, . . . , ed−1, ed = e0. Then Lemma 9.3 implies directly
that A and A′ are in different components of T − Fω. As a consequence,
they do not share right address. However, if for instance e = e0, then we
must have ∠(e′, e0) ≥ 1/d(ω) (since e = e0 and e′ must belong to dif-
ferent members of T ∗). Also e′ is periodic, fact that rules out the equal-
ity ∠(e′, e0) = 1/d(ω). We get e0 < e′ < ed(ω)−1 and along we conclude
D(ω, e0) < A′ < D(ω, ed(ω)−1) < A ≤ D(ω, e0). Hence, the only way to still
have a slight chance of matching right address is to allow A = D(ω, e0).
But f is injective in [f◦n(vA), f◦n(vA′)]. We conclude that f◦n(vA′) belongs
to Bf◦n(ω)(f◦n(e′)), the branch that stems from f◦n(ω) through the f◦n(e′)
edge. Furthermore, we have f◦n(A) = D(f◦n(ω), f◦n(e0)), so Lemma 11.3
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implies 0 < ∠(f◦n(e), f◦n(e′)) ≤ 1/d(f◦n(ω)) for all n. This is clearly im-
possible as we have expansiveness in the Böttcher coordinate.

The only possibility left is that for some n there is a folding critical Fatou
point in [f◦n(vA), f◦n(vA′)]. Without loss of generality we take n = 0. Again
there are two edges e, e′ near ω pointing to vA, v′A. The angle between these
edges is a multiple of 1/d(ω), so bearing in mind that Fω is constructed by
taking the other ends of the preferred e0, e1, . . . , ed(ω)−1, a simple application
of Lemma 9.3 tells us that one of the edges (and hence both) is to be picked
among e0, e1, . . . , ed(ω)−1, the preferred ones, just to keep alive the possibility
that the arguments share right address. In that event Lemma 10.2 implies
that necessarily one of them, say A, must be supporting for ω while the
other is not. But A is periodic, and inside Fω only D(ω, e0) is; hence we get
A = D(ω, e0). As a by-product we conclude that ω and vA share period.
Angle considerations then imply e′ = e1. Let Â = D(ω, e1) be based at v̂,
the other endpoint of e1. Then by definition we have f(v̂) = f(vA). Let m
be a high common multiple of the periods of A and A′ (and a fortiori of ω).
Then f◦m(v̂) = f◦m(vA) = vA does not belong to [f◦m(ω), f◦m(vA′)] =
[ω, vA′ ]. Nevertheless v̂ is contained in [ω, vA′ ]. We deduce that there is a
last k ∈ {0, . . . ,m−1} for which f◦k(v̂) is in [f◦k(ω), f◦k(vA′)]. According to
Lemma 5.2, this can only happen when the last segment contains a folding
critical point. Let σ be the first folding critical point in the oriented segment
from f◦k(ω) to f◦k(vA′). Key here is to recognize that σ stands between
f◦k(vA) and f◦k(vA′), and as such is of Fatou type (else we are done thanks
to Lemma 11.2). Another important detail is that f◦k(Â) cannot support
the Fatou critical point σ since it already supports f◦k(ω). From this choice
we conclude readily that f(σ) stands in the same connected component of
H−{f◦k+1(ω)} as f◦k+1(v̂), a component where by definition of k we should
be unable to place f◦k+1(vA′). In particular, the distance between f◦k+1(vA′)
and f(σ) is greater than 1. This implies that f◦k+1(A′) is not a supporting
access for f(σ). This renders impossible for f◦k(A′) to support σ. But this
is déjà vu. We have a Fatou critical point σ sitting between f◦k(vA) and
f◦k(vA′) and such that neither f◦k(A) nor f◦k(A′) supports σ. A reasoning
similar to one given in the last paragraph shows that f◦k(A) and f◦k(A′)
belong to different connected components of T−Fσ.

Corollary 11.5. The critical portrait Θ = (F ,J ) satisfies condition
(c6).

Proof. Let a periodic λ satisfy s+Θ(λ) = s+Θ(A), where A is a marked
access. Using Proposition 9.9 we can assume that the access associated to
λ is present in the tree. By Lemma 11.4 this access is supported at vA.
According to Lemma 10.2 it can only be A.
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Remark 11.6. The proof of Corollary 11.5 is mischievously simple. We
are employing Proposition 9.9 to assume that the access associated to λ is
already present in the tree. As was hinted before, this seemingly natural fact
is not trivial at all.

To work out (c7) we must first study when two accesses are based at the
same Julia point. We start with a simple criterion.

Lemma 11.7. Two accesses have the same left address if and only if they
are supported at the same subtree of the preferred T ∗.

Proof. Everything was defined in order for this to be true. (Compare
also Lemmas 10.2 and 10.3.)

Lemma 11.8. Let A,A′ be accesses. If s−Θ(A) = s−Θ(A′), then vA = vA′.

Proof. According to the last lemma, there is always a member of T ∗

where we can find simultaneously f◦n(vA) and f◦n(v′A). The result follows
from Proposition 6.5.

