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Brunnian links
by

Paul Gartside (Pittsburgh, PA) and Sina Greenwood (Auckland)

Abstract. A Brunnian link is a set of n linked loops such that every proper sublink
is trivial. Simple Brunnian links have a natural algebraic representation. This is used to
determine the form, length and number of minimal simple Brunnian links. Braids are used
to investigate when two algebraic words represent equivalent simple Brunnian links that
differ only in the arrangement of the component loops.

1. Introduction. A link with n components, an n-link, is the union
of n mutually disjoint smooth embeddings of the circle S' in Euclidean
3-space, R3. An oriented n-link is an n-link such that each component has a
given orientation. Two links, L1 and Lo, are equivalent if there is an ambient
isotopy mapping Li onto Ly. Let C; be the circle {(x,y,0) : 22 4+ ¢? =
1/(i+1)?} with anti-clockwise orientation. An oriented n-link is trivial if it
is equivalent to C, = |, Ci.

A Brunnian link is a non-trivial n-link such that every proper sublink
is trivial. The most familiar example is the Borromean rings, a Brunnian
3-link. We will extend the definition of a Brunnian n-link to include the
trivial n-link.

If L is any non-trivial oriented Brunnian n-link, then selecting one curve
there is an ambient isotopy carrying the remaining curves to C,—1. So L is
equivalent to C,_1 U ly, where [y is a simple closed curve looped around all
the curves in C,,_1. We will refer to l; as the distinguished curve.

Call a Brunnian n-link, L, simple if L is equivalent to a link L' =
Cn—1 U {lg} such that the projection of l; onto the plane z = 0 has no
self-intersections, meets each ray in the xy-plane emanating from the ori-
gin exactly once, and has anti-clockwise orientation. See Figure 1(a) for an
example.
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. . . . -1 _—1 -1 -1 -1 -1 -1 -1
Fig. 1. The simple Brunnian link apaiay "a; "azasa; az aiaca; ag asazas; a

Any simple Brunnian link is equivalent to a link L of the following type.
Let O = {{(z,y,2) : 22 + y?> > 1}. Then L = C,_1 U {l3} and the projection
of l; onto the plane z = 0 can be divided into segments with end points
in O. Following each segment in an anti-clockwise direction it passes over
the top of Cy,C1,...,C;_1, for some i < n. It then either passes over the
top of C; and back underneath it, or under C; and back over the top of it,
before returning over the top of C;_1,...,Cy to O. Call a Brunnian link of
this type canonical. See Figure 1(b) for an example.

The geometric representation of a canonical Brunnian link leads to a
natural algebraic representation. We can represent such a link by a word,
afgafll ...a;™, g; € Z. Pick a starting point in I; N O. If we follow /; in an
anti-clockwise direction, a; represents a segment in which [; passes over then
under C;, and a;l represents a segment in which /4 passes under and back

over C;. Figures 1(a) and 1(b) are equivalent links represented by
aoalaalaflagagaglaglalagal_laglagagaglaz_l.

Since any simple Brunnian link is equivalent to a canonical Brunnian link,
any simple Brunnian link can be represented algebraically by a word. It is
immediately clear that such a word is not unique. For example, by choosing
a different starting point we will encounter the segments in a different order.

An alternative view of the words introduced above is to recall that the
fundamental group of R? \ C,,_; is free with letters represented by simple
loops about each circle. These letters correspond to the a; above.

A minimal Brunnian link is a simple Brunnian n-link whose associated
word is of minimal length (amongst all simple Brunnian n-links). Our key
results determine the form and length of minimal Brunnian links. In par-
ticular, if n = 2™ + k, where k£ < 2™, then a minimal Brunnian n-link has
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length 2™ (3k 4 2™). We also compute the number of distinct words associ-
ated with minimal Brunnian n-links. Finally, we investigate when two words
represent topologically equivalent Brunnian links.

The plan for the remainder of the paper is as follows. In the next section
the basic definitions and notations are introduced. In Section 3 we determine
the length of a minimal Brunnian word, and then minimal Brunnian words
are classified and counted. In Section 4 we take a brief look at a generalisa-
tion of Brunnian links and determine the form and length of minimal words
representing these more general links. In Sections 5 and 6 we use braids to
determine when two words represent equivalent Brunnian links.

2. Preliminaries. Denote the set of simple Brunnian n-links by Bg(n).

For each n define A4,, to be the set {ag,a1,...,an—1}, and let A = J A,,.
Members of A and their inverses will be referred to as letters. A word is
any finite sequence a;’a;' ...a;™ such that ¢; € Z for all 4. Let e denote
the empty sequence. We will use the term string when we want to re-
fer to a subsequence in a word even though any such sequence is itself
a word. When we refer to an arbitrary string we include the possibility
that it is an empty string. We denote words by v,w etc, and strings by
a, G etc.

