
FUNDAMENTA
MATHEMATICAE

183 (2004)

Fatou components whose boundaries have a common curve

by

Shunsuke Morosawa (Kochi)

Abstract. We show that the Fatou components of a certain transcendental entire
function have a common curve in their boundaries.

1. Introduction. The Julia sets of holomorphic dynamics are always
complicated except a few holomorphic maps, for example, z 7→ z2. The idea
of hyperbolicity is one of the most important concepts in studying holo-
morphic dynamics. A rational function is called hyperbolic if the orbit of
every critical point converges to an attracting periodic orbit; equivalently,
the function is expanding with respect to the Euclidean metric on a neigh-
borhood of the Julia set. This yields nice properties on Julia sets. For ex-
ample, if the Julia set of a hyperbolic rational function is connected, then
it is locally connected. Furthermore, the argument in the proof of [6, The-
orem 3] shows that, for a hyperbolic rational function with the connected
Julia set, if the boundaries of two Fatou components have a common curve,
then the Fatou set consists of two components and the Julia set is a Jordan
curve. Consequently, the Fatou set of the two-fold iterate consists of two
completely invariant components. We easily define the hyperbolicity for a
transcendental entire function: the orbit of every singular point converges to
an attracting periodic orbit. In [10], hyperbolic meromorphic functions were
investigated and it was shown that they are expanding. Nevertheless, hyper-
bolic transcendental entire functions are not uniformly expanding because
the Julia sets of transcendental entire functions are always unbounded.

In this note, we show that the Fatou components of a certain hyper-
bolic complex error function have a common curve in their boundaries.
The precise statement and its proof are given in Section 3. Complex er-
ror functions are defined in Section 2. The fundamental properties of dy-
namics of transcendental entire functions we use in this note can be found
in [8].
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2. Complex error functions. A complex error function is a transcen-
dental entire function given by

fa,b(z) = a

z�

0

e−w
2
dw + b,

with a ∈ C\{0} and b ∈ C. It has two asymptotic values ±a√π/2+b and no
other singular values. A transcendental entire function with finitely many
singular values has neither a Baker domain nor a wandering domain (see [1],
[3] and [4]). Hence the Fatou set of a complex error function contains neither
a Baker domain nor a wandering domain. This implies that points tending to
infinity under the iteration belong to the Julia set. Furthermore, a complex
error function has at most two non-repelling cycles, since every non-repelling
cycle has a relationship with singular values (see [3] and [8]). We also remark
that a transcendental entire function has at most one completely invariant
component (see [3] and [8]).

A complex error function is unique up to the involution which carries it
into the map

−fa,b(−z) = a

z�

0

e−w
2
dw − b = fa,−b(z).

Thus the two numbers a and B = b2 form a complete set of coordinates for
the moduli space. A complex error function given by

fa,
√
B(z) = a

z�

0

e−w
2
dw +

√
B,

with a ∈ R \ {0} and B ∈ R, is called a real error function in this note. We
put b =

√
|B|. If B > 0, then

fa,
√
B(z) = a

z�

0

e−w
2
dw + b,

and if B ≤ 0, then

fa,
√
B(z) = a

z�

0

e−w
2
dw + ib.

The action of every real error function with B > 0 is symmetric with respect
to the real axis, and for B ≤ 0 it is symmetric with respect to the imaginary
axis.
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Assume B > 0. If a > 0, then fa,
√
B is increasing on the real axis,

convex on the negative halfaxis and concave on the positive halfaxis, since
f ′
a,
√
B

(x) = ae−x
2

and f ′′
a,
√
B

(x) = −2axe−x
2
. Furthermore, its values lie

between a
√
π/2 +

√
B and −a√π/2 +

√
B. Hence its Fatou set consists of

one of the following: a completely invariant component with an attracting
fixed point, two basins of attracting fixed points or a basin of an attracting
fixed point and a basin of a parabolic fixed point. Moreover, fa,

√
B has at

most three fixed points on the real axis. If it has only one fixed point, then it
is an attracting fixed point and the orbit of each asymptotic value converges
to it. If fa,

√
B has three fixed points, then one is repelling and the others are

attracting. If the graph is tangent to the diagonal, then the tangent point
is on the negative halfaxis since