Corollary 11.9. Two periodic accesses A,A′ are based at the same
point if and only if s−Θ(A) = s−Θ(A′).

Proof. Since the accesses are periodic, so are their base points. Thus,
they are regular Julia points and as such each belongs to barely one sub-
tree in T ∗. Suppose first the points are the same. Lemma 11.7 tells us that
they share a unique left address. The same is true for their forward iter-
ates, and the corresponding left symbol sequences agree. The converse is
Lemma 11.8.

Lemma 11.10. Let A be an access based at a Julia critical point c. Then
there is a marked access Ac ∈ Jc such that a−Θ(A) = a−Θ(Ac).

Proof. In fact, the point c belongs to exactly d(c) members of T ∗. As the
d(c) elements of Jc have different left addresses, by Lemma 11.7 they are
supported in different subtrees. But A is based at c, so it must be supported
in one of these d(c) subtrees as well.

Lemma 11.11. Suppose a−Θ(A) = a−Θ(A′). Then vA = vA′ if and only if
vf(A) = vf(A′).

Proof. Once we write vf(A) = f(vA) = f(vA′) = vf(A′), one direction is
obvious. The other is true thanks to Lemmas 11.7 and 6.2.

Instead of proving condition (c7) directly, we will take a small detour and
relate what we have accomplished with the ∼l relation (cf. Definition 14.9).

Lemma 11.12. Suppose we have a−Θ(A) = a−Θ(A′). Then A ∼l A′ if and
only if f(A) ∼l f(A′).
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Proof. This property is combinatorial and has nothing to do with dy-
namics. We are just copying Lemma 14.10 for the benefit of the readers.

Proposition 11.13. Given accesses A,A′, we have vA = vA′ if and only
if A ∼l A′.

Proof. First suppose A ∼l A′. We will prove that if s−Θ(A), s−Θ(A′) are
related by either (l1) or (l2) in Definition 14.9, then vA and vA′ are the same.
If s−Θ(A) = s−Θ(A′), this is a consequence of Corollary 11.9 and Lemma 11.11.
When (l2) is satisfied, that is, if s−Θ(A), s−Θ(A′) agree up to the jth position
and f◦j(A) and f◦j(A′) are both in Jc, then we can apply Lemma 11.11
j times knowing that f◦j(A), f◦j(A′) are based at the same critical point.

The reverse implication is settled by induction on the number of steps
required by vA to become periodic. If vA is periodic (this is the inductive
seed), then we have s−Θ(A) = s−Θ(A′) due to Corollary 11.9. Therefore l1
is satisfied. Now suppose f(A) ∼l f(A′) (this is the inductive hypothesis).
If a−Θ(A) = a−Θ(A′), then we apply Lemma 11.12 and conclude A ∼l A′.
Otherwise c = vA is critical and Lemma 11.10 provides accesses C, C′ ∈ Jc
subject to a−Θ(A) = a−Θ(C) and a−Θ(A′) = a−Θ(C′). However, the inductive
hypothesis together with Lemma 11.12 implies A ∼l C and A′ ∼l C′. As by
definition we have C ∼l C′, the result follows from transitivity.

Corollary 11.14. The critical portrait Θ = (F ,J ) satisfies condi-
tion (c7).

Proof. Let θ = A ∈ Jl and θ′ = A′ ∈ Jk. If s−Θ(diθ) = s−Θ(θ′), then
f◦i(A) ∼l A′ ∈ Jk due to the last proposition. If i = 0, then (clearly)
Jl = Jk. Else, owing to the hierarchic selection, we have f◦i(A) ∈ Jk.
Finally, as different marked accesses from Jk yield different left addresses,
we get f◦i(A) = A′.

Proposition 11.15. The formal critical portrait Θ=(F ,J ) constructed
in the last section is admissible.

Proof. This follows from Corollaries 11.5 and 11.14.

12. Back to Hubbard trees. The critical portrait associated to an
abstract Hubbard tree is admissible. Therefore, according to Theorem 14.6,
there is a unique postcritically finite polynomial, from now on f , that ma-
terializes this portrait.

Thus, we have two Hubbard trees (we might think as well of two families
of extensions): the original abstract tree H, and the polynomial related Hf .
If we manage to prove that their structures are the same, then Theorem 1.1
is true.

We must show that accesses at Julia points are in natural correspondence
between trees. That is, a group of rational rays landing together should be
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identified with all the accesses based at a Julia point. On the other hand,
because the construction around Fatou vertices is overdetermined (yet still
coherent), there is not much problem to compare the layouts next to Fatou
points either.

Lemma 12.1. Given rational angles θ, θ′, take an abstract extension of
H in which the corresponding accesses are present. These accesses share the
same base point in H if and only if the rays Rθ and Rθ′ land at the same
point of J(f).

Proof. This result is trivial once the accesses corresponding to these
angles are present: to share a base point in the lattice of Hubbard trees
and to land at the same point in J(f) are identical questions in the ∼l
language.

Given a rational argument θ, we write pθ for the landing point of Rθ, and
vθ for the vertex that supports the access (if it exists) in H. Lemma 12.1 tells
us that pθ and vθ correspond perfectly. More is true. As the accesses about
the base points are equal, the same extends to the branches in between.
(They might be physically present, or they might be “virtual”. For the time
being it does not matter; we will explore this more deeply in Section 13.)

