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A method for evaluating the fractal dimension
in the plane, using coverings with crosses

by

Claude Tricot (Clermont-Ferrand)

Abstract. Various methods may be used to define the Minkowski–Bouligand di-
mension of a compact subset E in the plane. The best known is the box method . After
introducing the notion of ε-connected set Eε, we consider a new method based upon cov-
erings of Eε with crosses of diameter 2ε. To prove that this cross method gives the frac-
tal dimension for all E, the main argument consists in constructing a special pavement
of the complementary set with squares. This method gives rise to a dimension formula
using integrals, which generalizes the well known variation method for graphs of continu-
ous functions.

1. Introduction and theorems

1.1. Classical definitions. In the theory of fractal dimensions, the Min-
kowski–Bouligand dimension is one of the best known, and the only one
which can be estimated in experimental contexts. A practical evaluation is
not easy to obtain, due to the very nature of the dimension, which is the
order of growth of some function. But some formulations give better ap-
proximations than others. It is the purpose of this paper to propose an easy
and accurate algorithm for computing the dimension, even though numeri-
cal results are not presented here. Moreover our method has some interest
in itself, for a better understanding of the geometry of E. Throughout this
paper, the set E is a compact subset of the plane, and ∆(E) its dimension.
First let us recall the old definitions, essentially due to G. Bouligand [1].

• The box method uses the number ωn of dyadic squares

[j · 2−n, (j + 1)2−n]× [k · 2−n, (k + 1)2−n], j ∈ Z, k ∈ Z,

meeting E. Then

∆(E) = lim sup
n→∞

logωn
log 2n

.
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182 C. Tricot

It is usual to evaluate ∆(E) with the log-log plot (log 2n, logωn). In the case
where the lim sup is a limit, the slope gives an approximate value of the
dimension for large n.
• The Minkowski sausage method consists in measuring the area of the

sausage

E(ε) =
⋃

x∈E
Bε(x).(1)

Let A be the area; then

∆(E) = lim sup
ε→0

(
2− logA(E(ε))

log ε

)
.(2)

The corresponding log-log plot is (log(1/ε), log(A(E(ε))/ε2)); its slope gives
an approximate value of the dimension for small values of ε.

Unfortunately these two methods give disappointing results in experi-
mental situations. The log-log plot for the box method shows an important
dispersion, partly due to the fact that ωn takes only integer values. Moreover
the slopes are very sensitive to a different scaling in the data. Log-log plots
for the sausage method are systematically concave, as in the simple example
of a segment of length l: if the distance used is the euclidean distance, then
A(E(ε)) = lε + πε2 and log(A(E(ε))/ε2) is a function of log(1/ε) whose
slope is less than 1 for ε > 0, even though it tends to 1 as ε tends to 0.
It is therefore impossible to obtain a good precision for the dimension of a
segment with this method.

1.2. Variation method. A very efficient method has been taylored ex-
clusively for the graph Γz of a continuous function z : [a, b] → R (see [2]):
Let

osc(z, ε, t) = sup{z(t′)− z(t′′) | |t− t′| ≤ ε, |t− t′′| ≤ ε}
be the ε-oscillation of z at t. If [a, b]∩ [t−ε, t+ε] = ∅, we set osc(z, ε, t) = 0.
The variation of z is

Var(z, ε) =
�
R

osc(z, ε, t) dt.

One can check that this value is just the area of the surface XH(Γz, ε) defined
as the union of horizontal segments centered on the graph:

XH(Γz, ε) =
⋃

t∈[a,b]

[t− ε, t+ ε]× {z(t)}.

If z is not constant, then the area is equivalent to A(E(ε)), and one can
write

∆(Γz) = lim sup
ε→0

(
2− log � R osc(z, ε, t) dt

log ε

)
.(3)
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Numerically, the variation is much easier to evaluate than the area of E(ε).
Log-log plots are very smooth in general, and exhibit a well-defined straight
line part which allows one to evaluate the value of ∆ with great precision [3].

In a general situation (z can be constant), one can use a cover of the
graph with centered crosses:

X(Γz, ε) =
⋃

s0∈R
{(s, t) | |s− s0| ≤ ε, |t− z(s0)| ≤ ε, (s− s0)(t− z(s0)) = 0}.

Then [9]

∆(Γz) = lim sup
ε→0

(
2− logA(X(Γz, ε))

log ε

)
.(4)

Note that X(Γz, ε) is a union of two sets: the union of horizontal seg-
ments XH(Γz, ε) whose area is Var(z, ε); and the union of vertical segments
XV(Γz, ε) whose area is 2(b− a)ε. The corresponding integral formula is

∆(Γz) = lim sup
ε→0

(
2− log(2(b− a)ε+ � R osc(z, ε, t) dt)

log ε

)
.(5)

The purpose of this paper is to obtain a similar expression for any compact
set in the plane.