If w is a word, denote the set {a; € A : a; occurs in w} by A(w). A word
w is an n-word if A(w) = A, or w = e. A word w has the form of an n-word
if exactly n different letters occur in w, or w = e (hence if w has the form

of an n-word then A(w) need not be 4,,).

Denote the pth occurrence of a; in w by g,i. If wis a word and « is a
string, then w(a/a;) is the word obtained by replacing every occurrence of a$
in w by o°. We will abbreviate w(e/a;) to w(—a;). If R is a set of occurrences
of a;ﬂ in a word w, then w(—R) is the string obtained by removing from w
the occurrences of azil in the set R.

Two words v, w are equivalent if v is convertible into w by a finite se-
quence of insertions and deletions of subwords aja; ©. An n-word is reduced
if afa; © does not occur in w for any i < n or € € Z, otherwise w is reducible.
If w is a word, let o(w) be the reduced word equivalent to w.

We may obtain o(w) from w by successively removing occurrences of
q q

aja; ©. When c%a;‘E is removed we say that c% cancels with a; . It will be
important to know how cancelling proceeds when obtaining a reduced word
for expressions like w(—a;). In some cases an occurrence of a; must cancel
with a particular occurrence of a; L but (by associativity) if cancelling can
proceed in different orders there may be several occurrences of a;l with
which a; may cancel.
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An n-word w is Brunnian if w(—a;) = e for each i < n. Note that
a Brunnian n-word represents a Brunnian (n + 1)-link. Denote the set of
Brunnian n-words by Ba(n).

LEMMA 1. For each n, Ba(n) is a normal subgroup of the free group
on A,,.

Proof. Suppose v,w € Ba(n). Clearly w™! € Ba(n), vw € Ba(n) and
vwv~t € Ba(n). If w is a Brunnian n-word and v is equivalent to w, then
clearly v is a Brunnian n-word, and hence Ba(n) is normal. =

The length of a word w, denoted I(w), is zero if po(w) = e, otherwise it is
the number of letters in po(w) with exponent 1 or —1. A Brunnian n-word,
w, is minimal if [(w) < I(v) for all v € Ba(n).

A word w contains a copy of a;,a, ...a;, , if there are strings
Bos B1, - - -, Bm such that w = Boa;,frai, - .. ai, Bm. A Brunnian n-word,
w, is basic if it does not contain a copy of a word having the form of a
Brunnian n-word other than w itself.

The following properties are immediately obvious from the definition of
a Brunnian n-word.

1. Let w be a Brunnian n-word, n > 1. Then:

(a) if w= ac%lﬂ and w is reduced, then 3 contains a copy of a™!;

(b) a; ! occurs in w exactly the same number of times as a;;

(c) if w # e then for each i < n there exist €,¢’ € Z and j < n such
that ag-af/a-_a occurs in w;

(d) if w # e then for each ¢ < n there is a non-empty string ¢ such
that a; € A(p) and a;pa; ' occurs in w;

(e) if w is basic then w # aigoai_l for any string ¢;

(f) o((w(=ai))(—a;)) = o((w(—a;))(—ai)) = e for every i,j < n for
every i,j < n (by associativity).

2. w is a Brunnian n-word if and only if a;wa; ! is a Brunnian n-word
for all ¢ < n.

Property 2 is equivalent to: af is a Brunnian n-word if and only if S«
is a Brunnian n-word. Of course o3 and Sa represent the same Brunnian
link. They simply relate to different starting points.

This relation is important when deducing how words are formed from
subwords. Let ~g be the conjugacy equivalence relation over Ba(n): w ~g v
if and only if there exist strings a and 8 such that w = af and v = Sa.

We introduce another equivalence relation which will help to simplify
proofs in Section 3. Many of these proofs involve certain types of strings
which occur in a given word. These strings may take a variety of forms de-
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pending on whether the occurrence of each letter has index £1. To prove
these lemmas for each one of the different forms involves repetitious argu-
ments. In order to circumvent such repetition we define o = 3 if and only
if there is a sequence « = ag, a1, ..., qy = 3 such that for each ¢ we have
Qi1 = Ozi(aj_1 /aj) for some j. We will prove each lemma for one case (one
element of the relevant = equivalence class) whenever it is clear that the
other cases follow a similar argument.

The following is a natural extension of the notion of a Brunnian word.
An mn-word, m > n, is a word w such that w is an m-word and w(—a;) = e
for all 7 < n. Extending our results on Brunnian words, we will compute the
form and length of minimal mn-words.

3. Minimal Brunnian words. In this section we determine the length,
form and number of minimal Brunnian n-words. We require several technical
lemmas.

LEMMA 2. Suppose w is a reduced Brunnian n-word, n > 1, and suppose
J < mn. Pick integers i,r,s and €, and strings o and 3 such that, modulo =,

S
w = a&iaj(afl)ﬁ.