Lemma 12.2. Let θ be a periodic argument. Suppose that the landing
point pθ of Rθ (respectively, the base point vθ of the access associated with θ)
is a vertex in Hf (respectively, in H). Then the arguments of the rays that
land at pθ are precisely the arguments of the accesses based at vθ.

Proof. Extend the abstract tree H to include each and every access asso-
ciated with an argument of the rays landing at pθ and apply Lemma 12.1.

Of course, by looking at the inverses we deduce the same for any rational
arguments. We can also work with branches.

Lemma 12.3. Take θ and τ rational and not ∼l related. Assume that vθ
and vτ belong to H. Then the branch that stems from vθ and contains vτ is
the same as the one that stems from pθ and contains pτ (in Hf ).

Proof. Cyclically arrange as θ0 = θ < θ1 < · · · < θn−1 < θn = θ + 1 all
the arguments ∼l-related to θ. As τ is not listed, we have θi < τ < θi+1 for
some i. In both tree models the vertex associated to τ is trapped between
the accesses labeled θi and θi+1.

Fatou vertices can also be set into one-to-one correspondence (for in-
stance, make use of supporting accesses to relate them). In both models we
have distinguished internal directions that define Böttcher coordinates. By
definition the zero internal directions correspond for free. For all others we
have the following.
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Lemma 12.4. Let ω be a Fatou vertex. Take θ to be rational. The Bött-
cher argument of the branch that stems from ω and contains vθ (respective-
ly pθ) is the same in H and in Hf .

Proof. Let us look first at the particular case where e = [ω, pθ] is an
internal ray that eventually catches up with a preferred internal direction
of a Fatou critical point. For example if e is the zero ray near the critical
point ω, then by definition pθ is the base point of the access λ = D(e, ω), and
we must have pθ = pλ. Now, supporting arguments are by construction the
same in the abstract and the concrete models. Therefore vλ is contiguous
to ω in the abstract tree through the zero internal ray in the Böttcher
coordinate. We now invoke Lemma 12.1 to find out that vθ is actually vλ,
and we are done. The case where f◦n(e) is the zero ray can then be worked
out by induction.

Else, with the help of the particular cases worked out above and Lemma
12.3 we trap angles. This means that the relative positions of the arcs [ω, pθ]
and [ω, vθ] with respect to the edges incident at ω are the same, for example
in inverse trees. According to Theorem 14.4 this relative position is enough
to assign the same coordinate once we prescribe the zero direction.

Proof of Theorem 1.1. In this section we have just proved that the Hub-
bard tree associated to f is the same as the starting one. The unique real-
ization of critical portraits implies the same for Hubbard trees.

13. Loose ends. The successful conclusion of our work hinges now only
on Proposition 9.9. Along this section we fix a homogeneous Hubbard tree
with at least one Julia vertex. We assume without loss of generality that
the tree is fit and that no Fatou vertex is an end. For practical purposes we
take for granted that at a Fatou vertex of degree n there are n segments
that collapse under f . This last property can be achieved already in the first
inverse tree.

We start with a technical lemma to narrow down our search for an access
associated to a periodic argument. Remember that outside the minimal tree
all periodic points must be ends (cf. Proposition 5.11).

Lemma 13.1. Let m ≥ 1 be an integer. The number of periodic vertices
of period m in any canonical extension is bounded by a constant that depends
on the minimal tree and on m.

Proof. All periodic points of period m are already vertices in the minimal
tree or have incidence one or two. The vertices in the minimal tree are ac-
counted for. At vertices not in the minimal tree (or not marked) the accesses
have period m or 2m. However, once we assign coordinates, the dynamics of
θ 7→ dθ allows only a finite number of periodic orbits of period m or 2m.
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In particular, we can always detect in the underlying topological tree
where periodic points of period m or less can be canonically placed. There
are several ways to find those locations; for instance, Markov partition tech-
niques are good enough.

Example 13.2. As an example, starting from the minimal tree of the
rabbit we construct extensions where we can observe specific orbits. First
we must comply with the basic framework stated at the beginning of this
section: all ends should be of Julia type and there must be a pair of segments
that fold under iteration near the unique critical point. This is easy to
achieve (as a subtree in the third inverse) and is shown in Figure 13.1, left.
For the benefit of our readers we have indicated the arguments of the rays
that land at such points.
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Fig. 13.1. A rabbit with no Fatou ends and a couple of extensions

Let us see where we can place the period two orbit 1/3 7→ 2/3 7→ 1/3.
Keeping in mind the arguments in the figure, we trap 1/3 between 9/28
and 11/28, and 2/3 between 9/14 and 11/14. As v1/3 is obviously not in
the minimal tree, a branch at v9/28 must point to it. In which direction?
Numbers tell. The same with v2/3. Still, we have not proved anything yet.
The dynamical tree in Figure 13.1, center, (with the pair of period two points
appended) is expanding, so we are facing a Hubbard tree. The accesses also
have period two, and therefore they can only be associated with the angles
1/3 and 2/3.

