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Ordinal indices and Ramsey dichotomies measuring
c0-content and semibounded completeness

by

Vassiliki Farmaki (Athens)

Abstract. We study the c0-content of a seminormalized basic sequence (χn) in a
Banach space, by the use of ordinal indices (taking values up to ω1) that determine
dichotomies at every ordinal stage, based on the Ramsey-type principle for every countable
ordinal, obtained earlier by the author. We introduce two such indices, the c0-index ξ(χn)

0

and the semibounded completeness index ξ
(χn)
b , and we examine their relationship. The

countable ordinal values that these indices can take are always of the form ωζ . These
results extend, to the countable ordinal level, an earlier result by Odell, which was stated
only for the limiting case of the first uncountable ordinal.

Introduction. In this paper we study the precise c0-content of an ar-
bitrary (seminormalized and basic) sequence (χn) in a Banach space, mea-
sured by the c0-index ξ

(χn)
0 defined for any such sequence. As this index is

a countable ordinal of the form ωζ or equal to the first uncountable ordi-
nal ω1, on the one hand we give dichotomy conditions, separating the basic
classes ξ(χn)

0 = ω1 and ξ
(χn)
0 < ω1, and on the other hand, we characterize

the spectrum of the states precisely quantified by the countable ordinals.
The main tools, combinatorial in nature, consist of the Ramsey-type

principle for every countable ordinal, proved in [F1], and of the Pták-type
theorem for every countable ordinal, proved also in [F1]. In the statements
of these theorems we make use of the complete thin Schreier system of
families (Aξ)ξ<ω1 , introduced in [F1]. Closely connected with this system is
the generalized Schreier system (Fα)α<ω1 , defined in [A-A], which is often
used in the present paper.

In order to state our main results, we need the following definitions:

(i) (χn) has c0-spreading model of order α, for some 1 ≤ α < ω1, if there
exist A,B > 0 such that
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Amax
i∈F
|λi| ≤

∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ Bmax
i∈F
|λi| for all F ∈ Fα and (λi)i∈F ⊆ R.

(ii) (χn) is null coefficient of order α, for some 1 ≤ α < ω1, if every
sequence (λn) of real numbers with sup{‖∑i∈F λiχi‖ : F ∈ Fα} < ∞
converges to zero; ((χn) is null coefficient if Fα can be replaced by the
family [N]<ω of all finite subsets of N).

That these two properties of a sequence (χn) are naturally exclusive for
every ordinal α, is the content of the following theorem (Theorem 2.15).

Theorem A. Let (χn) be a basic bounded sequence in a Banach space,
with 0 < infn ‖χn‖. Then either

(1) [Case ξ(χn)
0 = ω1] (χn) has a subsequence equivalent to the c0-basis;

or
(2) [Case ξ(χn)

0 < ω1] (χn) is null coefficient.

In case (2) there exists a countable ordinal ζ (in fact ξ(χn)
0 = ωζ) such

that for each countable ordinal α, either

(2i) [Case α < ζ] (χn) has a subsequence with c0-spreading model of
order α; or

(2ii) [Case ζ ≤ α] (χn) is null coefficient of order α.

Next (in Section 3) we introduce and study the semibounded complete-
ness index ξ

(χn)
b of a sequence (χn) (Definition 3.1) and its relation to

the c0-index. The index ξ
(χn)
b is countable if and only if (χn) is semi-

boundedly complete, i.e., when every sequence (λn) of real numbers with
supn ‖

∑n
i=1λiχi‖ < ∞ converges to zero. In this case ξ(χn)

b = ωζ for some
countable ordinal ζ (Proposition 3.3); we thus define a sequence (χn) to be
semiboundedly complete of order α, for some 1 ≤ α < ω1, if ξ(χn)

b ≤ ωα and
equivalently if for every M ∈ [N] there exists a strictly increasing function
ϕ : N → M with the property: for every ε > 0 there exists n0 = n0(ε) ∈ N
such that

{ϕ(n) : n ≥ n0 and |λϕ(n)| ≥ ε} ∈ (Aξn0
)? \ Aξn0

for every (λn) ⊆ R with supn ‖
∑n
i=1 λiχi‖ ≤ 1, where (ξn) is a strictly

increasing sequence of ordinals with supn ξn = ωα.
The c0-index is always less than or equal to the semibounded complete-

ness index (Proposition 3.6), but they differ in general. We give an exam-
ple of a normalized, weakly null, basic sequence (χn) with ξ

(χn)
0 = ω and

ξ
(χn)
b = ω1 (Example 3.14). For normalized c0-unconditional sequences (Def-

inition 3.8) we prove (in Theorem 3.10) that the c0-index is indeed equal to
the semibounded completeness index. Thus, a normalized c0-unconditional
sequence is semiboundedly complete of order α, for some 1 ≤ α ≤ ω1, if and
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only if it is null coefficient of order α; and equivalently, if it does not contain
a subsequence with c0-spreading model of order α.

Since every normalized, weakly null sequence in a Banach space has a c0-
unconditional subsequence (according to a result of Elton [E]), we have the
following dichotomy (Theorem 3.15), which constitutes a countable ordinal
analogue of Odell’s limiting (for α = ω1) theorem.

Theorem B. Let (χn) be a normalized weakly null sequence in a Banach
space and α be a countable ordinal. Then either

(i) (χn) has a subsequence with c0-spreading model of order α; or
(ii) every subsequence of (χn) has a subsequence semiboundedly complete

of order α.

Notation. We denote by N = {1, 2, . . .} the set of all natural numbers
and by R the set of real numbers. For an infinite subset M of N we denote
by [M ]<ω the set of all finite subsets of M , by [M ]k for k ∈ N the set of
all k-element subsets of M and by [M ] the set of all infinite subsets of M
(considering them as strictly increasing sequences).

If H,F are non-empty finite subsets of N then we write H ≤ F if
maxH ≤ minF , while H < F if maxH < minF . By |H| we denote the
cardinality of H.

Identifying every subset of N with its characteristic function, we topolo-
gize the set of all subsets of N by the topology of pointwise convergence.

For a family F of finite subsets of N and M = (mi) ∈ [N] we write:

F [M ] = F ∩ [M ]<ω,

F(M) = {(mn1 , . . . ,mnk) ∈ [M ]<ω : (n1, . . . , nk) ∈ F},
F? = {H ∈ [N]<ω : H ⊆ F for some F ∈ F}.
F? = {H ∈ [N]<ω : H is an initial segment of some F ∈ F}.

F is hereditary if F? = F .
F is thin if there do not exist H,F ∈ F such that H is a proper initial

segment of F .

1. The basic combinatorial tools. In this section we recall some
known combinatorial results which play a major role in our proofs.

Definition 1.1 (The generalized Schreier system; [A-A]). Set

F0 = {{n} : n ∈ N};
if Fα has been defined then

Fα+1 =
{ n⋃

i=1

Hi : n ≤ H1 < . . . < Hn and H1, . . . ,Hn ∈ Fα
}

;
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and if α is a limit ordinal, fix a strictly increasing sequence (αn)n∈N of
ordinal numbers with supn αn = α and set

Fα = {H : H ∈ Fαn and n ≤ minH}.
We finally set Fω1 = {H : H is a finite subset of N}.

Remark 1.2. (i) If A ∈ Fα for some 1 ≤ α ≤ ω1, and B ⊆ A, then
B ∈ Fα. In other words the families Fα are hereditary.

(ii) It is easy to prove by induction that whenever {n1, . . . , nk} ∈ Fα
and mi ≥ ni for every i = 1, . . . , k, then (m1, . . . ,mk) ∈ Fα.

(iii) For every β < α < ω1 there exists n0 = n0(β, α) ∈ N such that if
F ∈ Fβ and n0 < F , then F ∈ Fα.

Now, we recall the definition of the complete thin Schreier system
(Aξ)ξ<ω1

, defined in [F1].

Definition 1.3 (The complete thin Schreier system; [F1]). For every
non-zero limit ordinal α we fix a strictly increasing sequence (αn) of suc-
cessor ordinals smaller than α with supn αn = α. We define the system
(Aξ)ξ<ω1 recursively as follows:

(1) [Case ξ = 1]
A1 = {{n} : n ∈ N};

(2) [Case ξ = ζ + 1]

Aξ = Aζ+1 = {s ⊆ N : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};
(3) [Case ξ = ωβ+1, β a countable ordinal]

Aξ = Aωβ+1 =
{
s ⊆ N : s =

n⋃

i=1

si with n = min s1, s1 < . . . < sn,

and s1, . . . , sn ∈ Aωβ
}

;

(4) [Case ξ = ωα, α a non-zero countable limit ordinal]

Aξ = Aωα = {s ⊆ N : s ∈ Aωαn with n = min s}
(where (αn) is the sequence of ordinals converging to α, fixed above);

(5) [Case ξ limit, ωα < ξ < ωα+1 for some 0 < α < ω1] Let ξ =
pωα +

∑m
i=1 piω

αi be the canonical representation of ξ, where m ≥ 0,
p, p1, . . . , pm ≥ 1 are natural numbers so that either p > 1, or p = 1 and
m ≥ 1 and α > α1 > . . . > αm > 0 are countable ordinals. Then

Aξ =
{
s ⊆ N : s = s0 ∪

m⋃

i=1

si with sm < . . . < s1 < s0,

s0 = s0
1 ∪ . . . ∪ s0

p with s0
1 < . . . < s0

p, s
0
j ∈ Aωα , 1 ≤ j ≤ p,

si = si1 ∪ . . . ∪ sipi with si1 < . . . < sipi , s
i
j ∈ Aωαi , 1 ≤ i ≤ m, 1 ≤ j ≤ pi

}
.
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We set Bα = Aωα for each 1 ≤ α < ω1.