Partition all the occurrences of aiil into the mazximum number of compo-
nents such that if k # i or j, then any member of any component can
only cancel with another member of the same component in the reduction
of w(—ag). Let R be the component containing ai, and S the union of all
the other components. Let vi = o(w(—R)) and vy = o(w(—=S)). Let u, and
uy be the words obtained from w(—a;) by replacing with (ajai_laj_l)jEl each
occurrence of afﬂ in R, for vy, and each occurrence of afﬂ in S, for uj.
Let ug = o(u’) and ug = p(u). Then

(i) aiilgz R.
If w is minimal then
(ii) v(—a;) # e whenever vy #e, 1 =1,2.
If a; occurs at least as frequently as a; in w, then:
(iii) either vy # e or vy # e€;
(iv) |R| =S|, and S is a single component;

)
(v) a; occurs the same number of times in w as a;;
(vi) U(ur) = I(us) = l(w).

S
Proof. (i) If a; '€ R then there is a sequence

p1 PH s
r bo 1 -1 -1
G = Aj, Ay ..., 0 = a,
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Ph+1
such that for all h there is a k # 4, j such that a cancels with a; © in the

reduction of w(—ay).
2
Hence a; occurs the same number of times as a; ! between each pair a;

Ph+1
and a; ©. It follows easily, by induction, that a; and a_ occur the same

number of times between a; and any other Inember of the sequence. This is

not the case, however, for a; and a; = . Hence a, V¢ R.

(ii) Suppose v1 # e. If p(vi(—aj)) = e then vy is an n-word since by
associativity, for each k # 4,7 members of S cancel with each other in the
reduction of v1(—ay) so that g(vi(—ax)) = e. And clearly o(vi(—a;)) = e.
Thus v; is a copy of an n-word in w, but v; # w, hence o(vi(—a;)) # e.

(iii) Suppose v; = w2 = e. Let w; be the word obtained from w by
replacing each occurrence of a;ﬂ in R by a!

If o(w1(—a;)) # e then p(wi(—a;)) has the form of a Brunnian n-word
since for each k # 1,7, o(wi(—ag)) = o(w(—ag)) = e, o(wi(—ay)) = v = e,
and o(w1(—a;)) = e because vy = e. Since [(o(wi(—a;))) < [(w) we have a
contradiction, and hence go(wi(—a;)) = e. Thus wy is an (n + 1)-word.

Pick a;1 and a;1, and components Ry and S7 of wy analogously to R and
S in w (pick one of the most frequently occurring letters for a;1). If vi1 =

o(wi(—Ry)) = e and vig = o(w1(—S1)) = e, obtain u by replacing each a:'
in Ry by aill and reducing. If o(u(—a;1)) # e then let wy = p(v(— aﬂ)),
otherwise let wo = wu.

If vi1 # e and o(vi1(—aj)) = e, let wy = v11. It is easy to show that wy is
an (n+ 1)-word. If v1; # e and p(vi1(—a;)) # e, let wa = p(v11(—a;)). Con-
tinue by induction. For some m we must obtain a word w,,, corresponding
to a word in w that has the form of a Brunnian n-word. Since I(wy,) < l(w)
we have a contradiction and hence either v; = e or v9 = e.

(iv), (v) and (vi). We first prove

CLAIM. up # e # ug and ur and us are Brunnian n-words.

¢
Proof. We first show that ur # e # ug. If a in v}, is part of a string
t/
that replaced a member of R in w, and a; © in v}, was a member of S in w,
t ¢

1 must occur an odd number of times between a; and a; ©, twice

then a;

for each member from R that occurs between them, and once beside cff .
Hence when cancelling to obtain ur, members of R must cancel with each
other and members of S must cancel with each other. Members of R can-
cel to obtain g(w(—a;)) if and only if the corresponding strings ajieaiaaq-[a

cancel when v, is reduced. Hence if ur = e, then o(w(—a;)(—R)) = e and
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o(w(—a;)(—S5)) = e. But since either o(vi(—a;)) # e or p(va(—a;)) # e by
(ii) and (iii), ur # e. Similarly, ug # e.
We now show that up and ug are Brunnian n-words. We have

o(ur(—a;)) = o(w(—a;)) =€,  o(ur(—a;)) = o(w(—a;)(—a;)) =e.
Suppose k # i, j and consider ur(—ay). Since members of R need only cancel
with members of R in the reduction of w(—ay) and hence in the reduction of

w(—aj)(—ayg), it follows that the strings a}tgaigaf cancel with each other
and

o(ur(—ag)) = o(w(—ax)(—a;)) =e.
We may argue similarly for ug. Thus up and ug are Brunnian n-words, and
the claim is proved. =

The number of a;d’s occurring in up is at most 2|R|, and in ug at
most 2|S|. If a;ﬂ occurs J times in w then J > |R| + |S|, since a; oc-
curs at least as often as a; in w. Since w is minimal, {(ug) > (w) and
l(ug) > l(w), but if l(ug) > l(w) then l(ug) < l(w), and if l(ug) > l(w),
then [(ur) < l(w). Hence a; occurs 2|S| = 2|R| times, |S| = |R|, and S is a
single component. »

LEMMA 3. Suppose w is a minimal Brunnian n-word in which a partic-
ular collection of letters only appear in strings a®™' where a is a Brunnian

word, oza;a_l occurs in w, and a; does not occur less frequently than a.