1.3. The cross method. It is not difficult to obtain the same result as (4)
for an arcwise connected set. Difficulties arise when E has arbitrarily small
connected components. For totally disconnected sets the union of centered
crosses may have area 0. Let us first construct locally connected sets.

Throughout this paper, the plane is provided with two coordinate axes
Os, Ot. Squares and rectangles are closed sets, with sides parallel to the
coordinate axes. Points are denoted by x or y, their coordinates by pairs
(s, t). The distance % is derived from the maximum norm: If xi = (si, ti),
then

%(x1, x2) = max{|s1 − s2|, |t1 − t2|}.
Every ball Bε(x) is a square centered at x, with sides 2ε. A segment with
endpoints x, y is denoted by xy.

For any bounded set E, the diameter of E is

diam(E) = sup{%(x1, x2) | x1, x2 ∈ E}.
Let

Eε =
⋃
{xy | x, y ∈ E, %(x, y) ≤ ε}.(6)

The set Eε is equal to E when E is a convex body, or a union of convex
bodies at a distance larger than ε from each other. In general

E ⊂ Eε ⊂ E(ε/2).

When ε tends to 0, both Eε and E(ε) tend to E.
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For every x0 = (s0, t0),

Xε(x0) = {(s, t) | |s− s0| ≤ ε, |t− t0| ≤ ε, (s− s0)(t− t0) = 0}
is the cross centered at x0, of diameter 2ε. As in Section 1.2, the union of
all crosses centered in E is

X(E, ε) =
⋃

x∈E
Xε(x).

The inclusions X(E, ε) ⊂ E(ε) and X(Eε, ε) ⊂ E(3ε/2) are always true.
If E is not finite, the area of X(Eε, ε) is not zero. The next result shows

that the convergence to 0 of this area, as ε→ 0, is controlled by ∆(E):

Theorem 1. For every compact set E,

∆(E) = lim sup
ε→0

(
2− logA(X(Eε, ε))

log ε

)
.(7)

For every large connected component Fε of Eε (with diameter ≥ ε), we
will see that X(Fε, ε) has indeed an area equivalent to that of the Minkowski
sausage Fε(ε). But if Fε is a small connected component, A(X(Fε, ε)) may
be much smaller than A(Fε(ε)) (see Figure 1). To prove the theorem, one
has to check that the contribution of small components is negligible. The
difficulty comes from the geometry of E. When ε → 0, more and more
components may arise, and many of them may be small.

Fig. 1. The set Eε has two connected components, Fε (of diameter < ε) and Gε (of
diameter ≥ ε). The union X(Fε, ε) of centered crosses is negligible with respect to the
Minkowski sausage Fε(ε). On the contrary, X(Gε, ε) and Gε(ε) have equivalent areas.
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1.4. Integral formula. Let

XH(E, ε) =
⋃

(s,t)∈E
([s− ε, s+ ε]× {t})

be the union of all horizontal segments of length 2ε centered on E, and

XV(E, ε) =
⋃

(s,t)∈E
({s} × [t− ε, t+ ε])

be the union of vertical segments. Since X(E, ε) = XH(E, ε) ∪XV(E, ε) for
all ε > 0, (7) implies

∆(E) = lim sup
(

2− log(A(XH(Eε, ε)) +A(XV(Eε, ε)))
log ε

)
.(8)

We will replace these areas with integrals.
Assume that the cylinder [s−ε/2, s+ε/2]×R contains at least one point

of E. Projecting orthogonally the intersection E ∩ ([s − ε/2, s + ε/2] × R)
on Ot, one gets a linear, compact set. Putting together this set and all its
complementary intervals of length ≤ ε, we get

Eε(s) = (ProjOt(E ∩ ([s− ε/2, s+ ε/2]× R)))ε.

If E is the graph of a continuous function z, then Eε(s) is the interval

[ min
|s′−s|≤ε/2

z(s′), max
|s′−s|≤ε/2

z(s′)]

whose length is the ε/2-oscillation of z at s. For a general E, we use the
Lebesgue measure L and define

fε(s) =
{
L(Eε(s)) if E ∩ ([s− ε/2, s+ ε/2]× R) 6= ∅,
0 otherwise.

The area A(XH(Eε, ε)) is equivalent to the integral of fε (Proposition 4).
Note that this area is not exactly equal to the integral: To obtain an equality,
one should use the length of the set

ProjOt(Eε ∩ ([s− ε/2, s+ ε/2]× R))

which is larger and more difficult to handle numerically.
The same approach is used for vertical segments. Let Rθ be the rota-

tion of angle θ. Define gε(s) = L((Rπ/2(E))ε(s)). The following result is a
generalization of (5):

Theorem 2. Let E be a compact set of the plane, and fε, gε as above.
Then

∆(E) = lim sup
ε→0

(
2− log( � R fε(t) dt+ � R gε(t) dt)

log ε

)
.(9)
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Fig. 2. Project the set E∩ ([s−ε/2, s+ε/2]×R) on Ot, then unite all points at a distance
≤ ε. The result is the set Eε(s). The convergence to 0 of the integral of the function
L(Eε(s)) is controlled by the dimension of E.