√
B > 0. Hence it is a parabolic fixed point

with multiplicity two. In this case, fa,
√
B has also an attracting fixed point

on the positive halfaxis.
If a < 0, then the function is decreasing. Furthermore, it is concave on

the negative halfaxis and convex on the positive halfaxis. Its values lie in the
same interval as in the case a > 0. Hence its Fatou set consists of one of the
following: a completely invariant component with an attracting fixed point, a
basin of an attracting cyclic point with period two or a basin of a rationally
indifferent fixed point with multiplier −1. Moreover, fa,

√
B has only one

fixed point with negative multiplier on the real axis. If its multiplier is in
(−1, 0), it is an attracting fixed point and the orbit of each asymptotic value
converges to it. If its multiplier is −1, then it is an inflection point of f 2

a,
√
B

.

This implies that it is a parabolic fixed point of f 2
a,
√
B

with multiplicity 3. If

its multiplier is in (−∞,−1), then f 2
a,
√
B

has one repelling fixed point and
two attracting fixed points.

In any case above, the real axis is contained in the Fatou set except at
most one point, which is a repelling fixed point or a rationally indifferent
fixed point. Hence both asymptotic values and asymptotic paths for both
asymptotic values are contained in the immediate basins.

For B ≤ 0, the parameter space (a,B) is much more complicated and is
investigated in [7] and [9].

It is well known that every immediate basin of an attracting cycle con-
tains at least one singular value. The proof of this claim (for example, see [8,
Theorem 2.4.1]) shows that if an immediate basin contains only asymptotic
values as singular values, then it also contains at least one asymptotic path
for one of the asymptotic values in it.

Now we consider real error functions with B ≤ 0. The symmetry of the
action with respect to the imaginary axis determines the Fatou set in the fol-
lowing sense. If f

a,i
√
|B| has only one attracting fixed point, then the attract-
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ing fixed point exists on the imaginary axis. The immediate basin contains
both asymptotic values and hence both asymptotic paths. Consequently, it
is a completely invariant component. If f

a,i
√
|B| has two attracting fixed

points, then one is in the left halfplane and the other in the right halfplane.
Each immediate basin contains an asymptotic value and its asymptotic path.
Assume f

a,i
√
|B| has only one attracting cycle with period two. If a compo-

nent of the immediate basin contains only one asymptotic value, then the
other component also contains the other asymptotic value. It follows that
one component of the immediate basin is contained in the right halfplane
and the other in the left halfplane. Accordingly, each component contains
an asymptotic path. If a component of the immediate basin contains both
asymptotic values, then the other component contains asymptotic paths for
both asymptotic values. The periodic points of the attracting cycle exist on
the imaginary axis.

Remark 1. Taniguchi defined a structurally finite transcendental entire
function to be of the form

z 7→
z�

a

P (w)eQ(w) dw,

where P and Q are polynomials and a is a constant. Hence every complex
error function is structurally finite. In [12], he studied the topological struc-
ture of families of structurally finite transcendental entire functions.

3. Theorem and proof

Theorem. Assume a real error function fa,
√
B has either two attracting

fixed points or only one attracting cycle with period two. Then the boundaries
of the components of the immediate basins contain a common curve.

Proof. The number of components stated in the Theorem is two. We
abbreviate fa,

√
B to f . The asymptotic value whose real part is greater than

that of the other is denoted by a+, and the other by a−.

Case 1: B ≤ 0. From the symmetry of the action of f , we see that
the imaginary axis is forward invariant. We denote the imaginary axis by
I0. Take a disc D centered at the origin containing both asymptotic values.
Then f−1(C\D) consists of two components. One of them, say EU , intersects
{z | =z > y} for arbitrarily large y, and the other, denoted by EL, intersects
{z | =z < y} for arbitrarily small y. We also denote by CU and CL the
boundaries of EU and EL, respectively. Let

