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Hopf algebras and dendriform structures

arising from parking functions

by

Jean-Christophe Novelli and Jean-Yves Thibon (Marne-la-Vallée)

Abstract. We introduce a graded Hopf algebra based on the set of parking functions
(hence of dimension (n + 1)n−1 in degree n). This algebra can be embedded into a non-
commutative polynomial algebra in infinitely many variables. We determine its structure,
and show that it admits natural quotients and subalgebras whose graded components
have dimensions respectively given by the Schröder numbers (plane trees), the Catalan
numbers, and powers of 3. These smaller algebras are always bialgebras and belong to
some family of di- or trialgebras occurring in the works of Loday and Ronco.

Moreover, the fundamental notion of parkization allows one to endow the set of parking
functions of fixed length with an associative multiplication (different from the one coming
from the Shi arrangement), leading to a generalization of the internal product of symmetric
functions. Several of the intermediate algebras are stable under this operation. Among
them, one finds the Solomon descent algebra but also a new algebra based on a Catalan
set, admitting the Solomon algebra as a left ideal.
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4. The Schröder quasi-symmetric Hopf algebra SQSym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1. Hypoplactic classes of parking functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
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1. INTRODUCTION

Many examples of graded Hopf algebras based on combinatorial struc-
tures occur in apparently remote contexts. One of them is the theory of
operads. It is quite common there that, in a given operad, the free algebra
on one generator admits a Hopf structure [15]. This structure often has an
elegant combinatorial description, the best known example being the free
dendriform algebra on one generator, also known as the Loday–Ronco Hopf
algebra of planar binary trees [21, 12], denoted here by PBT.

On the other hand, such Hopf algebras also occur in the theory of non-
commutative symmetric functions [7], for which a central problem is to un-
derstand complicated commutative formulas by means of simpler noncom-
mutative analogues. It has been found over the years that such an under-
standing required the introduction of larger and larger Hopf algebras, based
on more and more complex combinatorial objects. For such algebras to be
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useful in this context, it is necessary that their elements can be realized as
polynomials in some auxiliary infinite set of variables (commutative or not),
so as to recover ordinary symmetric functions after a chain of standard ma-
nipulations (such as imposing commutation relations among the variables
or taking sums to reestablish complete symmetry). The best illustration of
this approach is provided by the algebra FQSym of free quasi-symmetric
functions [4]. This is an algebra of noncommutative polynomials Fσ(A) la-
belled by permutations. It contains a subalgebra FSym spanned by free
Schur functions St(A), labelled by standard Young tableaux. This observa-
tion essentially amounts to a one-line proof of the Littlewood–Richardson
rule. Abstractly, however, FQSym and FSym are isomophic to the Hopf
algebras previously introduced by Malvenuto and Reutenauer in [24] and by
Poirier and Reutenauer in [32], and it is the polynomial realization which
allows such a direct application to symmetric functions.

Interestingly, it is the very same realization which allowed a new under-
standing of PBT [12]. It could be put on the same footing as FSym, using
the sylvester correspondence instead of Robinson–Schensted’s, so that both
algebras appear now as special cases of a general construction.

The aim of the present article is to introduce a new extension of FQSym,
that is, a larger Hopf algebra built from the same principles, but leaving
enough room to accomodate several new combinatorial Hopf algebras.

It turns out that most of the Hopf algebras arising in the process also
have an operadic interpretation, in general as some kind of trialgebra or
dialgebra [19, 22], thus providing polynomial realizations of those as well.

Our master algebra, denoted by PQSym, for parking quasi-symmetric

functions, is built on the set of parking functions, a special family of words
which can in many respects be regarded as natural generalizations of permu-
tations. Geometrically, permutations correspond to chambers of the Coxeter
arrangement of type An−1, while parking functions label those of the Shi ar-
rangement [2]. But this is not the only possible explanation (see, e.g., [20]),
and our choice was rather dictated by elementary combinatorial considera-
tions (see Appendix).

Our first task will be to elucidate the structure of PQSym. It will be
shown that it is free, cofree, and actually self-dual, with a free primitive
Lie algebra. This will be done by means of Foissy’s theory of bidendriform
bialgebras [6]. Next, we shall determine explicit generators and multiplica-
tive bases of PQSym and PQSym∗. Then come the realizations, given by
simple and explicit noncommutative polynomials for the natural basis of
PQSym∗, and in terms of integer matrices, reminiscent of the construction
of MQSym [4], for the natural basis of PQSym itself. After that, we shall
start the investigation of smaller Hopf algebras arising from PQSym by
natural processes.
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Recall that the dimension of PQSym in degree n is (n + 1)n−1. We
shall show that it admits natural quotients and subalgebras whose graded
components have dimensions respectively given by the Schröder numbers
(plane trees), the Catalan numbers, powers of 3 and powers of 2. Most of
those turn out to be related to the theory of operads, and to belong to some
family of di- or trialgebras occurring in the works of Loday and Ronco. We
shall in particular recover the free dendriform trialgebra (also known as the
free tridendriform algebra) on one generator (Schröder numbers) and the
free cubical trialgebra. Similarly, we obtain a cocommutative Hopf algebra
based on a Catalan set, which is isomorphic to the free dendriform dialgebra
on one generator as an algebra, but not as a coalgebra.

Moreover, the fundamental notion of parkization of a word, which is
needed from the beginning, allows one to endow the set of parking func-
tions of fixed length with an associative multiplication (different from the
one coming from their interpretation as chambers of the Shi arrangement),
leading to a generalization of the internal product of symmetric functions.
Several of the intermediate algebras are stable under this operation. Among
them, one finds the Solomon descent algebra and the Solomon–Tits alge-
bra, but also a new algebra based on a Catalan set, admitting the Solomon
algebra as a left ideal.

This paper is structured as follows: the preliminaries present some nec-
essary background about parking functions and dendriform structures and
give a realization of the free dendriform trialgebra on one generator in terms
of noncommutative polynomials. In Section 3, we present our principal al-
gebra PQSym, and investigate its most important features, mostly relying
upon its bidendriform bialgebra structure. We then move to a subalgebra
SQSym of PQSym, whose Hilbert series is given by the little Schröder
numbers, and prove in particular that it is isomorphic to the free dendri-
form trialgebra on one generator (Section 4). In Section 5, we study another
subalgebra CQSym of PQSym whose Hilbert series is given by the Catalan
numbers, show that it is cocommutative, that it is stable under the internal
product of PQSym and that its dual is a natural generalization of QSym. In
Section 6, we present SCQSym, a quotient of SQSym whose Hilbert series
is given by powers of 3, and show in particular that it is isomorphic to the
free cubical trialgebra on one generator. Finally, the Appendix presents how
the construction of PQSym arose from considerations about free probabil-
ity and an exercise proposed by Kerov in 1995. Most of these results were
announced in [27].

Acknowledgements. This project has been partially supported by
CNRS and by EC’s IHRP Programme, grant HPRN-CT-2001-00272, “Al-
gebraic Combinatorics in Europe”. The authors would also like to thank
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binat package, for providing the development environment for this research
(see [14] for an introduction to MuPAD-Combinat).

2. PRELIMINARIES

2.1. Notations. Our notations for ordinary symmetric functions will
be those of [23]. Other undefined notations can be found in [7, 4], although
the essential ones will be recalled when needed.

2.1.1. To start with, we shall need the following two operations on words.
For a word w on the alphabet {1, 2, . . .}, denote by w[k] the word ob-

tained by replacing each letter i by the integer i + k. If u and v are two
words, with u of length k, one defines the shifted concatenation

(1) u • v = u · (v[k])

and the shifted shuffle

(2) u ⋒ v = u (v[k]).

where is the usual shuffle product on words defined recursively by

(3) (au) (bv) = a · (u (bv)) + b · ((au) v),

with u ǫ = ǫ u = u if ǫ is the empty word.
It is immediate to see that the set of permutations is closed under both

operations. The subalgebra spanned by those elements is isomorphic to the
convolution algebra of symmetric groups [24] or to free quasi-symmetric
functions [4], whose definition is recalled below.

2.1.2. Let A be a totally ordered alphabet. We denote by K a field of
characteristic 0, and by K〈A〉 the free associative algebra over A when A
is finite, and the projective limit proj limB K〈B〉, where B runs over finite
subsets of A, when A is infinite, which will be generally assumed in the
following.

Given a totally ordered alphabet A, the evaluation vector Ev(w) of a
word w is the sequence of the numbers of occurrences of all the elements
of A in w.

Recall that the standardization Std(w) of a word w ∈ A∗ is the permu-
tation obtained by iteratively scanning w from left to right, and labelling
1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences
of the next one, and so on. Alternatively, σ = Std(w)−1 can be characterized
as the unique permutation of minimal length such that wσ is a nondecreas-
ing word. For example, Std(bbacab) = 341625.

This characterizes completely the sequences of transpositions effected by
the bubble sort algorithm on w. An elementary observation, which is at the
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basis of the constructions of [4], is that the noncommutative polynomials

(4) Gσ(A) =
∑

w∈A∗; Std(w)=σ

w,

where σ runs over the set of all permutations, form a basis of a subalgebra
of K〈A〉. Moreover, if A is infinite, this subalgebra admits a natural Hopf
algebra structure. This is FQSym, the algebra of free quasi-symmetric func-

tions.
Let Fσ = Gσ−1 . The coproduct is defined by

(5) ∆Fσ =
∑

u·v=σ

FStd(u) ⊗ FStd(v),

where u · v means concatenation. The scalar product is defined by

(6) 〈Fσ,Gτ 〉 = δσ,τ ,

where δ is the Kronecker symbol, and then for all F, G, H ∈ FQSym one
has

(7) 〈FG, H〉 = 〈F ⊗ G, ∆H〉.
The product formula in the F basis is

(8) FαFβ =
∑

γ∈α⋒β

Fγ .

The sum of the inverses of the permutations occurring in α−1
⋒β−1 is called

convolution and denoted by α ∗ β [33, 24].

2.1.3. A general process for constructing interesting subalgebras of
FQSym is to take sums of the form

(9) Px(A) =
∑

P(σ)=x

Fσ,

where P is the left symbol of some Robinson–Schensted type correspon-
dence. If we take the original Robinson–Schensted map, we obtain FSym,
the algebra of free symmetric functions [4]. If we take the sylvester congru-
ence [12], we obtain PBT, the Loday–Ronco algebra of planar binary trees.
Finally, if we take the hypoplactic correspondence [17], we obtain Sym, the
algebra of noncommutative symmetric functions. The dual Hopf algebras are
obtained in each case by imposing the corresponding congruence (plactic,
sylvester, hypoplactic) on A∗.

2.2. Parking functions. In the following, we shall see that it is possible
to replace permutations by parking functions in all these constructions. It
will become obvious that the set of parking functions is stable under shifted
concatenation and shifted shuffle, and many other classes of words share this
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property. The point is that for parking functions, the resulting algebra has
a natural Hopf structure, and that it is again possible to find a polynomial
realization. Moreover, an interesting internal product can be defined.

2.2.1. A parking function is a word a = a1 · · · an of length n on the
alphabet [n] = {1, . . . , n} whose nondecreasing rearrangement a↑ = a′1 · · · a′n
satisfies a′i ≤ i for all i. Let PFn be the set of such words.

For example, PF1 = {1}, PF2 = {11, 12, 21}, and

PF3 = {111, 112, 121, 211, 113, 131, 311, 122, 212, 221,(10)

123, 132, 213, 231, 312, 321}.

2.2.2. It is well known that |PFn| = (n + 1)n−1, and that the per-
mutation representation of Sn naturally supported by PFn has Frobenius
characteristic (see [10])

(11) (−1)nω(h∗
n)

where f 7→ f∗ is the involution on symmetric functions defined on the
generators hn as follows (see [23, Ex. 24, p. 35]). If we set H(t) :=

∑

n≥0 hntn

and H∗(u) :=
∑

n≥0 h∗
nun, then

(12) u = tH(t) ⇔ t = uH∗(u).

Each nondecreasing parking function generates a sub-permutation repre-
sentation of PFn. It is easy to see that the number of nondecreasing parking
functions of length n is the Catalan number Cn = 1

n+1

(

2n
n

)

.

2.2.3. Prime parking functions. This important notion has been intro-
duced by Gessel in 1997 (see [37]). Given a parking function of length n, one
says that b ∈ {0, 1, . . . , n} is a breakpoint of a if |{i | ai ≤ b}| = b. For ex-
ample, the parking function 112256679 has the five breakpoints {0, 4, 5, 8, 9}.
Then a ∈ PFn is said to be prime if its only breakpoints are the trivial ones:
0 and n. Let PPFn ⊂ PFn be the set of prime parking functions on [n]. For
example,

(13) PPF1 = {1}, PPF2 = {11}, PPF3 = {111, 112, 121, 211}.
It can easily be shown that |PPFn| = (n− 1)n−1 for n ≥ 2 (see [37, 16] and
Section 5.5). The number of nondecreasing prime parking functions of length
n is the shifted Catalan number Cn−1: they are obtained by concatenating
a 1 to the left of all nondecreasing parking functions of length n − 1.

As already mentioned, it is immediate to see that the set of all parking
functions is closed under shifted concatenation and shifted shuffle. The prime
parking functions are exactly those that do not occur in any nontrivial
shifted shuffle of parking functions. This observation is at the basis of our
definition of the Hopf algebra of parking functions (see Section 3).