Remark 1.4. (i) Each family Aξ for 1 ≤ ξ < ω1 is thin (does not
contain proper initial segments of its elements).

(ii) ([F1]) Each finite subset F of N has a canonical representation with
respect to the family Aξ. This means that for every 1 ≤ ξ < ω1 there exist
unique n ∈ N, sets s1, . . . , sn ∈ Aξ and sn+1, a proper initial segment of
some element of Aξ, with s1 < . . . < sn < sn+1 , such that F =

⋃n+1
i=1 si.

The number n is called the type tξ(F ) of F with respect to Aξ.
(iii) ([F1]) For every 0 ≤ α < ω1 and M ∈ [N] there exists L ∈ [M ] such

that Fα(L) ⊆ (Bα)? ⊆ Fα.

Now we give the definition of the strong Cantor–Bendixson index of a
hereditary and pointwise closed family of finite subsets of N. This index
is analogous to the well-known Cantor–Bendixson index ([B], [C]) and has
been defined in [A-M-T] and with a different notation in [F1].

Definition 1.5 ([C], [B], [A-M-T]). Let F be a hereditary and pointwise
closed family of finite subsets on N. For M ∈ [N] we define the strong
Cantor–Bendixson derivative (F)ξM of F on M for every ξ < ω1 as follows:

(F)1
M = {F ∈ F [M ] : F is a cluster point of F [F ∪ L] for each L ∈ [M ]}

(where F [M ] = F ∩ [M ]<ω),

(F)ξ+1
M =

(
(F)ξM

)1
M
, (F)ξM =

⋂

β<ξ

(F)βM if ξ is a limit ordinal.

The strong Cantor–Bendixson index of F on M is defined to be the smallest
countable ordinal ξ such that (F)ξM = ∅. We denote this index by sM (F).

Remark 1.6. (i) sM (F) is a countable successor ordinal.
(ii) If F1 ⊆ F2, then sM (F1) ≤ sM (F2) for every M ∈ [N].

(iii) If L is almost contained in M (i.e. L−M is finite), then sL(F) ≥
sM (F).

(iv) For every M ∈ [N] and F ∈ [M ]<ω, according to a remark in [Ju],
we have: F ∈ (F)1

M if and only if the set {m ∈M : F ∪ {m} 6∈ F} is finite.
(v) ([A-M-T]) sM (Fα) = ωα + 1 for every 1 ≤ α < ω1 and M ∈ [N].
(vi) ([F1]) sM ((Aξ)?) = ξ + 1 for every 1 ≤ ξ < ω1 and M ∈ [N].

(vii) ([A-M-T], [Ju], [F1]) If F is a hereditary and pointwise closed family
of finite subsets of N and M ∈ [N] is such that sM (F) ≥ ωα, then there exists
L ∈ [M ] such that Fα(L) ⊆ F .

We recall the generalization (proved in [F1]) of the classical Ramsey
theorem to every countable ordinal.
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Theorem 1.7 (ξ-Ramsey type theorem; [F1]). Let F be an arbitrary
family of finite subsets of N, M an infinite subset of N and ξ a countable
ordinal number. Then there exists an infinite subset L of M such that

either Aξ ∩ [L]<ω ⊆ F or Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

Using the strong Cantor–Bendixson index, we have developed in [F1] a
refined form of the above theorem in case F is in addition hereditary.

Theorem 1.8 (Refined ξ-Ramsey type theorem; [F1]). Let F be a hered-
itary family of finite subsets of N and M an infinite subset of N. We have
the following cases:

Case 1: If the family F∩ [M ]<ω is not pointwise closed , then there exists
L ∈ [M ] such that [L]<ω ⊆ F .

Case 2: If the family F ∩ [M ]<ω is pointwise closed , then there exists
L ∈ [M ] such that [L]<ω ⊆ ([N]<ω \ F)?. Moreover setting

ξFM = sup{sL(F) : L ∈ [M ]},
which is a countable ordinal , the following hold :

2(i) For every countable ordinal ξ with ξ+1 < ξFM there exists L ∈ [M ]
such that

(Aξ)? ∩ [L]<ω ⊆ F .

2(ii) For every countable ordinal ξ with ξFM < ξ+1 there exists L ∈ [M ]
such that

F ∩ [L]<ω ⊆ (Aξ)? \ Aξ;
and equivalently ,

Aξ ∩ [L]<ω ⊆ [N]<ω \ F .

2(iii) If ξFM = ξ + 1, then both alternatives may materialize.

Now we recall the ξ-Pták type theorem for some 1 ≤ ξ < ω1, which has
been proved in [F1], using the notion of the weight of a finite subset F of
N with respect to a set of the family Aξ. The classical Pták theorem is the
limiting ω1-case.

Definition 1.9. For every finite subset F of N, every countable ordinal
ξ, and every s ∈ Aξ we define recursively the ξ-weight wξ(F ; s) of F with
respect to s to be a real (in fact, rational) number in [0, 1], as follows:

(1) [Case ξ = 1] Since A1 = {{n} : n ∈ N}, for every n ∈ N we set

w1(F ; {n}) =
{

1 if n ∈ F ,
0 otherwise.
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(2) [Case ξ = ζ + 1] Let s ∈ Aζ+1. Then s = {n} ∪ s1, where n ∈ N,
{n} < s1 and s1 ∈ Aζ . We set

wζ+1(F ; s) = wζ(F ; s1) · w1(F ; {n}).
(3) [Case ξ = ωβ+1 for 0 ≤ β < ω1] Let s ∈ Aωβ+1 . Then s = s1∪. . .∪sn,

with n = min s1, s1 < . . . < sn and s1, . . . , sn ∈ Aωβ . We set

wωβ+1(F ; s) =
1
n

n∑

i=1

wωβ (F ; si).

(4) [Case ξ = ωα for α a non-zero countable limit ordinal] Let s ∈ Aωα .
Then s ∈ Aωαn with n = min s, where (αn) is the fixed sequence of ordinals
“converging” to α (Definition 1.3). So,

wωα(F ; s) = wωαn (F ; s), n = min s.

(5) [Case ξ limit, ωα0 < ξ < ωα0+1 for some 0 < α0 < ω1] In this
case, ξ has a unique representation ξ = p0ω

α0 +
∑m
i=1 piω

αi , where m ∈ N,
α0 > α1 > . . . > αm > 0 are ordinal numbers and p0, p1, . . . , pm ≥ 1 are
natural numbers, so that either p0 > 1, or p0 = 1 and m > 1.

Let s ∈ Aξ. Then s = s0 ∪ s1 ∪ . . . ∪ sm with sm < . . . < s1 < s0, where
si = si1 ∪ . . . ∪ sipi with si1 < . . . < sipi and sij ∈ Aωαi for every 0 ≤ i ≤ m
and 1 ≤ j ≤ pi. We set

wξ(F ; s) =
m∏

i=0

pi∏

j=1

wωαi (F ; sij).

Remark 1.10 ([A-O], [F1]). For every countable ordinal α and s ∈
Aωα = Bα we define recursively the functions ϕsα : N→ [0,∞) as follows:

• ϕ0
{k}(n) = 1 if n = k, and ϕ0

{k}(n) = 0 otherwise, for every {k} ∈ B0.

• ϕβ+1
s = k−1∑k

i=1 ϕ
β
si for every s = s1 ∪ . . . ∪ sk ∈ Bβ+1.

• ϕαs = ϕαks , k = min s, for every s ∈ Bα, where α is a non-zero countable
limit ordinal.

It is easy to see that
∑
n∈N ϕ

α
s (n) = 1 and that s = {n ∈ N : ϕsα(n) 6= 0}.

Moreover wωα(F ; s) =
∑
n∈F ϕ

s
α(n) for every F ∈ [N]<ω.