Then it is possible to replace exactly half the occurrences of a*' in w(—a;)

by aflailafl, and reduce to obtain an n-word that is also minimal.

Proof. The proof of Lemma 2 can easily be adjusted to this situation. =

LEMMA 4. If w is a minimal Brunnian n-word then for each © < n and
e = %1, a; does not occur consecutively in w.

Proof. Obvious if n < 2. Suppose n > 2 and w = a;a;« (it is sufficient
to obtain a contradiction for this case). Partition the occurrences of agﬂ in
w such that members of each component can only cancel with each other

. . . 1 2 .
in o(w(—aj;)) for each j # i. If a; and a; are in the same component, then

1 r
. 1 T 1 T2 T 2 h
there exists a sequence a; = a;, a; L a5, ..., d; = a; such that each a; cancels
Th+1
with a; ¢ in o(w(—a;)) for some j. Then a; and a; ' occur an equal number

Th+1
Th
of times between each pair a; and a; ©.

1 Th
Let nj be the total number of occurrences of a;tl between a; and aj.
A simple induction argument shows that ny is always even if ¢ = —1 and

Tm—1
. v L2
odd if ¢ = 1. But a; 1 cancels with a; so there must be an even number
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Tm—1 Tm—1

_ 2 _
between a; 1 and a;. However, there are n,, — 1 occurrences between a; 1

2 L. -
and a;, giving a contradiction. m

LEMMA 5. For each n > 1, if w is a minimal Brunnian n-word, then
there is a Brunnian n-word v such that:

(i) all letters occur the same number of times in v as in w;

(ii) if n is even, then all letters in v occur in strings a;aja; “a; ' (mod-
ulo =), and for any two such strings o and 3, either A(a) = A(B) or
A(a) N A(B) = 0; if n is odd, then all letters except one of the least
occurring letters, ay say, occur in such strings, and aj only occurs in

strings ak(aiajai_la;l)algl(aiajai_laj_l)_l (modulo =, modulo ~g).

Proof. By Lemma 2(v),(vi) and Lemma 4, obtain from w a minimal
Brunnian n-word u such that one of the most frequently occurring letters,

a]il only occurs in strings a5a; J ,€= =1, and ajEl and ail occur the same
%y
number of times in u as in w. Pick one of the strings a§ as aj_6 occurring in u.

Partition the occurrences of a; in u into a maximal number of components
such that members of each component can only cancel with members of
the same component in the reduction of u(—ay) if k # i, j. Let X be the

component containing a and Y the component containing a; % . By argulng

as in the proof of Lemma 2(i) we can deduce that for each strlng aja; a]

occurring in u, one of ajd is in X and the other is in Y.
Let u; be the word obtained from u by removing every occurrence of

a; and replacing every member a © of X by af asa; —¢. Then the letters ail

=1 laj ! (modulo =), and

and a3 only occur in u; as part of a string a;a;a;
by Lemma 2(vi), I(u) = l(u1).

Suppose ay is one of the most frequently occurring letters other than a;
or aj. Pick a; such that afafa, © occurs. As above, obtain ug such that afl
)il

il il
J

and a,jE only occur in strings (akalak a,;

Suppose ¢ = [. Then all occurrences of a; and ak are (modulo =)

in strings a®! and $*!, where
1_—1

o = a;aja; "a;

1 -1
j .

and (= akaialzla;lajaiaka;la,; a;

Let v’ = uz(akaiajaifla;lagl/ﬂ). Clearly, o(v) # e, and it is not too difficult
to show that v is an n-word. Once again we have a contradiction, since u’
is shorter than vo, and so | # 4. Similarly [ # j.

Continue by induction to obtain a Brunnian n-word u,, in which all the
letters, except one if n is odd, only occur in strings a;aja; 1aj_1 (modulo =),
and for any two such strings o and 3, either A(a) = A(5) or A(a)NA(B) = 0.
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If n is even we are done. If n is odd, let a; be the only letter that does not
occur in such a string. Pick o such that aara™' occurs in u,,. Then ay
does not occur less often than « in w,, (otherwise swap the occurrences of
a*! with those of afl to obtain a Brunnian n-word shorter than w). By
Lemma 3 we are done. =

3.1. Length. We now determine the length of a minimal Brunnian n-
word. We first determine an upper bound.

LEMMA 6. Suppose n = 2™ + k, k < 2™ and n > 0. Then there is a
Brunnian n-word, wy,, such that l(wy) = 2™ (3k 4+ 2™), 2™ — k letters occur
2™ times and 2k letters occur 2™ times in w,,.