Computing these integrals is numerically simple, and the corresponding
log-log plot should give good estimations of the dimension for usual mathe-
matical models.

Remark. One may use other structural elements than orthogonal
crosses. It is possible to use any angle 6= 0 mod(π) between the branches.
Also, (9) may be changed into a formula using all possible directions: Take

∆(E) = lim sup
ε→0

(
2− log( � π0 � R f θε (t) dt dθ)

log ε

)
,

where f θε (t) = L((Rθ(E))ε(s)). But in this paper, we restrict our attention
to the proof of (7) and (9).

1.5. Outline of the paper. Section 2 gives a few properties of the opera-
tion E → Eε and introduces the notion of ε-connectedness. If E is arcwise
connected, then the areas of E(ε) and X(E, ε) are equivalent as ε→ 0. The
fractal dimension of E is related to the exponent of convergence of fami-
lies of squares paving the complementary set; related references are [5], [7],
[8], [4]. In Section 3 a pavement is constructed in such a way that the union
of large squares (with diameter ≥ ε/2) is a good approximation of X(Eε, ε).
Technical lemmas are proved in Sections 4 and 5. In Section 6 we show that
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the contribution of small connected components of Eε is negligible when
calculating the dimension, and we prove Theorem 1. Finally, Theorem 2 is
proved in Section 7. Theorems 1 and 2 are stated without proof in [10]. We
give all details in the present paper.

2. Connected components

Lemma 1. Let ε > 0, η > 0, and E be a compact subset of the plane
whose connected components have diameter ≥ η. Then

A(E(ε)) ≤
(

1 +
2ε
η

)2

A(X(E, η)).(10)

Proof. The main argument consists in using the following result [9, An-
nexe B]:

For any bounded set F , and ε2 ≤ ε1,

A(F (ε1)) ≤
(
ε1

ε2

)2

A(F (ε2)).(11)

Since connected components have diameter ≥ η, there exists a covering
U of E by squares of side η such that each C in U has the following property:
one of its sides, say J , is equal to the orthogonal projection of E∩C over J .
This implies that C ⊂ X(E, η). Therefore A(

⋃U) ≤ A(X(E, η)). Let F be
the set of all centers of squares in U . Since E ⊂ ⋃U = F (η/2), we have
E(ε) ⊂ F (ε+ η/2). Using (11) we get

A(E(ε)) ≤
(
η + 2ε
η

)2

A(F (η/2)) ≤
(

1 +
2ε
η

)2

A(X(E, η)).

Corollary 1. If E has a finite number of connected components, none
reduced to a point , then the conclusion of Theorem 1 is true.

Proof. Each of the connected components has diameter > 0. Let η > 0
be the minimum diameter. Let ε0 > 0 be the smallest distance between two
components. Let 0 < ε < min{η, ε0/2}. For every connected component F
of E, Lemma 1 implies A(F (ε)) ≤ 9A(X(F, ε)). Then

A(E(ε)) ≤ 9A(X(E, ε)) ≤ 9A(X(Eε, ε)).

Also X(Eε, ε) ⊂ E(2ε), so that A(X(Eε, ε)) ≤ A(E(2ε)) ≤ 4A(E(ε)). This
shows that A(E(ε)), A(X(E, ε)) and A(X(Eε, ε)) are equivalent as ε tends
to 0.

In the general case, Eε has a number of connected components which
varies with ε.

Definition 1. The set E is ε-connected if Eε is connected.

This property is satisfied if, and only if, for all points x, y of E, there
exists a finite ε-chain x1 = x, x2, . . . , xn = y in E. We consider the finite
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family Rε of all subsets of E such that Fε is a connected component of Eε:

Rε = {F ⊂ E | F is compact, ε-connected, and F (ε) ∩E = F}.
Elements of Rε are the ε-connected components of E. Two different ε-
connected components F and G are such that inf{%(x, y) | x ∈ F, y ∈ G}
> ε. We will have to analyse separately the large and small components,
arranged in two families:

R′ε = {F ∈ Rε | diam(F ) ≥ ε}, R′′ε = {F ∈ Rε | diam(F ) < ε}.

Fig. 3. The set E has two ε-connected components (see Fig. 1). If F is the component of
diameter η < ε, and G that of diameter ≥ ε, then R̂(E, ε) = F (η) ∪G(ε).

The neighborhood E(ε) has been defined for all ε > 0. It will be useful
to write E(0) = E and E(−∞) = ∅. These conventions allow us to keep the
basic relationship

(E(ε))(η) = E(ε+ η)(12)

for all ε, η in {−∞} ∪ R+.
Given f : R+ → R+, we consider the neighborhood of ε-connected com-

ponents of E, made up with balls whose size is controlled by f . Let

R(E, f, ε) =
⋃
{F (η) | F ∈ Rε and η = εf(diam(F )/ε)}.