Theorem 1.11 (ξ-Pták type theorem; [F1]). Let F be a hereditary and
pointwise closed family of finite subsets of N, M ∈ [N], ξ a non-zero count-
able ordinal and 0 < ε < 1. If for every s ∈ Aξ ∩ [M ]<ω there exists F ∈ F
such that wξ(F ; s) > ε, then:

(i) there exists L ∈ [M ] such that sL(F) ≥ ξ + 1;
(ii) ξFM ≤ ξ + 1, and

(iii) for every ordinal ζ with ζ < ξ there exists L ∈ [M ] such that

Aζ ∩ [L]<ω ⊆ F .
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Theorem 1.12 (Pták’s theorem; [P]). Let F be a hereditary family of
finite subsets of N and 0 < ε < 1. If for every non-negative function ϕ
on N with finite support and

∑
n∈N ϕ(n) = 1 there exists F ∈ F such that∑

n∈F ϕ(n) > ε, then there exists L ∈ [N] such that [L]<ω ⊆ F .

2. The c0-behavior of a sequence. In this section we study the precise
“c0-content” of an arbitrary (seminormalized, basic) sequence in a Banach
space, with the help of the c0-index defined for any such sequence; this is a
countable ordinal of the form ξ0 = ωζ , or the first uncountable ordinal ω1

(Proposition 2.5). This index is a measure of the c0-content of the sequence
in the following sense:

(i) If ξ0 = ω1, then there is a subsequence equivalent to the unit vector
basis of c0 (Remark 2.2).

(ii) If ξ0 < ω1, then there exists a countable ordinal ζ such that:

(iia) on the one hand, for all α < ζ there is a subsequence with c0-
spreading model of order α (Proposition 2.10), while

(iib) on the other hand (if ζ ≤ α) the sequence is far from any higher
order c0-behavior, in the sense that it is a null coefficient se-
quence of order ζ (Proposition 2.13).

This is the content of the main theorem (Theorem 2.15).

Definition 2.1. Let (χn) be a bounded sequence in a Banach space X.
For every ε > 0 we set

C(χn)
ε =

{
F ∈ [N]<ω :

∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ εmax
i∈F
|λi| for all (λi)i∈F ⊆ R

}
.

All the families C(χn)
ε for ε > 0 are hereditary.

We then define the c0-index ξ(χn)
0 of (χn) as follows: If the families C(χn)

ε

for all ε > 0 are pointwise closed, we set

ξ
(χn)
0 = sup{sM (C(χn)

ε ) : M ∈ [N] and ε > 0},
which is a countable ordinal; otherwise

ξ
(χn)
0 = ω1.

Remark 2.2. (i) ξ(χn)
0 = ω1 if and only if there exist ε > 0 and M ∈ [N]

such that [M ]<ω ⊆ C(χn)
ε (Theorem 1.8).

(ii) For a basic sequence (χn) in a Banach space X with 0 < infn ‖χn‖
there exists A > 0 such that

A max
1≤i≤n

|λi| ≤
∥∥∥

n∑

i=1

λiχi

∥∥∥ for all n ∈ N and λ1, . . . , λn ∈ R.



Ordinal indices and Ramsey dichotomies 161

(iii) A basic sequence (χn) with 0 < infn ‖χn‖ ≤ supn ‖χn‖ < ∞ has a
subsequence equivalent to the unit vector basis of c0 if and only if ξ(χn)

0 = ω1.

Definition 2.3. A sequence (χn) in a Banach space X is called

(i) null coefficient (of order ω1) if every sequence (λn) of real numbers
with sup{‖∑i∈F λiχi‖ : F ∈ [N]<ω} <∞ converges to zero; and

(ii) null coefficient of order α, for some countable ordinal α, if every
sequence (λn) of real numbers with sup{‖∑i∈F λiχi‖ : F ∈ Fα} < ∞
converges to zero.

Proposition 2.4. Let (χn) be a bounded sequence in a Banach space X.
The following are equivalent :

(i) ξ(χn)
0 < ω1;

(ii) (χn) is null coefficient.

Proof. (i)⇒(ii). Let ξ(χn)
0 < ω1. Assume that (χn) is not null coefficient.

Then there exist (µn) ⊆ R and ε > 0 such that ‖∑i∈F µiχi‖ ≤ 1 for every
F ∈ [N]<ω and the set M = {n ∈ N : µn ≥ ε} is infinite.

Let F ∈ [M ]<ω and (λi)i∈F ⊆ R. There exists f ∈ X? with ‖f‖ ≤ 1
such that ‖∑i∈F λiχi‖ = f(

∑
i∈F λiχi). Since

∥∥∥
∑

i∈F
λiχi

∥∥∥ =
∑

i∈F
λif(χi) ≤

∑

i∈F
|λi| · |f(χi)|

=
∑

i∈F
|λi|εif(χi) (for suitable (εi)i∈F ⊆ {−1, 1})

≤ 1
ε

∑

i∈F
|λi|µiεif(χi) ≤

1
ε

(max
i∈F
|λi|) ·

∥∥∥
∑

i∈F
µiεiχi

∥∥∥

≤ 2
ε

max
i∈F
|λi|,

we see that [M ]<ω ⊆ C
(χn)
2/ε . This is a contradiction (see Remark 2.2(i));

hence, (χn) is null coefficient.
(ii)⇒(i). Let (χn) be null coefficient. If ξ(χn)

0 = ω1, then there exist
ε > 0 and M ∈ [N] such that [M ]<ω ⊆ C

(χn)
ε . Thus ‖∑i∈F χi‖ ≤ ε for

every F ∈ [M ]<ω. Setting λn = 1 for every n ∈M and λn = 0 for n ∈ N\M
we have

sup
{∥∥∥
∑

i∈F
λiχi

∥∥∥ : F ∈ [N]<ω
}
<∞.

A contradiction; hence ξ(χn)
0 < ω1.

Proposition 2.5. Let (χn) be a bounded sequence in a Banach space X.
Then either ξ(χn)

0 = ω1 or ξ(χn)
0 = ωζ for some countable ordinal ζ.
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Proof. Let ξ(χn)
0 < ω1. Then there exists a unique countable ordinal

ζ such that ωζ ≤ ξ
(χn)
0 < ωζ+1. Arguing by contradiction suppose that

ωζ < ξ
(χn)
0 . Then there exist M ∈ [N] and ε > 0 such that ωζ < sM (C(χn)

ε ).
According to Remark 1.6(vii) there exists a subsequence (yn) of (χn) such
that Fζ ⊆ C(yn)

ε . This gives Bζ ⊆ C(yn)
ε , and consequently Akωζ ⊆ C(yn)

ε for
every k ∈ N. Hence (see Remark 1.6(vi)), sN(C(yn)

ε ) > kωζ for every k ∈ N.
If yn = χmn for every n ∈ N and M = {mn : n ∈ N}, then

sM (C(χn)
ε ) > kωζ for every k ∈ N.

Indeed, by induction on ξ it can be proved that if (n1, . . . , nl) ∈ (C(χn)
ε )ξN,

then (mn1 , . . . ,mnl) ∈ (C(yn)
ε )ξM .

So, we have ξ(χn)
0 > kωζ for every k ∈ N. But this is impossible, since

ξ
(χn)
0 < ωζ+1; hence ξ(χn)

0 = ωζ .

The previous proposition and the refined ξ-Ramsey type theorem (The-
orem 1.8) give the following equivalences:

Proposition 2.6. Let (χn) be a bounded sequence in a Banach space X
with ξ

(χn)
0 = ωζ for some countable ordinal ζ. For an arbitrary countable

ordinal α we have:

(i) α < ζ if and only if there exist L ∈ [N] and ε > 0 with

Bα ∩ [L]<ω ⊆ C(χn)
ε ;

(ii) ζ ≤ α if and only if for every ε > 0 and M ∈ [N] there exists L ∈ [M ]
such that

C(χn)
ε ∩ [L]<ω ⊆ (Bα)? \ Bα.

Proof. (i) If α < ζ, then ωα + 1 < ξ
(χn)
0 , since ξ

(χn)
0 is a limit or-

dinal (Proposition 2.5). Hence, there exists ε > 0 such that ωα + 1 <

sup{sM (C(χn)
ε ) : M ∈ [N]}. From Theorem 1.8, there exists L ∈ [N] such

that Bα ∩ [L]<ω ⊆ C(χn)
ε .

On the other hand, if Bα ∩ [L]<ω ⊆ C
(χn)
ε , then (Remark 1.6(vi))

sL(C(χn)
ε ) ≥ ωα + 1 > ωα; hence ξ(χn)

0 > ωα.
(ii) Let ε > 0 and M ∈ [N]. If ζ ≤ α , then

sup{sL(C(χn)
ε ) : L ∈ [M ]} ≤ ξ(χn)

0 ≤ ωα < ωα + 1.

From Theorem 1.8, there exists L ∈ [M ] so that C(χn)
ε ∩ [L]<ω ⊆ (Bα)? \Bα.

