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Products of Baire spaces revisited

by

László Zsilinszky (Pembroke, NC)

Abstract. Generalizing a theorem of Oxtoby, it is shown that an arbitrary product
of Baire spaces which are almost locally universally Kuratowski–Ulam (in particular, have
countable-in-itself π-bases) is a Baire space. Also, partially answering a question of Fleiss-
ner, it is proved that a countable box product of almost locally universally Kuratowski–
Ulam Baire spaces is a Baire space.

A topological space is a Baire space provided countable collections of
dense open subsets have a dense intersection (equivalently, nonempty open
subsets are of 2nd category). Products of Baire spaces are not always Baire.
Indeed, Oxtoby constructed, under CH, the first example of Baire spaces
with a non-Baire product ([Ox]); various absolute examples followed (see
[Co], [FK], [Po], [PvM], [Va]). As a result, some restrictions on the coor-
dinate spaces are needed in order to get Baireness of the product space.
One possibility is to strengthen the completeness properties of the factor
spaces, e.g. the product of Čech-complete or (strongly) α-favorable spaces,
respectively, is a Baire space (see [HMC] and [AL] for more completeness
type properties). Another option is to add a countable-in-itself π-base (1)
(i.e. a π-base each member of which contains only countably many members
of the π-base) or a countable π-base to Baireness of the coordinate spaces,
as classical results of Oxtoby show:

Theorem 1 ([Ox]). (i) Finite products of Baire spaces with countable-
in-itself π-bases are Baire spaces.

(ii) Any product of Baire spaces with countable π-bases is a Baire space.
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(1) We will use this terminology instead of Oxtoby’s original locally countable pseudo-

base [Ox], since a more established meaning of the latter is a pseudo-base such that each
point has a neighborhood meeting only countably many members of the pseudo-base.
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The proof of Theorem 1(ii) is based on the fact that a space X having
a countable π-base is universally Kuratowski–Ulam (for short, uK-U space
[FNR]), i.e. for any topological space Y and a meager E ⊆ X × Y , the set

Y \ {y ∈ Y : {x ∈ X : (x, y) ∈ E} is meager in X}
is meager in Y (a property first considered in [KU]), and that the product
of spaces with countable π-bases has ccc. In fact, using the same technique
we can prove:

Theorem 2. Any product of Baire uK-U spaces is a Baire space.

Proof. For countable products we can use an identical argument to that
of Theorem 1(ii) (see [Ox, Theorem 3] or [HMC, Lemma 5.6]), if we notice
that a countable product of uK-U spaces is a uK-U space ([FNR, Prop-
erty 2]). Also, a Baire uK-U space has ccc ([FNR, Corollary 4]), so finite
products of Baire uK-U spaces have ccc; thus, by the Noble–Ulmer Theo-
rem ([NU]), any product of Baire uK-U spaces has ccc. The rest follows from
[HMC, Lemma 5.7].

Besides meager spaces and spaces with countable π-bases, dyadic and
regular quasi-dyadic spaces are also uK-U (see [FNR]), so Theorem 2 is a
generalization of Theorem 1(ii); however, ω1 with the discrete topology is
a Baire space with a countable-in-itself π-base which is not a uK-U space
(since it is not ccc), so the above argument cannot be modified to extend
Theorem 1(i) to infinite products.

Our main theorem will imply that this extension is nevertheless possible
(Corollary 6); moreover, we will partially answer a question of Fleissner
([Fl, Question 2]) about Baireness of box products (cf. Theorem 7 and its
corollaries). Also note that the technique applied to prove these results can
be adjusted to prove Baireness of other product topologies, which in turn
can help establish Baireness of hyperspaces (see [Zs2] or [MC], [HMC], [Zs1]
for earlier applications).

We will say that X is an almost locally uK-U space provided the set of
points having an open uK-U neighborhood is dense in X (equivalently, if X
has a π-base each member of which is uK-U). Since the uK-U property is
open-hereditary and spaces with countable π-bases are uK-U (see [FNR]),
it follows that if X is a uK-U space or has a countable-in-itself π-base,
then X is almost locally uK-U. Observe that being almost locally uK-U is
a genuine generalization of both being a uK-U space (ω1 with the discrete
topology is not uK-U, but it has a countable-in-itself π-base) and having
a countable-in-itself π-base (X = 2ω1 is a uK-U space with no countable
π-base—cf. [FNR, Corollary 2]—and since all basic open sets in X are home-
omorphic images of X, X has no countable-in-itself π-base either); however,
we have the following:
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Proposition 3. Let X be a metrizable Baire space. Then the following
are equivalent :

(i) X is almost locally uK-U,
(ii) X has a countable-in-itself π-base.

