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A problem of von Neumann and Maharam about
algebras supporting continuous submeasures

by

Stevo Todorcevic (Paris, Toronto and Bellaterra)

Abstract. We show that a σ-algebra B carries a strictly positive continuous submea-
sure if and only if B is weakly distributive and it satisfies the σ-finite chain condition of
Horn and Tarski.

1. Introduction. Recall that a measure algebra is a complete boolean
algebra B supporting a strictly positive countably additive measure. The
problem of characterizing measure algebras in the class of complete boolean
algebras was first proposed by von Neumann in the 1930’s (see [14]). The
first necessary condition isolated in [14] is the countable chain condition
asserting that every cellular family of members of B must be countable.
Recall that a cellular family is any family of pairwise disjoint members of B.
The second necessary condition given in [14] is the weak distributivity of
B asserting that for every double sequence ank (indexed by non-negative
integers) of elements of B,

∧

n

∨

k

ank =
∨

F

∧

n

anF (n),

where F = (F (n)) ranges over all sequences of finite sets of non-negative
integers and where anF (n) is defined to be the supremum of ank for k ∈ F (n).
So this is a natural weakening of the usual distributive law, where the F (n)’s
are assumed to be all singletons. The first major advance on von Neumann’s
problem is given by Maharam [11] who correctly identified it as a problem
which is in part a metrization problem for the corresponding sequential
topology of B (see Section 2 for the exact definition of this topology). More
precisely, Maharam [11] shows that the sequential topology of B is metrizable
if and only if B supports a strictly positive continuous submeasure. Recall
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that a strictly positive continuous submeasure on a σ-algebra B is a function
ν : B→ [0,∞) such that:

(a) ν(a) = 0 if and only if a = 0,
(b) a ≤ b implies ν(a) ≤ ν(b),
(c) ν(a ∨ b) ≤ ν(a) + ν(b),
(d)

∧
n an = 0 implies ν(an)→ 0 for every decreasing sequence an.

If (d) is weakened to

(d−) if an is an increasing sequence then ν(an)→ ν(
∨
n an),

then one says that B supports a strictly positive submeasure. A submeasure
ν on B is non-trivial if for every a in B+ = B \ {0} there is b ≤ a such that
0 < ν(b) < ν(a). The work of Maharam [11] gives a natural decomposition
of von Neumann’s problem into the following two parts:

(I) Does every weakly distributive complete boolean algebra B sat-
isfying the countable chain condition support a strictly positive
continuous submeasure?

(II) Given that B supports a strictly positive continuous submeasure,
does it also support a strictly positive countably additive measure?

Part (II) is the original form of the well-known and well-studied Control
Measure Problem which has a strong degree of absoluteness and many re-
formulations in different areas of Functional Analysis (see [6], [9]). Already
at the very start of the analysis of von Neumann’s problem it was realized
that this formulation of its Part (I) lacks in absoluteness. To explain this,
recall that a Suslin algebra is a non-atomic σ-distributive boolean algebra
satisfying the countable chain condition. Its existence is equivalent to the
negation of the Suslin hypothesis and is therefore independent of the stan-
dard axioms of set theory. In [11], Maharam shows that no Suslin algebra
can support a non-trivial submeasure, a result that clearly indicates that
the countable chain condition along with weak distributivity may not be
sufficient even for the existence of a non-trivial submeasure, at least if one
is not willing to go beyond the standard axioms of set theory. Remarkably,
quite recently it has been shown by Balcar, Jech and Pazák [3] that the
positive answer to (I) is consistent with the standard axioms of set theory.
However, one still would like to see if supplementing von Neumann’s list
with some other necessary conditions one arrives at a positive answer to
these questions without going beyond the standard axioms of set theory. It
turns out that such a condition can indeed be found, but in a parallel series
of investigations that begun with the paper of Horn and Tarski [8] on the
following problem of Tarski (see [19], [20]):

(III) Does every boolean algebra satisfying the countable chain condition
supports a strictly positive finitely additive measure?
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While working on this problem Horn and Tarski [8] have realized that the
countable chain condition has to be strengthened even if one wants to have
a finitely additive measure on B. For example, it is readily seen that if µ is a
strictly positive finitely additive measure on B then the sets Bn = {a ∈ B :
µ(a) > 1/(n+ 1)} witness that B satisfies the following chain condition
(the “σ-bounded chain condition”) that is considerably stronger than the
countable chain condition:

(σbcc) There is a decomposition B+ =
⋃∞
n=0 Bn such that for every n the

piece Bn of the decomposition contains no cellular subfamily of
size n+ 2.