Proof. Let wyg = ag, a Brunnian 1-word. Suppose n = 2™ + k, k < 2™
and w, is a Brunnian n-word such that:

e w, has length 2™ (3k + 2™);
e 2™ — [ letters occur 2™ times and 2k letters occur 21! times.

Pick one of the letters a; that occurs 2™ times and let
Wn+1 = wn(aiana;la'rzl/ai)’

Then 2™ — (k + 1) letters occur 2™ times in wy,11, and since both afﬂ and
a,iL1 occur twice as often in wpy1 as a; occurred in wy,, there are 2k + 2
letters occurring 2"+ times in wy, 1. Also, l(wpy1) = l(wy) + 3 - 2™ =

2m(3(k + 1) +2™). If k + 1 = 2™, then l(wy41) = 2mF12m+L o

THEOREM 7. If w is a minimal Brunnian n-word, 0 < n =2"+k and
k <2™, then l(w) = 2™(3k + 2™).

Proof. Clearly the theorem holds when n = 1. Suppose that it holds
for each n’ < n. If n is even, by Lemma 5 pick a minimal Brunnian
n-word, w, such that the letters only occur in strings oz;tl where oy =
atan_(tﬂ)at_la;i(tﬂ), 0 <t < n/2. Let v be the word obtained by re-
placing each a; by a;. Then v is an n/2-word. Clearly w is minimal if
and only if v is minimal, and I(w) = 4l(v) = 42" }(3k/2 + 2™ 1) =
2M(3k + 2™).

Suppose n is odd. Pick a minimal Brunnian n-word, w, such that all the

letters other than ag only occur in strings a;tl, where a; = atan—ta; la

n—t»
0<t<(n—1)/2, and ag only occurs in strings § = aoalaalafl. Suppose
that the number of occurrences of the afl’s in wis z, and B*! occurs y
times. Obtain a Brunnian word v from w by replacing each afﬁl by afﬁl, and
each 3*! by ai'. Then u has the form of a Brunnian (n—1)/2-word. Obtain

a word v from w with the form of a Brunnian (n + 1)/2-word, by replacing
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each oz;tl by a;tl. Then

l(w) =4z + 10y < 2™(3k 4+ 2™),
k—1
l(u) =z +y>2m"" <3<T> + 2m_1>,

1
I(v) =z 44y > 2™ 1 <3<k%> + 2m—1>,

and hence
2M(3k +2™) > 4z + 10y = 2(I(u) + I(v)) > 2™(3k + 2™).
Hence I(w) =2"(3k+2™). m

3.2. Form. We can now establish that any minimal Brunnian word must
have a certain form.
Let M’ be the collection of words such that:

(i) Va; € A, ai,ai_1 e M’;

(i) Yo, w € M’ if A(v) N A(w) = () then vwv~tw=t € M';
(iii) Vw € M, if v ~g w then v € M/,
and let
M={we M :(Inecw) Alw) = A,}.
Observe that every w € M is ~g equivalent to a string of the form
afa~1p~1 (provided [(w) > 1). Also note that every word in M is a basic

Brunnian word. Finally, we remark that not all Brunnian words have this
form (for example, a0a1a[]1a2a0a1_1a51a51a1a0a2_1a51a1_1a0).

THEOREM 8. FEwery minimal Brunnian n-word w is in M.

Proof. We will assume that all strings in this proof are chosen modulo =.
We prove this by induction on n. If w is a minimal Brunnian 1-word then
w = aaﬂ € M. If w is a minimal Brunnian 2-word then w is a non-trivial
arrangement of the letters ag,ay 1 a; and al_1 and hence w € M. If w
is a minimal 3-word then one letter occurs twice. Hence w has the form
apaag ta~t and clearly a = ajaza; tay .

Suppose for each n’ < n any minimal n/-word is a member of M, and
n > 3.

Suppose a; is one of the most frequently occurring letters and aiaja;1
occurs in w. By Lemma 2(ii), (iii) and Lemma 6, remove half the occurrences
of a; from w(—a;) and reduce to obtain a minimal (n — 1)-word v. Then
v = afBa~ 137! We may assume that afﬂ occurs in « and not in (. Pick one
of the most frequently occurring letters ag in 3, which only occurs in strings
akalalzlafl (which is possible since n > 3). At least one string alakafl
corresponds to such a string in w. If not then o(w(—ayp)) # e for h = i,1
or k, or a;j must occur consecutively in w, contradicting Lemma 4. Remove
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half the occurrences of a; from w(—ay) and reduce to obtain a minimal
(n — 1)-word v'. Now v = o/#'(a/)~1(p)7 L, iﬂ and ajEl only occur in

o' say, and they only occur in strings a;a;a; 1a Hence it is clear that

w=dadp) 1B te M. u

3.3. Number. In this section we establish the number of different forms
of a minimal Brunnian n-word. We consider the words v, w € M to have the
same form if there is a sequence ug,u1, ..., Uy, such that ug = v, uy = w
and for each h < m either u; = uh+1, uh+1 may be obtained from uj by
interchanging all occurrences of aZ ! with «F ; ! for some 4,j < n, or Upt1 =
up(B/a) where o ~g v9y~1971, a occurs in up and 3 ~g a. We associate
members of M with binary trees, so that the number of forms of a word
is the number of non-isomorphic trees that are associated with minimal
n-words.