If f = 0, then R(E, f, ε) = E. If f = 1, R(E, f, ε) = E(ε). We will then use
two specific functions:

• The function g(t) = min{t, 1} which gives rise to the neighborhood

R̂(E, ε) =
⋃
{F (η) | F ∈ Rε and η = min{diam(F ), ε}}(13)

=
⋃
{F (ε) | F ∈ R′ε} ∪ {F (diam(F )) | F ∈ R′′ε}.
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• The function

h(t) =
{
−∞ if 0 ≤ t < 1/2,
1 if t ≥ 1/2,

which gives rise to the neighborhood

R̃(E, ε) =
⋃
{F (ε) | F ∈ Rε and diam(F ) ≥ ε/2}.(14)

There is no general inclusion relationship between R̂(E, ε) and R̃(E, ε). Here
are three simple properties:

Property 1. If f1(t) ≤ f2(t) for all t, then R(E, f1, ε) ⊂ R(E, f2, ε).

In particular, R(E, f, ε) ⊂ E(ε) when f is equal to g or h.

Property 2. If εf(t/ε) is an increasing function of ε, then

ε′ ≤ ε ⇒ R(E, f, ε′) ⊂ R(E, f, ε).

To show this, use the fact that
⋃Rε′ ⊂

⋃Rε. Property 2 is true when
f = g. But it is not true for h.

Property 3. R(E, f1, ε) ∪R(E, f2, ε) ⊂ R(E,max{f1, f2}, ε).

3. Paving the complementary set. We will pave the complement
of E with dyadic squares in such a way that for every n, a square of side
2−n meets a set R̃(E, 2ε) for some ε ≥ 2−n. Then we will use the fact that
R̃(E, ε) contains only the large connected components, so that its area is
equivalent to A(X(Eε, ε)).

For every ε > 0, let us define the families C ′ε, C′′ε , G′ε, G′′ε , F ′ε, F ′′ε , Fε of
squares.

• Since we look for a countable covering, we consider the family C ′ε of
squares whose sides are parallel to the axes and whose s-projection is an
ε-adic interval:

C ∈ C′ε ⇔ C = [kε, (k + 1)ε]× [t, t+ ε] for some k ∈ Z, t ∈ R.

• In the same way, C ′′ε is a family of squares whose t-projection is ε-adic:

C ∈ C′′ε ⇔ C = [s, s+ ε]× [kε, (k + 1)ε] for some k ∈ Z, s ∈ R.

• To cover the complement of a compact set E, we define

G′ε = {C ∈ C′ε | C ∩ R̃(E, 2ε) 6= ∅ and C̊ ∩E = ∅}.
Therefore

C ∈ G′ε ⇔ C ∈ C′ε and there exists F ∈ R2ε with diam(F ) ≥ ε
such that C ∩ F (2ε) 6= ∅.

• In the same way, the family G ′′ε corresponds to C ′′ε :

G′′ε = {C ∈ C′′ε | C ∩ R̃(E, 2ε) 6= ∅ and C̊ ∩E = ∅}.
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• The families G ′ε and G′′ε are not finite, nor even countable. Let the
covering index of a set family Ω, denoted by I(Ω), be the largest k such
that the interiors of k distinct elements of Ω have a non-empty intersection.
From G′ε we can extract a subfamily of finite index as shown in Fig. 4.

Fig. 4. The gray area is
⋃
G′ε. It is the union of all squares C of side ε whose s-projection

is ε-adic, such that C∩R̃(E, 2ε) 6= ∅ and the interior of C does not meet E. The boundary
of R̃(E, 2ε) is the dotted line. Notice that the small connected component has disappeared
(see Figs. 1 and 3).

The set
⋃G′ε is a union of rectangles of disjoint interiors, of width ε,

with the length in the vertical direction (see Fig. 4). Every such rectangle R
can be covered by a family F ′ε(R) of squares of side ε so that

⋃F ′ε(R) = R
and every point of R belongs to no more than two squares. The maximum
number of squares in F ′ε(R) is 1 + [diam(R)/ε]. Let F ′ε be the union of all
such F ′ε(R). It is a covering of

⋃G′ε such that I(F ′ε) ≤ 2.
• Proceed in the same way with

⋃G′′ε , which is a union of rectangles with
disjoint interiors, of width ε, with the length in the horizontal direction.
There exists a family F ′′ε of squares which covers

⋃G′′ε , such that I(F ′′ε ) ≤ 2.
• Finally, the family Fε = F ′ε ∪ F ′′ε is such that

⋃
Fε =

⋃
G′ε ∪

⋃
G′′ε and I(Fε) ≤ I(F ′ε) + I(F ′′ε ) ≤ 4.

We will see that the union
⋃
nF2−n is a pavement of the complementary set

of E.
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4. Technical lemmas. Let us assume that diam(E) = 1, without loss
of generality.