On the other hand, note that if ν : B→ [0,∞) is a strictly positive contin-
uous submeasure then ν is exhaustive in the sense that for every ε > 0 the
set {a ∈ B : ν(a) > ε} contains no infinite cellular family. It follows that ev-
ery σ-algebra supporting a strictly positive continuous submeasure satisfies
the following chain condition (the “σ-finite chain condition”) which is also
considered by Horn and Tarski [8] and which is still considerably stronger
than the countable chain condition:

(σfcc) There is a decomposition B+ =
⋃∞
n=0 Bn such that no piece Bn

contains an infinite cellular subfamily.

Looking at the difference between σbcc and σfcc one may wonder if there is a
finite upper bound on the sizes of cellular subfamilies of {a ∈ B : ν(a) > ε}
whenever µ is a strictly positive continuous submeasure on B and where
ε > 0. The positive answer to this question is yet another equivalent formu-
lation of the Control Measure Problem (II) discussed above. Regardless of
the state of the Control Measure Problem, one can still ask the following
question originally appearing in [8]:

(IV) Is it true that every boolean algebra satisfying the σ-finite chain
condition satisfies in fact the stronger σ-bounded chain condition?

In [8], Horn and Tarski also ask the following problem:

(V) Is any of the two chain conditions σ-fcc or σ-bcc sufficient for the
existence of a finitely additive strictly positive measure?

This was answered in the negative by Gaifman [7] using a result of Kelley
[10] that characterizes boolean algebras supporting a strictly finitely additive
measure. However, neither Horn and Tarski [8], Kelley [10], nor Gaifman [7]
discuss the possibility that adding the requirement of weak distributivity to
one of these two chain conditions might lead us to the existence of a strictly
positive finitely (or countably) additive measure on a given boolean algebra.
This version of the Horn and Tarski problem (V) appears explicitly only in
Oxtoby’s review [15] of Gaifman’s paper. More precisely, Oxtoby [15] asks
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the following question:

(VI) Does every weakly distributive boolean algebra satisfying the σ-
bounded chain condition support a strictly positive finitely additive
measure?

The following result shows that this might be a right form of the Horn and
Tarski problem (V).

Theorem 1. The following are equivalent for every complete boolean
algebra B:

(1) B carries a strictly positive continuous submeasure.
(2) (a) B is weakly distributive and

(b) B satisfies the σ-finite chain condition.

It follows, in particular, that von Neumann’s problem in the class of
σ-algebras satisfying the σ-finite chain condition is equivalent to the Con-
trol Measure Problem. Moreover, it follows that Oxtoby’s question (VI) is
in fact yet another reformulation of the Control Measure Problem. It also
follows that the positive solution to the Control Measure Problem would
also yield a positive answer to the Horn Tarski problem (IV) provided one
works in the class of weakly distributive algebras. Recall that the Control
Measure Problem is really a problem about countably generated σ-algebras,
i.e., σ-algebras B for which there is a countable subset B0 with the prop-
erty that B contains no proper σ-subalgebra containing B0. So it is natural
to ask which of the countably generated σ-algebras support a strictly posi-
tive continuous submeasure. This amounts to characterizing the countably
generated σ-algebras that are representable as quotients of the σ-algebra of
Borel subsets of R over σ-ideals on R that have the form

Nν = {X ⊆ R : ν(X) = 0}
for some continuous Borel submeasure, or better to say, continuous outer
measure ν. In order to analyze this one needs a version of the Sikorski–
Loomis theorem for weakly distributive and countably generated algebras.
This will be done in Section 2 of this note where the corresponding version
of Theorem 1 is stated.