196 J.-C. Novelli and J.-Y. Thibon

2.2.4. The module of prime parking functions. Parking functions can be
classified according to the factorization of their nondecreasing reorderings
a↑ with respect to the operation of shifted concatenation. That is, if

(14) a↑ = w1 • · · · • wr

is the unique maximal factorization of a↑, each wi is a nondecreasing prime
parking function. Define ik = |wk| and let I = (i1, . . . , ir). We shall say that
a is of type I and denote by PPFI the set of parking functions of type I.
For example, the parking function 966142272 is of type (1, 4, 3, 1) and the
number of parking functions of length 4 of each type is

(4) (31) (13) (22) (211) (121) (112) (1111)

27 16 16 6 12 12 12 24

The set PPFn of prime parking functions of length n is obviously a
sub-permutation representation of PFn. It can be shown that its Frobenius
characteristic is

(15) fn = −ω(e∗n)

(see the Appendix for a direct proof). One can also obtain it as follows.

The set PPFI of parking functions of type I is a sub-permutation rep-
resentation of PFn, and its Frobenius characteristic is

(16) ch(PPFI) = fi1 . . . fir ,

since it is induced from the permutation representation of the Young sub-
group SI on the Cartesian product PPFi1 × · · · × PPFir . Now, PFn =
⊔

I�n PPFI , so that

(17) gn =
∑

I�n

fi1 . . . fir ,

which amounts to

(18) g :=
∑

n≥0

gn = (1 − f)−1 where f =
∑

n≥1

fn.

Thus, if we know that gn is given by (11), we infer that fn is given by (15),
and conversely. A noncommutative version of these results will be established
in Section 5.5.

2.3. Dendriform dialgebras. A dendriform dialgebra, as defined by
Loday [19], is an associative algebra D whose multiplication ⊙ (it is denoted
by ∗ in the original paper) splits into two binary operations

(19) x ⊙ y = x ≪ y + x ≫ y,
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called left and right, satisfying the following three compatibility relations
for all a, b, and c different from 1 in D:

(a ≪ b) ≪ c = a ≪ (b ⊙ c),(20)

(a ≫ b) ≪ c = a ≫ (b ≪ c),(21)

(a ⊙ b) ≫ c = a ≫ (b ≫ c).(22)

These relations are satisfied by shuffle algebras with ⊙ = and for
x = ua and y = vb (a, b ∈ A),

(23) x ≫ y = (ua v)b, x ≪ y = (u vb)a.

It turns out that the free associative algebra K〈A〉 is also a dendriform
dialgebra. Actually, it is even a dendriform trialgebra, as explained below.

2.4. Dendriform trialgebras. A dendriform trialgebra [22] is an as-
sociative algebra whose multiplication ⊙ splits into three pieces

(24) x ⊙ y = x ≺ y + x ◦ y + x ≻ y,

where ◦ is associative, and

(x ≺ y) ≺ z = x ≺ (y ⊙ z),(25)

(x ≻ y) ≺ z = x ≻ (y ≺ z),(26)

(x ⊙ y) ≻ z = x ≻ (y ≻ z),(27)

(x ≻ y) ◦ z = x ≻ (y ◦ z),(28)

(x ≺ y) ◦ z = x ◦ (y ≻ z),(29)

(x ◦ y) ≺ z = x ◦ (y ≺ z).(30)

Let A = {a1 < a2 < · · · } be an infinite linearly ordered alphabet. Recall
that K〈A〉 is understood as the projective limit of the K〈An〉 where An is
the interval [a1, an] of A. We denote by max(w) the greatest letter occurring
in the word w ∈ A∗.

Definition 2.1. For two nonempty words u, v ∈ A∗, we set

u ≺ v =

{

uv if max(u) > max(v),

0 otherwise,
(31)

u ◦ v =

{

uv if max(u) = max(v),

0 otherwise,
(32)

u ≻ v =

{

uv if max(u) < max(v),

0 otherwise.
(33)

Lemma 2.2. The three operations ≺, ◦, ≻, endow the augmentation ideal

K〈A〉+ with the structure of a dendriform trialgebra.

Proof. A straightforward verification.

Setting ≪ = ≺ and ≫ = ◦ + ≻, we obtain a dendriform dialgebra.
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It is known [22] that the free dendriform trialgebra on one generator,
denoted here by TD, is a free associative algebra with Hilbert series

∑

n≥0

sntn =
1 + t −

√
1 − 6t + t2

4t
(34)

= 1 + t + 3t2 + 11t3 + 45t4 + 197t5 + · · ·
that is, the generating function of the super-Catalan, or little Schröder num-

bers, counting plane trees.

The previous considerations allow us to give a simple polynomial real-
ization of TD. Consider the polynomial

(35) M1 =
∑

i≥1

ai

(the sum of all letters). We can then state:

Theorem 2.3. The sub-trialgebra of K〈A〉+ generated by M1 is free as

a dendriform trialgebra.

We shall need the following construction on words. With any word w
of length n, associate a plane tree T (w) with n + 1 leaves, as follows: if
m = max(w) and if w has exactly k occurrences of m, write

(36) w = v0 m v1 m v2 · · · vk−1 m vk,

where the vi may be empty. Then T (w) is the tree obtained by grafting the
subtrees T (v0), T (v1), . . . , T (vk) (in this order) on a common root, with the
initial condition T (ǫ) = ∅ for the empty word.

For example, the tree associated with 141324431312 is represented in
Figure 1.

4 4 4

1 1 2

1

2

1 3 3 3

Fig. 1. The tree of 141324431312
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Now associate with each plane tree T a polynomial by

(37) MT :=
∑

T (w)=T

w.

These belong to the subtrialgebra generated by M1, since if T has as subtrees
of its root T1, . . . , Tk, one has

(38) MT = MT1
≻ M1 ◦ (MT2

≻ M1) ◦ · · · ◦ (MTk−1
≻ M1) ≺ MTk

.

For example, for the tree T presented in Figure 1, one gets the expression

M1 ≻ M1 ◦ ((M1 ≻ M1 ≺ M1) ≻ M1) ◦M1(39)

≺ (M1 ◦ (M1 ≻ M1) ≺ (M1 ≻ M1)).

Proof of Theorem 2.3. Since it is already known that the dimension of
the free dendriform trialgebra on one generator has dimensions given by the
little Schröder numbers, we just need to show that all terms of the Hilbert
series of this subalgebra are greater than or equal to the terms of (34).
The polynomials MT , being sums over disjoint sets of words, are obviously
linearly independent, whence the result.

Corollary 2.4 ([22]). The free commutative dendriform trialgebra on

one generator is QSym+, the augmentation ideal of quasi-symmetric func-

tions.

Indeed, it is the image of TD under the ring homomorphism mapping
the letters ai to commuting variables xi.

Other applications of this realization of TD will be given in Section 4.

2.5. Bidendriform bialgebras. These have been introduced by Foissy
in [6]. A bidendriform bialgebra is a dendriform dialgebra equipped with a
coproduct that splits into two parts, satisfying the codendriform relations,
obtained by dualizing the dendriform relations, and certain compatibility
properties with the two half-products.

A codendriform coalgebra is a coalgebra C whose coproduct ∆ splits as
∆(c) = ∆(c) + c ⊗ 1 + 1 ⊗ c and ∆ = ∆≪ + ∆≫, such that, for all c in C:

(∆≪ ⊗ Id) ◦ ∆≪(a) = (Id ⊗ ∆) ◦ ∆≪(a),(40)

(∆≫ ⊗ Id) ◦ ∆≪(a) = (Id ⊗ ∆≪) ◦ ∆≫(a),(41)

(∆ ⊗ Id) ◦ ∆≫(a) = (Id ⊗ ∆≫) ◦ ∆≫(a).(42)

The Loday–Ronco algebra of planar binary trees introduced in [21] arises
as the free dendriform dialgebra on one generator. This is moreover a Hopf
algebra, which turns out to be self-dual, so that it is also codendriform.

There is some compatibility between the dendriform and the codendri-
form structures, leading to what has been called by Foissy [6] a bidendriform
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bialgebra. A bidendriform bialgebra is both a dendriform dialgebra and a co-
dendriform coalgebra satisfying the following four compatibility relations

∆≫(a ≫ b) = a′b′≫ ⊗ a′′ ≫ b′′≫ + a′ ⊗ a′′ ≫ b(43)

+ b′≫ ⊗ a ≫ b′′≫ + ab′≫ ⊗ b′′≫ + a ⊗ b,

∆≫(a ≪ b) = a′b′≫ ⊗ a′′ ≪ b′′≫ + a′ ⊗ a′′ ≪ b + b′≫ ⊗ a ≪ b′′≫,(44)

∆≪(a ≫ b) = a′b′≪ ⊗ a′′ ≫ b′′≪ + ab′≪ ⊗ b′′≪ + b′≪ ⊗ a ≫ b′′≪,(45)

∆≪(a ≪ b) = a′b′≪ ⊗ a′′ ≪ b′′≪ + a′b ⊗ a′′ + b′≪ ⊗ a ≪ b′′≪ + b ⊗ a,(46)

where the pairs (x′, x′′) (resp. (x′
≪, x′′

≪) and (x′
≫, x′′

≫)) correspond to all
possible elements occurring in ∆x (resp. ∆≪x and ∆≫x), summation signs
being understood (Sweedler’s notation).

Foissy has shown [6] that a connected bidendriform bialgebra B is always
free as an associative algebra and self-dual as a Hopf algebra. Moreover, its
primitive Lie algebra is free, and as a dendriform dialgebra, B is also free over
the space of totally primitive elements (those annihilated by ∆≪ and ∆≫).

It is also proved in [6] that FQSym is bidendriform, so that it has all
these properties.

3. THE HOPF ALGEBRA OF PARKING FUNCTIONS

3.1. The algebra PQSym. Since permutations are special parking
functions and parking functions are stable under the shifted shuffle, it is
natural to embed the algebra FQSym of free quasi-symmetric functions
of [4] into an algebra spanned by elements Fa (a ∈ PF), with the same
multiplication rule:

(47) Fa′Fa′′ :=
∑

a∈a′⋒a′′

Fa.

We shall call this algebra PQSym (parking quasi-symmetric functions).

For example,

F1F1 = F12 + F21, F1F11 = F122 + F212 + F221,(48)

F1F12 = F123 + F213 + F231, F1F21 = F132 + F312 + F321,(49)

F12F11 = F1233 + F1323 + F1332 + F3123 + F3132 + F3312,(50)

F211F131 = F211464 + F214164 + F214614 + F214641 + F241164(51)

+ F241614 + F241641 + F246114 + F246141 + F246411

+ F421164 + F421614 + F421641 + F426114 + F426141

+ F426411 + F462114 + F462141 + F462411 + F464211.

Recall that the prime parking functions are those that do not occur in
the decomposition of any nontrivial product Fa′Fa′′ .
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3.2. The coalgebra PQSym. There is a coproduct on PQSym which
appears as a natural extension of the coproduct of FQSym. Recall (see
[24, 4]) that if σ is a permutation, then

(52) ∆Fσ =
∑

u·v=σ

FStd(u) ⊗ FStd(v),

where Std denotes the usual notion of standardization of a word.

Given a word w on {1, 2, . . .}, it is possible to define a notion of parkiza-

tion Park(w), a parking function which coincides with Std(w) when w is a
word without repeated letters.

Algorithm 3.1. Input: A word w.

Output: A parking function.

Let n be the length of w. Define

(53) d(w) := min{i | |{wj ≤ i}| < i}.
• If d(w) = n + 1, return w.
• Otherwise, let w′ be the word obtained by decreasing by one the values

of the elements of w greater than d(w). Then return the parkized word
of w′.

The algorithm is correct since d(w) = n + 1 iff w is a parking function
and since w′ is smaller than w in the lexicographic order, it terminates.

For example, the following table displays an execution of the parkization
algorithm: on each line, there is a word w and the value of d(w) and the
next line contains the element w′ as defined in the algorithm.

w d(w)

5 7 3 3 13 1 10 10 4 2

4 6 2 2 12 1 9 9 3 7

4 6 2 2 11 1 8 8 3 7

4 6 2 2 10 1 7 7 3 9

4 6 2 2 9 1 7 7 3 10

We can now define a coproduct on PQSym by

(54) ∆Fa :=
∑

u·v=a

FPark(u) ⊗ FPark(v).

For example,

∆F121 = 1 ⊗ F121 + F1 ⊗ F21 + F12 ⊗ F1 + F121 ⊗ 1,(55)

∆F131 = 1 ⊗ F131 + F1 ⊗ F21 + F12 ⊗ F1 + F131 ⊗ 1,(56)
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∆F3132 = 1 ⊗ F3132 + F1 ⊗ F132 + F21 ⊗ F21(57)

+ F212 ⊗ F1 + F3132 ⊗ 1,

∆F1643165 = 1 ⊗ F1643165 + F1 ⊗ F532154 + F12 ⊗ F32154(58)

+ F132 ⊗ F2143 + F1432 ⊗ F132 + F15431 ⊗ F21

+ F154315 ⊗ F1 + F1643165 ⊗ 1.

Proposition 3.2. The operation defined by (54) is coassociative and is

a morphism for the product. So (PQSym, ·, ∆) is a bialgebra.

Proof. The operation is obviously coassociative since the deconcatena-
tion is coassociative. Consider two words w1 and w2 and a prefix u1 (resp.
u2) of w1 (of w2). Then the set of the parkized words of all prefixes of w1⋒w2

containing only letters of u1 and u2 is equal to u1 ⋒ u2. So ∆ is a morphism
for the product, and hence PQSym is a bialgebra.

3.3. The Hopf algebra PQSym. Since PQSym is endowed with a
bialgebra structure naturally graded by the length of parking functions, one
defines the antipode as the inverse of the identity for the convolution product
and then endows PQSym with a Hopf algebra structure.

The standard formula for the antipode, written in the basis (Fa), reads

(59) ν(Fa) =
∑

r; u1···ur=a; |ui|≥1

(−1)r FPark(u1) · · ·FPark(ur).