Lemma 2. For all ε > 0,
⋃
Fε ⊂ R̃(E, 2ε)(ε) ⊂ E(3ε).(15)

Proof. Every square C of Fε meets R̃(E, 2ε). It is included in R̃(E, 2ε)(ε).
But R̃(E, 2ε) is included in E(2ε), so that R̃(E, 2ε)(ε) ⊂ E(3ε).

Lemma 3. For all ε,

R̂(E, 2ε) ∪ R̃(E, 2ε) ⊂ R̂(E, ε) ∪
⋃
Fε.(16)

Proof. For each point x0 = (s0, t0) of the plane there exists at least one
pair (j, k) of integers such that x0 ∈ [jε, (j + 1)ε]× [kε, (k + 1)ε]. Let

s1 = sup{s | s ≤ s0 and there exists t ∈ [kε, (k+ 1)ε] such that (s, t) ∈ E},
s2 = inf{s | s ≥ s0 and there exists t ∈ [kε, (k+ 1)ε] such that (s, t) ∈ E},
t3 = sup{t | t ≤ t0 and there exists s ∈ [jε, (j+ 1)ε] such that (s, t) ∈ E},
t4 = inf{t | t ≥ t0 and there exists s ∈ [jε, (j+ 1)ε] such that (s, t) ∈ E}.

In other words, [s1, s2] is the largest interval containing s0 such that ]s1, s2[
× [kε, (k + 1)ε] does not meet E, etc. The values s1 et t3 may be −∞; the
values s2 et t4 may be +∞. There are two cases:

1) max{s2 − s1, t4 − t3} ≤ ε. There exist two points x1 = (s1, t1) and
x2 = (s2, t2) of E such that t1 and t2 belong to [kε, (k + 1)ε], and two
points x3 = (s3, t3) and x4 = (s4, t4) of E such that s3 and s4 belong to
[jε, (j+1)ε]. Then %(x1, x2) ≤ ε and %(x3, x4) ≤ ε. Notice that the two values
s1 and s2 cannot be on either side of [jε, (j+1)ε], so that one of them, say s1,
belongs to this interval. Similarly, one may assume that t4 ∈ [kε, (k + 1)ε].
Therefore %(x1, x4) ≤ ε. The set F = {x1, x2, x3, x4} is ε-connected. Let
F0 ∈ Rε be the ε-connected component containing F . The point x0 lies in the
smallest rectangle containing F , so that x0 ∈ F (diam(F )). But F ⊂ F0 and
diam(F ) ≤ η = min{diam(F0), ε}. Therefore x0 ∈ F0(η), and x0 ∈ R̂(E, ε).

2) max{s2 − s1, t4 − t3} > ε. Note that

max{g(t), h(t)} =
{
t if 0 ≤ t < 1/2,
1 if t ≥ 1/2.

Take a point x0 in R̂(E, 2ε) ∪ R̃(E, 2ε). By Property 3, x0 belongs to some
F (η) where F ∈ R2ε and

η =
{

diam(F ) if diam(F ) < ε,
2ε if diam(F ) ≥ ε.
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Fig. 5. The set F of the proof of Lemma 3, in the case where max{s2 − s1, t4 − t3} ≤ ε.

(i) If diam(F ) < ε, then F is ε-connected, and η = diam(F ), so that
η = min{diam(F ), ε}. We deduce that x0 ∈ R̂(E, ε).

(ii) If diam(F ) ≥ ε, then η = 2ε and x0 ∈ R̃(E, 2ε). Assume that s2− s1
> ε. In the rectangle [s1, s2] × [kε, (k + 1)ε] one can find a square C of
side ε containing x0 and such that C̊ ∩ E = ∅. Since C ∩ R̃(E, 2ε) 6= ∅, we
have C ∈ G′′ε . We deduce that x0 ∈

⋃G′′ε . If t4 − t3 > ε, then x0 belongs
to a square C in [jε, (j + 1)ε] × [t3, t4] which belongs to G ′′ε . In both cases,
x0 ∈

⋃Fε.
Corollary 2. For every integer n,

R̂(E, 2−n) ∪ R̃(E, 2−n) ⊂ E ∪
⋃

k≥n+1

⋃
F2−k .(17)

Proof. One may deduce from (16) that for all n,

R̂(E, 2−n) ⊂ R̂(E, 2−n−1) ∪
⋃
F2−n−1.

We get by induction

R̂(E, 2−n) ⊂ R̂(E, 2−N ) ∪
N⋃

k=n+1

⋃
F2−k ⊂ E(2−N ) ∪

∞⋃

k=n+1

⋃
F2−k

for any N > n. Since
⋂
N E(2−N ) = E, we obtain

R̂(E, 2−n) ⊂ E ∪
∞⋃

k=n+1

⋃
F2−k .

Same result for R̃(E, 2−n), using (16).
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Lemma 4. Card(R2−n) ≤ Card(
⋃n
k=1F2−k).