For each w € M construct a tree T,, such that the root is the word w,
if a member of T, is a string of length 1 then it has no successors, and if
it is a string o and o ~g afa"'37!, then it has two successors, o and (3.
Observe that:

e T, is unique up to isomorphism;

o if w € M and |A(w)| = n, then T}, has n leaves (members of T" with
1O SUCCESSOrS);

e v and w have the same form if and only if T, and T}, are isomorphic.

Let f(m,0) = f(m,1) = f(m,2™) = 1 for every m. Define recursively, for
m > 1 and k < 2™,

|k/2]
Zf —1,0) - fm—1,k=1) if k< o2m1,
f(m, k) = Lk/gj
Y fm=10)- fm=1k=1) ifk>2m""
I=k—2m—1

THEOREM 9. Let n = 2™ + k where k < 2™. The number of forms of a
minimal Brunnian n-word is f(m,k).

Proof. The number of forms is the number of non-isomorphic binary
trees with 2" — k leaves at height m, and 2k leaves at height k+ 1. Suppose
T is a finite binary tree, and [ and r are the two immediate successors of
the root of T. Let L(T) be the subtree of all successors of [ including I,
and R(T) the subtree of all successors of r including r. Then two trees S
and T are isomorphic if and only if L(.S) is isomorphic to L(T") and R(S) is
isomorphic to R(T), or L(S) is isomorphic to R(T") and R(S) is isomorphic
to L(T). The number of such non-isomorphic trees is f(m,k). m
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We may also use the binary trees to determine the length of mem-
bers of M that have particular forms. Let B be the isomorphism classes
of {T,y : w € M}. We will simply speak of the element T" in B rather than
the equivalence classe [T']. Now define I : B — w as follows. Given T € B
assign each leaf the number 1. Each vertex is assigned the number equal to
twice the sum of the numbers assigned to its immediate successors. Then
I'(T) is the number assigned to the root of T'. It is not difficult to conclude
that I[(w) = I'(Ty). Note that I’ is well defined but not 1-1.

One can now easily prove:

LEMMA 10. The mazimum length of an n-word in M is 2" + 272 +
N3 442,

4. mn-words. We now address the minimal length of an mn-word, first
establishing the form of a minimal mn-word.

LEMMA 11. If 0 <n <m then any minimal mn-word has the form

En En+1 Em—1 —Em—1 —E&n
in Fipyq * aim71 uaam_l e aan y

where each e, = £1, and u is a minimal Brunnian n-word.

Proof. Let w be a minimal mn-word which is not an mn/-word for any
n’ > n. When m = 1 the claim is obvious. So we argue by induction on m.

Suppose w is a minimal mn-word and any minimal rn-word has the
required form if r < m. Let w' = p(w(—am—1)). If w is also an mn’-word
we are done. It might not be an m/'n’-word, but if we rename the letters
appropriately, we can ensure that it is. Hence, without loss of generality,
assume that for some n < n’ < m’ < m, w' is an m/n/-word but not an

1(on! _ / -1 -1
m/(n' — 1)-word. Then v = apyapm41 ... apm_1W' (—am-1)a,,_...a_; is an
mn’-word, and I(v) < I(w) since the minimum collection of letters removed
from w in w’ is one occurrence of each of ai}, cl ai{l. It follows that w’
is a minimal m/n/-word

En En+1 Em—1 —Em—1 —En
agta; o wag L ag

where u is a minimal n/-word, and exactly one occurrence of each of
+1 +1
a

i@y~ cancelled in o(w(am—1)).
By Lemma 6 and Theorem 7, if n’ > n then the length of u is greater
than the length of a minimal n-word by at least 6(n’ —n), hence n’ = n and
u is a minimal n-word.
Now suppose w does not have the required form. Then for some i > m/,
a; occurs within u, and therefore ai_l also occurs in «. In fact more than one
of each must occur in u (contradicting minimality), otherwise there must
be an n-word occurring between the single occurrences of a; and a;l in u,

giving a contradiction. m
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COROLLARY 12. If n < m then the length of any mn-word is strictly
greater than the length of a minimal Brunnian n-word.

From our knowledge of minimal Brunnian words and Lemma 11 we im-
mediately deduce:

THEOREM 13. A minimal pg-word has length L = 2(p—q)+2™(3k+2™)
where g =2 + k and k < 2™.

Proof. Follows immediately from Theorem 7 and Lemma 11. =

5. Braids. It seems natural to view a simple Brunnian link as a closed
braid. In this section we briefly discuss this relationship which we will use
in the following section to investigate when two Brunnian words represent
the equivalent links that differ only in the order of the component loops.