For example,

ν(F122) = −F122 + F1F11 + F12F1 − F3
1(60)

= F212 + F221 − F213 − F231 − F321.

3.4. The graded dual PQSym∗. Let Ga = F∗
a ∈ PQSym∗ be the

dual basis of (Fa).

Proposition 3.3. The product on PQSym∗ is given by

(61) Ga′Ga′′ =
∑

a∈a′∗P a′′

Ga,

where the convolution a′∗Pa′′ of two parking functions is defined as

(62) a′∗Pa′′ =
∑

u,v;a=u·v∈PF,Park(u)=a′,Park(v)=a′′

a.

Proof. If 〈 , 〉 denotes the duality bracket, the product on PQSym∗ is
given by

(63) Ga′Ga′′ =
∑

a

〈Ga′ ⊗Ga′′ , ∆Fa〉Ga =
∑

a∈a′∗P a′′

Ga.
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For example,

G1G1 = G11 + G12 + G21,
(64)

G1G11 = G111 + G122 + G211 + G311,

G1G12 = G112 + G113 + G123 + G212 + G213 + G312,(65)

G1G21 = G121 + G131 + G132 + G221 + G231 + G321,(66)

G12G11 = G1211 + G1222 + G1233 + G1311 + G1322(67)

+ G1411 + G1422 + G2311 + G2411 + G3411,

G211G131 = G211131 + G211141 + G211151 + G211161 + G211242(68)

+ G211252 + G211262 + G211353 + G211363 + G211464

+ G322131 + G322141 + G322151 + G322161 + G433141

+ G433151 + G433161 + G433131 + G544131.

When restricted to permutations, the product of G coincides with the
convolution of [33, 24]. Notice also that

(69) Gn
1 =

∑

a∈PFn

Ga.

Proposition 3.4. The coproduct ∆Ga is given by

(70) ∆Ga :=
∑

u,v; a∈u⋒v

Gu ⊗ Gv.

Proof. If 〈 , 〉 denotes the duality bracket, the coproduct on PQSym∗ is
given by

(71) ∆Ga =
∑

a′,a′′

〈Ga,Fa′Fa′′ 〉Ga′ ⊗Ga′′ =
∑

a∈a′⋒a′′

Ga′ ⊗ Ga′′ .

For example,

∆G121 = 1 ⊗ G121 + G121 ⊗ 1,(72)

∆G131 = 1 ⊗ G131 + G11 ⊗ G1 + G131 ⊗ 1,(73)

∆G3132 = 1 ⊗ G3132 + G1 ⊗ G221 + G12 ⊗ G11 + G3132 ⊗ 1(74)

∆G164821657 = 1 ⊗ G164821657 + G121 ⊗ G315324(75)

+ G1421 ⊗G24213 + G14215 ⊗ G1312 + G164821657 ⊗ 1.

There is also a direct way to describe the coproduct of Ga in terms of
breakpoints:

Proposition 3.5. Let a be a parking function of length n. For b in

{0, . . . , n}, define a′(b) and a′′(b) as the restrictions of a to the respective

intervals [1, b] and [b + 1, n]. Then

(76) ∆Ga :=
∑

b

Ga′(b) ⊗ Ga′′(b),

where the sum runs over all breakpoints of a.
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Proof. The term Gu ⊗ Gv appears in ∆Ga iff a belongs to the shifted
shuffle of u and v, so that a has a breakpoint at b = |u|. Then a′(b) = u and
a′′(b) = v.

For example, the breakpoints of 164821657 are {0, 3, 4, 5, 9} so that one
recovers the result of (75).

Let us finally mention that the realization provided in Section 3.8.1 al-
lows us to shed an interesting light on the coproduct and the fact that
PQSym∗ is a Hopf algebra.

3.5. PQSym as a bidendriform bialgebra. In [6], Foissy has proved
that the Hopf algebra FQSym of free quasi-symmetric functions is biden-
driform. A very slight modification of his operations allows us to state:

Theorem 3.6. PQSym∗ is a bidendriform bialgebra with the following

definitions:

Ga′ ≪ Ga′′ =
∑

a=u·v∈a′∗P a′′, |u|=|a′|; max(v)<max(u)

Ga,(77)

Ga′ ≫ Ga′′ =
∑

a=u·v∈a′∗P a′′, |u|=|a′|; max(v)≥max(u)

Ga,(78)

∆≪Ga =
∑

a∈u⋒v; last(a)≤|u|
Gu ⊗ Gv,(79)

∆≫Ga =
∑

a∈u⋒v; last(a)>|u|
Gu ⊗ Gv,(80)

where |u| ≥ 1 and |v| ≥ 1, and last(a) means the last letter of a.

Proof. First, the three defining relations of a dendriform dialgebra are
satisfied. Let us check the first one, for instance. The left side of (20) amounts
to considering the elements w in a∗Pb∗Pc where the last maximum of w
belongs to a. It is the same for the right of (20). The other two relations are
proved in the same way, by checking that they build the words in a∗Pb∗P c

where the last maximum is in b (equation (21)) or in c (equation (22)).
The three defining relations of a codendriform coalgebra are also satisfied

since they amount to splitting the set of parking functions indexing the
elements of (∆⊗ Id)◦∆(Ga) according to the element of the tensor product
containing the last letter of a.

Since the sum of the four compatibility relations is equivalent to the
coassociativity of ∆, it is sufficient to check any three of them. We will only
prove the first one (more complicated than the second and third one) in
detail, the other ones being proved in the same way.

Till the end of this proof we will identify any function Ga with its index a.
Let a and b be two parking functions of length p and q. For any word w
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of length p + q, let m1 = min(w1 . . . wp), m2 = min(wp+1 . . . wp+q), M1 =
max(w1 . . . wp), M2 = max(wp+1 . . . wp+q).

Let i be any integer and split into two groups and six subgroups the
parking functions indexing the terms in Ga ≫Gb having a breakpoint at i
according to the criterions:

• (M1 ≤ i), or (M1 > i and m1 ≤ i), or (m1 > i),
• (m2 ≤ i) or (m2 > i).

Apply ∆≫ to the first group and let S1 be the sum of the elements
Gu ⊗ Gv such that u is of length i. Since M1 ≤ i and m2 ≤ i, the first
p letters of all words are in u, whereas the others are both in u and v
(by hypothesis, the last one is in v). Note that the positions of the letters
belonging to the right factor of the tensor product are independent of the
element of the first group and are the positions of the p+q−i greatest letters
of b. Moreover, there exists a breakpoint of b separating those letters from
the other ones. Since the last letter of any word of the first group goes to
the right factor of the tensor product and comes from the last letter of b,
we then deduce that the right factor of S1 is built with all b′′

≫ of length
p + q − i, using Sweedler’s notations. Finally, in the left factor, we find all
the elements of the form a ⋒ b′

≫, since they correspond to the restriction of
all words of a ≫ b to letters smaller than i. Finally, summing up over all
possible i, we see that the sum of all the elements of all the first groups is
GaGb′

≫
⊗ Gb′′

≫
, that is, the fourth term of the right-hand side of (43).

In the same way, one proves that the second group, corresponding to
M1 ≤ i, and m2 > i, gives the term a ⊗ b of (43). The third group, corre-
sponding to M1 > i, m1 ≤ i, and m2 ≤ i gives the term a′b′

≫ ⊗ a′′ ≫ b′′
≫

of (43). The fourth group, corresponding to M1 > i, m1 ≤ i, and m2 > i
gives the term a′⊗a′′≫b of (43). The fifth group, corresponding to m1 > i
and m2 ≤ i, gives the term b′

≫ ⊗ a ≫ b′′
≫ of (43). The sixth group, corre-

sponding to m1 > i and m2 > i, gives no term since we would have |u| = 0,
which is impossible.

For example,

G12 ≪ G212 = G13212 + G14212 + G14313 + G14323 + G15212(81)

+ G15313 + G15323 + G24313 + G24212 + G34212

+ G23212 + G25212 + G25313 + G35212 + G45212,

G12 ≫ G212 = G12212 + G12313 + G12323 + G12414 + G12424(82)

+ G12434 + G13313 + G13323 + G13414 + G13424

+ G23313 + G23414,

∆≪G1252754 = G125254 ⊗ G1 + G1224 ⊗ G131,(83)

∆≫G1252754 = G122 ⊗G2421 + G1 ⊗ G141643.(84)
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The duality of bidendriform bialgebras implies that the bidendriform
relations for PQSym are

Fa′ ≪ Fa′′ =
∑

a∈a′⋒a′′; last(a)≤|a′|
Fa,(85)

Fa′ ≫ Fa′′ =
∑

a∈a′⋒a′′; last(a)>|a′|
Fa,(86)

∆≪Fa =
∑

u·v=a;max(v)<max(u)

FPark(u) ⊗ FPark(v),(87)

∆≫Fa =
∑

u·v=a;max(v)≥max(u)

FPark(u) ⊗ FPark(v),(88)

where the sums inside the coproducts range over nontrivial deconcatena-
tions, that is, |u| ≥ 1 and |v| ≥ 1.

We then have the following consequences of the results of Foissy [6].

Corollary 3.7. PQSym is a self-dual Hopf algebra.

Corollary 3.8. The Lie algebra of primitive elements of PQSym is a

free Lie algebra (its generators are not explicitly known).

Let

(89) PF (t) = 1 +
∑

n≥1

(n + 1)n−1tn.

Corollary 3.9. PQSym is free as a dendriform dialgebra on its totally

primitive elements whose degree generating series is

TP (t) :=
PF (t) − 1

PF (t)2
(90)

= t + t2 + 7 t3 + 66 t4 + 786 t5 + 11 278 t6 + 189 391 t7

+ 3648 711 t8 + 79 447 316 t9 + O(t10).

For example, F1 and G1 are totally primitive and so are F12 − F11

and G11. Here are bases of the seven-dimensional space of totally primitive
elements of PQSym and PQSym∗ in degree 3:

F123 − F122 − F112 + F111, F311 − F211, F113 − F112,

F131 − F121, F132 − F131, F231 − F121, F213 − F212;
(91)

G122 − G212, G131 − G311, G312 −G132,

G111, G112, G121, G211.
(92)

Thanks to the bidendriform structure of PQSym, we know that
PQSym and PQSym∗ are isomorphic as bidendriform bialgebras and hence
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isomorphic as Hopf algebras. We do not know an explicit isomorphism, but
restricting to FQSym, that is, permutations, the linear map ϕ defined by

(93) ϕ(Fσ) :=
∑

a, Std(a)=σ−1

Ga,

is a bidendriform and hence a Hopf embedding, compatible with the usual
realization of FQSym [4].

3.6. Free generators and multiplicative bases. Let us say that a
word w over N

∗ is connected if it cannot be written as a shifted concatenation
w = u • v, and anti-connected if its mirror image w is connected.

Proposition 3.10. PQSym is free over the set

(94) {Fc | c ∈ PF, c connected}
and PQSym∗ is free over the set

(95) {Gd | d ∈ PF, d anti-connected}.
Proof. Clearly, any word w has a unique maximal factorization into con-

nected words, w = w1 • · · · • wk where all wi are connected. Moreover, the
lexicographically minimal word in w1 ⋒ · · · ⋒ wk is w so that the matrix
expressing all products of F indexed by connected words is triangular over
the basis Fa, with ones on the diagonal. The proof is exactly the same for
the G.

The ordinary generating function for the numbers cn of connected park-
ing functions is

(96)
∑

n≥1

cntn = 1 − PF (t)−1

= t + 2 t2 + 11 t3 + 92 t4 + 1014 t5 + 13 795 t6 + 223 061 t7

+ 4180 785 t8 + 89 191 196 t9 + 2135 610 879 t10

+ 56 749 806 356 t11 + 1658 094 051 392 t12 + O(t13).

Let a = a1 • · · · • ar be the maximal factorization of a into connected
parking functions. We set

Fa = Fa1
· · ·Far ,(97)

Ga = Gar · · ·Ga1
.(98)

Proposition 3.11. The basis (Fa) of PQSym and the basis (Ga) of

PQSym∗ are both multiplicative.

Proof. This follows from the proof of Proposition 3.10.
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Now, if Sa (resp. Ta) is the dual basis of Fa (resp. Ga) then

(99) {Sc | c connected} and {Tc | c connected}
are bases of the primitive Lie algebras LPQ∗ (resp. LPQ) of PQSym∗

(resp. PQSym).

Thanks again to [6], we know that both Lie algebras are free, on gener-
ators whose degree generating series is

(100) 1 −
∏

n≥1

(1 − tn)cn = 1 − (1 − t)(1 − t2)2(1 − t3)11 · · ·

= t + 2 t2 + 9 t3 + 80 t4 + 901 t5 + 12 564 t6 + 206 476 t7

+ 3918 025 t8 + 84 365 187 t9 + 2034 559 143 t10 + O(t11).

3.7. PQSym∗ as a combinatorial Hopf algebra. Since FQSym can
be embedded in PQSym, we have a canonical Hopf embedding of Sym in
PQSym given by

(101) Sn 7→ F12···n.

With parking functions, we have other possibilities: for example,

(102) j(Sn) := F11···1

is a Hopf embedding, whose dual j∗ maps PQSym∗ to QSym and therefore
endows PQSym∗ with a different structure of combinatorial Hopf algebra
in the sense of [1].

On the dual side, we have a Hopf embedding

(103) Sn 7→
∑

Std(a)=12···n
Ga

of Sym into PQSym∗, given by the restriction of the self-duality isomor-
phism of (93) to the Sym subalgebra Sn = F12···n of PQSym. Its transpose
gives a Hopf epimorphism η : PQSym → QSym, which maps Fa to FI ,
where I is the descent composition of the word a.

