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Preserving P-points in definable forcing
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Abstract. I isolate a simple condition that is equivalent to preservation of P-points
in definable proper forcing.

1. Introduction. Blass and Shelah [3], [2, Section 6.2] introduced the
forcing property of preserving P-points. Here, a P-point is an ultrafilter U
on ω such that every countable subset of it has a pseudo-intersection in it:
∀an ∈ U : n ∈ ω ∃b ∈ U |b \ an| < ℵ0. While the existence of P-points is
unprovable in ZFC, they are plentiful under ZFC+CH. A forcing P preserves
an ultrafilter U if every set a ⊂ ω in the extension either contains, or is
disjoint from, a ground model element of the ultrafilter U ; otherwise, P
destroys U . The forcing P preserves P-points if it preserves all ultrafilters
that happen to be P-points.

Several circumstances make this property a natural and useful tool. Ev-
ery forcing adding a real number destroys some ultrafilter [2, Theorem 6.2.2];
if the forcing adds an unbounded real, then it destroys all non-P-point ul-
trafilters. A P-point, if preserved by a proper forcing, will again generate
a P-point in the extension. Cohen and Solovay forcings both destroy all
nonprincipal ultrafilters, and so preservation of P-points excludes the intro-
duction of Cohen or random reals into the extension. Finally, preservation of
P-points is itself preserved under the countable support iteration of proper
forcing [3], [2, Theorem 6.2.6].

In the context of the theory of definable proper forcing [17], the preser-
vation of P-points has two disadvantages: it trivializes when P-points do not
exist (while the important properties of a definable forcing are typically in-
dependent of circumstances of this kind), and it refers to undefinable objects
such as ultrafilters. As a result, it is not clear how difficult its verification
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might be, and what tools should be used for that verification. In this paper,
I will resolve this situation by isolating a simple condition that is equivalent
to the preservation of P-points for definable proper forcing in the theory
ZFC+LC+CH. In order to state the theorem, I will need the following def-
initions.

Definition 1.1. A forcing P does not add splitting reals if for every set
a ⊂ ω in the extension there is an infinite ground model subset of ω which
is either included in a or disjoint from it.

This is a familiar property. Some forcings do not add splitting reals
(Sacks forcing, the fat tree forcing [17, Section 4.4.3], the E0 forcing [16],
or Miller forcing [11], to include a diversity of examples), others do (most
notably, Cohen and random forcing, as well as all the Maharam algebras [1],
and with them all definable c.c.c. forcings adding a real). Clearly, a forcing
adding a splitting real preserves no nonprincipal ultrafilters. I do not think
that on its own not adding splitting reals is preserved under even two-step
iteration. Its conjunction with the bounding property is preserved under
the countable support iteration of definable forcings by [17, Corollary 6.3.8],
and it is equivalent to the preservation of Ramsey ultrafilters by [17, Section
3.4].

Definition 1.2. A forcing P has the weak Laver property if for every
function g ∈ ωω in the extension dominated by some ground model function
there is a ground model infinite set a ⊂ ω and a ground model function
h : a → P(ω) such that for every number n ∈ a, both |h(n)| < 2n and
g(n) ∈ h(n) hold.

The weak Laver property is less well-known, and on the surface it appears
to have nothing to do with preservation of any ultrafilters. It is a weakening
of the more familiar Laver [2, Definition 6.3.27] or Sacks properties. Notably,
it occurs in [2, Section 7.4.D] in parallel to the proof that the Blass–Shelah
forcing preserves P-points. Some more complicated variants of it, iterable
in the category of arbitrary proper forcings, appeared in [14, Section 7], to
guarantee the preservation of certain more complicated properties of filters
on ω.

In order to precisely quantify the definability properties of the forcings
involved, recall

Definition 1.3. A σ-ideal I on a Polish space X is universally Baire
if for every universally Baire set A ⊂ 2ω × X the set {y ∈ 2ω : Ax ∈ I} is
universally Baire.

The class of universally Baire sets first appeared in [4]: these are the sets
whose continuous preimages in Hausdorff spaces have the property of Baire.
Suitable large cardinal assumptions imply that suitably definable subsets
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of Polish spaces are universally Baire [12], [8, Section 3.3], and analytic
sets are universally Baire in ZFC. As [17] shows, a typical definable proper
forcing adding a single real is of the form PI where I is a universally Baire
σ-ideal on a Polish space. The treatment of such a general class of forcings
necessitates large cardinal assumptions at many ocassions. In order to prove
ZFC theorems for a more restricted, but still significant, class of forcings, I
will use the following definability notion considered for example by Sierpiński
[7, Theorem 29.19]:

Definition 1.4. A σ-ideal I on a Polish space X is Π1
1 on Σ1

1 if for
every analytic set A ⊂ 2ω ×X the set {y ∈ 2ω : Ay ∈ I} is coanalytic.