Proof. Only (i)⇒(ii) needs some explanation: let U be an open uK-U
subspace of X and Y be a nowhere locally separable space. Let A ⊂ X and
B ⊂ Y be such that A×B is meager in X×Y and B nonmeager in Y . Now,
U × Y ∩ A × B is a meager subset of U × Y , so, since U is uK-U and B is
nonmeager, there is y ∈ B such that {x ∈ U : (x, y) ∈ A × B} = U ∩ A is
meager in U and hence in X; thus, A is meager in X ([HMC, Theorem 1.7]).
By a theorem of Pol ([Po, Theorem]), the points in X without a separable
neighborhood form a closed meager subset so, since X is a Baire space,
X has a dense open locally separable subspace. Finally, locally separable
metrizable spaces can be partitioned into clopen separable subspaces, so if
we unite the countable bases of this partition’s members, we get a countable-
in-itself π-base for X.

Let (Xi, τi) be a topological space for each i ∈ I. We will use bold symbols
to denote notions related to the product space X =

∏
i∈I Xi. Denote by τ

the product topology on X and by τ0 the collection of Tikhonov cubes
in X; further, τ� will stand for the box-product topology on X. If ΠJ =∏
j∈J (Xj , τj), then the projection maps πJ : X → ΠJ are continuous and

open for each finite (possibly empty) J ⊆ I, if X is endowed with τ or τ�,
respectively. Denote by supp(B) the support of B ∈ τ0, which is a subset
of I such that π→j (B) is a proper nonempty τj-open set for all j ∈ supp(B)
and π→j (B) = Xj for all j ∈ I \ supp(B).

If C ⊆ X, I0, . . . , It are pairwise disjoint finite subsets of I and xs ∈ ΠIs

(s ≤ t), put C[x0, . . . , xt] = C∩⋂s≤t π←Is (xs); further, if C is a collection of
subsets of X, put C[x0, . . . , xt] = {C ∈ C : C[x0, . . . , xt] 6= ∅}.

The proof of Theorem 1(i) (see [Ox, Theorem 2] or [HMC, Theo-
rem 5.1(vii)]) works for almost locally uK-U Baire spaces as well:

Proposition 4. Finite products of almost locally uK-U Baire spaces are
Baire spaces.

The main theorem of the paper reads as follows:

Theorem 5. If (Xi, τi) is an almost locally uK-U Baire space for each
i ∈ I, then (X, τ ) is a Baire space.

Proof. Since Xi is an almost locally uK-U space, it has a π-base Pi each
member of which is uK-U. Define

P =
{
B ×

∏

i∈I\J
Xi : ∅ 6= J ⊆ I finite, B ∈

∏

i∈J
Pi
}
.
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Let {Gn}n be a decreasing sequence of dense open subsets of (X, τ ). Fix a
nonempty τ -open V and choose some V0 ∈ P so that V0 ⊆ V ∩G0. Put
J0 = ∅, J1 = supp(V0) and B0 = {V0}. By induction, we can define Bi ⊆ P
for each i ≥ 1 so that Bi =

⋃
B∈Bi−1

Bi(B), where for all B ∈ Bi−1, Bi(B)
is a maximal collection such that

(1) A ⊆ B ∩Gi for each A ∈ Bi(B),
(2) supp(A) ) supp(B) for each A ∈ Bi(B),
(3) {π→supp(B)(A) : A ∈ Bi(B)} is pairwise disjoint.

Finite products of Baire uK-U spaces are Baire uK-U spaces (see [FNR,
Property 2 and the subsequent Applications]) and Baire uK-U spaces have
ccc ([FNR, Corollary 4]), so π→supp(B)(B) has ccc for each i ≥ 1 and B ∈ Bi−1;
thus, Bi(B) is countable for each i ≥ 1 and B ∈ Bi−1 and so is the set
B =

⋃
i∈ω Bi. Define

P′ = {P ∈ τ0 : ∃B ∈ B with P ⊆ B and supp(P) = supp(B)}
and put x0 = ∅ and W1 = π→J1

(
⋃B1(V0)[x0]). For each B ∈ B and n ≥ 1

put

YB,n,1 = {x ∈W1 : ∃P ∈ P′ with P ⊆ B, P[x0, x] 6= ∅
such that ∀P′ ∈ P′, P′ ⊆ Gn ∩P⇒ P′[x0, x] = ∅}.