3.8. Realizations of PQSym∗ and PQSym

3.8.1. Realization of PQSym∗. The algebra PQSym∗(A) admits a
simple realization in terms of noncommutative polynomials [28], which is
similar to the construction of FQSym. If A is a totally ordered infinite
alphabet, one can set

(104) Ga(A) :=
∑

w∈A∗, Park(w)=a

w.
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Theorem 3.12 ([28]). These polynomials satisfy (61) and allow writing

the coproduct as ∆Ga = Ga(A
′ +̂ A′′) where A′ +̂ A′′ denotes the ordered

sum of two mutually commuting alphabets isomorphic to A as ordered sets.

Let us recall the precise way to introduce a coproduct on an algebra real-
ized on words under certain conditions. Start with A′ and A′′, two mutually
commuting alphabets isomorphic to A as ordered sets. Then build their or-
dered sum A′ +̂ A′′ and compute Ga(A

′ +̂ A′′) separating inside each term
what belongs to A′ and what belongs to A′′. Assume that one can write, for
all parking functions a,

(105) Ga(A
′ +̂ A′′) =

∑

a′,a′′

Ga′(A′)Ga′′(A′′),

where the sum is taken over a set of pairs of parking functions depending
on a. Then the operation

(106) ∆Ga :=
∑

a′,a′′

Ga′ ⊗Ga′′ ,

where the sum is taken over the same set as before, is a coproduct.

For example, G121 =
∑

i aiai+1ai, so that

(107) G121(A
′ +̂ A′′) = G121(A

′) + G121(A
′′),

since ai ∈ A′ is equivalent to ai+1 ∈ A′ by definition of the ordered sum of
alphabets. One then recovers the results of (72).

Now, G131 =
∑

i,j; j>i+1 aiajai, so that

(108) G131(A
′ +̂ A′′) = G131(A

′) + G11(A
′)G1(A

′′) + G121(A
′′),

since ai and aj can belong to A (first term), or ai belongs to A′ and aj

belongs to A′′ (second term), or ai and aj belong to A′′ (third term). One
then recovers the results of (73).

3.8.2. Realization of PQSym. Although PQSym and PQSym∗ are
isomorphic as Hopf algebras, no explicit isomorphism is known. We can
nevertheless propose a realization of PQSym in terms of (0, 1)-matrices
instead of words.

This construction is reminiscent of the construction of MQSym (see
[11, 4]), and coincides with it when restricted to permutation matrices, pro-
viding the natural embedding of FQSym in MQSym.

Let Mn be the vector space spanned by symbols XM where M runs
over (0, 1)-matrices with n columns and an infinite number of rows, with n
nonzero entries, so that at most n rows are nonzero.

Given such a matrix M , we define its vertical packing vp(M) as the finite
matrix obtained by removing the null rows of M .
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For a vertically packed matrix P , we define

(109) MP =
∑

vp(M)=P

XM .

Now, given a (0, 1)-matrix, we define its reading r(M) as the word ob-
tained by reading its entries row-wise, from left to right and from top to
bottom and recording the numbers of the columns of the ones. For example,
the reading of the matrix

(110)







0 1 1 0

1 0 0 0

0 1 0 0







is (2, 3, 1, 2).

A matrix M is said to be of parking type if r(M) is a parking function.
Finally, for a parking function a, we set

(111) Fa :=
∑

r(P )=a, P vertically packed

MP =
∑

r(M)=a

XM .

For example,

(112) F(1,2,2) = M(

1 1 0
0 1 0

) + M(

1 0 0
0 1 0
0 1 0

).

The multiplication on M =
⊕

n Mn is defined by columnwise concate-
nation of matrices:

(113) XMXN = XM ·N .

In order to decribe explicitly the product of MP and MQ, we first need
a definition. Let P and Q be two vertically packed matrices with respective
heights p and q. The augmented shuffle of P and Q is defined as follows: let
r be an integer in [max(p, q), p + q]. One inserts zero rows in P and Q in all
possible ways so that the resulting matrices have p + q rows. Let R be the
matrix obtained by concatenation of such pairs of matrices. The augmented
shuffle is the set of such matrices R with nonzero rows. We denote this set
by ⊎(P, Q).

Theorem 3.13. The following formulas hold :

MP MQ =
∑

R∈⊎(P,Q)

MR,(114)

Fa′Fa′′ =
∑

a∈a′ ⋒a′′

Fa,(115)

This is the same as equation (47).
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Proof. Formula (114) comes from the definition of the augmented
shuffle of matrices: any matrix in ⊎(P, Q) appears as a product XM · XN

where vp(M) = P and vp(N) = Q. Conversely, any element in MP MQ

has as vertical packing a matrix whose number of rows is in the interval
[max(p, q), p + q] and whose left part has M as vertical packing and whose
right part has N as vertical packing.

The proof of (115) is almost the same as the previous one if one starts
from the definition Fa =

∑

r(M)=a XM .

Finally, concerning the coproduct, one has first to define the parkiza-
tion Park(M) of a vertically packed matrix M , which consists in iteratively
removing column d(r(M)) until M becomes a parking matrix.

The coproduct of a matrix MP is then defined as

(116) ∆MP =
∑

Q·R=P

MPark(Q) ⊗ MPark(R).

It is then easy to check that

Proposition 3.14. The following formula holds:

(117) ∆Fa =
∑

u·v=a

FPark(u) ⊗ FPark(v).

This is the same as equation (52).

3.8.3. Realization of FQSym. A parking matrix M is said to be a word

matrix if there is exactly one 1 in each column. Then FQSym is the Hopf
subalgebra generated by the parking word matrices.

3.9. PQSym∗ as a dendriform trialgebra. Since we already know
that K〈A〉+ is a dendriform trialgebra (see Definition 2.1 and Lemma 2.2),
and since PQSym∗ can be realized on words, it is a natural question to ask
whether PQSym∗ is a sub-trialgebra of K〈A〉+.

Theorem 3.15. PQSym∗ is a sub-dendriform trialgebra of K〈A〉+ with

the following product rules:

Ga′ ≺ Ga′′ =
∑

a=u·v∈a′∗P a′′, |u|=|a′|;max(v)<max(u)

Ga,(118)

Ga′ ◦Ga′′ =
∑

a=u·v∈a′∗P a′′, |u|=|a′|;max(v)=max(u)

Ga,(119)

Ga′ ≻ Ga′′ =
∑

a=u·v∈a′∗P a′′, |u|=|a′|;max(v)>max(u)

Ga.(120)

Proof. Since PQSym∗ can be realized on words, one only needs to check
that PQSym∗ is stable under all three operations, their compatibility com-
ing from the fact that K〈A〉+ is a dendriform trialgebra. Since all words
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having a given parkized word have the same inversions, they have in partic-
ular the same relations between the maximum of any prefix and any suffix of
given lengths. One then derives the product rules from direct calculation.

For example, with the notations of Definition 2.1:

G12 ≺ G212 = G13212 + G14212 + G14313 + G14323 + G15212(121)

+ G15313 + G15323 + G24313 + G24212 + G34212

+ G23212 + G25212 + G25313 + G35212 + G45212,

G12 ◦ G212 = G12212 + G13313 + G13323 + G23313,(122)

G12 ≻ G212 = G12313 + G12323 + G12414 + G12424(123)

+ G12434 + G13414 + G13424 + G23414.

Based on numerical evidence, we conjecture the following result:

Conjecture 3.16. PQSym∗ is a free dendriform trialgebra.

Recall that the generating series F (t) for the dimensions of the free
dendriform trialgebra satisfies

(124) F (t) − 1 = t(2F (t)2 − F (t)).

Applying the same trick as in [6] for computing the generating series of the
totally primitive elements, one gets the generating series of the number gn

of generators in degree n of PQSym∗ as a free dendriform trialgebra:

∑

n≥0

gntn =
PF (t) − 1

2PF (t)2 − PF (t)
(125)

= t + 5 t3 + 50 t4 + 634 t5 + 9475 t6 + 163 843 t7

+ 3226 213 t8 + 71 430 404 t9 + O(t10).

By self-duality of PQSym, one can endow PQSym with a structure of
dendriform trialgebra.

Note that FQSym is not a sub-dendriform trialgebra of K〈A〉+ since
the product is not internal and that, independently of the realization, it
cannot be a free dendriform trialgebra since the substitution F (t) =

∑

n n!tn

in (125) does not yield a series with nonnegative integer coefficients.

3.10. The internal product. We shall now recall the definition of the
internal product of PQSym, introduced in [28]. We first need a few standard
notations about biwords. Let xij =

(

i
j

)

be commuting indeterminates, and

aij =
[

i
j

]

be noncommuting ones. We shall denote by
(

i1 ··· ir
j1 ··· jr

)

the monomial
(

i1
j1

)

· · ·
(

i1
j1

)

and by
[

i1 ··· ir
j1 ··· jr

]

the word
[

i1
j1

]

· · ·
[

i1
j1

]

. Such expressions will be

referred to respectively as bimonomials and biwords.
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Recall that Gessel constructed the descent algebra by extending to QSym

the coproduct dual to the internal product of symmetric functions. That is, if
X and Y are two totally and isomorphically ordered alphabets of commuting
variables, we can identify a tensor product f⊗g of quasi-symmetric functions
with f(X)g(Y ). Denoting by XY the Cartesian product X × Y endowed
with the lexicographic order, Gessel defined, for f ∈ QSymn,

(126) δ(f) = f(XY ) ∈ QSymn ⊗ QSymn.

The dual operation on Symn is the internal product ∗, for which it is anti-
isomorphic to the descent algebra Σn. This construction can be extended
to PQSym∗. Let A′ and A′′ be two totally and isomorphically ordered
alphabets of noncommuting variables, but such that A′ and A′′ commute
with each other. We denote by A′A′′ the Cartesian product A′×A′′ endowed
with the lexicographic order. This is a total order in which each element
has a successor, so that Ga(A

′A′′) is a well defined polynomial. Identifying
tensor products of words of the same length with words over A′A′′, we have

(127) Ga(A
′A′′) =

∑

Park(u⊗v)=a

u ⊗ v.

For example, writing tensor products as biwords, one has

(128) G4121(A
′A′′) =

∑

a,b,c,d

[

b a a a

d c c + 1 c

]

with b > a, or b = a and d ≥ c + 3.

Theorem 3.17 ([28]). The formula δ(Ga) = Ga(A
′A′′) defines a coas-

sociative coproduct on each homogeneous component PQSym∗
n. Actually ,

(129) δ(Ga) =
∑

Park(a′⊗a′′)=a

Ga′ ⊗ Ga′′ ,

where a′ and a′′ are parking functions. By duality , the formula

(130) Fa′ ∗ Fa′′ = FPark(a′⊗a′′)

defines an associative product on each PQSymn.

Since A is infinite, δ is compatible with the product of PQSym∗.

Example 3.18.

(131) δG4121

= (G2111 + G3111 + G4111) ⊗ (G1232 + G1121 + G2121 + G3121 + G4121)

+ G1111 ⊗ G4121.

Example 3.19.

(132) F211 ∗ F211 = F311, F211 ∗ F112 = F312,
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(133) F211 ∗ F121 = F321, F112 ∗ F312 = F213,

(134) F31143231 ∗ F23571713 = F61385451.

Note that although parking functions can be interpreted as chambers
of the Shi arrangement, our internal product is not induced by the face
semigroup of this arrangement. Indeed, one should obtain in particular an
idempotent semigroup, which is clearly not the case.

The main tool for handling internal products of noncommutative sym-
metric functions is the splitting formula (see [7, Proposition 5.2]). It does
not hold in PQSym, but one can find subalgebras of PQSym larger than
Sym in which it remains true.

3.11. Subalgebras of PQSym. In the following sections, we present
different subalgebras of PQSym, summarized in Figure 2 with the names
of their natural bases:

PQSym (Pa)

SQSym (Pq)
OO

OO

FQSym (Fσ)
kk

kkX
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SCQSym (PI)
OO

OO

CQSym (Pπ)
hh

hhQ

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Fig. 2. Some subalgebras of PQSym

Here a is a parking function, σ is a permutation, q is a parking quasi-
ribbon, I is a composition, and π is a nondecreasing parking function.

4. THE SCHRÖDER QUASI-SYMMETRIC HOPF ALGEBRA SQSym

In Section 2.4, we recalled that the little Schröder numbers build up the
Hilbert series of the free dendriform trialgebra on one generator, TD. We
show in [29] that TD realized on words has a natural structure of biden-
driform bialgebra. In particular, this proves that there is a natural self-dual
Hopf structure on TD.

But parking functions provide another way to find little Schröder num-
bers. Indeed, the number of classes of parking functions of length n under
the hypoplactic congruence is also equal to sn. This construction leads to a
non-self-dual Hopf algebra, denoted by SQSym.
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4.1. Hypoplactic classes of parking functions. Let ≡ denote the
hypoplactic congruence (see [17, 26]). Recall that the equivalence classes
of words under this congruence are parametrized by quasi-ribbon tableaux.
A quasi-ribbon tableau of shape I is a ribbon diagram r of shape I filled by
letters in such a way that each row of r is nondecreasing from left to right,
and each column of r is strictly increasing from top to bottom. A word is
said to be a quasi-ribbon word of shape I if it can be obtained by reading
from bottom to top and from left to right the columns of a quasi-ribbon
diagram of shape I. For example, the word 11425477 is a quasi-ribbon word
since it is the reading of the following quasi-ribbon:

(135)
1 1 2

4 4

5 7 7

The hypoplactic classes of parking functions correspond to parking quasi-

ribbons, that is, quasi-ribbon words that are parking functions. We denote
this set by PQR, and PQRn is the set of quasi-ribbon parking functions of
length n.