Most definable tree forcings are of the form PI for a Π1
1 on Σ1

1 σ-ideal
I. Now I am ready to state the main result of the paper. On the moral
level, it says that in definable proper forcing, the preservation of P-points
is equivalent to the conjunction of the weak Laver property and adding no
splitting reals.

Theorem 1.5. (CH) Suppose that P is a proper forcing preserving P-
points. Then P has the weak Laver property and adds no splitting reals.

Theorem 1.6. Suppose that there is a proper class of Woodin cardinals.
If I is a universally Baire σ-ideal on a Polish space such that the quotient
forcing PI is proper , has the weak Laver property , and adds no splitting
reals, then PI preserves P-points. If the ideal I is Π1

1 on Σ1
1 then the large

cardinal assumption is not necessary.

The Continuum Hypothesis assumption in the former theorem is used
only to ascertain the existence of many P-points. On the other hand, the
definability assumption in the latter theorem is necessary:

Example 1.7. (CH) There is a proper forcing which has the Laver prop-
erty, adds no splitting reals, and fails to preserve a P-point.

The theorems can be used to swiftly argue that certain forcings preserve
or do not preserve P-points. For example, the paper [15] shows that count-
able products of forcings of the form PI , where I is a σ-ideal generated
by a compact collection of compact sets, do not add splitting reals. These
products all have the weak Laver property, their associated ideal is Π1

1 on
Σ1

1 and therefore they must preserve P-points. A direct proof of this prod-
uct preservation property seems to be out of reach. As another example,
the forcings adding a bounded eventually different real must fail to have
the weak Laver property, and so they never preserve P-points under CH.
On the other hand, the Blass–Shelah forcing of [2, Section 7.4.D] adds an
unbounded eventually different real and still preserves P-points.
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The notation used in the paper follows the set-theoretic standard of [5].
The shorthand LC denotes the use of suitable large cardinal assumptions.
If A ⊂ X × Y is a set and x ∈ X is a point, then Ax is the vertical section
of the set A corresponding to x.

2. Proof of Theorem 1.5. Suppose that the conclusion of Theorem 1.5
fails; I will argue that the assumption must fail as well. If P adds a splitting
real, then P certainly destroys all nonprincipal ultrafilters. In the other case,
the weak Laver property must fail for some function f ∈ ωω, and there is a
condition p ∈ P forcing that ġ < f̌ is a counterexample. Let Un : n ∈ ω be
pairwise disjoint sets of the respective size f(n), in some way identified with
f(n). Let J be the ideal on the countable set dom(J) =

⋃
n P(Un) generated

by singletons and sets a ⊂ dom(J) such that for every number n ∈ ω, either
a ∩ P(Un) = 0 or |

⋂
(a ∩ P(Un))| > 2n, or |Un \

⋃
(a ∩ P(Un))| > 2n.

Claim 2.1. The ideal J is an Fσ proper ideal.

Proof. The set F of generators is closed, and therefore compact, in the
space P(dom(J)). The ideal generated by a closed set of generators is always
Fσ, since the finite union map is continuous on the compact set Fn for every
n ∈ ω, its image is again a compact set, and the ideal J is the union of all
of these countably many compact sets.

To see that dom(J) /∈ J , suppose that ai : i ∈ k are the generators of
the ideal J . To show that they do not cover dom(J), find a number n ∈ ω
such that 2n > k and argue that there is a set b ⊂ Un not in any of the
sets ai : i ∈ k. First, partition k into two pieces, k = z0 ∪ z1, such that for
i ∈ z0, |

⋂
(ai ∩P(Un))| > 2n holds, and for i ∈ z1, |Un \

⋃
(a∩P(Un))| > 2n

holds. Use a counting argument to find pairwise distinct elements ui : i ∈ k
in the set Un so that for i ∈ z0, ui ∈

⋂
(ai ∩ P(Un)) holds, and for i ∈ z1,

ui /∈
⋃

(a ∩ P(Un)) holds. The set b = {ui : i ∈ z1} then belongs to none of
the sets ai : i ∈ k.