2. An ideal of converging sequences. The purpose of this section is
to survey the necessary background material needed for the proof of Theo-
rem 1 as well as to state and prove a version of this result for the class of
countably generated algebras. Recall the definition of strong convergence of
sequences an of members of some σ-algebra B as introduced in [11]:

an → a if and only if lim sup(an4 a) = 0,
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where as customary for a sequence bn of members of B one defines lim sup bn
to be equal to

∧
k

∨
n>k bn. As shown in [11], if B is weakly distributive this

notion of convergence satisfies the axioms of the abstract theory of conver-
gence of Fréchet [5] and, in particular, the following important condition:

(L4) If an → a and if ank is a double sequence such that ank → an for each
n then there is an increasing sequence kn of non-negative integers
such that ankn → a.

In fact, in the context of σ-algebras B satisfying the countable chain con-
dition this principle is equivalent to the weak distributivity of B as well as
to the following diagonal sequence property considered explicitly in many of
the early papers on this subject (see [11] and [23]):

(DS) Given a double sequence ank of members of B such that for each n
the sequence ank decreases monotonically to 0 as k →∞, there is an
increasing sequence kn of non-negative integers such that ankn → 0.

Hence, defining the closure A of a subset A of B to be the collection of all
limits of strongly converging sequences of members of A, we get a closure
operator and the corresponding sequential topology of B. In [11], Maharam
shows that a σ-algebra B supports a strictly positive continuous submeasure
if and only if its sequential topology is metrizable (in which case B becomes
a topological group under the relation of symmetric difference). This shows
clearly the utmost importance of the sequential topology in the study of
von Neumann’s problem. As correctly realized in [11], the metrizability of
the sequential topology of B is captured by the algebraic (or better to say,
combinatorial) properties of the ideal of all countable subsets of B which
do not contain 0 in their closures. In fact, it turns out that it is more
advantageous to work with the orthogonal of this ideal. Thus, let IB be the
collection of all countable subsets A of B+ for which we can find a maximal
cellular family C of B such that

c�A = {a ∈ A : c · a 6= 0}
is finite for all c ∈ C. Note that if a maximal cellular family C witnesses the
membership of A in IB then so does any other maximal cellular family D
which refines C, i.e., has the property that every d from D is included in
a (necessarily unique) member of C. It follows that IB is indeed an ideal of
subsets of B+, i.e., it is closed under unions, since for every pair C0 and C1

of maximal cellular families of B there is a maximal cellular family D of B
which refines both. The ideal IB appears for the first time in [1] for B a Suslin
algebra. The σ-distributivity of the Suslin algebra is used in [1] to show that
IB is a P-ideal, i.e. it has the following weak form of σ-completeness: For
every sequence An of members of IB there is a member B of IB such that
An \B is finite for all n. To see this, for each n, fix a maximal cellular family
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Cn witnessing An ∈ IB. Using σ-distributivity of B we can find a maximal
cellular family C of B which refines Cn for all n, and therefore witnesses simul-
taneously An ∈ IB for all n. Since B satisfies the countable chain condition,
C is countable, so we can enumerate it in a simple sequence ck. Let

B =
⋃

n

An \
(⋃

k<n

ck�An
)
.

Clearly, this B almost includes An for every n. Note that the same argument
applies if the cellular family C only almost refines each of the families Cn in
the sense that for each n every element of C intersects only finitely many
members of Cn. Note also that the existence of such a C is guaranteed by
the weak distributivity of B. This shows the following useful fact.

Lemma 1. The ideal IB is a P-ideal for every weakly distributive σ-
algebra B satisfying the countable chain condition.

This fact has been first put out in print by Quickert [16] while analyzing
a problem of Prikry that is quite closely related to that of von Neumann [14]
(see also [22]).

Back to the sequential topology of B, note that if A is a countably infinite
subset of B+ then A belongs to IB if and only if for some (all) one-to-one
enumerations an of A the sequence an converges to 0, i.e., lim sup an = 0.
So the orthogonal of IB is

I⊥B = {X ⊆ B : X is countable and X ∩A is finite for all A ∈ IB}.
More generally, we say that an arbitrary subset X of B+ is orthogonal to IB
and write X ⊥ IB if X has a finite intersection with every member of IB.
Thus, I⊥B is simply the collection of all countable sets that are orthogonal
to IB. Put even more simply, a set is orthogonal to IB if its closure misses 0.
We say that I⊥B is countably generated if there is a sequence Xn of subsets of
B+ that are orthogonal to IB with the property that every member of I⊥B is
included modulo a finite set in some member of the sequence. The following
result of Maharam [11] explains our interest in these notions.