We will make use of a simple parametrization of the elements of PQR:
define a segmented word as a finite sequence of nonempty words, separated
by vertical bars, e.g., 232 | 14 | 5 | 746.

The parking quasi-ribbons can be represented as segmented nondecreas-
ing parking functions where the bars only occur at positions · · · a | b · · · , with
a < b. For example, the quasi-ribbon of equation (135) is represented by the
word 112 | 44 | 577.

Clearly, a nondecreasing word containing exactly l different letters ad-
mits 2l−1 segmentations.

On the other hand, the statistic l (the length of the packed evaluation
vector) on nondecreasing parking functions has the same distribution as the
number of blocks in noncrossing partitions through the natural bijection.
This is given by a classical q-Catalan number, cn(q) (see, e.g., [25]) and
finally, the number of canonical packed words of length n is cn(2), which is
known to be equal to the Schröder number sn.

For example, c1(q) = 1, c2(q) = 1 + q and c3(q) = 1 + 3q + q2, so that
c1(2) = 1, c2(2) = 3 and c3(2) = 11 as one can check from (136) and (137).
The coefficients of cn(q) are known as the Narayana numbers (sequence
A001263 of Sloane’s database [34]).

Here is the list of canonical hypoplactic parking functions for n ≥ 3:

{1}, {11, 12, 1 | 2},(136)

{111, 112, 11 | 2, 113, 11 | 3, 122, 1 | 22, 123, 1 | 23, 12 | 3, 1 | 2 | 3}.(137)

In the following, we will identify parking quasi-ribbons and their encod-
ings as segmented words.
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4.2. The Schröder quasi-symmetric Hopf algebra SQSym. Let
us denote by P(w) the hypoplactic P -symbol of a word w (its quasi-ribbon).
The P-symbols of parking functions are therefore parking quasi-ribbons.
With a parking quasi-ribbon q, we associate the elements

(138) Pq :=
∑

P(a)=q

Fa and Qq := Ga,

where w denotes the hypoplactic class of w. For example,

P11|3 = F131 + F311, P113 = F113,(139)

Q11|3 = G131 = G311, Q113 = G113,(140)

Q12|34 = G1324 = G3124 = G1342 = G3142 = G3412.(141)

Theorem 4.1. The Pq form a basis of a Hopf subalgebra of PQSym,
denoted by SQSym. Its dual SQSym∗ is the quotient PQSym∗/J where

J is the two-sided ideal generated by

(142) {Ga −Ga′ | a ≡ a′}.
Moreover , Ga ≡ Ga′ iff a ≡ a′, so that SQSym∗ ≃ PQSym∗/≡. The dual

basis of (Pq) is then (Qq).

The dimension of the component of degree n of SQSym and SQSym∗

is the little Schröder number (or super-Catalan number) sn.

Proof. Let us begin with the elements Ga. Since the hypoplactic equiv-
alence is a congruence:

(143) u ≡ u′ and v ≡ v′ ⇒ uv ≡ u′v′,

these elements build up an algebra that we will denote by SQSym∗. Since
the hypoplactic congruence is compatible with the restriction to intervals,
one easily checks that the coproduct of Ga is compatible with the hypoplac-
tic congruence, so that SQSym∗ is a Hopf algebra.

Recall that two words u and v are hypoplactically equivalent iff they have
the same evaluation and Std(u) and Std(v) are hypoplactically equivalent.
Since two words of the same evaluation have parkized words of the same
evaluation as well, the same result applies if one replaces standardization by
parkization: two words u and v of the same evaluation are hypoplactically
equivalent iff their parkized words are. This proves that

(144) a ≡ a′ ⇔ Ga = Ga′ .

So SQSym∗ is isomorphic to PQSym∗/≡ as a Hopf algebra.

Since the dual basis of Ga in PQSym is Fa, one can write the duality
bracket as

(145) 〈Ga,Fa′〉 = δa,a′ ,
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where δ is the Kronecker symbol. Then the dual basis of Qq = Ga inherited
from the dual Hopf algebras PQSym, PQSym∗ is naturally

∑

a′≡a Fa′ ,
that is, Pq. It then follows without proof that the Pq form a basis of a
Hopf subalgebra of PQSym we will denote by SQSym, as it is the dual of
SQSym∗.

The dimensions are given by the little Schröder numbers since these
numbers count the hypoplactic classes of parking functions.

Theorem 4.2. The product and coproduct rules for the Qq and Pq are:

(146) Qq′Qq′′ =
∑

a∈a′∗P a′′

Qa,

where a′ (resp. a′′) is in the hypoplactic class of q′ (resp. q′′);

∆Qq =
∑

u,v;q=u|v[|u|] or q=u·v[|u|]
Gu ⊗Gv,(147)

Pq′Pq′′ = Pq′|r′′ + Pq′r′′ ,(148)

where r′′ = q′′[|q′|]; and

(149) ∆Pq =
∑

q′,q′′

Pq′ ⊗ Pq′′ ,

where the sum is taken over the hypoplactic classes q′ and q′′ such that their

canonical elements c′ and c′′ can be obtained as parkized words of the prefix

and the suffix of an element of the hypoplactic class q.

Proof. The formulas for the product and coproduct of the Q come from
the formulas of the G in PQSym∗. The formulas for the P are then easily
derived from the previous ones by duality.

For example,

Q1|2Q1 = Q1|23 + Q1|22 + Q12|3 + Q11|3 + Q11|2 + Q1|2|3,(150)

∆Q11|34|55 = 1 ⊗ Q11|34|55 + Q11 ⊗ Q12|33 + Q11|3 ⊗ Q1|22(151)

+ Q11|34 ⊗Q11 + Q11|34|55 ⊗ 1,

(152) P11|335|6P112 = P11|335|6778 + P11|335|6|778,

(153) ∆P11|3 = 1⊗P11|3+P1⊗(P1|2+P11)+(P21+P12)⊗P1+P11|3⊗1.

4.3. SQSym is not self-dual. Some simple computations prove that
SQSym and SQSym∗ are not isomorphic Hopf algebras since the primitive
Lie algebra of SQSym∗ is of dimension 6 in degree 3, spanned by

Q111, Q112, Q11|2, Q122 − Q1|22, Q113 − Q11|3,

Q123 − Q1|23 − Q12|3 + Q1|2|3,
(154)

whereas it is of dimension 7 in SQSym, spanned by
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P123 − P112 −P122 + P111, P1|22 − P11|2 − P112 + P122,

P1|23 −P11|2 − P112 + P111, P12|3 − P11|2 − P112 + P111,

P113 − P112, P11|3 − P11|2, P1|2|3 − P11|2 + P1|22.

(155)

In particular, it is impossible to endow SQSym or SQSym∗ with a
bidendriform bialgebra structure since both would then be self-dual. We
cannot use the machinery of Foissy to investigate the freeness of both alge-
bras and their primitive Lie algebras, but we can do it by hand.

4.4. Algebraic structure of SQSym∗ and SQSym. Since we know
that the primitive Lie algebra of SQSym is of dimension seven in degree 3,
SQSym∗ cannot be free and, indeed, one finds the relation

(156) Q1(Q11 + Q12) = (Q11 + Q12)Q1.

We now move to SQSym. Consider the set PQS of parking quasi-ribbons
that cannot be obtained as a nontrivial shifted concatenation of parking
quasi-ribbons. They are the parking quasi-ribbons having a bar whenever the
underlying nondecreasing parking function has a breakpoint. For example,
here are the elements of PQSn for n ≤ 4.

{1}, {11, 1|2}, {111, 112, 11|2, 11|3, 1|22, 1|2|3},
{1111, 1112, 111|2, 1113, 111|3, 111|4, 1122, 11|22,

1123, 11|23, 112|3, 11|2|3, 112|4, 11|2|4, 11|33,

11|3|4, 1|222, 1|223, 1|22|3, 1|22|4, 1|2|33, 1|2|3|4}.

(157)

Since the elements of PQS are those that never occur in a nontrivial
shifted concatenation of elements of PQR, any element q of PQR decom-
poses uniquely as a shifted product q1 • · · · •qk where all the qk are in PQS.
Define then

(158) Pq = Pq1
· · ·Pqk

.

Proposition 4.3. The Pq form a multiplicative basis of SQSym. In

particular , SQSym is free as an algebra.

Proof. The Pq generate the same algebra as the Pq since they are tri-
angular over the Pq: each term Pq begins with Pq followed by elements of
PQR that are shifted concatenations of strictly lower elements of PQS.

Since SQSym is free, one can compute the generating series of its gen-

erating set. Recall that the generating series of sn is S(t) := 1+t−
√

1−6t+t2

4t
,

so that

(159) U(t) := 1 − 1/S(t) =
1 − t −

√
1 − 6t + t2

2
,

that is, the generating series of large Schröder numbers s′n (A006318 in [34]),
obviously equal to 2sn thanks to the previous formula. So
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Proposition 4.4. The sets PQSn are enumerated by the large Schröder

numbers.

Proof. Even if the algebraic construction has already proved this result,
we provide a bijective proof in order to enlighten the relation between the
large and the little Schröder numbers from the point of view of parking
functions.

We split PQSn in two and provide a bijection between both sets and
PQRn−1, the set of parking quasi-ribbons of length n − 1.

Let PQS′
n be the subset of PQSn consisting of the elements whose under-

lying parking function is prime. The bijection between PQS′
n and PQRn−1

is trivial: it consists in adding or removing 1 at the beginning of the parking
function.

Let PQS′′
n be the complementary subset of PQSn. The bijection is the

following: start from an element of PQRn−1. If it belongs to PQSn−1, then
add a bar and n to its end. Otherwise, let i be the smallest integer greater
than 1 such that i − 1 is a breakpoint and there is no bar before the first i.
Then insert a bar and an i before the first i. This element satisfies the
requirements of PQSn since it can have breakpoints only to the left of i and,
by hypothesis, all those breakpoints are followed by a bar. Moreover, this
element has a breakpoint, so belongs to PQS′′

n. For example, the image of
11|2|455|669 is 11|2|4|55|669, since there is a breakpoint at 4 with no bar
before the first 5.

The reverse bijection consists in considering the rightmost breakpoint i
of the underlying parking function of an element of PQS′′

n and remove i + 1
with the bar before it. The result belongs to PQRn−1 since we removed the
letter just after the rightmost breakpoint.

Finally, it is a bijection between PQS′′
n and PQRn−1 since the operations

are inverse to each other and the image of each set is included in the other.

The next proposition summarizes the structures of the algebras SQSym

and SQSym∗.

Proposition 4.5. The algebra SQSym is a Hopf algebra of dimension

sn in degree n. It is not self-dual since SQSym is free as an algebra whereas

SQSym∗ is not.

4.5. SQSym∗ as a combinatorial Hopf algebra. The embedding
of (93) induces an embedding

(160) QSym ≃ FQSym∗/(J ∩ FQSym∗) → PQSym∗/J = SQSym∗.

In particular, we see that SQSym∗ contains a large commutative subalge-
bra.
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4.6. Primitive Lie algebras of SQSym and SQSym∗. As SQSym∗

contains QSym as a subalgebra, its primitive Lie algebra cannot be free and
one easily finds

(161) [Q1,Q12 −Q1|2 + Q11] = 0.

The first dimensions for the primitive Lie algebra of SQSym are 1, 2, 7,
25, 102, with no relations between those elements in those degrees so that
one can conjecture that it is free as a Lie algebra.

4.7. Schröder ribbons. In the algebra Sym, the products of noncom-
mutative complete functions split into sums of ribbon Schur functions, using
a simple order on compositions. To get an analogous construction in our case,
we define a partial order on segmented nondecreasing parking functions.

Let π be a segmented nondecreasing parking function and Ev(π) be its
segmented evaluation vector, that is, its evaluation vector with separators
between the ith and (i + 1)th element if i and i + 1 are separated by a bar
in π. The successors of π are the segmented nondecreasing parking functions
whose evaluations are given by the following algorithm: given two nonzero
elements of Ev(π) not separated by a bar with only zeros between them,
replace the left one by the sum of both and the right one by 0.

For example, the successors of 11|3346 are 11|3336 and 11|3344.
By transitive closure, the successor map gives rise to a partial order �

on segmented nondecreasing parking functions.
Now, define the Schröder ribbons by

(162) Pq =:
∑

q′�q

Rq′ ,

or, by Möbius inversion on the boolean lattice,

(163) Rq :=
∑

q′�q

(−1)f(q,q′)Pq′ ,

where f(u, v) is the difference between the numbers of different letters in u
and in v.

For example,

P11|34 = R11|34 + R11|33,(164)

P11|3346 = R11|3346 + R11|3336 + R11|3344 + R11|3333,(165)

R11|3346 = P11|3346 − P11|3336 − P11|3344 + P11|3333.(166)

Proposition 4.6. The product of two ribbons is given by

(167) Rq′Rq′′ = Rq′|r′′ + Rq′r′′ + Rq′⊲r′′

where r′′ = q′′[|q′|] and q′ ⊲r′′ is the successor of q′r′′ obtained by decreasing

the smallest letters of r′′ down to the value of the greatest letters of q′.
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Proof. Let p be the length of q′. Let us expand Rq′Rq′′ in the P basis.
One gets an alternating sum of P indexed by the successors of q′r′′ having
different pth and (p + 1)st letters or indexed by the successors of q′|r′. The
second set obviously sums up to Rq′|r′′ . The first set is part of all successors
of q′r′′, the missing set being all successors of q′ ⊲ r′′.

As the sign of an element depends only on its number of different letters,
the result follows.