Proof. We construct a one-to-one map R2−n →
⋃n
k=1F2−k .

Let F ∈ R2−n. Such a compact subset of E can be characterized as
follows: F2−n is connected and F (2−n) ∩ E = F . Let k ≤ n be the integer
such that

2−k < η = inf{%(x, F ) | x ∈ E − F} ≤ 2−k+1.

Let ε = 2−k.
There exists a point x0 = (s0, t0) of F and a point y0 = (u0, v0) of

E−F such that %(x0, y0) = η. The point x0 belongs to the boundary of the
square Bη(y0). Among all possible cases, let us assume, for example, that
s0 = u0 − η and t0 ≤ v0 (see Figure 6).

Fig. 6. For the proof of Lemma 4, a construction of the square C(F ) in two cases: (i) left,
(]jε, (j + 1)ε[ × ](k + 1)ε, (k + 2)ε[) ∩ E = ∅, and (ii) right, (]jε, (j + 1)ε[ × ](k + 1)ε,
(k + 2)ε[) ∩ E 6= ∅.

Let j and k be two integers such that x0 ∈ [jε, (j + 1)ε]× [kε, (k+ 1)ε].
We consider two cases.

(i) (]jε, (j + 1)ε[ × ](k + 1)ε, (k + 2)ε[) ∩ E = ∅. Then there exists a
t1 ∈ [t0, (k + 1)ε] such that

t1 = inf{t ≥ t0 | (]jε, (j + 1)ε[× ]t, t+ ε[) ∩ E = ∅}.
Let C = [jε, (j+1)ε]× [t1, t1 +ε]. The intersection C∩F contains a point x1
of y-coordinate t1 on the lower side of C, and C̊ ∩E = ∅. Let F ′ = F ∪{y0}.
Since ε < %(x0, y0) ≤ 2ε, F ′ is 2ε-connected and diam(F ′) ≥ ε. Therefore
F ′(2ε) ⊂ R̃(E, 2ε). Since C meets F ′, C ⊂ R̃(E, 2ε), so that C ∈ G ′ε. Using
the notations introduced in Section 3, C is in a rectangle R′ ⊂ ⋃G′ε of the
type [jε, (j+1)ε]× [t1, t1 +ε′] where ε′ ≥ ε. One of the squares of the family
Fε(R′) has x1 on its boundary. This square must be C itself. We deduce
that C ∈ Fε.
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(ii) (]jε, (j + 1)ε[ × ](k + 1)ε, (k + 2)ε[) ∩ E 6= ∅. Then there exists an
s1 ∈ [jε, s0] such that

s1 = inf{s ≥ jε | (]s, s+ ε[× ](k + 1)ε, (k + 2)ε[) ∩E = ∅}.
Let C = [s1, s1 +ε]× [(k+1)ε, (k+2)ε]. This square has the same properties
as above: C ⊂ F (ε) and C ∈ Fε.

A map C : R2−n →
⋃n
k=1F2−k is defined by letting C(F ) = C.

We still have to verify that C is one-to-one. Let F and G be in R2−n .
Assume that C(F ) = C(G) ∈ F2−k . From the previous construction,C(F ) ⊂
F (2−k) and C(G) ∩ G 6= ∅. We deduce that F (2−k) ∩ G 6= ∅. Moreover
F (2−k)∩E = F so that F (2−k)∩G ⊂ F . Therefore F ∩G 6= ∅. Since these
sets are components, F = G.

5. Exponents of convergence. We use the notation an � bn for two
positive sequences such that the ratio an/bn is bounded as n tends to ∞,
and an ' bn if both an � bn and bn � an.

Let ωn be the number of elements of F2−n. The order of growth of the
sequence ωn can be defined as

e = lim sup
n

logωn
n log 2

,

which can be expressed as

e = inf
{
α
∣∣∣
∞∑

n=1

ωn2−nα <∞
}

= inf{α | ωn � 2nα}.(18)

We will use the following indices:

e1 = inf
{
α
∣∣∣ 2−nα

n∑

k=1

ωk → 0
}
, e2 = inf

{
α
∣∣∣ 2n(2−α)

∞∑

k=n

ωk2−2k → 0
}
.

Lemma 5. The equality e = e1 is always true. If e < 2, then
∑
ωk2−2k

converges and e = e2.