Lemma 2 ([11]). A σ-algebra B supports a strictly positive continuous
submeasure if and only if the orthogonal of IB is countably generated.

Proof. For the convenience of the reader we sketch the argument of the
reverse implication as it appears in [11] though in a slightly different termi-
nology and with one unnecessary assumption. First of all note that if I⊥B is
countably generated then B satisfies the countable chain condition as well
as the diagonal sequence principle (DS). So we can choose a sequence Xn

of subsets of B+ which is increasing in n and consists of sets that are at
the same time upwards closed and closed in the sequential topology. As al-
ready pointed out, the corresponding sequence Vn of complements consists of
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neighborhoods of 0 that decrease in n and are downwards closed in the natu-
ral ordering of B. Note that any subset of B whose closure does not contain 0
must be included in some Xn. It follows that the Vn form a countable neigh-
borhood base of 0. Note also that the operations ∨ and 4 are continuous at
(0,0) or else we would, say, be able to find a neighborhood U of 0 and two se-
quences an and bn such that an, bn ∈ Vn but an∨bn is not in U . It follows that
lim sup an = 0 and lim sup bn = 0 while lim sup an∨ bn 6= 0, a contradiction.
It follows that B with the symmetric difference as the group operation is a
metrizable abelian group so it has a bounded invariant metric %. Then ν(b)=
sup{%(0, a) : a ≤ b} defines a strictly positive continuous submeasure on B.

Note that in the case when I⊥B is countably generated one can cover B+

by countably many sets that are orthogonal to IB. It is actually this condi-
tion that forms a part of a general dichotomy for P-ideals considered in [21].
For general P-ideals I of countable subsets of some set S the alternative
that the set S can be covered by countably many subsets that are orthogo-
nal to I is unlikely to imply that I⊥ is countably generated. Therefore, the
following result of Balcar, Jech, and Pazák [3] (based on a previous work
from [2]) came as a surprise.

Lemma 3 ([3]). The following are equivalent for a weakly distributive
σ-algebra satisfying the countable chain condition:

(1) The orthogonal of IB is countably generated.
(2) B+ can be decomposed into countably many subsets orthogonal to IB.
Proof. For the convenience of the reader again, we sketch the arguments

as they appear in [3] and [2] though in a different terminology. Only the
implication from (2) to (1) requires an argument. So, let Xn be a sequence
of subsets of B+ which cover B+ and which are orthogonal to IB. Again
we may assume that Xn increase with n and that they are upwards closed
as well as closed in the sequential topology of B. Hence the corresponding
sequence Vn of complements is a sequence of open neighborhoods that are
downwards closed under the ordering of B.

First of all note that
⋂
n V n = {0}. For suppose there is a non-zero

member b in that intersection. Then for each n we can find a sequence ank
of members of Vn which strongly converges to b as k →∞. By (DS) we can
find a diagonal sequence ankn such that ankn → b. So there must be an m
such that c =

∧
n>m ankn 6= 0. Pick an n > m such that c does not belong

to Vn. Then c ≤ ankn ∈ Vn, contradicting the downward closure of Vn.
Note that this argument also shows that every sequence an such that

an ∨ an+1 ∨ · · · ∨ an+k ∈ Vn for all n and k must converge to 0. So, as in
the proof of Lemma 2, one shows that the operation ∨ (and therefore 4)
is continuous at (0,0) and so, in particular, the sequential topology of B is
regular.



176 S. Todorcevic

Now we claim that the Vn form a neighborhood base at 0, which is of
course just another formulation of (1). Otherwise, fixing a closed neighbor-
hood U of 0 not refined by any Vn and using the fact that the boolean
operation ∨ is separately continuous, we can build a sequence an such that∨m
k=n ak ∈ Vn \ U for all n ≤ m. It follows that

∨
k≥n ak ∈ V n \ U for all n.

Since the V n have only the point 0 in their intersection, we conclude that
lim sup an = 0. This shows that an → 0. So there must be an n such that
an ∈ U , a contradiction.