For example,

R1R1|2 = R1|2|3 + R12|3 + R11|3,(168)

R11|3R113 = R11|3|446 + R11|3446 + R11|3336.(169)

4.8. Dendriform structures on SQSym. Let us now consider the
other structures that can be put on SQSym and SQSym∗. First note that
the product rules of PQSym∗ as a tridendriform algebra are compatible
with the hypoplactic congruence, so that SQSym∗ is a tridendriform alge-
bra. But it is not free since

(170) Q11|2 = G212 = G221,

which can be rewritten as

(171) (Q1 ≻ Q1) ◦Q1 = Q1 ◦ (Q1 ≻Q1),

a relation that is not a consequence of the tridendriform relations.

We already mentioned that SQSym∗ cannot have a bidendriform bial-
gebra structure since it would imply that SQSym∗ is self-dual. In our real-
ization of the bidendriform bialgebra PQSym, the explanation comes from
the fact that the hypoplactic congruence is not compatible with the coden-
driform definitions since, for example,

(172) ∆≪G221 = G1 ⊗ G11 whereas ∆≪G212 = 0.

5. THE CATALAN QUASI-SYMMETRIC HOPF ALGEBRA CQSym

5.1. The Hopf algebra CQSym

5.1.1. Nondecreasing parking functions and noncrossing partitions. As
already mentioned, nondecreasing parking functions form a Catalan set.
There are dozens of possibilities to identify them to other combinatorial
objects. However, parking functions are known to be related to noncrossing
partitions (see [3, 36, 37]), and there is a simple bijection between non-
decreasing parking functions and noncrossing partitions. Starting with a
noncrossing partition, e.g.,

(173) π = 13|2|45,
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one replaces all the letters of each block by its minimum, and reorders them
as a nondecreasing word:

(174) 13|2|45 → 11244,

which is a parking function. In the following, we identify nondecreasing
parking functions and noncrossing partitions via this bijection.

5.1.2. The Catalan Hopf algebra CQSym. For a general a ∈ PFn, let
NC(a) be the noncrossing partition corresponding to a↑ by the inverse bi-
jection, e.g., NC(42141) = π as above.

Then define Pπ as the sum of all permutations of the nondecreasing word
corresponding to the given noncrossing partition:

(175) Pπ :=
∑

a; NC(a)=π

Fa.

Theorem 5.1. The elements Pπ, where π runs over noncrossing parti-

tions, span a cocommutative Hopf subalgebra of PQSym with product and

coproduct given by

Pπ′

Pπ′′

= Pπ′•π′′

,(176)

∆Pπ =
∑

u,v; (u·v)↑=π

PPark(u) ⊗ PPark(v),(177)

where u and v run over the set of nondecreasing words.

Moreover , as an algebra, it is isomorphic to the algebra of the free semi-

group of noncrossing partitions under the operation of concatenation of di-

agrams.

Proof. Equation (176) follows from (47): indeed, any permutation of
π′ •π′′ is uniquely obtained as the shifted shuffle of a permutation of π′ with
a permutation of π′′. The converse is obvious.

Equation (177) comes from (52): consider the relation P (p, q) on words
which are pairs (w, w′) of words w and w′ of length p + q such that the
sorted words of the prefix of length p (resp. suffix of length q) of w and
w′ are equal. By definition of Pπ, it is a sum of such classes, so that ∆Pπ

decomposes as a sum of tensor products of the form Pπ′ ⊗Pπ′′

. The sum on
the right-hand side of (177) is exactly over representatives of the equivalence
classes, hence the result. Formula (177) proves that the coalgebra CQSym

is cocommutative.

Moreover, since CQSym is a subalgebra and a sub-coalgebra of PQSym,
the product and the coproduct of CQSym are compatible, so that CQSym is
endowed with a graded bialgebra structure, and therefore, with a Hopf algebra
structure.
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This algebra will be called the Catalan subalgebra of PQSym and de-
noted by CQSym.

For example, one has

P11P1233 = P113455, P1124P1223 = P11245667,(178)

∆P1124 = 1 ⊗ P1124 + P1 ⊗ (P112 + P113 + P123)(179)

+ P11 ⊗ P12 + P12 ⊗ (P11 + 2P12)

+ (P112 + P113 + P123) ⊗ P1 + P1124 ⊗ 1.

Since the nondecreasing parking functions that never occur in a nontriv-
ial shifted concatenation of such elements are the connected nondecreas-
ing parking functions, any π decomposes uniquely as a shifted product
π1 • · · · • πk where all the πk are connected.

Proposition 5.2. The P form a multiplicative basis of CQSym. In

particular , CQSym is free as an algebra.

Here are the connected nondecreasing parking functions up to length 4:

(180) {1}, {11}, {111, 112}, {1111, 1112, 1113, 1122, 1123}.
Since CQSym is free, one can compute the generating series of its gener-

ating set. Recall that the generating series of Cn is C(t) := (1 −
√

1 − 4t)/2t,
so that

(181) CN(t) := 1 − 1/C(t) = t
1 −

√
1 − 6t + t2

2
,

that is, the generating series of shifted Catalan numbers Cn−1. Indeed, the
connected nondecreasing parking functions are obtained by concatenating a
1 to the left of all nondecreasing parking functions.

5.1.3. Algebraic structure of CQSym. Following Reutenauer [33, p. 58],
denote by π1 the Eulerian idempotent, i.e., the endomorphism of CQSym

defined by π1 = log∗(Id) where log∗ means that the logarithm is taken in
the convolution algebra Endgr(CQSym) of graded endomorphisms. It is
obvious, thanks to the definition of Pπ, that

(182) π1(P
π) = Pπ + · · · ,

where the dots stand for terms Pγ where γ is not connected. So the family
π1(P

α) where α runs over all connected nondecreasing parking functions is
a free set of primitive generators of CQSym. In particular, they generate a
free Lie algebra (see, e.g., [13] for more details) whose Hilbert series is given
by

(183) t + t2 + 3 t3 + 8 t4 + 25 t5 + 75 t6 + 245 t7 + 800 t8 + O(t9).

The sequence is referenced in Sloane’s database as A022553 [34]. It counts
Lyndon words l of even length 2n with an equal number of a and b. So
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the free Lie algebra of primitive elements of CQSym is isomorphic to the
Lie subalgebra L of the free Lie algebra Lie(a, b) consisting of the elements
with an equal number of a and b. One can then prove that the standard
bracketings of the Lyndon words l with the same number of a and b such
that l = l′ · b with l′ also being a Lyndon word generate a free Lie algebra.
Since those particular Lyndon words are enumerated by the shifted Catalan
numbers, one can conclude that they generate L.

5.2. The dual Hopf algebra CQSym∗. Let us denote by Mπ the
dual basis of Pπ in the commutative algebra CQSym∗. Since CQSym is
the subalgebra of PQSym obtained by summing all permutations of non-
decreasing parking functions, CQSym∗ is the quotient of PQSym∗ by the
relations Ga ≡ Gb if a↑ = b↑.

It is then immediate (see (61)) that the multiplication in this basis is
given by

(184) Mπ′Mπ′′ =
∑

a∈π′∗π′′

Ma↑ .

For example,

M1M12 = M112 + M113 + M122 + 3M123,(185)

M12M11 = M1112 + M1113 + M1114 + M1123 + M1124(186)

+ M1134 + M1222 + M1223 + M1224 + M1233.

Theorem 5.3. The algebra CQSym∗ is embedded in the polynomial

algebra C[x1, x2, . . .] by

(187) Mπ =
∑

Park(w)=π

w,

where w is the commutative image of w (i.e., ai 7→ xi).

Proof. The result follows from (104) and from the fact that quotienting
PQSym∗ by the relations Ga ≡ Gb if a↑ = b↑ amounts to taking the
commutative image of words, transforming these into monomials.

For example,

M111 =
∑

i

x3
i ,(188)

M112 =
∑

i

x2
i xi+1,(189)

M113 =
∑

i,j; j≥i+2

x2
i xj ,(190)
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M122 =
∑

i,j; i<j

xix
2
j ,(191)

M123 =
∑

i,j,k; i<j<k

xixjxk.(192)

The packed evaluation vector t(w) of w is obtained from Ev(w) by
removing all its zeros. For example, for w = 3117291781329, Ev(w) =
(4, 2, 2, 0, 0, 0, 2, 1, 2) and t(w) = (4, 2, 2, 2, 1, 2).

We can now see that CQSym∗ contains QSym as a subalgebra. The
embedding of QSym into CQSym∗ is given by

(193) γ(MI) :=
∑

t(π)=I

Mπ.

For example,

M3 = M111, M21 = M112 + M113,

M12 = M122, M111 = M123.
(194)

5.3. Catalan ribbons. As already done for the Schröder algebras, we
define a partial order on nondecreasing parking functions.

Let π be a nondecreasing parking function and Ev(π) be its evaluation
vector. The successors of π are the nondecreasing parking functions whose
evaluations are given by the following algorithm: given two nonzero elements
of Ev(π) with only zeros between them, replace the left one by the sum of
both and the right one by 0.

For example, the successors of 113346 are 111146, 113336, and 113344.

By transitive closure, the successor map gives rise to a partial order on
nondecreasing parking functions. We will write π′ � π if π′ is obtained from
π by successive applications of successor maps.

Now, define the Catalan ribbon functions by

(195) Pπ =:
∑

π′�π

Rπ′ .

This last equation completely defines the Rπ.

For example,

P113346 = R113346 + R113344 + R113336 + R113333(196)

+ R111146 + R111144 + R111116 + R111111,

R113346 = P113346 − P113344 − P113336 + P113333(197)

− P111146 + P111144 + P111116 − P111111.

Note that, by Möbius inversion of the boolean lattice, the coefficient of Pπ′
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in Rπ is −1 to the number of different letters in π minus the number of
different letters in π′.

This definition is compatible with the definition of commutative ribbon
Schur functions since if one considers the morphism

(198) φ : CQSym → Sym, Pπ 7→ Sc(π),

then the image φ(Rπ) is equal to Rc(π).

Proposition 5.4. The product of two R functions is

(199) Rπ′Rπ′′ = Rπ′•π′′ + Rπ′⊲π′′ ,

where π′ ⊲ π′′ is the successor of π′ • π′′ obtained by decreasing the smallest

letters of π′′ down to the greatest letters of π′.

Proof. Let p be the length of π′. Let us expand Rπ′•π′′ in the P basis.
One gets the alternating sum of P indexed by successors of π′ • π′′. Those
successors split into two disjoint subsets: the successors having the pth and
(p + 1)th letters equal and the others. The first set corresponds to the suc-
cessors of π′ ⊲ π′′ whereas the second set corresponds to the w′ • w′′ where
w′ � π′ and w′′ � π′′.

As the sign of an element depends only on its number of different letters,
the alternating sum of the first set gives −Rπ′⊲π′′ , whereas the sum of the
second set yields Rπ′Rπ′′ .

For example,

(200)
R11224R113 = R11224668 + R11224448,

R113R11224 = R11344557 + R11333557.

5.4. Internal product. Define the parkized word of a bimonomial as
the nondecreasing parking function obtained by parkizing its lexicographi-
cally sorted biword. Recall that bimonomials can be encoded as matrices,
the entry Aij being the number of bi-letters (ij) in the biword, so that it
makes sense to speak of the parkized word of a matrix.

Theorem 5.5 ([28]). The homogeneous components CQSymn of the

Catalan algebra are stable under the internal product ∗. More precisely ,

(201) Pπ′ ∗Pπ′′

=
∑

π

Pπ

where π runs over the parkized words of all nonnegative integer matrices

with row sum Ev(π′) and column sum Ev(π′′).
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Example 5.6.

P1123 ∗P1111 = P1134, P1111 ∗ P1123 = P1123,(202)

P1123 ∗P1112 = 2P1134 + P1234,

P1122 ∗P1224 = P1134 + P1233 + 2P1234,
(203)

P1123 ∗P1224 = 2P1134 + 5P1234.(204)

The matrices appearing in the last product are






1 1 . .

. 1 . .

. . . 1






,







1 1 . .

. . . 1

. 1 . .






,







1 . . 1

. 1 . .

. 1 . .






,







. 2 . .

1 . . .

. . . 1













. 2 . .

. . . 1

1 . . .






,







. 1 . 1

1 . . .

. 1 . .






,







. 1 . 1

. 1 . .

1 . . .






,

(205)

the fourth and the fifth matrices having 1134 as parkized word whereas the
other ones yield 1234.

It is interesting to observe that these algebras are nonunital. Indeed,
(201) yields

Corollary 5.7. The element Jn = P(1n) is a left unit for ∗, but not a

right unit.

The description of Pπ′ ∗Pπ′′

in terms of integer matrices being essentially
identical to that of SI ∗ SJ in Sym, the same argument as in [7, proof of
Proposition 5.2] shows that the splitting formula remains valid in CQSymn:

Proposition 5.8. Let µr denote the r-fold product map from CQSym⊗r

to CQSym, ∆r the r-fold coproduct with values in CQSym⊗r, and ∗r the

internal product of the r-fold tensor product of algebras CQSym⊗r. Then,
for f1, . . . , fr, g ∈ CQSym,

(206) (f1 · · · fr) ∗ g = µr[(f1 ⊗ · · · ⊗ fr) ∗r ∆r(g)].

This is indeed the same formula as for internal product of Sym, actually,
an extension of it, since we have

Corollary 5.9. The Hopf subalgebra of CQSym generated by the el-

ements Jn, which is isomorphic to Sym by j : Sn 7→ Jn, is stable under

∗, and thus also ∗-isomophic to Sym. Moreover , the map f 7→ f ∗ Jn is a

projector onto Symn, which is therefore a left ∗-ideal of CQSymn.