Proof. a) e ≤ e1: For all α > e1, 2−nα
∑n

k=1 ωk → 0, so that
∑n

k=1 ωk �
2nα. We deduce that ωn � 2nα, and α ≥ e.

b) e1 ≤ e: For all α > e, we have ωn � 2nα, and
∑n

k=1 ωk � 2nα. We
deduce that 2−nα

∑n
k=1 ωk is bounded, and that e1 ≤ α.

c) If e < 2, for all α ∈ ]e, 2[ we have ωn � 2nα, so that
∑n

k=1 ωk2
−2k �∑n

k=1 2−n(2−α) which converges. Let us show that e ≤ e2.
Let α > e2. Since 2n(2−α)∑∞

k=n ωk2
−2k tends to 0, we have

∑∞
k=n ωk2

−2k

� 2n(α−2). Using Dini’s theorem, we deduce that for all a ∈ ]0, 1[, the series
∑

ωn2−2n
( ∞∑

k=n

ωk2−2k
)−a



Evaluating the fractal dimension 195

converges. Therefore
∞∑

n=1

ωn2−2n(2n(α−2))−a =
∞∑

n=1

ωn2−n(aα+2(1−a))

converges as well, which gives e ≤ aα + 2(1− a). Then let a tend to 1 and
α tend to e2.

d) e2 ≤ e: Take α and β such that e < α < β < 2. Since ωn � 2nα,
we have

∑∞
k=n ωk2

−2k � 2n(α−2). Therefore 2n(2−β)∑∞
k=n ωk2

−2k � 2n(α−β).
Since the right member tends to 0, e2 ≤ β. Then let α and β tend to e.

Similar arguments can be found in [6, 7, 8].

6. Results on the dimensions

Proposition 1. Let e be the exponent of convergence of the sequence
(ωn), where ωn is the number of squares in F2−n. Let

∆ext(E) = lim sup
(

2− logA(E(ε)− E)
log ε

)
.

Then
e = ∆ext(E).(19)

This dimension ∆ext(E) is sometimes called the exterior dimension and
used in the study of fat fractal sets such that A(E) > 0, and in the lateral
properties of a curve [9].

Proof. It suffices to use the discrete values ε = 2−n. We can write

∆ext(E) = inf{α | 2n(α−2)A(E(2−n)− E)→ 0}.
Since E is bounded, A(E(2−n)− E) is bounded above and ∆ext(E) ≤ 2.

a) Let us show that e ≤ ∆ext(E). By (15),
⋃
F2−n ⊂ E(2−n+2).

For every square C ∈ F2−n, we have C̊ ∩E = ∅, so that

A(F2−n) ≤ A(E(2−n+2)− E).

Since I(F2−n) ≤ 4,

ωn 2−2n ≤ 4A(E(2−n+2)− E).

Therefore

2−nαωn � 2n(2−α)A(E(2−n+2)−E) � 2(n−2)(2−α)A(E(2−n+2)− E).

For every α > ∆ext(E), the right member tends to 0, so that the left member
tends to 0; this shows that e ≤ α. Hence e ≤ ∆ext(E). If e = 2, then
e = ∆ext(E).
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b) Let us show that e ≤ ∆ext(E). We may assume that e < 2. Let
ε = 2−n. Consider an ε-connected component F of E.

If F ∈ R′2−n , then F (2−n) ⊂ R̃(E, 2−n). Therefore
(⋃

R′2−n
)

(2−n)− E ⊂ R̃(E, 2−n)−E.

From (17), this set is included in
⋃
k≥n

⋃F2−k , so that

A
((⋃

R′2−n
)

(2−n)− E
)
≤
∑

k≥n
ωk2−2k.(20)

If F ∈ R′′2−n , then diam(F ) < 2−n, so that F (2−n) is included in a
square of side 3 · 2−n. We deduce that A(F (ε)) < 9 · 2−2n. By Lemma 4,
CardR′′2−n ≤ Card(

⋃n
k=1F2−k). Then

A
((⋃

R′′2−n
)

(2−n)
)
� 2−2n

∑

k≤n
ωk.(21)

For every ε, E ⊂ ⋃R′ε ∪
⋃R′′ε , hence E(ε) ⊂ (

⋃R′ε)(ε) ∪ (
⋃R′′ε)(ε).

From (20) and (21) we deduce that

A(E(2−n)− E) � 2−2n
∑

k≤n
ωk +

∑

k≥n
ωk2−2k,

which implies that

2n(2−α)A(E(2−n)− E) � 2−nα
n∑

k=1

ωk + 2n(2−α)
∞∑

k=n

ωk2
−2k.

Therefore ∆ext(E) ≤ max{e1, e2}, equal to e (Lemma 5).

Proposition 2. Let

∆X(E) = lim sup
ε→0

(
2− logA(X(Eε, ε))

log ε

)

and e as before. Then
∆X(E) ≥ e.(22)

Proof. Let ε = 2−n, and Uε =
⋃{Fε | F ∈ Rε and diam(F ) ≥ ε/2}.

The set U2ε is included in E2ε, and its connected components have a dia-
meter ≥ ε. From (11), A(U2ε(3ε)) ≤ 49A(X(U2ε, ε)) ≤ 49A(X(E2ε, 2ε)).
By (15),

⋃Fε ⊂ R̃(E, 2ε)(ε), which is included in U2ε(3ε). This gives
2−2nωn � A(X(E2−n+1, 2−n+1)). If α > ∆X(E), then εα−2A(X(Eε, ε))→ 0,
so that 2−nαωn → 0. This proves that α ≥ e.