Now we work out a more complex case: we append v1/15, v2/15, v4/15, v8/15

so that they form the period four Julia type orbit associated with the labels.
First we start trapping values as
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From these relations we immediately guess where v1/15, v4/15, v8/15 ought to
stand. However, there is a small inconvenience with v2/15 since the trapping
values 1/14, 1/7 are not supported at the same Julia point. This implies
that somewhere in the path [v1/14, v1/7] a new road opens. This is only
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possible at the Fatou critical point, where a new edge makes an angle (still
unknown) of α ∈ (0, 180) with respect to the reference direction (compare
Figure 13.1, right). To turn the obvious dynamics into a Hubbard tree we
push forward the dynamics and solve the equation 2α = 180. Why can we
ensure that the new orbit must be labeled with the angles in waiting? The
answer is somehow trivial and can be given without further calculation. In
what multiplication by 2 in the unit circle concerns, the only period four
argument between 1/14 and 1/7 is 2/15. This implies that v2/15 is where it
should be, and, of course, the other vertices too.

Proof of Proposition 9.9. To alleviate matters, suppose all points of pe-
riod m potentially belonging to the minimal tree are detected and marked as
vertices. We arrange cyclically the arguments present in H as α0, α1, . . . , αk
= α0. Now let θ 7→ dθ 7→ · · · 7→ dmθ = θ be the period m orbit that we
want to append (if not already present, else we are done). Let M be a num-
ber greater than m and the periods of all periodic accesses in H. As the
preimages of α0 under multiplication by d are dense in T, by taking lots of
inverses of H we assume that each closed interval Ii = [αi, αi+1] measures
1/d2M or less. This is important as each Ii contains at most one periodic
element of period M or less thanks to size considerations. In particular, it
intersects at most once the orbit of θ. This is helpful: if we have θ ∈ Ij , for
some j, and if we manage to construct an extension with a periodic element
of period m or less associated to some angle contained in Ij , then without
further ado the argument is exactly θ, and we are done.

Next we decorate H. We plan to take several inverses of H and then
restrict back to H. We are interested in the potential branching at Julia
points. Formally this is done as follows. There is a suitable iterated inverse
inv◦l(H) in which the incidence at all v ∈ VH is saturated. We return to H
and in each v ∈ VH we graft a sprout following the reported pattern. This
renders a configuration of virtual directions followed by virtual accesses. By
construction, virtual accesses also have a right to a faithful argument.

As remarked above, every dkθ in the orbit of θ can be placed inside an
interval (αik , αik+1) with nonperiodic extremes. Let vk be the vertex where
αik is supported and v′k where αik+1 is. Neither of them is periodic. There are
three cases to be considered: Case 1 when these two vertices are the same,
Case 2 there is an edge with endpoints v, v′, and, finally, Case 3 when a
Fatou vertex interposes between them. (This exhausts all possibilities due
to fitness.)

Now we show how to reduce the second possibility to either the first or
the third. Consider the preimages of αik , αik+1 under multiplication by dm

given by β = dkθ−(dkθ−αik)/dm, β′ = dkθ+(αik+1−dkθ)/dm, respectively
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Fig. 13.2. The three configurations

(remember θ has period m). Those values are subject to

αik < β < dkθ < β′ < αik+1,

as is easy to check. In the tree inv◦m(H) there are accesses reserved for
β, β′. If the interval [vβ, vβ′ ] were physically contained in H, then it must
be properly included in [vαik

, vαik+1 ]. Therefore (as vβ maps to vαik
and vβ,

to vαik
under f◦m) there exists a period m point inside [vαik

, vαik+1 ] ⊂ H,
contrary to our assumption. This proves that at least one among vβ, vβ′ can
only be materialized in a potential inverse. We draw an arc between the said
point and vαik

and denote by ṽ the first point that tops H. Include ṽ and its
orbit in H. Make this vertex fit when it is of Fatou type and graft sprouts
when it is a Julia point. Anyway, as we have not appended new periodic
points or interfered with Case 1 or Case 3 along the orbit of the preperiodic
point ṽ, we see that Case 2 no longer holds and we are reduced either to
Case 1 or 3.

In Case 1 there is a virtual direction between αik and αik+1. Append
an edge there. Call the new endpoint vdkθ. The angles are copied from the
virtual distribution. In Case 3 we do the same but this time near the Fatou
vertex. However, no internal argument is assigned at the time. For the sake
of discussion, in both cases we denote by ṽdkθ the vertex that connects vdkθ,
the new vertex, to the old tree.

When we map vdkθ to vdk+1θ, we are almost done but for a small detail:
the angles at Fatou vertices ṽdkθ are yet to be defined. If f(ṽdkθ) 6= ṽdk+1θ,
there is no problem: the image of [ṽdkθ, vdkθ] (which is [f(ṽdkθ), vdk+1θ] and
includes [f(ṽdkθ), ṽdk+1θ]) branches from f(ṽdkθ) at a well defined internal
angle; we simply copy this value. These angles can be inductively pulled
back to reach every Fatou point in the orbit unless they itself configure a
loop. However, this is only possible if the Fatou vertices are periodic. But if
this is the case, then the edges [ṽdkθ, vdkθ] are periodic while their immediate
neighbors—around ṽdkθ—are not. Therefore, the first return maps are finite
expanding maps. In light of Theorem 14.4, they can be angled and we recover
the Böttcher coordinates. From that we read off the missing data.