It follows that a weakly distributive σ-algebra B satisfying the countable
chain condition supports a strictly positive continuous submeasure if and
only if B+ can be decomposed into countably many subsets orthogonal to
IB if and only if 0 is a Gδ-point in B with the sequential topology.

The relationship between the weak distributivity and P-ideals becomes
even more striking if one examines the separable case of the (sub)measurabil-
ity problem. The separability refers to the metric one defines from a contin-
uous submeasure which in the case the submeasure is missing has its simple
algebraic formulation as a condition on the way one can generate the al-
gebra. Recall that a complete boolean algebra B is countably generated if
there is a countable subset B0 of B such that every complete subalgebra of
B which contains B0 must be equal to B. By the Sikorski–Loomis theorem
every countably generated σ-algebra B is isomorphic to a quotient algebra of
the form Borel(2N)/I for some Borel-generated σ-ideal I in 2N. As pointed
out in [23], the homomorphism extension theorem of Matthes (see [12], [13],
[17]) gives a considerable information about the σ-ideal I in the case B is
a weakly distributive σ-algebra satisfying the countable chain condition. To
describe this, following [23], let us say that a σ-ideal I on 2N is regular if it
satisfies the following conditions:

(a) I is uniform (i.e., contains all singletons) and proper (i.e., it does
not contain the whole set 2N).

(b) I is generated by the family of Gδ-sets that belong to I.
(c) I satisfies the countable chain condition (i.e., every family of disjoint
I-positive Borel sets must be countable).

(d) I is inner regular relative to the family of compact sets (i.e., every
I-positive Borel set contains an I-positive compact subset).

(e) For every sequence (Gi) of countable downwards directed families of
open subsets of 2N with the property that

⋂Gi ∈ I for all i there is
a sequence (Gki ) ⊆ Gi for each i such that

⋂
k

⋃
iG

k
i ∈ I.

In [23, pp. 272–276], the following consequence of the homomorphism ex-
tension theorem of Matthes has been explicitly pointed out.
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Lemma 4. An atomless countably generated σ-algebra is weakly distribu-
tive and satisfies the countable chain condition if and only if is isomorphic
to a quotient algebra of the form Borel(2N)/I for some regular σ-ideal I
on 2N.

From Theorem 1 and Lemma 4 we obtain the following result which
characterizes regular σ-ideals arising from continuous outer-measures on 2N.

Theorem 2. The following are equivalent for a Borel-generated σ-ideal
I on 2N :

(1) I is the σ-ideal of null sets for some normalized uniform diffused
and continuous outer measure on 2N.

(2) I is regular and its quotient algebra Borel(2N)/I satisfies the σ-finite
chain condition.

In [18], Solecki gives a characterization of σ-ideals arising from contin-
uous outer measures on 2N in terms of P-ideals of subsets of the tree 2<N

of finite binary sequences. It turns out that all regular σ-ideals on 2N are
expressible in terms of P-ideals on 2<N. To see this we need the following
piece of notation for a subset A of 2<N:

[A] = {x ∈ 2N : ∃∞k x�k ∈ A}.
For a family J of subsets of 2<N let [J ] be the downward closure of the
family

{[A] : A ∈ J }.
Then we have the following description of regular σ-ideals on 2N.

Lemma 5. Every regular σ-ideal I on 2N has the form [J ] for some
P-ideal J on 2<N.

Proof. For a compact subset K of 2N, let

TK = {x�k : x ∈ K, k ∈ N}
denote the subtree of 2<N such that [TK ] = K. Let J be the collection of
all subsets A of 2<N for which one can find a maximal family K of pairwise
disjoint I-positive sets such that A ∩ TK is finite for all K ∈ K. Since I
is a regular σ-ideal, the quotient algebra Borel(2N)/I is weakly distributive
and compact sets are dense, so working as in the proof of Lemma 1 one
concludes that J is a P-ideal of subsets of 2<N.