On the other hand, if for every ε > 0 and M ∈ [N] there exists L ∈ [M ]
such that C(χn)

ε ∩ [L]<ω ⊆ (Bα)? \ Bα, then sM (C(χn)
ε ) ≤ ωα + 1 for every

M ∈ [N] and ε > 0 (Theorem 1.8). Hence, ξ(χn)
0 ≤ ωα + 1 and consequently

ζ ≤ α.
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So far we have distinguished the cases ξ(χn)
0 = ω1 and ξ

(χn)
0 < ω1 (in

Remark 2.2(i) and Proposition 2.4) and proved that in case ξ
(χn)
0 < ω1

there is ζ < ω1 such that ξ(χn)
0 = ωζ (Proposition 2.5). In this last case

the set of all countable ordinals is naturally separated by ζ into two classes,
those strictly less than ζ, and those greater than or equal to ζ. To examine
the behavior resulting from this dichotomy (in Propositions 2.10 and 2.13
below), we need (a) the notion of the c0-spreading model of order α for some
1 ≤ α < ω1 (Definition 2.7 below) and (b) the notion of the null coefficient
sequence of order α (Definition 2.3).

Firstly we recall the notion of the c0-spreading model of order α of a
sequence (χn) for a countable number α, a notion that extends the usual
notion of spreading model equivalent to the unit vector basis of c0 (case
α = 1; [B-S]).

Definition 2.7. Let (χn) be a basic sequence in a Banach space X and
α be a countable ordinal number. We say that (χn) has c0-spreading model
of order α if there exist A,B > 0 such that

Amax
i∈F
|λi| ≤

∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ Bmax
i∈F
|λi|

for every F ∈ Fα and (λi)i∈F ⊆ R.
Remark 2.8. If a basic sequence (χn) has c0-spreading model of order

α for some countable ordinal α, then every subsequence of (χn) has c0-
spreading model of order ζ for every ζ with 1 ≤ ζ ≤ α (see Remark 1.2(ii)).

Proposition 2.9. Let (χn) be a bounded sequence in a Banach space X
and α be a countable ordinal number. The following are equivalent :

(i) there exists ε > 0 such that
∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ εmax
i∈F
|λi| for every F ∈ Fα and (λi)i∈F ⊆ R;

(ii) sup{∑i∈F |f(χi)| : F ∈ Fα} <∞ for every f ∈ X?;
(iii) there exists B > 0 such that

∥∥∥
∑

i∈F
χi

∥∥∥ ≤ B for every F ∈ Fα;

(iv) a sequence (λn) ⊆ R converges to zero if and only if for every ε > 0
there exists n0 = n0(ε) ∈ N such that

∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ ε for every F ∈ Fα with n0 ≤ F.

Proof. (i)⇒(iv). This is easily proved, using the fact that {n} ∈ Fα for
every n ∈ N.
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(iv)⇒(iii). Assume that (iii) does not hold. Then there exists F1 ∈ Fα
such that ∥∥∥

∑

i∈F1

χi

∥∥∥ > 1.

Set n1 = maxF1. Then there exists C1 > 0 such that
∥∥∥
n1∑

i=1

λiχi

∥∥∥ ≤ C1 max
1≤i≤n1

|λi| for every λ1, . . . , λn1 ∈ R.

If ‖∑i∈F χi‖ ≤ 2 for every F ∈ Fα with n1 < F , then for every F ∈ Fα
we have ‖∑i∈F χi‖ ≤ C1 + 2, contradicting our assumption. Hence, there
exists F2 ∈ Fα such that F1 < F2 and∥∥∥

∑

i∈F2

χi

∥∥∥ > 2.

Inductively, we can define a sequence (Fk)k∈N in Fα with Fk < Fk+1 and∥∥∥
∑

i∈Fk
χi

∥∥∥ > k for every k ∈ N.

We define a sequence (λn) in R as follows: λn = 1/k if n ∈ Fk for some
k ∈ N and λn = 0 if n ∈ N \⋃k∈N Fk. Of course, (λn) converges to zero and

∥∥∥
∑

i∈Fk
λiχi

∥∥∥ =
1
k

∥∥∥
∑

i∈Fk
χi

∥∥∥ > 1 for every k ∈ N.

Since k ≤ Fk for every k ∈ N, we have a contradiction to (iv).
(iii)⇒(ii). Let f ∈ X? and F ∈ Fα. Since the family Fα is hereditary,

condition (iii) implies that
∑

i∈F
|f(χi)| = f

(∑

i∈F
εi χi

)
≤ 2B‖f‖,

where (εi)i∈F ⊆ {−1, 1} with |f(χi)| = εif(χi) for every i ∈ F .
(ii)⇒(i). If (ii) holds, then from the Baire category theorem we have the

existence of some k ∈ N such that

sup
{∑

i∈F
|f(χi)| : F ∈ Fα

}
≤ k for every f ∈ X? with ‖f‖ ≤ 1.

Let F ∈ Fα and (λi)i∈F ⊆ R. Then there exists f ∈ X? with ‖f‖ ≤ 1 such
that ∥∥∥

∑

i∈F
λiχi

∥∥∥ =
∑

i∈F
λif(χi).

Thus, ∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ (max
i∈F
|λi|) ·

∑

i∈F
|f(χi)| ≤ kmax

i∈F
|λi|.

This finishes the proof of the proposition.
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Proposition 2.10. Let (χn) be a bounded sequence in a Banach space
X and α be a countable ordinal number. The following are equivalent :

(i) ωα < ξ
(χn)
0 ;

(ii) there exist a subsequence (yn) of (χn) and ε > 0 such that
∥∥∥
∑

i∈F
λiyi

∥∥∥ ≤ εmax
i∈F
|λi| for every F ∈ Fα and (λi)i∈F ⊆ R;

(iii) there exist a subsequence (yn) of (χn) and ε > 0 such that Bα ⊆
C

(yn)
ε ;

(iv) there exist a subsequence (yn) of (χn), I ∈ [N] and ε > 0 such that
‖∑i∈H εiyi‖ ≤ ε for every H ∈ Bα ∩ [I]<ω and (εi)i∈H ⊆ {−1, 1}.

Proof. (i)⇒(ii). If ωα < ξ
(χn)
0 , then there exist M ∈ [N] and ε > 0 such

that ωα < sM (C(χn)
ε ). From Remark 1.6(vii) there exists L ∈ [M ] such that

Fα(L) ⊆ C(χn)
ε .

(ii)⇒(iii). Since Bα ⊆ Fα (see Remark 1.4(iii)), we have Bα ⊆ C(yn)
ε .

(iii)⇒(iv). Set I = N.
(iv)⇒(i). Let H ∈ Bα ∩ [I]<ω and (λi)i∈H ⊆ R. There exists f ∈ X?

with ‖f‖ ≤ 1 such that ‖∑i∈H λiyi‖ =
∑
i∈H λif(yi). Hence,

∥∥∥
∑

i∈H
λiyi

∥∥∥ ≤ (max
i∈H
|λi|)

∑

i∈H
|f(yi)|

= (max
i∈H
|λi|)

∑

i∈H
εif(yi) (for suitable (εi)i∈H ⊆ {−1, 1})

≤ (max
i∈H
|λi|)

∥∥∥
∑

i∈H
εiyi

∥∥∥ ≤ εmax
i∈H
|λi|.

We have thus proved that Bα ∩ [I]<ω ⊆ C(yn)
ε . According to Remark 1.6(ii),

(vi), we have
sI
(
C(yn)
ε

)
≥ ωα + 1 > ωα.

This implies that sM
(
C

(χn)
ε

)
> ωα, where M = {mn : n ∈ I}, and conse-

quently ωα < ξ
(χn)
0 .

This finishes the proof.

Corollary 2.11. A basic sequence (χn) in a Banach space with 0 <
infn ‖χn‖ ≤ supn ‖χn| < ∞ has a subsequence with c0-spreading model of
order α, for some countable ordinal α, if and only if ωα < ξ

(χn)
0 .

Proof. This follows from Remark 2.2(ii) and the previous proposition.

Remark 2.12. (i) A basic sequence (χn) in a Banach space with 0 <
infn ‖χn‖ and supn ‖χn‖ < ∞ has a subsequence with c0-spreading model
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of the greatest possible order if and only if either ξ(χn)
0 = ω1 or ξ(χn)

0 = ωα+1

for some countable ordinal α.
(ii) If a basic sequence has for every countable ordinal α a subsequence

with c0-spreading model of order α, then it has a subsequence equivalent to
the unit vector basis of c0.

Until now we characterized the countable ordinals α with ωα < ξ
(χn)
0 as

those for which (χn) has a subsequence with c0-spreading model of order α.
Additionally, we know that for each countable ordinal with ξ

(χn)
0 ≤ ωα, no

subsequence has c0-spreading model of order α. In this last case we prove
(in Proposition 2.13 below) that the sequence is null coefficient of order α.