The extension is canonical because for any extension including the vertex
vdkθ, this point must be found in a branch that stems from ṽdkθ at a well
known direction.
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This completes the proof of Proposition 9.9, and our work can be called
to an end. Nevertheless, we still have time for a last result of interest.

Corollary 13.3. Every expanding extension of an abstract Hubbard
tree is canonical.

Proof. Given any extension, we assign to every periodic access an argu-
ment (compare Proposition 9.7). On the other hand, to the minimal tree
we can append the same periodic orbits using Proposition 9.9. Finally, we
take a finite number of inverses and restrict if necessary to recognize that
the process is canonical.

14. Appendix. Finite cyclic expanding maps. If we wish, we can
always think of a selfmap of a finite cyclic set as multiplication by some
integer d in the unit circle. The problem is that d is far from what we want
to call the degree of our map since it is normally taken huge to simplify
matters. In this appendix we define a concept of degree suitable for our
purposes and just then state conditions to guarantee that our data can be
“angled”.

Given k ≥ 1 and d > 1, consider a cyclic set X with kd elements.
The idea is to define as economically as possible the concept of orientation
preserving degree d selfmap onto a proper subset of X. Take any a ∈ X and
rename the elements as a0, a1, . . . , akd−1 starting with a0 = a. An orientation
preserving degree d selfmap of X is a function that satisfies f(ai) = f(aj)
if and only if i ≡ j (mod k), and f(ai+1) follows f(ai) in the induced order
in f(X) = {f(a0), . . . , f(ak−1)}. Note that for simplicity any element in the
image has exactly d preimages. The concept is independent of the starting a.

Not all orientation preserving degree d selfmaps of a finite cyclic set can
be thought of as multiplication by d restricted to an invariant subset of T.
As a matter of fact, multiplication by d > 1 is locally expanding, and this
condition must be captured somehow. We say that f , as above, is expanding
if the image of successive elements eventually cease to be consecutive. In
symbols, given p0 ∈ X with successor p1 ∈ X, there is an n ≥ 1 such that
f◦n(p1) does not follow f◦n(p0) in X. Even if there are several subsets that
allow cyclic orders, the expanding condition is to be tested in X, the original
set. As usual it is enough to work with adjacent periodic elements.

In this context, different elements cannot stay dynamically close forever.
If the distance between consecutive members increases, then other elements
are also pushed apart. This can only stop when the gap reaches an adequate
threshold where injectivity no longer holds. All this is made precise next.

The domain of f can be subdivided into d clusters of size k starting
anywhere. Given b ∈ X we again write b0 = b, . . . , bdk−1 cyclically. For any
a we must have a = bm for some m, and so also a = bik+j where 0 ≤ i < d



Hubbard trees 241

and 0 ≤ j < k. Set Q(b, a) = i (this Q is a sort of arithmetic quotient).

Lemma 14.1. Let f : X → X be expanding. Then Q(f◦n(a), f◦n(b)) = 0
for all n ≥ 0 if and only if a = b.

Proof. If a = b, then f◦n(a) = f◦n(b), and Q(f◦n(a), f◦n(b)) = 0 by
definition.

If we suppose a 6= b and Q(a, b) = 0, then the directed distance between
f◦n(a) and f◦n(b) eventually grows until it is at least k. At that point the
corresponding Q(f◦n(a), f◦n(b)) does not vanish.

Corollary 14.2. Let a 6= b. If Q(f◦n(a), f◦n(b)) = d−1 for all n, then
f is not expanding.

Proof. Note that Q(p, q) = d − 1 implies Q(q, p) = 0 unless f(p) =
f(q). After this remark, it is clear that Q(f◦n(a), f◦n(b)) = d − 1 for all n
implies Q(f◦n(b), f◦n(a)) = 0 for all n. Due to the last lemma, f cannot be
expanding.

We say that f can be angled if there exists an order preserving embedding
φ : X → T for which dφ(p) ≡ φ(f(p)) (mod 1). In that case we define
∠(a, b) = φ(b)− φ(a). In this context Q(a, b) can be interpreted as the first
digit in the base d expansion of the chief representative of ∠(a, b).

An angled function is obviously expanding. Before we turn to the con-
verse, let us work out an example.