Call a braid on n threads an n-braid and denote the threads in an n-braid
by to,t1,...,tn—1. Let By be the group of all braids on n threads, so B,, has
letters o1,...,0,_1 and defining relations

o0 =00y, kFi—1i+1,
0i0i4+10 = 0i4+104041.

See [H] for definitions of all standard braid terms used in this section.

The closure of a braid is a link, and any link is equivalent to a closed
braid [A]. Two braids define equivalent oriented links if and only if there is a
finite sequence of moves involving adding or deleting a thread which shows
up as a free factor Jff_ll or by conjugation, taking one braid to the other
(this was first stated in [M] and later proved in [B]).

Simple Brunnian links have an obvious braid representation, and Brun-
nian words correspond naturally to certain braid words. It is easy to find
a closed braid equivalent to any given simple Brunnian n-link, L. Take a
word in Ba(n — 1) representing L. Think of the braid obtained by running
n — 1 straight arcs vertically, and threading ¢y through them in the obvious
way. If w = a;%a;! ...a;™, each g, = £1, let to run across the top of the
threads to t;,, loop around it by passing over the top and back underneath if
g0 = 1, or passing underneath and back over the top if g = —1, and return
back across the top. Repeat for a;, etc. Hence if w € Ba(n), then a braid
whose closure is equivalent to the link represented by w may be obtained
by replacing every occurrence of a; in w by ogo1...0;0;0,_ 11 .0y 1 and
every occurrence of a,l-_1 by og...0; IJZ-_ IU; 11 .0y . We call a closed braid
of this form canonical. For example the 2-word apaiay lal_l represents a link
equivalent to the canonical braid ogogogoi010y 106 106 10@0{ 10f 106 L The
closure of the braid ogogopoi010y 100_ 101_ 101_ 100_ Uis equivalent to the link
represented by agaiay 1al_l.
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Let Bp(n) be the set of n-braids whose closures are equivalent to simple
Brunnian n-links and call these Brunnian braids. To simplify the expression
of a Brunnian braid, let 8; = ogo1 . ..aiaiai__ll .. .00_1 for each i. Given a

canonical Brunnian braid 5°35" ... ﬁfg’, the corresponding Brunnian word

2 7
is then a;’a;' ...a;™ € BA(T(L)). 1

6. Equivalent Brunnian words. The objective of this section is to
investigate when two Brunnian words give rise to topologically equivalent
simple Brunnian links. Each Brunnian word represents a Brunnian link in
canonical form. Hence n — 1 loops are concentric about the origin and all
loops have an anti-clockwise direction. It is clear, for example, that conjugate
Brunnian words yield links which are topologically equivalent. The following
theorem describes algebraic operations that yield topologically equivalent
Brunnian links.

THEOREM 14. Suppose v and w are two Brunnian n-words and there is
a sequence wi, ..., Wy such that v = w1, w = w,, and wjy1 can be obtained
from wj by an operation of one of the following types:

(i) replace w by afwai_k for some i <n and k = +1;
(ii) replace all occurrences of ai* with (a7 *a;p1a:)*" and aijfrll with ai!
(or symmetrically in i and i + 1);
(iit) rewrite the word in the form §oa5’dy '01a5'07 " .. . dpmagm ot such
that for each h, a,o_1 does not occur in 6p and d, # e, and replace
each 5ha8h5;1 with 5;1@8”5;1.

Then v and w generate equivalent links.

To prove this theorem we will exploit the connection between braids and
links. Each operation corresponds to a straightforward topological operation.
Since our motivation is to examine when Brunnian words represent equiva-
lent simple Brunnian links, we are only concerned with canonical Brunnian
braids. We describe the topological operation in each case, and then compute
the algebraic equivalent to the topological operations.

(i) Conjugation is obvious.

(ii) This relates to swapping two adjacent curves, neither of which is the
distinguished curve.

Suppose L is a canonical simple Brunnian n-link and B is the corre-
sponding braid. Let C; refer to the simple closed curve which is the closure
of t;. Obtain B’ from B by swapping t; and t;1. We consider two possible
cases. Either ¢; passes over the top of t; 41, or it passes under it. This relates
to Cj4+1 passing through the inside of C;, or C; passing through the inside
of Cj+1 (respectively).
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Suppose first that ¢; passes under ¢;;1. Define T' : Bg(n) — Bg(n) as
follows: If B € Bg(n), take O’iBO';l and pull the threads t; and ;1 tight to
get B’. Let T(B) be the canonical braid equivalent to B’. Then T induces
a function, T, on the strings §; occurring in braid words. 7™ has no effect
on g if j # 4,1+ 1. Since T' takes O'Z'O'Z'+1U7j+10'i_1 to 0,05, it follows that
T*(Bi+1) = (Bi) (see Figure 2).

to t; tit1
\ .,
B

Bi+1 B

Fig. 2

Moreover, T takes o;0; to ai_lai+1ai+1ai and hence T*(3;) = /Bi_lﬁi—f—lﬁi
(see Figure 3).

to 123 tit1

.