We claim that I = [J ]. First of all, note that for A ∈ J the Gδ-set [A]
cannot contain any I-positive compact subset, so by property (d) of I it
must belong to I. Conversely, consider an arbitrary Gδ-set G ∈ I. Choose
a maximal family K of pairwise disjoint I-positive sets each of which is
disjoint from G. List K as a simple sequence (Ki) and then represent G as
intersection of a decreasing sequence (Gk) of open sets such that Gk∩Ki = ∅
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whenever i ≤ k.Now, find a sequenceAk of antichains of the complete binary
tree 2<N such that:

(1) Ak refines Ai and they are disjoint whenever i < k,
(2) Ak ∩ TKi = ∅ whenever i ≤ k,
(3) Gk = {x ∈ 2N : ∃n x�n ∈ Ak} for all k.

For each i find a maximal family Hi of pairwise disjoint compact I-positive
subsets of Ki such that for every H ∈ H and every k < i, either H ∩Gk = ∅,
or else there is s ∈ Ak such that every element ofH extends s. LetH =

⋃
iHi

and let A =
⋃
k Ak. Then H is a maximal family of pairwise disjoint I-

positive compact sets such that TH ∩ A is finite for all H ∈ H. It follows
that A belongs to J and therefore G = [A] ∈ [J ]. This finishes the proof.

It follows that every atomless countably generated weakly distributive
σ-algebra B with the countable chain condition has the form Borel(2N)/[J ]
for some P-ideal J of subsets of the complete binary tree 2<N. So it remains
to be investigated which P-ideals on 2<N correspond to algebras B that
support a strictly positive continuous submeasure and which correspond to
algebras B supporting a strictly positive countably additive measure. Some
work on this has already been done in [18] and [4], where it is shown that
in Theorem 2 some definability assumptions on I = [J ] could replace the
chain condition restriction on the quotient algebra Borel(2N)/I.

3. Proof of Theorem 1. It has already been observed that (1) implies
(2) so we concentrate on proving that (2) implies (1). Thus, we start with
a weakly distributive σ-algebra B satisfying the countable chain condition.
Let I = IB be the corresponding P-ideal, i.e.,

IB = {A ∈ [B+]≤ω : ∃C ∈ MC(B) ∀c ∈ C c�A is finite},
where MC(B) denotes the collection of all maximal cellular families of ele-
ments of B+. We shall show that if B+ cannot be decomposed into countably
many sets each orthogonal to I then the σ-algebra B does not satisfy the
stronger σ-finite chain condition of Horn and Tarski. Then the proof is com-
pleted by using Lemmas 2 and 3 above. So from now on we assume that
B+ cannot be covered by countably many sets orthogonal to I and work for
showing that B fails to satisfy the σ-finite chain condition. So, let

B+ =
∞⋃

k=0

Bk

be a given decomposition and work towards showing that there must be
some Bk containing an infinite cellular family. This will conclude our proof
of Theorem 1.
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Following [21], we let P be the collection of all pairs p = 〈xp,Xp〉 such
that:

(i) xp is an element of I,
(ii) Xp is a countable collection of cofinal subsets of 〈I,⊆∗〉.

We order P by letting q ≥ p and saying that q extends p whenever:

(iii) xp ⊆ xq,
(iv) Xp ⊆ Xq,
(v) for every X ∈ Xp the set {x ∈ X : xq \ xp ⊆ x} is ⊆∗-cofinal in I

and it belongs to the family Xq.

Lemma 6. For every p ∈ P and every maximal cellular family C of B+

there is q ≥ p such that some member of xq \ xp refines a member of C.

Proof. Let B+�C be the collection of all b ∈ B+ which refine a member
of C. Then B+�C is coinitial in B+ so by our assumption it cannot be covered
by countably many sets orthogonal to I. Suppose the conclusion of the
lemma fails. Then for every member b ∈ (B+�C) \ xp there is X ∈ Xp such
that

X(b) = {x ∈ X : b ∈ x}
is not cofinal in 〈I,⊆∗〉. For X ∈ Xp, let

B(X) = {b ∈ (B+�C) \ xp : X(b) is not cofinal in 〈I,⊆∗〉}.
By our assumption {B(X) : X ∈ Xp} is a countable collection of subsets of
B+ which covers (B+�C) \ xp. So we shall reach a contradiction the moment
we show that each B(X) is orthogonal to I. For suppose that for some
X ∈ Xp there is an infinite subset z of B(X) belonging to I. Since I is a
P-ideal, removing a finite subset of z, we may assume that

Y = {y ∈ X : z ⊆ y}
is cofinal in 〈I,⊆∗〉. Choose an arbitrary b ∈ z. Then b ∈ B(X) and Y ⊆ X(b)
and therefore X(b) is also cofinal in 〈I,⊆∗〉. But this is a contradiction since,
by the definition of B(X) and the fact that b ∈ B(X), the set X(b) is not
supposed to be cofinal in 〈I,⊆∗〉.