Example 14.3. Consider the dynamical system hinted by the data be-
low. We will show how to find coordinates so that this map becomes multi-
plication by 3.
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First we try to get a veritable angle function. The angle ∠(A,A′) from
A to A′ should be 1/3, equal also to ∠(A′, A′′) and ∠(A′′, A). The same
holds for all other labels. To find for example ∠(A,B′) we rely on partial
estimates. By inspection ∠(A,B′) is trapped between 2/3 and 1. Next we
push forward in order to determine the base 3 expansion of ∠(A,B′). To
achieve our goal we write both orbits in parallel as

A 7→ B 7→ C 7→ D 7→ A 7→ B 7→ C 7→ D 7→ A,

B′ 7→ C 7→ D 7→ A 7→ B 7→ C 7→ D 7→ A 7→ B.
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Thus, the successive digits in base 3 are 2, 0, 1, 2, 1, 0, 1, 2, 1. From there
on the numbers repeat in packs of four taking 0121 as pattern. As four
“decimal” places represent 1/34 = 1/81, the word 0121 is equivalent to
16 = 0.27 + 1.9 + 2.3 + 1. Hence, we get

∠(A,B′) =
2
3

+
1
3

(
16
34

+
16
38

+ · · ·
)

=
2
3

+
1
3

16
34 − 1

=
11
15
.

As an application, we find a faithful coordinate θA for A. Our work above
immediately implies ∠(A,B) = 11/15 − 1/3 = 2/5. Then, as ∠(A,B) =
∠(A, f(A)) can only be 3θA− θA, we assign to A the argument 1/5. For any
other P we define θP = θA + ∠(A,P ).

Theorem 14.4. A degree d > 1 orientation preserving f : X → X can
be angled if and only if it is expanding. If so, there are precisely d−1 different
ways to assign coordinates.

Proof. Given a, b ∈ X, we dynamically find the size of the gap be-
tween these two elements in base d: define the nth entry of ∠(a, b) as
Q(f◦n(a), f◦n(b)). We get ∠(a, b) = 0 if and only if Q(f◦n(a), f◦n(b)) = 0 for
all n. Under the expanding condition this can only be true provided a = b.
On the other hand, ∠(a, b) = 1 implies Q(f◦n(a), f◦n(b)) = d − 1 for all n,
which is impossible in light of Corollary 14.2.

Up to this point we have a well defined oriented angle for every pair of
elements. To materialize coordinates, we fix a ∈ X and measure the angle
between a and f(a) as ∠(a, f(a)). If θa corresponds to a, then dθa is related
to f(a). The equation

dθa − θa = ∠(a, f(a)),

for unknown θa, can be solved in exactly d− 1 ways. To get the remaining
values it is enough to comply with θb = θa + ∠(a, b).

Critical portraits. We recall the ideas behind the theory of critical
portraits for postcritically finite polynomials following [P3] closely. For con-
venience, we reproduce the definitions and statements with proofs omitted.
Here f : C→ C represents always a postcritically finite polynomial of degree
d ≥ 2.

From a bounded Fatou component U take a boundary point p ∈ ∂U .
When we order counterclockwise the external rays Rθ1 , . . . , Rθk

landing at p,
the complex plane splits into k pieces. Whenever U fits inside the region
determined by Rθ1 and Rθ2 (θ2 = θ1 in case a single ray lands at p), the
argument θ1 becomes by definition the (left) supporting argument of the
Fatou component U at p, and Rθ1 the supporting ray.

Given a postcritically finite degree d ≥ 2 polynomial f , we assign to
every critical point a finite subset of Q/Z and construct a critically marked
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polynomial (f,Θ), where the marking Θ = (F ,J ) is actually a pair of
families of subsets of the circle. Here F = {F1, . . . ,Fl} is a finite family of
subsets where each Fk stands for a finite set of arguments associated with
the critical point ωk in the Fatou set, whereas J = {J1, . . . ,Jn} assembles
sets Ji that recollect individual features of a critical point ci resting in the
Julia set. In each case the size of the set equals the local degree at the said
point. We remark once and for all that the marking may not be unique. Also
notice that half the marking finishes up empty if there are no critical points
in the Fatou or in the Julia set to work with.

Construction of Fk. We first consider the case where the Fatou critical
point ω is periodic. Let ω 7→ f(ω) 7→ · · · 7→ f◦n(ω) = ω be a critical cycle
of period n and total degree m > 1. We construct the associated set Fk
for every critical element ωk in the cycle simultaneously. Denote by dω the
local degree of f at ωk. Pick any periodic point pω ∈ ∂U(ω) of period
dividing n—which is not critical since it is periodic and belongs to the
Julia set—and consider the left supporting ray Rθ for this component at pω.
This choice, in a natural way, determines periodic supporting rays along the
Fatou components in the cycle. Moreover, they are all of period n. Given
the supporting periodic ray Rθ, we track down the dω supporting rays of
U(ω) that are inverse images of f(Rθ) = Rdθ. The set of arguments of these
rays is Fk. Keeping in mind that a preferred periodic supporting ray has
already been chosen, we repeat the procedure for all critical points in the
cycle. When the cycle has total degree m, there are m − 1 different ways
to accomplish the selection. If Fk is the set subordinated to the periodic
critical point ωk, there is one argument in Fk which is periodic (namely θ as
above), the so called preferred supporting argument associated with ωk. By
definition, the periods of ωk and of the preferred supporting argument are
the same.

Now we consider the case of a nonperiodic Fatou critical point ωk of
degree dω. There is a minimal n > 0 for which ω′ = f◦n(ω) is also critical.
Recursively we assume that ω′ is marked and has an associated preferred
supporting ray Rθ (at the beginning only periodic critical elements have).
Then (f◦n)−1(Rθ) contains many rays, but only dω among them support this
Fatou component U(ω). Again, the set of arguments of these rays is Fk. We
pick one, and call it the preferred supporting argument associated with ω.
We continue this process for all Fatou critical points until exhausted.