Corollary 3. For every compact set E, ∆X(E) = ∆(E).

Proof. If E has area 0, then ∆ext(E) = ∆(E). Propositions 1 and 2 give
∆ext(E) ≤ ∆X(E). On the other hand, the inequality ∆X(E) ≤ ∆(E) is
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trivial. Therefore ∆X(E) = ∆(E). If E has area > 0, then ∆X(E) and
∆(E) are both equal to 2.

This completes the proof of Theorem 1.
The next result shows that the value of the dimension depends only on

the large connected components. For the definition of R̃(E, ε), see (14).

Proposition 3. For any compact set E,

∆(E) = lim sup
(

2− logA(R̃(E, ε))
log ε

)
.(23)

Proof. Let ∆′(E) be the right side. From (15) we get A(
⋃Fε) ≤

A(R̃(E, 2ε)(ε)). On the other hand, R̃(E, 2ε)(ε) ⊂ ⋃{F (3ε) | F ∈ R2ε,
diam(F ) ≥ ε}. By (11),

A
(⋃
{F (3ε) | F ∈ R2ε, diam(F ) ≥ ε}

)

≤ 9
4
A({F (2ε) | F ∈ R2ε, diam(F ) ≥ ε}).

We deduce that A(
⋃Fε) � A(R̃(E, 2ε)). Hence ωn2−2n � A(R̃(E, 2−n+1)).

This gives e ≤ ∆′(E), that is, ∆(E) ≤ ∆′(E). The converse inequality comes
directly from the inclusion R̃(E, ε) ⊂ E(ε).

7. Integral formulas. Let us consider the functions gε and fε defined
in Section 1.4.

Proposition 4. For any compact set E,

A(XH(Eε/4, ε/4)) ≤
�
R
fε(s) ds ≤ A(XH(Eε, ε)).(24)

Proof. The vertical sections of XH(Eε, ε) can be expressed as

Fε(s) = ProjOt(XH(Eε, ε) ∩D(s))

where D(s) is the vertical line of abscissa s. The area of XH(Eε, ε) is the
s-integral of the length L(Fε(s)).

a) Fix s0 such that Eε(s0) 6= ∅. We want to show that Eε(s0) ⊂ Fε(s0).
Let t0 ∈ Eε(s0).

There exist t1 and t2 in ProjOt(E ∩ [s0 − ε/2, s0 + ε/2]× R) such that

t1 ≤ t0 ≤ t2 ≤ t1 + ε.

We deduce that there exist s1, s2 such that |s0 − si| ≤ ε/2 and the points
xi = (si, ti) are in E. Since %(x1, x2) ≤ ε, the segment x1x2 is in Eε. On
this segment there exists a point with second coordinate t0. Let s′ be its
first coordinate. Since |s0 − s′| ≤ ε/2, we deduce that (s0, t0) belongs to
the horizontal segment of length ε centered at (s′, t0). Therefore (s0, t0) ∈
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XH(Eε, ε). Since (s0, t0) also belongs to the line D(s0), we deduce that t0 ∈
ProjOt(XH(Eε, ε) ∩D(s0)) = Fε(s0).

By integration, we conclude that � fε(s) ds ≤ A(XH(Eε, ε)).
b) Fix s0 such that Fε(s0) 6= ∅. We will show that Fε(s0) ⊂ E4ε(s0). Let

t0 ∈ Fε(s0).
There exists a point x = (s′, t0) in Eε such that |s0 − s′| ≤ ε. It belongs

to a segment x1x2 such that xi ∈ E and %(x1, x2) ≤ ε. Let xi = (si, ti). Since
|s′−si| ≤ ε, we have |s0−si| ≤ 2ε. Therefore xi ∈ E∩([s0−2ε, s0 +2ε]×R).
Since t0 lies between t1 and t2, and |t1− t2| ≤ ε, we deduce that t ∈ E4ε(s0).

By integration this gives A(XH(Eε, ε)) ≤ � f4ε(s) ds.

In a similar way, we obtain the following:

A(XV(Eε/4, ε/4)) ≤
�
R
gε(s) ds ≤ A(XV(Eε, ε)).(25)

Estimates (24) and (25) imply
1
2

( �
R
fε(s) ds+

�
R
gε(s) ds

)
≤ A(X(E, ε))

and
A(X(Eε/4, ε/4)) ≤

�
R
fε(s) ds+

�
R
gε(s) ds.

These inequalities, together with Theorem 1, prove (9). This completes the
proof of Theorem 2.

Remark. (9) may also be written as

∆X(E) = max
{

lim sup
ε→0

(
2− log � R fε(s) ds

log ε

)
, lim sup

ε→0

(
2− log � R gε(s) ds

log ε

)}
.

In the case of a continuous, non-constant function, � R fε(s) ds tends to 0
more slowly than � R gε(s) ds, so that ∆X(E) is equal to the first term: This
gives the variation method (Section 1.2).
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