g(z) = f1,0(z) =
z�

0

e−w
2
dw, K = g−1(I0).
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We note that f−1(I0) = K for an arbitrary real error function with B ≤ 0.
The imaginary axis, which is contained inK, intersects CU in a unique point,
say PU,0, and intersects CL in a unique point, say PL,0. Every component of
K except I0 intersects either CU or CL in two points. The points of CU ∩K
in the right halfplane are labeled PU,1, PU,2, . . . in the order of increasing
length along CU , measured from the imaginary axis, and those in the left
halfplane are labeled PU,−1, PU,−2, . . . in the same order. In a similar fashion
we also label PL,i for i ∈ Z \ {0} the points of CL ∩K. Hereafter, ∗ means
U or L. The curve in K which contains P∗,2i for i ∈ Z \ {0} is denoted by
I∗,i. We denote by D∗,i for i ∈ Z \ {0} the complementary component of I∗,i
which does not intersect K.

Fig. 1. The inverse image of ∂D is black and the inverse image of the imaginary axis is
gray.

First, we consider the case where f has two attracting fixed points. It
follows that a > 0. Let A+ and A− be the immediate basins containing a+

and a−, respectively. The symmetry of the Fatou set implies that the Julia
set contains the imaginary axis. We show that ∂A+ and ∂A− contain the
imaginary axis. Each D∗,i for −i ∈ N contains only one point of f−1(a+).
Furthermore, there exist no other points of f−1(a+) in C\⋃−∞i=−1(DU,i∪DL,i).
Therefore, a component of f−1(A+) other than A+ is contained in some D∗,i
for −i ∈ N and for ∗ = U or L. Similar results hold for a− and A−. Take
an asymptotic path Γ for a+ in A+ whose finite terminal point is a+ and
which intersects ∂D in only one point. We can choose a component of f−1(Γ )
which is an asymptotic path for a+. Such components are in A+. Since both
ends of the curve tend to infinity, we can denote it by γ(t) for t ∈ R, with
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lim|t|→∞ |γ(t)| = ∞. We may assume γ(t) for t ∈ [0,∞) is an asymptotic
path for a+. This implies limt→∞<(γ(t)) =∞. Let I−∗,i and I+

∗,i for i ∈ Z\{0}
be the subcurves of I∗,i in E∗ whose finite terminal points are P∗,2i−1 and
P∗,2i, respectively. We also denote I0 ∩EU and I0 ∩EL by I+

U,0 and I+
L,0, re-

spectively. Let B∗,i be the domain bounded by I−∗,i, I
+
∗,i−1 and C∗ for i ∈ N.

By the definition, f(B∗,i) = (D)c ∩ {z | <z > 0}. Conversely, every compo-
nent of f−1((D)c ∩ {z | <z > 0}) in the right halfplane is equal to B∗,i for
some i ∈ N and for ∗ = U or L. Then we can choose two asymptotic paths
γ+
U and γ+

L for a+ in f−1(Γ ) satisfying γ+
U ∩ BU,1 6= ∅ and γ+

L ∩ BL,1 6= ∅.
Consequently, one of the complementary components of γ+

∗ contains D∗,i for
all i ∈ N. By the argument similar to the above, we obtain the curve γ−∗ in
A− one of whose complementary components contains D∗,i for all −i ∈ N.

Take a point w on I0. If w is not in ∂A+, then it is not in ∂A− from the
symmetry of the Fatou set. Let V be a small open disk centered at w such
that V ∩ A+ = ∅ and V ∩ A− = ∅. Since I0 is forward invariant, we have
fn(V ) ∩ I0 6= ∅ for all n ∈ N. A fundamental property of Julia sets shows
that there exists N such that fN (V ) ∩ A+ 6= ∅ and fn(V ) ∩ A+ = ∅ for
all n < N . The symmetry of the action implies that also fN (V ) ∩ A− 6= ∅
and fn(V ) ∩ A− = ∅ for all n < N . Since fN−1(V ) ∩ A+ = ∅, fN−1(V )
must intersect a component of f−1(A+) other than A+, which is contained
in D∗,i for some −i ∈ N and for ∗ = U or L. Because of fN−1(V ) ∩ I0 6= ∅,
fN−1(V ) intersects γ−∗ for ∗ = U or L, which yields fN−1(V ) ∩ A− 6= ∅.
This is a contradiction. Hence w is a boundary point of A+ and of A−.