Claim 1. YB,n,1 is nowhere dense in W1 for each B ∈ B and n ≥ 1.

Indeed, if YB,n,1 is dense in a nonempty open U ⊆W1, then P∩ π←J1
(U)

6= ∅. Let B = Ui0 ∈ Bi0 and assume that Ui ∈ Bi with Pi = Ui ∩ π←J1
(U)

6= ∅ has been defined for i ≥ i0. Then there exists a Ui+1 ∈ Bi+1(Ui) such
that Pi+1 = Pi ∩Ui+1 6= ∅; otherwise, Pi ∩A = ∅ for each A ∈ Bi+1(Ui),
so, since supp(Pi) = supp(Ui) ( supp(A), π→supp(Ui)

(Pi) would be disjoint
from π→supp(Ui)

(A) for each A ∈ Bi+1(Ui). Then choosing A′ ∈ P with
A′ ⊆ Pi ∩Gi+1 and supp(A′) ) supp(Ui), we would violate maximality of
Bi+1(Ui). It follows, by (1), that Pn ⊆ Un ⊆ Gn, hence P′ = Pn ∩ π←J1

(U)
∈ P′ and P′ ⊆ P ∩Gn ∩ π←J1

(U). Then π→J1
(P′) is a nonempty open subset

of U , so it intersects YB,n,1, say, in x. Now x ∈ π→J1
(P′) means P′[x0, x] 6= ∅;

on the other hand, x ∈ YB,n,1 implies P′[x0, x] = ∅, since P′ ∈ P′ and
P′ ⊆ Gn ∩P, a contradiction.

Since ΠJ1 is a Baire space by Proposition 4, there exists some

x1 ∈W1 \
⋃

B∈B

⋃

n≥1

YB,n,1.

Assume that Vj−1 ∈ Bj−1 with Jj = supp(Vj−1) ) Jj−1 and xj ∈ Wj =
π→Jj\Jj−1

(
⋃Bj(Vj−1)[x0, . . . , xj−1]) have been defined for j ≥ 1 so that

(4) Vi ∈ Bi(Vi−1)[x0, . . . , xi] for each 1 ≤ i < j,
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(5) ∀B ∈ B ∀P ∈ P′ with P ⊆ B, P[x0, . . . , xj ] 6= ∅, ∀n ≥ j ∃P′n ∈ P′
such that P′n ⊆ Gn ∩P and P′n[x0, . . . , xj ] 6= ∅.

Since xj ∈ Wj and {π→Jj\Jj−1
(A) : A ∈ Bj(Vj−1)[x0, . . . , xj−1]} is pairwise

disjoint (otherwise, if x ∈ π→Jj\Jj−1
(A) ∩ π→Jj\Jj−1

(A′) for distinct A,A′ ∈
Bj(Vj−1)[x0, . . . , xj−1], then [x0, . . . , xj−1, x] ∈ π→Jj (A) ∩ π→Jj (A′), which
would violate (3)), there is a unique Vj ∈ Bj(Vj−1)[x0, . . . , xj−1] with
xj ∈ π→Jj\Jj−1

(Vj), which means that Vj ∈ Bj(Vj−1)[x0, . . . , xj ]; thus, (4) is
satisfied for i = j. Then Vj ⊆ Vj−1 ∩ Gj by (1) and, by (2), Jj+1 =
supp(Vj) ) Jj .