Proposition 2.13. Let (χn) be a bounded sequence in a Banach space
X and α be a countable ordinal number. The following are equivalent :

(i) ξ(χn)
0 ≤ ωα;

(ii) the sequence (χn) is null coefficient of order α;
(iii) for every subsequence (yn) of (χn) and M ∈ [N] there exists I ∈ [M ]

such that for each H ∈ Bα ∩ [I]<ω there exists (εi)i∈H ⊆ {−1, 1} such that
minH < ‖∑i∈H εiyi‖;

(iv) for every subsequence (yn) of (χn) and M ∈ [N] there exist a se-
quence (Hm)m∈N in Bα ∩ [M ]<ω with H1 < H2 < . . . and (εm) in {−1, 1}
such that ∥∥∥

∑

i∈Hm
εiyi

∥∥∥ −→
m
∞.

Proof. (i)⇒(ii). Let ξ(χn)
0 ≤ ωα. If (χn) is not null coefficient of order α,

then there exist (λn) ⊆ R and ε > 0 such that ‖∑i∈F λiχi‖ ≤ 1 for every
F ∈ Fα and the set M = {n ∈ N : λn > ε} is infinite.

Let M = (mn)n∈N and yn = χmn for every n ∈ N. For every F ∈ Fα
and f ∈ X? we have

∑

i∈F
|f(yi)| ≤

1
ε

∑

i∈F
λmi |f(χmi)|

≤ 1
ε

∑

i∈F1

λṁif(χmi) +
1
ε

∑

i∈F2

λmif(χmi) ≤
2
ε
‖f‖,

where
F1 = {i ∈ F : |f(χmi)| = f(χmi)} ∈ Fα,
F2 = {i ∈ F : |f(χmi)| = −f(χmi} ∈ Fα.

According to Propositions 2.9 and 2.10 we have ωα < ξ
(χn)
0 . A contradiction;

hence (χn) is null coefficient of order α.
(ii)⇒(i). Let (χn) be null coefficient of order α. If ωα < ξ

(χn)
0 , then

according to Proposition 2.10, there exist a subsequence (yn) of (χn) with
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yn = χmn for every n ∈ N and ε > 0 such that
∥∥∥
∑

i∈F
yi

∥∥∥ ≤ ε for every F ∈ Fα.

Let M = {mn : n ∈ N}. From a result of Androulakis and Odell ([An-O])
there exists L ∈ [M ] such that

F \ {minF} ∈ Fα(L) for every F ∈ Fα ∩ [L]<ω.

We consider the sequence (λn) in R with λn = 1 if n ∈ L and λn = 0 if
n ∈ N \ L. Then

sup
{∥∥∥
∑

i∈F
λiχi

∥∥∥ : F ∈ Fα
}

= sup
{∥∥∥
∑

i∈F
χi

∥∥∥ : F ∈ Fα ∩ [L]<ω
}

(since Fα is hereditary)

≤ sup
n
‖χn‖+ sup

{∥∥∥
∑

i∈F
χi

∥∥∥ : F ∈ Fα(L)
}

(see Remark 1.2(ii))

≤ sup
n
‖χn‖+ sup

{∥∥∥
∑

i∈F
yi

∥∥∥ : F ∈ Fα
}

≤ sup
n
‖χn‖+ ε.

Since (λn) does not converge to zero, the sequence (χn) is not null coefficient.
A contradiction, hence ξ(χn)

0 ≤ ωα.
(i)⇒(iii). Let ξ(χn)

0 ≤ ωα. If (yn) is a subsequence of (χn) and M ∈ [N],
then for every k ∈ N we set

Lk =
{
H ∈ [M ]<ω : k <

∥∥∥
∑

i∈H
εiyi

∥∥∥ for some (εi)i∈H ⊆ {−1, 1}
}
.

According to Proposition 2.10 we have

Lk ∩ Bα ∩ [I]<ω 6= ∅ for every k ∈ N and I ∈ [M ].

Using the ωα-Ramsey theorem (Theorem 1.7) we can construct a decreasing
sequence (Ik)k∈N in [M ] such that

Bα ∩ [Ik]<ω ⊆ Lk for every k ∈ N.
Set I = (ikk)k∈N if Ik = (ikn)n∈N for every k ∈ N. Every set H in Bα ∩ [I]<ω

belongs to Lk, where k = minH. Hence for each H ∈ Bα∩ [I]<ω there exists
(εi)i∈H ⊆ {−1, 1} such that minH < ‖∑i∈H εiyi‖.

(iii)⇒(iv). For every I ∈ [N] there exists a sequence (Hm)m∈N in Bα ∩
[I]<ω such that H1 < H2 < . . . (Remark 1.4(ii)).

(iv)⇒(i). This is obvious, by Proposition 2.10. This finishes the proof.
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Remark 2.14. (i) If a bounded sequence (χn) is null coefficient of or-
der α for some countable ordinal α, then every subsequence of (χn) is null
coefficient of order β for every β with α ≤ β ≤ ω1.

(ii) If a sequence (χn) is null coefficient, then there exists a countable
ordinal ζ (in fact ωζ = ξ

(χn)
0 ) such that (χn) is null coefficient of order α for

every α with ζ ≤ α ≤ ω1.

(iii) If the c0-index ξ(χn)
0 of a sequence (χn) is countable, then ξ(χn)

0 = ωζ

where ζ is the least ordinal α which makes the sequence (χn) null coefficient
of order α.

Gathering all the previous results we can finally state the principal the-
orem of this section.

Theorem 2.15. Let (χn) be a basic bounded sequence in a Banach space
with 0 < infn ‖χn‖. Then either

(1) [Case ξ
(χn)
0 = ω1] (χn) has a subsequence equivalent to the unit

vector basis of c0; or
(2) [Case ξ(χn)

0 < ω1] (χn) is null coefficient.

In case (2) there exists a countable ordinal ζ (in fact ξ(χn)
0 = ωζ) such

that for each countable ordinal α, either

(2i) [Case α < ζ] (χn) has a subsequence with c0-spreading model of
order α; or

(2ii) [Case ζ ≤ α] (χn) is null coefficient of order α.

Proof. This follows from Propositions 2.4, 2.5, 2.10 and 2.13.

3. Semiboundedly complete sequences. An important notion con-
cerning basic sequences is that of semibounded completeness. A sequence
(χn) is semiboundedly complete if every sequence (λn) of real numbers with
supn ‖

∑n
i=1 λiχi‖ < ∞ converges to zero. According to a result of Odell

([O]) every normalized weakly null sequence contains a subsequence which
is either equivalent to the unit vector basis of c0 or semiboundedly com-
plete. This happens since every normalized weakly null sequence has a c0-
unconditional subsequence (see Definition 3.8 below; [E]) and since every
c0-unconditional sequence is semiboundedly complete if and only if it does
not contain a subsequence equivalent to the unit vector basis of c0.

In this section we introduce (Definition 3.1) and characterize (Theorem
3.4) the semibounded completeness index ξ(χn)

b of a sequence (χn). The in-
dex ξ(χn)

b is countable if and only if (χn) is semiboundedly complete (Remark
3.2(i)) and in this case ξ(χn)

b = ωζ for some countable ordinal ζ (Proposi-
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tion 3.3). We call a sequence semiboundedly complete of order α, for some
countable ordinal α, if ξ(χn)

b ≤ ωα.
The c0-index is always less than or equal to the semibounded complete-

ness index (Proposition 3.6), but these differ in general. In Example 3.14
we give an example of a normalized, weakly null, basic sequence (χn) with
ξ

(χn)
0 = ω and ξ

(χn)
b = ω1.

For normalized c0-unconditional sequences we prove (Theorem 3.10) that
the two indices are equal. Thus a normalized c0-unconditional sequence is
semiboundedly complete of order α, for some 0 ≤ α < ω1, if and only if
it does not contain a subsequence with c0-spreading model of order α or,
equivalently, if it is null coefficient of order α.

As a corollary, we deduce that for a given countable ordinal α every
normalized weakly null sequence has a subsequence either semiboundedly
complete of order α or with c0-spreading model of order α, thus obtain-
ing a countable ordinal analogue of Odell’s limiting (for α = ω1) theorem
(Theorem 3.15).

Definition 3.1. Let (χn) be a sequence in a Banach space X. For every
ε > 0 we set

D(χn)
ε =

{
F ∈ [N]<ω : there exists (λn) ⊆ R with sup

n

∥∥∥
n∑

i=1

λiχi

∥∥∥ ≤ 1

and |λi| ≥ ε for every i ∈ F
}
.

The families D(χn)
ε , for all ε > 0, are hereditary.