Construction of Ji. Given a Julia critical point c of degree dc > 1, we
proceed according to whether its forward orbit is critical point free or not.
If the forward orbit of c contains no further critical point, then for some θ,
usually nonunique, the ray Rθ lands at the critical value f(c). Now f−1(Rθ)
consists of d different rays, and among them exactly dc land at c. As usual,
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define Jc to be the set of arguments of these latter rays. For future reference
we choose a preferred one.

Else, the Julia critical point c will reach in n steps another critical point,
which we assume to have already associated a preferred ray Rθ. In the n-fold
iterated inverse (f◦n)−1(Rθ) we will discover precisely dc rays landing at c.
We group these arguments as Jc and select a preferred argument.

Summing up, we see that the construction was made in several steps.
First we complete the choice the closest to a periodic orbit, and from there
we proceed backwards. At some instances we will face decisions that would
affect the subsequent marking. When this happens, we will be performing a
hierarchic selection.

The combinatorics of critically marked polynomials. In order to
analyze the properties satisfied by Θ = (F ,J ), we introduce combinatorial
notation.

A set Λ ⊂ T = R/Z is a degree d preargument set if dΛ = {dλ : λ ∈ Λ}
is a singleton. For practical reasons it is convenient to assume always that
Λ contains at least two elements. If all values in Λ are rational, we call Λ
a rational preargument set. As an illustration we single out each individual
collection Fω,Jc as presented before.

For a family Λ = {Λ1, . . . , Λn} of subsets of the circle T, we define the
family union as Λ∪ =

⋃
Λi, and say that λ ∈ Λ∪ participates in the family.

Hierarchic families. A family Λ = {Λ1, . . . , Λn} is called hierarchic if
whenever λ, λ′ ∈ Λ∪ and, for some k, we have diλ, djλ′ ∈ Λk with i, j > 0,
then diλ = djλ′.

This is like retaining a preferred element λk in each Λk. Think of them
as gates: as soon as λ ∈ Λl is such that diλ ∈ Λk for i > 0, then diλ is the
preferred member of Λk chosen before.

Linkage relations. Two subsets T ,S of the circle are unlinked if they
belong to disjoint connected subsets of T, or, equivalently, if S is contained in
one component of T−T . In particular, these sets are disjoint. If we identify
T with the boundary of the unit disk, an analogous condition is that the
convex hulls of T and of S are disjoint. When T and S are not unlinked,
then either T ∩ S 6= ∅ or there are elements t1, t2 ∈ T and s1, s2 ∈ S
that can be displayed cyclically as t1 < s1 < t2 < s2 < t1 (if this is so,
they are linked). More generally, a family Λ = {Λ1, . . . , Λn} is unlinked if
its members are pairwise unlinked. Alternatively, each Λi is contained in a
connected component of T− Λj for all j 6= i.

Our definitions are highly motivated by the dynamics of external rays
for a polynomial map. For example, if we choose a finite number of different
points, and for each we pick the arguments of the rays landing there, then we
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obtain an unlinked family, for otherwise the external rays involved will cross.
The same applies for a set of arguments supporting different Fatou compo-
nents. Nevertheless, when we compare groups of arguments landing at a
point against a set of arguments supporting a component, we can anticipate
minor problems. Anyhow, it is not difficult to see—because of the consistent
way supporting rays are recollected—that rays sharing their landing point
are “almost” unlinked to rays supporting a component.

Consider two families F = {F1, . . . ,Fn} and J = {J1, . . . ,Jm}. We say
that J is weakly unlinked to F on the right if we can choose arbitrarily small
ε > 0 so that the family {F1, . . . ,Fn,J1 − ε, . . . ,Jm − ε} is unlinked. (Here
Ji − ε = {λ − ε : λ ∈ Ji}.) In particular each family by itself is unlinked.
Note that we may even work with empty families.

Formal critical portraits. Consider a pair of families F={F1, . . . ,Fn}
and J = {J1, . . . ,Jm} of rational degree d preargument sets. We say that
Θ = (F ,J ) is a degree d formal critical portrait if the following conditions
are fulfilled:

(c1) d− 1 =
∑

(|Fk| − 1) +
∑

(|Jk| − 1),
(c2) J is weakly unlinked to F on the right,
(c3) each family is hierarchic,
(c4) for any γ that participates in F , some periodic forward iterate diγ

also participates in F ,
(c5) no θ that participates in J is periodic.

These conditions represent the minimal abstract requirements imposed
on a marking. Condition (c1) says that we are choosing the correct number
of critical elements. Condition (c2) tells us that the rays and extended rays,
once the last ones support a component, determine sectors that do not
conflict with each other. Condition (c3) asks for dynamically preferred rays.
Condition (c4) favors the fact that arguments in F are associated with Fatou
critical points. Condition (c5) means that Julia set critical points are non
periodic.