Since Vj [x0, . . . , xj ] 6= ∅, it follows from (5) that for all n ≥ j, there is
some P′n ∈ P′ with P′n ⊆ Gn ∩ Vj and P′n[x0, . . . , xj ] 6= ∅; we can even
assume that supp(P′n) ) Jj+1 for some n ≥ j (otherwise, supp(P′n) = Jj+1

for all n ≥ j and
⋂
n≥j P′n[x0, . . . , xj ] 6= ∅, whence Vj ∩

⋂
n Gn 6= ∅ and we

are done). It follows that [x0, . . . , xj ] ∈ π→Jj (
⋃Bj+1(Vj)), so

Wj+1 = π→Jj+1\Jj

(⋃
Bj+1(Vj)[x0, . . . , xj ]

)

is a nonempty ΠJj+1\Jj -open set. For each B ∈ B and n ≥ j + 1 define

YB,n,j+1 = {x ∈Wj+1 : ∃P ∈ P′ with P ⊆ B, P[x0, . . . , xj , x] 6= ∅ and

∀P′ ∈ P′, P′ ⊆ Gn ∩P⇒ P′[x0, . . . , xj , x] = ∅}.
Claim 2. YB,n,j+1 is nowhere dense in Wj for each B ∈ B and n ≥ j+1.

Indeed, assume, that some YB,n,j+1 is dense in an open U ⊆Wj+1. Then
S = Vj ∩ P ∩ π←Jj+1\Jj (U) ∈ P′ is nonempty and S[x0, . . . , xj ] 6= ∅, since
[x0, . . . , xj ] ∈ π→Jj (P ∩ Vj) = π→Jj (S); thus, by (5), there is some S′n ∈ P′
with S′n ⊆ Gn ∩ S and S′n[x0, . . . , xj ] 6= ∅ for each n ≥ j. Consequently,
π→Jj+1\Jj (S

′
n) is a nonempty open subset of U and hence it intersects YB,n,j+1,

say, in x. Now, x ∈ π→Jj+1\Jj (S
′
n) implies S′n[x0, . . . , xj , x] 6= ∅; on the other

hand, x ∈ YB,n,j+1 implies S′n[x0, . . . , xj , x] = ∅, since S′n ∈ P′ and S′n ⊆
Gn ∩P, a contradiction.

Since ΠJj+1\Jj is a Baire space by Proposition 3, we can find some

xj+1 ∈Wj+1 \
⋃

B∈B

⋃

n≥j+1

YB,n,j+1.

Then (4) and (5) is satisfied for j + 1 as well; thus, by induction, we have
constructed sequences {xj ∈ ΠJj\Jj−1 : j ≥ 1} and {Vj ∈ B : j ∈ ω} such
that Vj+1 ∈ Bj+1(Vj)[x0, . . . , xj ] for all j ∈ ω.

Define the element x ∈ X as follows: let z ∈ ∏i∈I\⋃j≥1 Jj
Xi be fixed,

put π→Jj\Jj−1
(x) = xj for each j ≥ 1 and π→I\⋃j≥1 Jj

(x) = z. Then x ∈ Vn ⊆
V∩Gn for each n ∈ ω, so V∩⋂n∈ω Gn 6= ∅; thus, (X, τ ) is a Baire space.
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Clearly, Theorem 2 is a corollary of Theorem 5 and so is:

Corollary 6. If (Xi, τi) is a Baire space with a countable-in-itself π-
base for each i ∈ I, then (X, τ ) is a Baire space.

A slight modification of the proof of Theorem 5 yields a theorem about
Baireness of the countable box product; we will sketch the proof for com-
pleteness:

Theorem 7. If (Xi, τi) is an almost locally uK-U Baire space for each
i ∈ ω, then (X, τ�) is a Baire space.

Proof. We will adopt the notation from the proof of Theorem 5 when-
ever applicable. Natural numbers will be viewed as sets of predecessors. By
induction, for each i ≥ 1, define Bi =

⋃
B∈Bi−1

Bi(B) ⊆ P, where Bi(B) is
maximal with respect to property (1) and

(3′) {π→i (A) : A ∈ Bi(B)} is pairwise disjoint.

Define the countable set B =
⋃
i∈ω Bi and put

P′ = {P ∈ P : ∃B ∈ B with P ⊆ B and π→ω\i+1(P) = π→ω\i+1(B)}.
The rest of the proof can be adopted from that of Theorem 5, if we use
Jj = j for each j ∈ ω and instead of basing the induction on supports, we
follow the natural order of ω.

Corollary 8. If (Xi, τi) is a uK-U Baire space for each i ∈ ω, then
(X, τ�) is a Baire space.

Corollary 9. If (Xi, τi) is a Baire space with a countable-in-itself π-
base for each i ∈ ω, then (X, τ�) is a Baire space.
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