We then define the semibounded completeness index ξ
(χn)
b of (χn) as

follows: if there exists ε > 0 such that the family D(χn)
ε is not pointwise

closed, then we set
ξ

(χn)
b = ω1;

otherwise
ξ

(χn)
b = sup{sM (D(χn)

ε ) : M ∈ [N] and ε > 0},
which is a countable ordinal.

We say that the sequence (χn) is:

(1) semiboundedly complete (of order ω1) if all the sequences (λn) ⊆ R
with supn ‖

∑n
i=1 λiχi‖ ≤ 1 converge to zero;

(2) semiboundedly complete of order ζ, for some countable ordinal ζ, if

ξ
(χn)
b ≤ ωζ .

Remark 3.2. (i) For a sequence (χn) with infn ‖χn‖ > 0, using a com-
pactness argument, it is easy to prove that ξ(χn)

b = ω1 if and only if there
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exist M ∈ [N], ε > 0 and (λn) ⊆ R such that supn ‖
∑n
i=1 λiχi‖ ≤ 1 and

|λn| ≥ ε for every n ∈ M . Hence (χn) is semiboundedly complete if and
only if ξ(χn)

b < ω1.

(ii) ω ≤ ξ
(χn)
b for every bounded sequence (χn), since for every k ∈ N

and F ∈ [N]k setting αn = 1/(Ak) if n ∈ F and αn = 0 if n ∈ N \ F , where
A = supn ‖χn‖, we get supn ‖

∑n
i=1 αiχi‖ ≤ 1.

(iii) For the summing basis (sn) of c0 we have ξ(sn)
b = ω1 and ξ(sn)

0 = ω.

(iv) If (yn) is a subsequence of (χn), then ξ
(yn)
b ≤ ξ

(χn)
b . So, if (χn) is

semiboundedly complete of order ζ and ζ ≤ α ≤ ω1, then (yn) is semibound-
edly complete of order α.

Proposition 3.3. Let (χn) be a sequence in a Banach space X. Then
either ξ(χn)

b = ω1 or ξ(χn)
b = ωζ for some ordinal ζ with 1 ≤ ζ < ω1.

Proof. Let ξ(χn)
b < ω1. Then there exists an ordinal ζ with 1 ≤ ζ < ω1

such that ωζ ≤ ξ
(χn)
b < ωζ+1. Arguing by contradiction suppose that ωζ <

ξ
(χn)
b . Then there exist M ∈ [N] and ε > 0 such that ωζ < sM (D(χn)

ε ).
According to Remark 1.6(vii) there exists L = (ln) ∈ [M ] such that

Fζ(L) ⊆ D(χn)
ε .

Let k ∈ N and F1, . . . , Fk ∈ Fζ with F1 < . . . < Fk. For each m ∈
{1, . . . , k} there exist (λmn ) ⊆ R such that supn ‖

∑n
i=1 λ

m
i χi‖ ≤ 1 and

|λmli | ≥ ε for every i ∈ Fm. For each m ∈ {1, . . . , k} set σm = maxFm
and pm = minFm; also set bmn = λmn if n ∈ N with lpm ≤ n ≤ lσm and
bmn = 0 if n ∈ N with n < lpm or n > lσm . Then

sup
n

∥∥∥
n∑

i=1

bmi χi

∥∥∥ ≤ 2 for every m ∈ {1, . . . , k}.

Set λn = (b1n + . . .+ bkn)/(2k) for every n ∈ N . Then

sup
n

∥∥∥
n∑

i=1

λiχi

∥∥∥ ≤ 1 and |λli | ≥
ε

2k
for every i ∈

k⋃

m=1

Fm.

Setting, for every k ∈ N,

Fkζ =
{
F ∈ [N]<ω : F =

k⋃

i=1

Fi with Fi ∈ Fζ and F1 < . . . < Fk

}
,

we have thus proved that Fkζ (L) ⊆ D(χn)
ε/(2k) for every k ∈ N.

From a result of Androulakis and Odell ([An-O]) there exists L1 ∈ [L]
such that F \ {minF} ∈ Fζ(L) for every F ∈ Fζ ∩ [L1]<ω. This shows that
Fζ ∩ [L1]<ω ⊆ F2

ζ (L). Hence, Fkζ ∩ [L1]<ω ⊆ F2k
ζ (L) for every k ∈ N. Thus,
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we have

Akωζ ∩ [L1]<ω ⊆ Fkζ ∩ [L1]<ω ⊆ D(χn)
ε/(4k) for every k ∈ N.

This gives (see Remark 1.6(v))

kωζ + 1 ≤ sL1(D(χn)
ε/(4k)) for every k ∈ N.

But this is impossible, since ξ(χn)
b < ωζ+1. Hence, ξ(χn)

b = ωζ .

Recapitulating the previous results, we have already proved that a se-
quence (χn) in a Banach space with 0 < infn ‖χn‖ ≤ supn ‖χn‖ < ∞ is
semiboundedly complete if and only if the index ξ

(χn)
b is countable and in

this case ξ(χn)
b = ωζ for some countable ordinal ζ. The ordinal ζ indicates the

least possible order of the semibounded completeness of (χn) (see Remark
3.2(iv)).

In the following we will establish a characterization of the sequences semi-
boundedly complete of order ζ in terms of the complete thin Schreier system
(Definition 1.3). The sense of this characterization is that the semibounded
completeness of order ζ of the sequence (χn) is precisely equivalent to the
ωζ-uniform convergence to zero of all the sequences (λn) of real numbers
with supn ‖

∑n
i=1 λiχi‖ ≤ 1.

Theorem 3.4. Let (χn) be a basic sequence in a Banach space, ζ a
countable ordinal and (ξn) a strictly increasing sequence of ordinals with
supn ξn = ωζ . The following are equivalent :

(i) (χn) is semiboundedly complete of order ζ;
(ii) for every M ∈ [N] there exists a strictly increasing function ϕ : N→

M with the property : for every ε > 0 there exists n0 = n0(ε) ∈ N such that

{ϕ(n) : n ≥ n0 and |λϕ(n)| ≥ ε} ∈ (Aξn0
)? \ Aξn0

for every (λn) ⊆ R with supn ‖
∑n
i=1 λiχi‖ ≤ 1.

Proof. (i)⇒(ii). Let ξ(χn)
b ≤ ωζ . For every M ∈ [N] and ε > 0 there

exists I ∈ [M ] such that sup{sN (D(χn)
ε ) : N ∈ [I]} < ωζ .

Let M ∈ [N]. Using Theorem 1.8 we can construct a strictly increasing
sequence (kn) in [N] and a decreasing sequence (In) in [M ] such that

D(χn)
1/n ∩ [In]<ω ⊆ (Aξkn )? \ Aξkn for every n ∈ N.

If In = (inm)m∈N for every n ∈ N, then define ϕ : N → M by ϕ(n) = inn
for every n ∈ N. For ε > 0 set n0 = n0(ε) = kλ for some λ ∈ N with 1/λ < ε.
Then for every sequence (λn) in R with supn ‖

∑n
i=1 λiχi‖ ≤ 1 we get

{ϕ(n) : n ≥ n0 and |λϕ(n)| ≥ ε} ∈ (Aξn0
)? \ Aξn0

.
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(ii)⇒(i). Suppose that ξ(χn)
b > ωζ . Then there exist ε > 0 and M ∈ [N]

such that sM (D(χn)
ε ) > ωζ > ξn + 1 for every n ∈ N. By (ii), there exist

L ∈ [M ] and n0 ∈ N such that

D(χn)
ε ∩ [L]<ω ⊆ (Aξn0

)? \ Aξn0
.

Since sL(D(χn)
ε ) > ξn0 + 1 (Remark 1.6(iii)), according to Theorem 1.8,

there exists I ∈ [L] such that Aξn0
∩ [I]<ω ⊆ D(χn)

ε ∩ [L]<ω, which is a

contradiction, hence ξ(χn)
b ≤ ωζ .

Choosing appropriate sequences (ξn) strictly increasing to ωζ we can
obtain interesting descriptions of being semiboundedly complete of order ζ.

Corollary 3.5. Let (χn) be a sequence in a Banach space, and ζ a
countable ordinal.

(1) ξ(χn)
b ≤ ωζ+1 if and only if for every M ∈ [N] there exists a strictly

increasing function ϕ : N→M such that for every ε > 0 there exists n0 ∈ N
so that the type with respect to Bζ (see Remark 1.4(ii)) of the set

{ϕ(n) : n ≤ n0 and |λϕ(n)| ≥ ε}
is at most n0, for every (λn) ⊆ R with supn ‖

∑n
i=1 λiχi‖ ≤ 1.

(2) ξ(χn)
b ≤ ωζ for some limit ordinal ζ if and only if there exists a

sequence (ζn) of ordinals strictly increasing to ζ with the following property :
for every M ∈ [N] there exists a strictly increasing sequence ϕ : N → M
such that for every ε > 0 there exists n0 ∈ N so that the type with respect to
Bζn0

of the set
{ϕ(n) : n ≤ n0 and |λϕ(n)| ≥ ε}

is at most n0, for every (λn) ⊆ R with supn ‖
∑n
i=1 λiχi‖ ≤ 1.