/ _//

Bi Bi+1 B Bi+18;

|
\/\/\/

Fig. 3

For example if ¢; passes under to and B = ﬁoﬁflﬁalﬁ, then T'(B) =
ﬂo_lﬂlﬁoﬂl_l. Thus the words aoalaalafl and aalalaoafl define equivalent
links.

Suppose now that ¢; passes over ;1. Define T': Bg(n) — Bgp(n) simi-
larly to the above, but taking ai_lBai rather than 0 Bo~!. Again T* has no
effect on B; if j # i,4 + 1, while 7%(8;) = Bi1 and T*(Bi+1) = Bit18iB;15-
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For example if ¢; passes over to and B = ﬁoﬁlﬁo_lﬁl_l, then T(B) =
B1B1BoBr By BT

(iii) This relates to swapping the distinguished curve with Cp.

Suppose the closure of B € Bg(n) is L € Bg(n). Since we assume that
B is canonical, tg corresponds to the distinguished curve in L. Let B” be a
braid with closure equivalent to L, but with ¢; as the distinguished curve.
We will take B” to be the braid derived from B by pulling the threads
to,t2,t3,...,tn—1 taut, and letting ¢; loop around them. Then coB”c
swaps tg and t1. Let B’ be the canonical braid equivalent to o9 B" 0y ~1 The
process we will now describe will combine these two steps and transform B
directly into B’.

Suppose B = 3’83 ... ﬁfll and consider the corresponding word w =

g0 €1 €

a’a;l...a;' € Ba(n). We will construct a word w’ which reduces to w,
0 %1 2]

with the form dpa5’dy 'd1a5' 67t . .. 6mas™ ;! such that for each h, ay* does
not occur in d and Jy, # e.

At least one occurrence of aj in w is flanked by some a; and a;
For the pth occurrence of af (possibly a string of length greater than 1)
in w, let o be the maximal string such that ag £l does not occur in ap
and ag occurs in the string o, = apaécl p I w = yo0v01 - - Yom We
are done, otherwise for each possible p let ay, be the maximal String such
that agl ¢ a1p and a1pY0gY0(g+1) - - .y%afpl occurs in w (at least one such
string occurs for cancelling to proceed in o(w(—ap))). Let w; be the word
Ebtained from w by replacing each maximal string a1pY04Y0(g+1) - - .fyolal_pl

Yy

1

_ —1 —1 -1
Vip = Q1pY0q1p X1pTV0(q+1)X1p - - - ALpVOIXy -
Note that w; reduces to w.

Now change strings aop¥1471(g+1) - - .vllagpl in wi, where ap, are maxi-

mal, to

Yop = a2p71qa2_p1a2p’71(q+1)042_p1 . 'a2p71la2_p17
if w1 # y10711 - - - Yim- Continue until wy, = YmoYm1 - - - Ymi- Note that wy,
reduces to w and has the form dyag’dy lélagl 0y Lo 5ma6m(5;f as required.
Then w' = wy,.

Now consider the braid corresponding to w’. If o is a string in a Brunnian
word w denote the corresponding string in the canonical braid word repre-
senting w by b(cr). We can unravel each b(8,)580b(6, 1) to get b(5, ") Bob(6y).
Each b(8,)80b(6, 1) is a symmetrical bit of the woven thread to, whrch picks
up t; at the very centre. By unravelling it, ¢; is pulled through following b(d,)
(and b(d,, 1)), but in the opposite direction. Turning ¢; into the first thread

corresponds to conjugation by ao Thus the final outcome is a replacement
of each b(8,)B0b(6, ) with b(6,1)B0b(J,) and conjugation by op.
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Pulling threads other than t; taut and conjugating by oy does not

give a canonical braid. It would be necessary to strategically add strings

o; 1ai_1 e 10001 ...0; to the braid. However, this process is incorporated

in the algebra.
For example, consider

B = BoBrBy " B BB BBy By By
Then
w = aoalaglal_lagalaoal_1a51a2_1,
wi = (e)ag(e)-(ar)ag ' (ay).az-(ar)ag(ar ). (e ) 'e).ay
wy = (e)ag(e)-(a1)ag ' (ay).(az)(a1)ao(ay ') (ay ' az)(e)ay (6)( )
= (e)ao(e).(a1)ag ' (a; 1)-(agar)ag(ay 'ay ). (aze)ay * (ea )
and
= (€)Bo(e)-(B1 1) By (B1)-(Br B2 ) Bo(B261) (B3 €) By (ef32)
= B0y By 518y ' By BB By ' By Ba

Figure 4(a) is the braid £o515, 151_ ! Changing the distinguished loop
gives 4(d), the braid Bof; '8y *B1. Figures 4(b) and 4(c) indicate how ¢ is
pulled through as ¢ty unravels.

- APAN

A
K _p
SPAL

(b)

Fig. 2. Changing the distinguished loop
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