Fig. 2. The Julia sets of f
a,
√
B

. Left: f
a,
√
B

with (a,B) = (1.6, 1.96) has two attracting
fixed points. Right: f

a,
√
B

with (a,B) = (−0.14,−3.61) has an attracting cycle with period
two whose cyclic points are on the imaginary axis.
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Second, we consider the case where f has an attracting cycle with pe-
riod two, each component of whose immediate basin contains an asymptotic
value. It follows that a < 0. The Julia set again contains the imaginary axis.
By an argument similar to the above, every component of f−1(A+) and of
f−1(A−) except A+ and A− is contained in D∗,i for some i ∈ Z \ {0} and
for ∗ = U or L. Furthermore, we can obtain the curves γ±∗ which have the
properties as above. Thus, we arrive at ∂A+ ∩ ∂A− ⊃ I0 in the same way.

Finally, we consider the case where f has an attracting cycle with pe-
riod two, a component of whose immediate basin contains both asymptotic
values. Let A+ be the component of the immediate basin containing both
asymptotic values, and A− the other component. By symmetry, A+∩I0 6= ∅
and thus A−∩I0 6= ∅. This implies a < 0. We consider the case b =

√
|B| > 0.

Then A+ lies in the upper halfplane. Let γ be a curve in A+ whose terminal
points are the asymptotic values. We also assume γ intersects I0 in only one
point. Since a < 0, f−1(a+) is contained in the right halfplane and f−1(a−)
in the left halfplane. As before, each of f−1(a+) ∪ f−1(a−) is contained in
D∗,i for i ∈ Z \ {0} and for ∗ = U or L, whose boundary is mapped onto
the imaginary axis. Only one component of f−1(γ) intersects the imaginary
axis, and tends to infinity on both sides. Other components have finite end
points. If a finite end point of a component is in f−1(a+), then the compo-
nent is an asymptotic path for a−. If a finite end point of a component is
in f−1(a−), then the component is an asymptotic path for a+. Hence every
point of f−1(a+) and of f−1(a−) is contained in A−, which implies that
f−1(A+) = A−. Since the imaginary axis is not contained in the Julia set
anymore, we have to construct curves in the Julia set which are contained
in both ∂A+ and ∂A−. Let

F (t) =
t�

0

es
2
ds

for t ≥ 0. We denote by B+ the domain bounded by I+
U,0, I+

U,1 and CU , and
by B− the domain bounded by I+

U,0, I+
U,−1 and CU . The inverse of f mapping

(C\D)\IL to B+ is denoted by α+ and the inverse of f mapping (C\D)\IL
to B− is denoted by α−, where IL is the component of I0 \D in the lower
halfplane. For t ≥ 0 and n ∈ N we define

h+
n (t) = α+ ◦ α− ◦ α+ ◦ α− ◦ · · · ◦ α×︸ ︷︷ ︸

n

(iFn(t)),

where × = + if n is odd and × = − if n is even. Similarly, we define
h−n (t) by interchanging + and − in the definition of h+

n (t). By an argument
and a calculation similar to those in [5], there exist functions h+(t) and
h−(t) and t0 > 0 such that h+

n (t) → h+(t) and h−n (t) → h−(t) uniformly
on compact subsets of {t | t ≥ t0}. In addition, (1) limt→∞ |h±(t)| = ∞,
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(2) limn→∞ |fn(h±(t))| = ∞ for all t ≥ t0 and (3) h±(t) is injective with
respect to t. We denote {h+(t) | t ≥ t0} and {h−(t) | t ≥ t0} by H+ and
H−, respectively. The claim (2) shows that H± lies in the Julia set. From
the definition, it is clear that f(H±) ⊂ H∓. We note that h+(t) = −h−(t)
for all t ≥ t0 by symmetry. The construction implies that H+ is contained
in BU,1 and H− in BU,−1.

We choose a cross cut Γ in A+ which intersects the imaginary axis in
only one point and whose complementary component containingA− contains
both singular values. We can also assume that Γ is symmetric with respect
to the imaginary axis and intersects ∂D in at most two points. Let γ be a
component of f−1(Γ ). Then γ is a cross cut in A− such that either γ∩EU 6= ∅
and γ∩EL = ∅, or γ∩EU = ∅ and γ∩EL 6= ∅. We denote the γ intersecting
IU,i by γi, and the complementary component of γi which does not intersect
EL by Gi. Since a < 0, every unbounded subset of I−U,i intersects Gi. We see
that H± is contained in (Gi)c for i ∈ Z \ {0}.