More precisely, if i < j < · · · < r are the letters occurring in π, so that
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as a word π = imijmj · · · rmr , then

(207) Pπ ∗ Jn = Jmi
Jmj

· · ·Jmr .

It follows from Theorem 5.5 that the Rπ are the pre-images of the ordi-
nary ribbons under the projection f 7→ f ∗ Jn:

Corollary 5.10. Let I be the composition obtained by discarding the

zeros of the evaluation of a nondecreasing parking function π. Then

(208) Rπ ∗ Jn = j(RI).

More precisely , if I = (i1, . . . , ip), this last element is equal to R1i1•···•1ip ,
that is, the Catalan ribbon indexed by the only nondecreasing word of eval-

uation d(π).

The internal product of CQSym is dual to the coproduct δf = f(XY )
on the commutative algebra CQSym, quotient of PQSym∗. For example,
we have

(209) M113(XY )

= (M112(X) + M113(X))(M111(Y ) + M112(Y ) + M113(Y ) + M122(Y ))

+ M111(X)M113(Y ),

(210) M112(XY ) = M111(X)M112(Y ).

5.4.1. Cauchy kernel. Define the Cauchy kernel by

(211) K(X; A) =
∑

a∈PF

Ga(X)Fa(A) =
∑

π

Mπ(X)Pπ(A).

Proposition 5.11. The kernel K has the reproducing property

(212) K(X; A) ∗ K(Y ; A) = K(XY ; A).

Proof.

〈K(X) ∗ K(Y ),Mπ〉 =
∑

π′,π′′

Mπ′(X)Mπ′′(Y )〈Pπ′ ∗Pπ′′

,Mπ〉(213)

=
∑

π′,π′′

Mπ′(X)Mπ′′(Y )〈Pπ′ ⊗ Pπ′′

, ∆Mπ〉

= ∆Mπ(X, Y ) = Mπ(XY ).

5.5. Compositions, Lagrange inversion, and Hn(0)

5.5.1. Recall that nondecreasing parking functions (or noncrossing par-
titions) can be classified according to the factorization π = π1 • · · · • πr into
irreducible nondecreasing parking functions (or noncrossing partitions). Let
ik := |πk| and c(π) := (i1, . . . , ik), regarded as a composition of n.
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We set

(214) VI :=
∑

c(π)=I

Pπ

considered as an element of PQSym. If one defines Vn = V(n), we have

(215) Vn =
∑

a∈PPFn

Fa

and

(216) VI = Vi1 · · ·Vir =
∑

a∈PPFI

Fa.

This can be reformulated as

(217)
∑

a∈PF

Fa =
(

1 −
∑

b∈PPF

Fb

)−1
,

which is the lift to PQSym of the well known identity

(218)
∑

n≥0

(n + 1)n−1 tn

n!
=

(

1 −
∑

n≥1

(n − 1)n−1 tn

n!

)−1

.

Indeed, the map Fa 7→ 1/n! (n = |a|) is a character of PQSym.

At this point, it is useful to observe that if C(w) denotes the descent
composition of a word w, the map

(219) η : Fa 7→ FC(a),

which is a Hopf algebra morphism PQSym → QSym, maps VI to the
Frobenius characteristic of the underlying permutation representation of Sn

on PPFI :

(220) η(VI) =
∑

a∈PPFI

FC(a) = ch(PPFI).

Indeed, if V ⊆ An is any set of words invariant under the right action of Sn,
the characteristic of the underlying permutation representation is always
equal to

∑

w∈V FC(w). This is because V splits as a disjoint union

(221) V =
⊔

ν

Aν , where Aν = {w ∈ An | Ev(w) = ν}.

The characteristic of Aν is clearly hν , and it is well known that

(222) hν =
∑

w∈Aν

FC(w).

Actually, each CAν is also a projective Hn(0)-module with noncommutative
characteristic ch(CAν) = SI , where I = t(ν).
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5.5.2. As a consequence, the number of parking functions of type I with
descent composition J is equal to the scalar product of symmetric functions

(223) 〈rJ , f I〉
where f I = fi1 · · · fir = ch(PPFI) and rJ is the ribbon Schur function. This
extends Proposition 3.2(a) of [36]. Note that in particular, by inversion of

(224) FPFn
:=

∑

a∈PFn

Fa =
∑

I�n

VI ,

one obtains

(225) FPPFn
=

∑

I�n

(−1)n−l(I)FPFI
,

where

(226) PFI := PFi1 ⋒ · · · ⋒ PFir .

These identities are easily visualized on the encoding of parking functions
with skew Young diagrams as in [30] or in [9].

5.5.3. The transpose γ∗ of the map γ defined in (193) is the map

(227) ch : CQSym → Sym, Pπ 7→ St(π),

which sends Pπ to the characteristic noncommutative symmetric function
of the natural projective Hn(0)-module with basis {a ∈ PFn | NC(a) = π}.

5.5.4. One can show that

(228) g :=
∑

n≥0

gn :=
∑

n≥0

ch(FPFn) =
∑

I

ch(VI)

is the series obtained by applying the noncommutative Lagrange inversion
formula of [8, 31] to the generating series of complete functions, i.e., g is the
unique solution of the equation

(229) g = 1 + S1g + S2g
2 + · · · =

∑

n≥0

Sngn.

Indeed, let g be defined by (228) and set

(230) f :=
∑

n≥1

fn =
∑

n≥1

ch(FPPFn
) =

∑

n≥1

ch(Vn).

Recall that the prime nondecreasing parking functions of length n are ob-
tained by concatenating a 1 to the left of a nondecreasing parking function
of length n − 1. This gives a recurrence for fn and gn. From each nonde-
creasing parking function with packed evaluation J � n − 1, contributing a
term SJ to gn−1, we get a prime nondecreasing parking function with packed
evaluation I = (j1 +1, j2, . . . , jr) � n, contributing a term SI := ΩSJ to fn,
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where Ω is the linear operator incrementing the first part in the basis SJ

of Sym. Hence, fn = Ωgn−1, and we have a system of two equations

(231)

{

f = Ωg,

g = (1 − f)−1,

which, with the initial condition g0 = 1, admits a unique solution: f1 =
Ωg0 = S1, g1 = f1, f2 = Ωg1 = S2, g2 = f2 + f11 = S2 + S11, f3 = Ωg2 =
S3 + S21, g3 = f3 + f21 + f12 + f111 = S3 + 2S21 + S12 + S111, and so on.

But the unique solution of (229) satisfies

(232) Ωg = S1 + S2g + S3g
2 + · · ·

and also

(233) 1 = g−1 + S1 + S2g + S3g
2 + · · · = g−1 + Ωg

so that if we set f = Ωg, we solve (231) as well.
We remark that the commutative images of these equations give the

Sn-characteristics of PFn and PPFn, and that we have derived them from
first principles, using only the multiplication rule of PQSym and the notion
of a prime parking function.

5.5.5. The Hilbert series of SQSym revisited. It is also possible to ob-
tain it by a character calculation, derived from the above considerations.
If we decompose the noncommutative characteristic of the Hn(0)-module
CPFn into ribbons

(234) ch(CPFn) =
∑

I�n

mIRI ,

the number of hypoplactic classes of parking functions of length n is

(235)
∑

I�n

mI .

Indeed, as already mentioned, if V ⊂ An is any set of words which is
a disjoint union of evaluation classes Aν , then CV is a projective Hn(0)-
module since it is the direct sum

⊕

CAν , where ch(CAν) = SI , with I =
t(ν).

Now, each Aν is itself a disjoint union of hypoplactic classes

(236) Aν,I = {w ∈ Aν | C(Std(w)−1) = I},
and each such class is the support of an indecomposable projective module

(237) ch(Aν,I) = RI .

By duality between the bases FI and RI ,

(238)
∑

mI =
〈

∑

FI , ch(CPFn)
〉

and taking into account the identity [38]
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(239)
∑

I

FI =
1

2

[

1 +
∏

i≥1

1 + xi

1 − xi

]

= 1 +
1

2

∑

n≥1

n
∑

k=0

ekhn−k,

we obtain

dim(SQSymn) =
〈

∑

I�n

FI , ch(FPFn)
〉

(240)

=

〈

1

2

n
∑

k=0

ekhn−k,
1

n + 1
hn((n + 1)X)

〉

=
1

2n + 2

n
∑

k=0

(

n + 1

k

)(

2n − k

n − k

)

= sn.

6. A HOPF ALGEBRA OF SEGMENTED COMPOSITIONS

6.1. Segmented compositions. Define a segmented composition as a
finite sequence of positive integers, separated by vertical bars or commas,
e.g., (2, 1 | 2 | 1, 2).

The number of segmented compositions having the same underlying
composition is obviously 2l−1 where l is the length of the composition, so
that the total number of segmented compositions with sum n is 3n−1 since
(1 + 2)n−1 = 3n−1.

6.2. A Hopf subalgebra of SQSym∗

6.2.1. Hypoplactic packed words. Let A = {a1 < a2 < · · · } be an infinite
totally ordered alphabet. The packed word u = pack(w) associated with a
word w ∈ A∗ is obtained by the following process. If b1 < · · · < br are the
letters occurring in w, then u is the image of w under the homomorphism
bi 7→ ai.

A word u is said to be packed if pack(u) = u. We denote by PW the set
of packed words.

Let us consider packed quasi-ribbons, that is, quasi-ribbons that are
packed words. For example, the word 11324355 is a packed quasi-ribbon
word since it is the reading of the following quasi-ribbon:

(241)
1 1 2

3 3

4 5 5

These objects are in bijection with segmented compositions. Indeed, start
from a packed quasi-ribbon q and write the evaluation vector I of q, putting
a separator between Ii and Ii+1 iff i and i + 1 are not is the same row
of q. For example, the segmented composition corresponding to the quasi-
ribbon of (241) is 21|2|12. This element will be denoted by ps(q). The reverse
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bijection consists in writing the unique nondecreasing word with evaluation
I and put the letters i + 1 on the row next to the row of the letters of i iff i
and i + 1 are separated by | in I.

Example 6.1. For n = 2, we have three packed quasi-ribbons

(242) 11, 12, 1|2,

For n = 3, we have nine packed quasi-ribbons

(243) 111, 112, 11 | 2, 122, 1 | 22, 123, 1 | 23, 12 | 3, 1 | 2 | 3.

respectively encoded as the nine segmented compositions

(244) 3, 21, 2|1, 12, 1|2, 111, 1|11, 11|1, 1|1|1.

In the following, we will identify packed quasi-ribbons and their encod-
ings as segmented compositions.

6.2.2. A Hopf subalgebra of SQSym∗. Let us denote by P(w) the hy-
poplactic P -symbol of a word w (its quasi-ribbon). The P -symbols of packed
words are therefore packed quasi-ribbons.

For each packed quasi-ribbon I, define

(245) PI := Punp(I) and QI :=
∑

ps(q)=I

Qq ∈ SQSym∗.

where unp(q) is the maximal parking quasi-ribbon for the lexicographic
order of evaluation I.

For example,

P11|2 = P12|33, P112 = P1233,(246)

Q12|1 = Q122|3 + Q122|4, Q121 = Q1223 + Q1224,(247)

Q12|21 = Q122|334 + Q122|335 + Q122|336 + Q122|445 + Q122|446.(248)

Theorem 6.2. The PI span a Hopf subalgebra SCQSym of SQSym.

This subalgebra is also the quotient of SCQSym by the relations Pq = Pq′

if w and w′ have the same packed word.

The QI span a Hopf subalgebra SCQSym∗ of SQSym∗, and

(249) dimSCQSymn = 3n−1 for n ≥ 1.

Proof. The product and coproduct rules of the P of SQSym imply that
the P of SQSym∗ span a Hopf subalgebra of SQSym. It is also obvious
that both operations are compatible with the relations Pq = Pq′ if q and q′

have same packed word, so that SCQSym is a Hopf quotient of SQSym.
Then, by the standard argument, the Q are a basis of SCQSym∗.

The dimension of SCQSymn is given by the number of segmented com-
positions, that is, 3n−1.

To describe the product and coproduct rules of both bases, we need a
new operation on segmented compositions.
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Recall that the product of the monomial basis MI on QSym is defined
with the augmented shuffle of two compositions recursively defined as

(250) (I1, I
′)⊎(J1, J

′) = I1(I
′⊎(J1, J

′))+J1((I1, I
′)⊎J ′)+I1+J1(I

′⊎J ′),

with the extra condition I ′ ⊎ ǫ = ǫ ⊎ I ′ where ǫ is the empty word.

This construction is generalized to SCQSym as follows: the augmented

shuffle I′ ⊎ I′′ of two segmented compositions is obtained from the usual
augmented shuffle I ′ ⊎ I ′′ of their underlying compositions by inserting bars
between two blocks Ik and Ik+1 of a composition I iff

• Ik and Ik+1 both contain elements coming from I′ and those elements
were separated by a bar,

• Ik and Ik+1 both contain elements coming from I′′ and those elements
were separated by a bar,

• Ik contains an element coming from I′′ and Ik+1 contains an element
coming from I′.

For example,

1 ⊎ 2|1 = 12|1 + 3|1 + 2|11 + 2|2 + 2|1|1,

1 ⊎ 21 = 121 + 31 + 2|11 + 2|2 + 21|1.
(251)

Theorem 6.3. The product and coproduct rules for the PI and the QI

are

PI′PI′′ = PI′|I′′ + PI′I′′ ,(252)

∆PI =
∑

I∈I′⊎I′′

PI′ ⊗ PI′′ ,(253)

QI′QI′′ =
∑

I∈I′⊎I′′

QI,(254)

∆QI =
∑

I=I′·I′′ or I=I′|I′′
QI′ ⊗ QI′′ .(255)

Proof. The product of two P of SCQSym directly comes from the prod-
uct of two P of SQSym. The coproduct of a Q then follows by duality. The
shifted shuffle of two compositions obviously gives all the possible evalua-
tions of the convolution of two parking functions of the given evaluations.
Finally, the rules to place the bars correspond to the different cases where
there is an i to the right of an i+1 in one of the resulting parking functions.