Choose a countable elementary substructure M of some large enough
structure of the form 〈Hθ,∈〉 in such a way that the substructure M contains
as elements all the relevant objects accumulated so far.

Lemma 7. Suppose p ∈ P ∩M and zM ∈ I is such that zM ⊆ M ∩ B+

and x ⊆∗ zM for all x ∈ I ∩M . Then for every k ∈ N there is q ≥ p in
P ∩M such that xq \ xp ⊆ zM and such that either

(a) xq \ xp contains a member of Bk, or
(b) there is no r ≥ q in P for which xr \ xp contains a member of Bk.
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Proof. Suppose such a q cannot be found. Let D be the collection of all
q ∈ P satisfying (a) or (b). Then D ∈M and D is dense above p in the sense
that for every q ≥ p there is r ≥ q such that r ∈ D. Let

Y0 = {y ∈ I : ∃F ∈ [y]<ω ∀q ≥ p (q ∈ D → xq \ xp 6⊆ y \ F )}.
Clearly Y0 ∈ M . Note that every member y of I ∩M belongs to Y0 since
the finite set y \ zM witnesses this by our assumption that there is no q ≥ p
satisfying the conclusion of the lemma. By elementarity of M , it follows that
Y0 is actually equal to I. Fix a mapping A 7→ zA from [I]ω into I belonging
to M and having the property that

(vi) zA ⊆
⋃
A and x ⊆∗ zA for every x ∈ A.

Then by the fact that Y0 = I ⊇ {zA : A ∈ [I]ω} for each A ∈ [I]ω, we can
fix a finite set FA ⊆ zA such that

(vii) ∀q ≥ p (q ∈ D → xq \ xp 6⊆ zA \ FA).

Moreover we may assume that the mapping A 7→ FA belongs to M . Note
that this map can be viewed as a finite sequence of regressive maps on the
stationary domain [I]ω, so the corresponding analogue of the Pressing Down
Lemma applies. Hence, we can find, in M , a stationary subset S of [I]ω and
a finite set F such that FA = F for all A ∈ S. Let

p1 = 〈xp,Xp ∪ {zA \ F : A ∈ S}〉.
Then p1 ∈ P ∩M and p1 ≥ p. Since D is dense above p and since M is an
elementary substructure of Hθ, there is q ∈ D∩M such that q ≥ p1. By the
definition of the ordering ≥ of P, there exist cofinally many members of the
family {zA \F : A ∈ S} that contain the set xq \ xp. In other words, we can
find an A ∈ S so that

(viii) xq \ xp ⊆ zA \ F .

On the other hand, from the fact that A belongs to S, we conclude that
F = FA, leading to something that contradicts (vii). This finishes the proof
of Lemma 7.

A similar argument proves the following lemma.

Lemma 8. Suppose p ∈ P∩M and let zM ∈ I be such that zM ⊆M∩B+

and x ⊆∗ zM for all x ∈ I ∩M . Then for every finite subset F of B+ ∩M ,
every p ∈ P ∩ M and every k ∈ N there is q ≥ p in M ∩ P such that
xq \ xp ⊆ zM and such that either

(a) xq \ xp contains a member b of Bk such that b ∧ a = 0 for every
a ∈ F , or

(b) there is no r ≥ q in P such that xr \ xp contains a member b of Bk
with b ∧ a = 0 for every a ∈ F.
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Working in M and starting from p0 = 〈∅, {I}〉 we build a decreasing
sequence pn = 〈xn,Xn〉 (n ∈ N) of members of P ∩M and a ⊆-decreasing
sequence zn (n ∈ N) of members of I such that

(ix) ∀n ∈ N ∀x ∈ I ∩M x ⊆∗ zn,
(x) ∀n ∈ N xn+1 \ xn ⊆ zn.