Let w be the intersection point of IU,1 and γ1, which is in A−. Take a
subcurve γ′ of γ1 whose finite terminal point is w. Let γ ′′ be an asymptotic
path for a− in A− ∩ {z | <z > 0} whose finite terminal point is w. We
denote γ′ ∪ γ′′ by σ1. In a similar fashion, we construct a cross cut σ−1 in
A−. Let σ0 be a cross cut in A− ∩ (EU ∪ EL)c such that one side of σ0 is
an asymptotic path for a+, the other side is an asymptotic path for a−, and
σ0 ∩ (σ−1 ∪ σ1) = ∅. Let G be a domain bounded by σ1, σ0 and σ−1 which
intersects A+. Then every component of f−1(A−) except A+ is contained
in Gc, and H± is contained in G.

Take a point w in H+. Suppose that w is in neither ∂A+ nor ∂A−. Then
we can take a neighborhood V of w so that V ∩ A+ = ∅ and V ∩ A− = ∅.
Let N be the smallest number satisfying fN (V )∩A− 6= ∅. Since the inverse
image of A+ is A−, we see that fn(V ) ∩ A+ = ∅ for all n ≤ N . Because
fn(V )∩(H+∪H−) 6= ∅ for all n, there exists σi for some i ∈ {0,±1} such that
σi∩fN−1(V ) 6= ∅. This is a contradiction because σi ⊂ A−. Hence w ∈ ∂A+

or w ∈ ∂A−. If there exists {wn} ⊂ ∂A− ∩H+ such that limn→∞ wn = w,
then we see that w ∈ ∂A− ∩ H+. Assume that there exists a subarc ` in
H+ such that ` ⊂ ∂A+ and ` ∩ ∂A− = ∅. Let `′ be the reflection of ` with
respect to the imaginary axis. It is clear that `′ ⊂ H− and `′ ⊂ ∂A+ by the
symmetry of the Fatou set. If ` is unbounded, then f(`)∩`′ 6= ∅ is the desired
curve because f(`) ⊂ H− ∩ ∂A−. We take the component of (A+ ∪ A−)c

whose boundary contains `, and denote it by V . There exists a smallest N
such that fN (V )∩A− 6= ∅. It follows that fN−1(V ) intersects a component of
f−1(A−) other than A+. From ∂fN−1(V )∩(H+∪H−) 6= ∅ we conclude that
fN−1(V )∩A− 6= ∅. This is a contradiction. Hence if w ∈ ∂A+∩ (H+∪H−),
then w ∈ ∂A− ∩ (H+ ∪H−). Accordingly, if w ∈ ∂A− ∩ (H+ ∪H−), then
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f(w) ∈ ∂A+∩ (H+∪H−) and thus f(w) ∈ ∂A−∩ (H+∪H−). Let t1 be the
number satisfying h−(t1) = f(h+(t0)). Then it is clear that

H+ =
( ∞⋃

n=0

f2n(h+[t0, t1])
)
∪
( ∞⋃

n=0

f2n+1(h−[t0, t1])
)
.

Therefore, we conclude that {h+(t) | t ≥ t1} and {h−(t) | t ≥ t1} are
common boundary curves.

Case 2: B > 0. From the symmetry of the action of f , we see that the
real axis is forward invariant. Both asymptotic values exist on the real axis.
However, the imaginary axis is not forward invariant anymore. We recall
that b =

√
B and denote {z | <z = b} by I1. Then f−1(I1) coincides with

K defined in Case 1. Since D defined in Case 1 contains both asymptotic
values, we see that D ∩ I1 6= ∅. Therefore, the notation derived from D and
K in Case 1 is in force again.

First, we consider the case where f has two attracting fixed points. It
follows that a > 0. Let A+ and A− be the immediate basins containing a+

and a−, respectively. We denote by BU the domain bounded by I−U,1, I−U,−1
and CU . The inverse of f mapping (C\D)\IL to BU is denoted by β, where
IL is the component of I1 \D in the lower halfplane. For t ≥ 0 and n ∈ N
we define

hn(t) = βn(iFn(t)).