For example,

P12|1P2|11 = P12|12|11 + P12|1|2|11,(256)

∆P12|1 = 1 ⊗ P12|1 + P1 ⊗ (P12 + P2|1) + P11 ⊗ (P1|1 + P2)(257)

+ P1|1 ⊗ P2 + (P111 + P11|1) ⊗ P1 + P12|1 ⊗ 1,
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Q1Q2|1 = Q3|1 + Q12|1 + Q2|2 + Q2|1|1 + Q2|11,(258)

Q1Q11|1 = Q111|1 + Q21|1 + Q1|11|1 + Q1|2|1 + Q11|11 + Q11|2 + Q11|1|1,(259)

Q1|1Q1|1 = 2Q1|11|1 + Q1|1|11 + Q11|11 + Q11|1|1 + Q1|1|1|1(260)

+ Q2|11 + Q2|1|1 + Q2|2 + 2Q1|2|1 + Q1|1|2 + Q11|2,

∆Q12|1 = 1 ⊗ Q12|1 + Q1 ⊗ Q2|1 + Q12 ⊗ Q1 + Q12|1 ⊗ 1.(261)

6.3. Algebraic structure of SCQSym and SCQSym∗. The algebra
SCQSym∗ is not free for exactly the same reason SQSym∗ is not: one has
the relation

(262) Q1(Q2 + Q11) = (Q2 + Q11)Q1.

Let us now move to SCQSym.

Since SCQSym is the subalgebra of SQSym spanned by the park-
ing quasi-ribbons that are maximally unpacked, and since SQSym is free,
SCQSym is automatically free and generated by the maximal elements of
PQS. For example, the generators of SCQSym for n ≤ 4 are

{1}, {11, 1|2}, {111, 11|3, 1|22, 1|2|3},
{1111, 111|4, 11|33, 11|3|4, 1|222, 1|22|4, 1|2|33, 1|2|3|4},(263)

that can be rewritten on segmented compositions as

{1}, {2, 1|1}, {3, 2|1, 1|2, 1|1|1},
{4, 3|1, 2|2, 2|1|1, 1|3, 1|2|1, 1|1|2, 1|1|1|1},(264)

By the same argument on generating series as in SQSym, one finds that
there are 2n−1 generators of SCQSym of degree n. And indeed, these gen-
erators are in natural bijection with compositions of n since they have sep-
arators between all elements.

The next proposition summarizes the structures of SCQSym and
SCQSym∗.

Proposition 6.4. The algebra SCQSym is a Hopf algebra of dimen-

sion 3n−1. It is not self-dual since SCQSym is free as an algebra whereas

SCQSym∗ is not. Moreover , SCQSym is free over a graded alphabet la-

belled by all compositions.

6.4. Primitive Lie algebras of SCQSym∗. Since SCQSym∗ con-
tains QSym as a subalgebra, its primitive Lie algebra cannot be free and
one easily finds that

(265) [Q1,Q12 − Q1|2 + Q11] = 0.
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6.5. A quasi-ribbon basis of SCQSym∗. The elements QI are seg-
mented analogs of the basis (MI) of QSym. So we can define analogs of the
(FI) of QSym in the same way as we did in SQSym∗.

Recall that the refinement order denoted by � on compositions is such
that I = (i1, . . . , ik) � J = (j1, . . . , jl) iff {i1, i1+i2, . . . , i1+· · ·+ik} contains
{j1, j1 + j2, . . . , j1 + · · ·+ jl}. In this case, we say that I is finer than J . For
example, (2, 1, 2, 3, 1, 2) � (3, 2, 6).

Let I = (I1 | · · · | Ir) and let

(266) FI :=
∑

I′

QI′ ,

where the sum is taken over sequences of compositions (I ′1, . . . , I
′
r) where I ′k

is finer than Ik. For example,

(267) F2|2 = Q11|11 + Q2|1 + Q11|2 + Q2|2.

By a triangularity argument, we have

Theorem 6.5. The FI form a basis of SCQSym∗.

The basis FI satisfies a product formula similar to the FI of QSym

(whence the choice of notation). To state it, we need an analogue of the
shifted shuffle.

A segmented permutation is a permutation with separators. The descent

composition C(α) of a segmented permutation α is a segmented composition:
it is the sequence of descent compositions of the blocks of α separated by
bars.

For example, α = 248|517|3 is a segmented permutation whose descent
composition is (3|12|1).

The shifted shuffle α⋒β of two segmented permutations is obtained from
the usual shifted shuffle σ ⋒ τ of the underlying permutations σ and τ by
inserting bars:

• after each descent which was originally followed by a bar in α or in
the shift of β,

• after each descent created by the shuffling process.

For example,

(268) 2|1 ⋒ 21 = 2|143 + 24|13 + 243|1 + 4|2|13 + 4|23|1 + 43|2|1.

Theorem 6.6. Let I′ and I′′ be two segmented compositions and let α
and β be any two segmented permutations whose descent compositions are

respectively I′ and I′′. Then

(269) FI′FI′′ =
∑

I

FI,

where the sum runs over the descent compositions of the segmented permu-

tations γ occurring in α ⋒ β.
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Proof. The product of the Q can be easily rewritten in terms of seg-
mented permutations as follows: associate with two segmented compositions
I′ and I′′ two segmented permutations α and β such that C(α) = I′ and
C(β) = I′′. Consider the elements in the shifted shuffle α ⋒ β such that two
elements in increasing order of α (resp. β) not separated by a bar have no
β (resp. α) between them. From all those elements, build the set of all seg-
mented permutations with at least those bars and at most new bars between
the elements of α and the elements of β. For all those segmented permu-
tations, compute first their descent compositions and then remove the bars
added lately. The set of the descent compositions obtained by this process
corresponds to the product QαQβ .

Express both F in the Q basis and group the terms in their product
where the letters of α have been inserted at the same place. By construction,
the lexicographically minimum element s in each group with the smallest
number of bars belongs to α ⋒ β. Now, given the product rule of the Q , we
have all elements obtained from s by adding any number of bars, thus Fs.

For example,

F1F11|1 = F21|1 + F1|2|1 + F11|2 + F11|1|1,(270)

F1F2|1 = F3|1 + F1|2|1 + F2|2 + F2|1|1.(271)

Theorem 6.7. Let I be a segmented composition. Then

(272) ∆FI =
∑

I=I′·I′′ or I=I′|I′′ or I=I′⊲I′′

FI′ ⊗ FI′′ ,

where (I1, . . . , Ik) ⊲ (I ′1, . . . , I
′
l) denotes the segmented composition (I1, . . . ,

Ik−1, Ik ⊲′ I ′1, I
′
2, . . . , I

′
l) where (i1, . . . , ik)⊲

′ (j1, . . . , jl) = (i1, . . . , ik−1, ik +j1,
j2, . . . , jl).

Proof. This result will follow by duality from the considerations in the
forthcoming section.

6.6. A ribbon basis of SCQSym. Let (RI) be the dual basis of (FI).
Then we have

Proposition 6.8. The (RI) are a basis of SCQSym related to the P

by

(273) PI =:
∑

I′

RI′ ,

where the sum is taken over sequences of segmented compositions (I ′1| . . . |I ′r)
where Ik is finer than I ′k.

Since SCQSym is a subalgebra of SQSym such that the image of PI

is Pq, given both orders on parking quasi-ribbons and on segmented compo-
sitions, the image of RI is Rq. This remark immediately proves the product
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rule of the R, whereas its coproduct rule comes from the duality between
the R and the F .

Theorem 6.9. The product and coproduct rules of R are

RI′ · RI′′ = RI′·I′′ + RI′|I′′ + RI′⊲I′′ ,(274)

∆RI =
∑

I∈I′⋒I′′

RI′ ⊗ RI′′ .(275)

From (274), we see that SCQSym is the free cubical trialgebra on one
generator (see [22]).

7. APPENDIX

7.1. Relations with free probability theory. The free cumulants
Rn of a probability measure µ on R are defined (see, e.g., [35]) by means of
the generating series of its moments Mn,

(276) Gµ(z) :=
\
R

µ(dx)

z − x
= z−1 +

∑

n≥1

Mnz−n−1

as the coefficients of its compositional inverse

(277) Kµ(z) := Gµ(z)〈−1〉 = z−1 +
∑

n≥1

Rnzn−1.

It is in general instructive to interpret the coefficients of a formal power
series as the specializations of the elements of some generating family of the
algebra of symmetric functions. In this context, it is the interpretation

(278) Mn = φ(hn) = hn(A)

that is relevant. Indeed, the process of functional inversion (Lagrange in-
version) admits a simple expression within this formalism (see [23, Ex. 24,
p. 35]). If the symmetric functions h∗

n are defined by the equations

(279) u = tH(t) ⇔ t = uH∗(u)

where H(t) :=
∑

n≥0 hntn, H∗(u) :=
∑

n≥0 h∗
nun, then, in the λ-ring nota-

tion,

(280) h∗
n(X) =

1

n + 1
(−1)nen((n + 1)X) :=

1

n + 1
[tn]E(−t)n+1

where E(t) is defined by E(t)H(t) = 1. This defines an involution f 7→ f∗

of the ring of symmetric functions.
Now, if one sets Mn = hn(A) as above, then

(281) Gµ(z) = z−1H(z−1) = u

⇔ z = Kµ(u) =
1

u
E∗(−u) = u−1 +

∑

n≥1

(−1)ne∗nun−1.
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Hence,

(282) Rn = (−1)ne∗n(A).

7.2. An exercise on permutation representations. It follows im-
mediately from the explicit formula (see [23, p. 35])

(283) −e∗n =
1

n − 1

∑

λ⊢n

(

n − 1

l(λ)

)(

l(λ)

m1, m2, . . . , mn

)

eλ

(where λ = 1m12m2 · · ·nmn) that −e∗n is Schur positive. Clearly, −e∗n is the
Frobenius characteristic of a permutation representation Πn, twisted by the
sign character. Let us set

(284) (−1)n−1Rn = −e∗n =: ω(fn)

so that

(285) fn :=
∑

λ⊢n

1

n − 1

(

n − 1

l(λ)

)(

l(λ)

m1, m2, . . . , mn

)

hλ

and fn is the character of Πn.

The problem of constructing such a representation had been raised by
Kerov in 1995. We shall see that Πn corresponds to prime parking functions.
We note that our construction of Πn is merely a variation on previously
known results (see in particular [18, 30]). However, since this is this precise
version of the question that led us to the Hopf algebra of parking functions
and some of its properties, we decided to include its discussion.

7.3. Solution of the exercise

Proposition 7.1. The Frobenius characteristic of the permutation rep-

resentation of PPFn is fn.

Proof. We first show that the number of nondecreasing prime parking
functions whose reordered evaluation is a given partition λ is equal to

(286)
1

n − 1

(

n − 1

l(λ)

)(

l(λ)

m1, m2, . . . , mn

)

where λ = 1m12m2 · · ·nmn (see (285)). Indeed, this number corresponds to
the number of ways of putting the λi over n−1 places in a circle. For such a
placement P , number in all possible clockwise ways the places of the circle
and consider the n − 1 nondecreasing words ici where ci is the content of
place number i. Then, by [5], exactly one of those words is a prime parking
function.
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For example, for λ = (3, 2, 2), there are ten possible circles. Consider the
circle where the 3 is followed by one empty place, a 2, two empty places,
and the last 2. Then the six nondecreasing words are:

(287) 1113366, 2255666, 1144555, 3344466, 2233355, 1122244.

Now, since all permutations of a nondecreasing prime parking function are
parking functions, the Frobenius characteristic of the permutation represen-
tation of this set of words is hλ. It then easily follows that

(288) ch(PPFn) = fn,

so that Πn can be identified with PPFn, as claimed before.

References

[1] M. Aguiar, N. Bergeron, and F. Sottile, Combinatorial Hopf algebras and generalized

Dehn-Sommerville relations, Compos. Math. 142 (2006), 1–30.
[2] C. Athanasiadis, A simple bijection for regions of the Shi arrangement of hyper-

planes, Discrete Math. 204 (1999), 27–39.
[3] P. Biane, Parking functions of types A and B, Electron. J. Combin. 9 (2002), no. 7.
[4] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric functions

VI: free quasi-symmetric functions and related algebras, Internat. J. Algebra Com-
put. 12 (2002), 671–717.

[5] A. Dvoretzky and T. Motzkin, A problem of arrangements, Duke Math. J. 14 (1947),
303–313.

[6] L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, ArXiv
math.RA/0505207.

[7] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon,
Noncommutative symmetric functions, Adv. Math. 112 (1995), 218–348.

[8] I. Gessel, Noncommutative generalization and q-analog of the Lagrange inversion

formula, Trans. Amer. Math. Soc. 257 (1980), 455–482.
[9] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial

formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005),
195–232.

[10] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebra
Combin. 3 (1994), 17–76.

[11] F. Hivert, Combinatoire des fonctions quasi-symétriques, Thèse de Doctorat, Marne-
La-Vallée, 1999.

[12] F. Hivert, J.-C. Novelli, and J.-Y. Thibon, The algebra of binary search trees, The-
oret. Comput. Sci. 339 (2005), 129–165.

[13] —, —, —, Commutative Hopf algebras of permutations and trees, preprint, 2005,
ArXiv math.CO/0502456.
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