Proof. This is a consequence of Theorem 3.4: in case (1), set ξn = nωζ

for every n ∈ N, and in case (2), set ξn = ωζn+1 for every n ∈ N.

Now, we will study the relation of the semibounded completeness index
ξ

(χn)
b to the c0-index ξ(χn)

0 of a sequence (χn).

Proposition 3.6. Let (χn) be a normalized basic sequence in a Banach
space X. Then ξ

(χn)
0 ≤ ξ(χn)

b .

Proof. Let ξ(χn)
b = ωζ for some 1 ≤ ζ < ω1 (Proposition 3.3). Arguing by

contradiction, we assume that ωζ < ξ
(χn)
0 . Then there exist a subsequence

(yn) of (χn) and ε > 0 such that
∥∥∥
∑

i∈F
λiyi

∥∥∥ ≤ εmax
i∈F
|λi| for every F ∈ Fζ and (λi)i∈F ⊆ R.
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Let E = [(yn)] be the closed subspace of X which is generated by the
sequence (yn), and (y?n) ⊆ E? the sequence of the biorthogonal functionals
of (yn). Clearly, ‖y?n‖ ≤ 2C for every n ∈ N, where C is the basic constant
of (yn).

Let s ∈ Bζ ⊆ Fζ . We set λn = ϕζs(n) for every n ∈ N, according to
Remark 1.10. Then∥∥∥

∑

i∈s
λiy

?
i

∥∥∥ ≥ 1
ε

(∑

i∈s
λiy

?
i

)(∑

i∈s
yi

)
=

1
ε

∑

i∈s
λi =

1
ε
.

Let f ∈ E?? with ‖f‖ ≤ 1 and ‖∑i∈s λiy
?
i ‖ =

∑
i∈s λif(y?i ). Setting

µn = C−1f(y?n) for every n ∈ N, we get |µn| ≤ 2 for every n ∈ N and

sup
n

∥∥∥
n∑

i=1

µiyi

∥∥∥ =
1
C

sup
n

∥∥∥
n∑

i=1

f(y?i )yi
∥∥∥ =

1
C

sup
n
‖P ??n (f)‖

≤ 1
C

sup
n
‖P ??n ‖ = 1

(where the Pn are the natural projections associated to the basis (yn)).
If F = {i ∈ s : |µi| ≥ 1/(2εC)}, then F ∈ D(yn)

1/(2εC). We will prove that
wωζ (F ; s) > 1/(4εC). Indeed,

1
ε
≤
∥∥∥
∑

i∈s
λiy

?
i

∥∥∥ = C
∑

i∈s
λiµi = C

∑

i∈F
λiµi + C

∑

i∈s\F
λiµi

≤ 2Cwωζ (F ; s) +
C

2εC
.

Hence, ‖wωζ (F ; s)‖ ≥ 1/(4εC).
According to the ωζ-Pták type theorem (Theorem 1.11) there exists L ∈

[N] such that sL(D(yn)
δ ) > ωζ , where δ = 1/(2εC).

If yn = χmn for every n ∈ N, then for M = {mn : n ∈ L} we have
sM (D(χn)

δ ) > ωζ , and consequently ξ(χn)
b > ωζ .

This is a contradiction; hence ξ(χn)
0 ≤ ωζ = ξ

(χn)
b .

Corollary 3.7. Let (χn) be a normalized basic sequence in a Banach
space and ζ an ordinal number with 1 ≤ ζ ≤ ω1. If (χn) is semiboundedly
complete of order ζ, then (χn) is null coefficient of order ζ.

In Remark 3.2(iii) we gave an example of a normalized basic sequence
(sn) with ξ

(sn)
b = ω1 and ξ

(sn)
0 = ω. According to Proposition 2.13, (sn)

is null coefficient of order α for every countable ordinal α, but it is not
semiboundedly complete of order α. As we prove in Theorem 3.10 below
these notions are equivalent in the case of a c0-unconditional sequence.

Definition 3.8. A bounded basic sequence (χn) in a Banach space is
c0-unconditional if for every δ > 0 there exists a constant K(δ) <∞ so that
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for every n ∈ N, every sequence (λi)ni=1 ⊆ R with |λi| ≤ 1 for all i = 1, . . . , n
and every F ⊆ {1 ≤ i ≤ n : |λi| ≥ δ} we have

∥∥∥
∑

i∈F
λiχi

∥∥∥ ≤ K(δ)
∥∥∥

n∑

i=1

λiχi

∥∥∥.

Remark 3.9. Elton [E] proved that every normalized weakly null se-
quence in a Banach space has a c0-unconditional subsequence.

Theorem 3.10. Let (χn) be a normalized c0-unconditional basic se-
quence in a Banach space X. Then ξ

(χn)
0 = ξ

(χn)
b .

Proof. We claim that if ωζ < ξ
(χn)
b for some countable ordinal ζ, then

ωζ < ξ
(χn)
0 . Indeed, let ωζ < ξ

(χn)
b . Then there exist M ∈ [N] and ε > 0 such

that ωζ < sM (D(χn)
ε ). According to Remark 1.6(vii) there exists L ∈ [M ]

such that
Fζ(L) ⊆ D(χn)

ε .

Set L = (ln) and yn = χ
ln

for every n ∈ N . If F ∈ Fζ , then (li)i∈F ∈ D(χn)
ε ,

so there exists a sequence (λn) ⊆ R with

sup
n

∥∥∥
n∑

i=1

λiχi

∥∥∥ ≤ 1 and |λli | ≥ ε for all i ∈ F.

Thus for every f ∈ X? we have
∑

i∈F
|f(yi)| ≤

1
ε

∑

i∈F
|λli | · |f(yi)|

=
1
ε

∑

i∈F
εiλlif(yi) (for suitable (εi)i∈F ⊆ {−1, 1})

=
1
ε
f
(∑

i∈F
εiλliyi

)
≤ 1
ε
‖f‖ ·

∥∥∥
∑

i∈F
εiλliχλi

∥∥∥ ≤ 1
ε
‖f‖K

(
ε

2

)
;

since |λn| ≥ 2 for every n ∈ N, |λli | ≥ ε for every i ∈ F and the sequence
(χn) is c0-unconditional with constraint K(δ) for δ > 0.

According to Propositions 2.9 and 2.10 we get ωζ < ξ
(χn)
0 , which finishes

the proof of our claim.
In case ξ(χn)

b = ω1 we have ωζ < ξ
(χn)
b for every countable ordinal ζ.

So according to our claim ωζ < ξ
(χn)
0 for every 1 ≤ ζ < ω1, which gives

ξ
(χn)
0 = ω1 = ξ

(χn)
b .

In case ξ(χn)
b < ω1 there exists a countable ordinal ζ such that ξ(χn)

0 =
ωζ ≤ ξ(χn)

b (Propositions 2.5 and 3.6). If ωζ < ξ
(χn)
b , then according to the

previous claim we have ωζ < ξ
(χn)
0 , which is impossible. Hence, ξ(χn)

0 = ξ
(χn)
b .
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So far we have proved that a normalized c0-unconditional basic sequence
(χn) in a Banach space X either has a subsequence equivalent to the unit
vector basis of c0 (in which case ξ(χn)

0 = ξ
(χn)
b = ω1), or it is semibound-

edly complete (in case ξ(χn)
0 = ξ

(χn)
b < ω1). In the latter case there exists a

countable ordinal ζ such that ξ(χn)
0 = ξ

(χn)
b = ωζ . The ordinal ζ separates

the set of all the countable ordinals into two classes, the ordinals α with
α < ζ and those with α ≥ ζ. We characterized the ordinals α with α < ζ
as those for which the sequence (χn) has a subsequence with c0-spreading
model of order α (Proposition 2.10); on the other hand, we characterized
the ordinals α with ζ ≤ α as those which make the sequence (χn) null coeffi-
cient of order α (Proposition 2.13) and moreover semiboundedly complete of
order α (Theorem 3.4). In the following two propositions we will give more
characterizations of these two classes.

Proposition 3.11. Let (χn) be a normalized c0-unconditional sequence
in a Banach space X with ξ(χn)

b = ωζ for some countable ordinal ζ. For each
countable ordinal α the following are equivalent :

(i) α < ζ;
(ii) there exists a subsequence (yn) of (χn) with c0-spreading model of

order α;
(iii) there exist a subsequence (yn) of (χn), I ∈ [N] and ε > 0 such that

∥∥∥
∑

i∈H
yi

∥∥∥ ≤ ε for every H ∈ Bα ∩ [I]<ω.