As was stated before, there exist a function h(t) and t0 such that hn(t) →
h(t) uniformly on compact subsets of {t | t ≥ t0}. We denote {h(t) | t ≥ t0}
by H. Let Γ+ = [a+,+∞) and Γ− = (−∞, a−]. We choose the component
of f−1(Γ+) which is an asymptotic path for a+ and intersects BU,1, and
denote it by γ+

U . We also choose the component of f−1(Γ−) which is an
asymptotic path for a− and intersects BU,−1, and denote it by γ−U . The
inverse of f mapping the upper halfplane to the domain bounded by γ+

U , γ−U
and the real axis is denoted by β̃; it coincides with β on (C\D)∩{z | =z > 0}.
Since β̃ is a contraction map, it has an attracting fixed point on the real
axis, say a0, which is a repelling fixed point of f . From the definition, we
see that β̃(H) ⊃ H. Hence S+ :=

⋃∞
n=0 β̃

n(H) is the curve contained in
the Julia set whose finite end point is a0. Furthermore, f(S+) = S+. The
reflection of S+ with respect to the real axis is denoted by S−. It is a
curve in the Julia set. The curve S := S+ ∪ S− is a cross cut one of whose
complementary components contains A+ and the other contains A−. Hence
every component of f−1(A+) is contained in the complementary component
of every component of f−1(S). The same is true for A−. We choose the
component of f−1(Γ+) which is an asymptotic path for a+ and intersects
BL,1, and denote it by γ+

L . We also choose the component of f−1(Γ−) which
is an asymptotic path for a− and intersects BL,−1, and denote it by γ−L .
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Every component of f−1(A+) and f−1(A−) except A± is contained in the
complement of the domain bounded by γ+

U , γ−U , γ+
L and γ−L . By the argument

similar to the above, we see that every point in S is in ∂A+ or ∂A−. If there
were a subarc on S contained in ∂A+ and not intersecting ∂A−, then we
obtain a contradiction by an argument similar to the above. Hence, S is a
curve in ∂A+ and in ∂A−.

Fig. 3. The Julia sets of f
a,
√
B

. Left: f
a,
√
B

with (a,B) = (2, 0.25) has two attracting
fixed points. Right: f

a,
√
B

with (a,B) = (−2, 2.25) has an attracting cycle with period
two.

Second, we consider the case where f has an attracting cycle with period
two. It follows that a < 0. The inverse of f mapping (C \D) \ IU to BU is
denoted by β+, where IU is the component of I1 \D in the upper halfplane.
We denote by BL the domain bounded by I−L,1, I−L−1 and CL. The inverse
of f mapping (C \D) \ IL to BL is denoted by β−. By using the functions
given by

h+
n (t) = β+ ◦ β− ◦ β+ ◦ β− ◦ · · · ◦ β×︸ ︷︷ ︸

n

(iFn(t)),

where × = + if n is odd and × = − if n is even, and

h−n (t) = β− ◦ β+ ◦ β− ◦ β+ ◦ · · · ◦ β×︸ ︷︷ ︸
n

(iFn(t)),

where × = − if n is odd and × = + if n is even, we obtain the cross cut in
a similar fashion. Hence the rest of the proof is similar to the above.

Remark 2. The curves constructed in the proof are called ray tails.
Ray tails for exponential maps have been considered by many authors, for
example, [2] and [11]. In [5], Kisaka considered ray tails for structurally finite
transcendental entire functions.
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Remark 3. The author believes that the result is also true for some
complex error functions, and it can be proved by detailed investigation of
ray tails and their landing properties. However, it may not be true when a
complex error function has only one attracting cycle with period two whose
basin contains both asymptotic values. For example, the complex error func-
tion with a = −0.7 + 0.7i and b = 0.31− 0.96i has an attracting cycle with
period two whose basin contains both asymptotic values and whose im-
mediate basin contains only one asymptotic value. A numerical experiment
seems to show that there exists no common curve in the boundaries of Fatou
components.
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