We choose z0 to be an arbitrary member of I such that z0 ⊆ M ∩ B+ and
x ⊆∗ z0 for all x ∈ I ∩M . We will also ensure that the set zn+1 is obtained
from zn by removing from it only a finite subset so (ix) will automatically
remain satisfied. The recursive construction is done in the following manner.
Via some book-keeping device, we associate to each n and each X ∈ Xn an
integer m ≥ n where we perform the following procedure. We first let

X1 = {x ∈ X : xm \ xn ⊆ x}.
Then we know that X1 ∈M and that X1 is cofinal in 〈I,⊆∗〉. So there is a
finite set Fm ⊆ zm such that

X2 = {x ∈ X1 : zm \ Fm ⊆ x}
is still cofinal in 〈I,⊆∗〉. We let zm+1 = zm \ Fm and

pm+1 = 〈xm,Xm ∪ {x \ Fm : x ∈ I}〉.
This together with (x) ensures that

(xi) ∀l > m (xl \ xm) ∩ Fm = ∅.
and therefore that

(xii) ∀x ∈ X2 xω \ xn ⊆ x,

where xω =
⋃∞
i=0 xi. This will ensure that if we let

Xω =
( ∞⋃

i=0

Xi

)
∪ {{x ∈ X : xω \ xn ⊆ x} : n ∈ N, X ∈ Xn}

then pω = 〈xω,Xω〉 is a member of P extending pn for all n. Using Lemmas
7 and 8 we can arrange our book-keeping device so that the following two
conditions are also satisfied:

(xiii) For every k, n ∈ N there is m ≥ n such that either

(xm+1 \ xm) ∩ Bk 6= ∅,
or

∀q ≥ pm+1 (xq \ xm) ∩ Bk = ∅.
(xiv) For every k, n ∈ N, for every F ∈ [xn]<ω there is m ≥ n such that

either

∃b ∈ (xm+1 \ xm) ∩ Bk ∀a ∈ F (b · a = 0),
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or

∀q ≥ pm+1 ∀b ∈ (xq \ xm) ∩ Bk ∃a ∈ F (b · a 6= 0).

This finishes our description of the recursive construction. From the facts
pω ∈ P and pω ≥ p0 we conclude that, in particular, xω ∈ I. Applying the
definition of the P-ideal I = IB to the set xω, we conclude that there exists
a maximal cellular family C of B+ such that

(xv) ∀c ∈ C {a ∈ xω : c ∧ a > 0} is finite.

Applying Lemma 6 to pω and C, we find an extension q ≥ pω such that
xq \ xω contains a member b0 which refines some member of the cellular
family C. Fix k0 ∈ N such that b0 ∈ Bk0 . From (xiii), we infer that

(xvi) ∃∞m (xm+1 \ xm) ∩ Bk0 6= ∅.
By (xv) we can find an integer m such that

(xvii) ∀m > m ∀a ∈ (xm \ xm) (b0 · a = 0).

Pick m0 > m for which we can find a0 ∈ xm0+1 \ xm0 belonging to Bk0

(see (xvi)). Applying (xiv) to k = k0, n = m0 + 1 and F = {a0} and
noticing (see (xvii)) that the second alternative fails, we get m1 ≥ m0 + 1
and a1 ∈ (xm1+1 \ xm1) ∩ Bk0 such that a0 · a1 = 0. Applying (xvii) again,
we get

(xviii) ∀a ∈ {a0, a1} (b0 · a = 0).

Applying (xiv) again but now for k = k0, n = m1 + 1 and F = {a0, a1}, we
get an m2 > m1 satisfying one of its two alternatives, the second of which
contradicts (xviii). This gives us an a2 ∈ (xm2+1 \ xm2) ∩ Bk0 such that

a2 · a0 = 0 = a2 · a1,

so one can continue by applying (xiv) to k = k0, n = m2 + 1 and F =
{a0, a1, a2}, and so on. It is therefore clear that we can continue this proce-
dure indefinitely and produce an infinite cellular family

{a0, a1, a2, . . .} ⊆ Bk0

completing the task put forward at the beginning of this section. As indi-
cated in the same place the completion of this task finishes the proof of
Theorem 1.
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