Unfortunately, some formal critical portraits are not related to polyno-
mials. To state necessary and sufficient conditions for a marking to arise
from a postcritically finite polynomial, we study the partitions of the unit
circle they determine.

Given Θ = (F ,J ) as above, we form a partition P = {A1, . . . , Ad} of the
circle minus the finite set of family members Θ∪ by means of an equivalence
relation. We say that two angles t, s not in Θ∪ = F∪ ∪ J ∪ are unlink
equivalent if they belong to the same connected component of T − Fj and
T−Ji for all possible choices of i, j. It is trivial to check that each resulting
equivalence class is a finite union of open intervals with total length 1/d.
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Each element Ai ∈ P is a finite union Ai =
⋃

(xj , yj) of open connected
intervals. We also define the sets A+

i =
⋃

[xj , yj) and A−i =
⋃

(xj , yj ]. This
time we get two full partitions P+ = {A+

1 , . . . , A
+
d } and P−={A−1 , . . . , A

−
d }.

As every angle t belongs to only one A+
k , we recognize in a+

Θ(t) = A+
k its right

addresses. In a similar fashion there is a left addresses a−Θ(t). We associate
to every angle a right symbol sequence s+Θ(t) = (a+

Θ(t), a+
Θ(dt), a+

Θ(d2t), . . . )
and a left one s−Θ(t) = (a−Θ(t), a−Θ(dt), a−Θ(d2t), . . . ). For all but a countable
number of arguments (the angles present in the families and their iterated
inverses) left and right symbol sequences agree.

Admissible critical portraits. A formal critical portrait Θ = (F ,J )
becomes admissible if two extra conditions are satisfied.

(c6) Suppose γ and t are periodic and share period as well as right
symbol sequences (i.e., s+Θ(γ) = s+Θ(t)). If γ participates in F , then
γ = t.

(c7) Let θ ∈ Jl and θ′ ∈ Jk. Take i ≥ 0. If s−Θ(diθ) = s−Θ(θ′) then
diθ = θ′.

Proposition 14.5. If (f,Θ) is a postcritically finite marked polynomial,
then Θ is an admissible critical portrait.

A brief comment regarding the meaning of these two new conditions is in
order. As is usual in this kind of situations, angles sharing a symbol sequence
are supposed to land at the same point. Under this proviso, condition (c6)
explains why the periodic arguments in F∪, and not others, support the
corresponding component. On the other hand, condition (c7) reinforces the
idea that different elements of J are associated with different critical points,
chosen, of course, according to a hierarchic scheme.

Now we are ready to state a structural result for postcritically finite
marked polynomials.

Theorem 14.6. Let Θ = (F ,J ) be a degree d admissible critical por-
trait. Then there is a unique monic centered postcritically finite polynomial
f with marking (f,Θ).

It is imperative to mention that conditions (c1)–(c7) represent a finite
amount of information to be tested. The next lemmas are important.

Lemma 14.7. If θ and θ′ have the same periodic left or right symbol
sequence, then θ and θ′ are both periodic and share the same period.

Lemma 14.8. The symbol sequence s−Θ(θ) is periodic of period m if and
only if the landing point of the ray Rθ has period m.

The last question we ask is what kind of information about the Julia
set can be inferred by studying the combinatorics. For example, we wonder
if we can anticipate if two rays land at the same point by looking at their
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arguments. In fact, left symbol sequences convey the information needed
to decide whether or not two rays land at the same point. This is done as
follows.

Definition 14.9. The landing relation generated by an admissible crit-
ical portrait Θ = (F ,J ), denoted ∼l, is the smallest equivalence relation
in T such that if one of the following two conditions hold, then s and t are
∼l-related:

(l1) s−Θ(s) = s−Θ(t),
(l2) there is j such that a−Θ(dis) = a−Θ(dit) for all i < j and {djs, djt}

⊂ Jk for some k.

It is important to learn how to recognize by inspection if two arguments
are ∼l-related. An irrational or a periodic argument can only be related to
arguments with identical left symbol sequence. In fact, those values and their
forward orbits are unfit to belong to Jk because J ∪ contains only strictly
preperiodic elements. Therefore, all possible exceptions are to be blamed to
the fact that future iterates share a symbol sequence with a marked “Julia”
element.

For example, conditions (c7) and (c3) combined guarantee that whenever
θk ∈ Jk (k = 0, 1), then we can have θ0 ∼l θ1 if and only if J0 = J1.

In practice, two arguments θ0, θn end up ∼l-related by means of a finite
sequence θ0, θ1, . . . , θn where one argument is related to the next via condi-
tion (l1) or (l2) above. It is also true that only a finite number of arguments
can appear in an equivalence class.

The next result allows us to use induction when needed.

Lemma 14.10. Let a−Θ(θ) = a−Θ(θ′). Then θ ∼l θ′ if and only if dθ ∼l dθ′.
This equivalence relation captures the essence of two rays landing to-

gether, as our last proposition indicates.

Proposition 14.11. Let (f,Θ) be a critically marked polynomial. Then
the rays Rθ, Rθ′ land at the same point if and only if θ ∼l θ′.
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Math. Orsay 1984–1985.



248 A. Poirier
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