Proof. (i)⇔(ii). This is proved in Proposition 2.10.
(ii)⇒(iii). This is obvious: set I = N.
(iii)⇒(ii). According to Remark 1.4(iii) there exists L ∈ [I] such that

Fα(L) ⊆ (Bα ∩ [I]<ω)?.

Set L = (ln)n∈N and zn = y
ln

for every n ∈ N. The subsequence (zn) of
(χn) has c0-spreading model of order α. Indeed, let F ∈ Fα. Then there
exists H ∈ Bα ∩ [I]<ω such that (li)i∈F ⊆ H. Since the sequence (χn) is
c0-unconditional there exists K = K(1) > 0 such that

∥∥∥
∑

i∈F
zi

∥∥∥ =
∥∥∥
∑

i∈F
yli

∥∥∥ ≤ K
∥∥∥
∑

i∈H
yi

∥∥∥ ≤ Kε.

According to Proposition 2.9 the sequence (zn) has c0-spreading model of
order α.

Proposition 3.12. Let (χn) be a normalized c0-unconditional sequence
in a Banach space with ξ

(χn)
b = ωζ for some countable ordinal ζ. For each

countable ordinal α the following are equivalent :
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(i) ζ ≤ α;
(ii) the sequence (χn) is semiboundedly complete of order α;

(iii) the sequence (χn) is null coefficient of order α;
(iv) whenever a bounded sequence (λn) of real numbers satisfies

sup{‖∑i∈H λiχi‖ : H ∈ Bα} <∞, then (λn) converges to zero;
(v) for every subsequence (yn) of (χn) and M ∈ [N] there exists L ∈ [M ]

such that

minH <
∥∥∥
∑

i∈H
yi

∥∥∥ for every H ∈ Bα ∩ [L]<ω;

(vi) for every subsequence (yn) of (χn) and M ∈ [N] there exists a
sequence (Hm) in Bα ∩ [M ]<ω with H1 < H2 < . . . and

∥∥∥
∑

i∈Hm
yi

∥∥∥→∞.

Proof. (i)⇔(ii). This follows from Definition 3.1.
(i)⇔(iii). Follows from Theorem 3.10 and Proposition 2.13.
(iii)⇒(iv). Let (λn) ⊆ R with

sup
{∥∥∥
∑

i∈H
λiχi

∥∥∥ : H ∈ Bα
}

= A <∞ and sup
n
|λn| = B <∞.

We assume that (λn) does not converge to zero. Then there exists ε > 0
such that the set

M = {n ∈ N : |λn| > ε} is infinite.

According to Remark 1.6(iii) and a result of Androulakis and Odell ([An-O])
there exists L ∈ [M ] with L = (ln) such that

Fα(L) ⊆ (Bα ∩ [M ]<ω)?, F \ {minF} ∈ Fα(L) for all F ∈ Fα ∩ [L]<ω.

Set µ
ln

= λ
ln

for every n ∈ N and µn = 0 for every n ∈ N \ L. If F ∈ Fα,
then ∥∥∥

∑

i∈F
µiχi

∥∥∥ =
∥∥∥
∑

i∈F1

λiχi

∥∥∥ for some F1 ∈ Fα ∩ [L]<ω.

Hence, ∥∥∥
∑

i∈F
µiχi

∥∥∥ ≤ 2K(ε/B)A,

since the sequence (χn) is c0-unconditional with constraint K(δ) for δ > 0.
This contradicts (iii). Hence (λn) converges to zero.

(iv)⇒(iii). This is obvious, since Bα ⊆ Fα.



Ordinal indices and Ramsey dichotomies 177

(i)⇒(v). Let ζ ≤ α. If (yn) is a subsequence of (χn) and M ∈ [N], then
for every k ∈ N we set

Lk =
{
H ∈ [M ]<ω : k <

∥∥∥
∑

i∈H
yi

∥∥∥
}
.

According to Proposition 3.11 we have

Lk ∩ Bα ∩ [I]<ω 6= ∅ for every k ∈ N and I ∈ [N].

Using the refined ωα-Ramsey type theorem (Theorem 1.8), a decreasing
sequence (Ik) in [M ] can be constructed such that

Bα ∩ [Ik]<ω ⊆ Lk for every k ∈ N.
Set L = (ikk) if Ik = (ikn)n∈N for every k ∈ N. If H ∈ Bα ∩ [I]<ω, then
H ∈ Lk, where k = minH; hence

minH <
∥∥∥
∑

i∈H
yi

∥∥∥ for every H ∈ Bα ∩ [I]<ω.

(v)⇒(vi). For every L ∈ [M ] there exists (Remark 1.4(ii)) a sequence
(Hm) in Bα ∩ [M ]<ω with H1 < H2 < . . . and L =

⋃
m∈NHm.

(vi)⇒(i). This follows from Proposition 3.11.

Gathering the previous results we can state a theorem which completes
Theorem 2.15 in the case of a normalized c0-unconditional sequence.

Theorem 3.13. Let (χn) be a normalized c0-unconditional basic sequence
in a Banach space. Then either

(1) [Case ξ(χn)
b = ω1] (χn) has a subsequence equivalent to the unit vector

basis of c0; or
(2) [Case ξ(χn)

b < ω1] (χn) is semiboundedly complete (equivalently , null
coefficient).

In case (2) there exists a countable ordinal ζ such that ξ(χn)
0 = ξ

(χn)
b =

ωζ . Then, for each countable ordinal α, either

(2i) [Case α < ζ] (χn) has a subsequence with a c0-spreading model of
order α; or

(2ii) [Case ζ ≤ α] (χn) is semiboundedly complete of order α (equiva-
lently , null coefficient of order α).

Proof. This follows from Theorems 2.15 and 3.10, Remark 3.2(i) and
Propositions 3.11 and 3.12.

At this point the following question naturally arises: Is it true that
ξ

(χn)
0 = ξ

(χn)
b for every normalized weakly null basic sequence (χn)? The

answer is negative, as follows from the example below.
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Example 3.14 (James’ space; [J]). For a sequence (λn) of real numbers
we set

‖(λn)‖ = sup{[(λp1 − λp2)2 + . . .+ (λpm−1 − λpm)2 + (λpm − λp1)2]1/2 :

m ∈ N and p1 < . . . < pm}.
The vector space

X = {(λn) ∈ RN : lim
n
λn = 0 and ‖(λn)‖ <∞}

is a Banach space with respect to the norm ‖ ‖.
For n ∈ N let en = (λnm)m∈N with λnm = 0 if n 6= m and λmn = 1 if n = m.

The sequence (en) is a normalized, weakly null, basic sequence in X. We
will prove that ξ(en)

0 = ω and ξ
(en)
b = ω1:

(i) ξ(en)
0 = ω. Indeed, suppose ξ(en)

0 > ω. Then, according to Proposi-
tion 2.10, there exists a subsequence (yn) of (en) and ε > 0 such that∥∥∥

∑

i∈F
yi

∥∥∥ ≤ ε for every F ∈ F1.

Set Fn = (n+ 2, n+ 4, . . . , n+ 2n) for every n ∈ N. Of course, Fn ∈ F1 for
every n ∈ N . Setting pi = n+ i for 1 ≤ i ≤ 2n we have∥∥∥

∑

i∈Fn
yi

∥∥∥ ≥ (2n)1/2 for every n ∈ N.

This is a contradiction, hence ξ(en)
0 = ω.

(ii) ξ(en)
b = ω1. Indeed, ‖∑n

i=1 ei‖ ≤ 1 for every n ∈ N. So, according to
Remark 3.2(i), we have ξ(en)

b = ω1.

From the previous example it is clear that we cannot hope for a theorem
analogous to Theorem 3.13 in the general case of a normalized weakly null
sequence (not necessarily c0-unconditional). However, using Elton’s theorem
(Remark 3.9), we can prove the following dichotomy, which generalizes (to
every countable ordinal) the Odell theorem (case α = ω1).

Theorem 3.15. Let (χn) be a normalized weakly null sequence in a Ba-
nach space and α be a countable ordinal. Then either

(i) (χn) has a subsequence with c0-spreading model of order α; or
(ii) every subsequence of (χn) has a subsequence semiboundedly complete

of order α.

Proof. Let α be a countable ordinal and (yn) a subsequence of (χn). The
sequence (yn) has a subsequence (zn) which is c0-unconditional and basic. If
ξ

(zn)
0 = ω1, then (zn) has a subsequence equivalent to the unit vector basis

of c0, hence (χn) has a subsequence with c0-spreading model of order α.
If ξ(zn)

0 < ω1, then ξ
(zn)
0 = ωζ for some countable ordinal ζ. Hence, in case
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α < ζ the sequence (χn) has a subsequence with c0-spreading model of order
α, and in case ζ ≤ α the sequence (χn) has a subsequence semiboundedly
complete of order α, according to Theorem 3.13.
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