It follows from the definition of the ideal J that the forcing P below the
condition p adds a set b ⊂ dom(J) such that no ground model J-positive set
can be disjoint from it, or included in it. Namely, consider the set ḃ = {c ⊂
Un : ġ(n) ∈ c, n ∈ ω}. Suppose that q ≤ p is a condition, and a ⊂ dom(J)
is a J-positive set. Then there must be infinitely many numbers n ∈ ω such
that a ∩ P(Un) 6= 0 and |

⋂
(a ∩ P(Un))| ≤ 2n; since ġ is forced by p to be

a counterexample to the weak Laver property, there must be a condition
r ≤ q and a number n ∈ ω such that r 
 ġ(n) /∈

⋂
(ǎ∩P(Un)) and therefore

r 
 ǎ 6⊂ ḃ. Similarly, there must be infinitely many numbers n ∈ ω such that
a∩P(Un) 6= 0 and |Un \

⋃
(a∩P(Un))| ≤ 2n, and by the failure of the weak

Laver property, there must be a number n and a condition r ≤ q forcing
ġ(n) ∈

⋃
(a ∩ P(Un)) and so ǎ ∩ ḃ 6= 0.
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It is now enough to extend the ideal J to a complement of a P-point,
since then the previous paragraph shows that such a P-point cannot be
preserved by the forcing P below the condition p. Such an extension exists,
since the ideal J is Fσ; the construction is well-known, I am not certain to
whom to attribute it, it certainly easily follows from some fairly old results.

Claim 2.2. (CH) Whenever K is a proper Fσ ideal on a countable set ,
there is a P-point ultrafilter disjoint from K.

Proof. By a result of [6], the quotient poset P(ω)/I is countably satu-
rated, in particular σ-closed. Any sufficiently generic filter over this poset
will generate the desired P-point ultrafilter. Just build a modulo K descend-
ing ω1-chain aα : α ∈ ω1 of K-positive sets such that:

• aα+1 is either disjoint from or a subset of the αth subset of ω in some
fixed enumeration;
• aα is modulo finite included in all sets aβ : β ∈ α for every limit

ordinal α.

The first item shows that the sets aα : α ∈ ω1 generate an ultrafilter
disjoint from K, the second item is to ensure that this ultrafilter will be a
P-point. The induction itself is easy. At the successor step, note that if b ⊂ ω
is the αth subset of ω in a given enumeration, then one of the sets aα∩b, aα\b
will be K-positive, and it will serve as aα+1. At the limit stage of induction,
use the result of Mazur [10] to find a lower semicontinuous submeasure φ
such that K = {b ⊂ ω : φ(b) < ∞}, enumerate α = {βn : n ∈ ω}, and
choose finite sets bn ⊂

⋂
m∈n aβm of φ-mass ≥ n. The set aα =

⋃
n bn will

work.

3. Proof of Theorem 1.6. This is more exciting. Assume that the
assumptions hold. There are two auxiliary claims.

Claim 3.1. If K is an Fσ ideal on ω, p ∈ P is a condition, and p 

ḃ ⊂ ω, then there are a ground model K-positive set and a condition r ≤ p
forcing it to be either disjoint from, or a subset of , the set ḃ.

Proof. Use the result of Mazur [10] to find a lower semicontinuous sub-
measure φ on ω such that J = {c ⊂ ω : φ(c) < ∞}. Find pairwise disjoint
sets cn ⊂ ω such that φ(cn) > n · 22n , this for every n ∈ ω. Use the weak
Laver property to find an infinite set a ⊂ ω, sets dn ⊂ P(cn) of the respec-
tive size ≤ 2n, and a condition q ≤ p such that q 
 ∀n ∈ ǎ ḃ ∩ čn ∈ ďn.
Use the subadditivity of the submeasure φ to find sets en ⊂ cn of submea-
sure ≥ n such that ∀f ∈ dn f ∩ en = 0 ∨ en ⊂ f , this for every n ∈ a.
Thus q 
 ∀n ∈ a ěn ⊂ ḃ ∨ ěn ∩ ḃ = 0. Since P adds no splitting re-
als, there is a condition r ≤ q and an infinite subset a′ ⊂ a such that
r 
 ∀n ∈ a′ ěn ⊂ ḃ ∨ ∀n ∈ a′ ěn ∩ ḃ = 0. In the first case, the ground model
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J-positive set
⋃
n∈a′ en is forced to be a subset of ḃ, in the other case, this

set is forced to be disjoint from ḃ as desired.

Claim 3.2. (ZFC + LC) If U is a P-point and J is a universally Baire
ideal disjoint from U , then there is an Fσ ideal K ⊃ J disjoint from U . If
J is analytic then no large cardinals are needed.

Note that Claims 2.2 and 3.2 together yield a complete characterization
of analytic ideals on ω that are disjoint from a P-point under CH: these are
exactly those ideals that can be extended to nontrivial Fσ ideals.

Proof. I will prove the large cardinal version with a direct determinacy
argument and then use the Kechris–Louveau–Woodin dichotomy to argue
for the analytic case in ZFC.

Recall the Galvin–Shelah game theoretic characterization of P-points:
the ultrafilter U is a P-point if and only if Player I has no winning strategy
in the P-point game where he chooses sets an ∈ U , Player II chooses their
finite subsets bn ⊂ an, and Player II wins if

⋃
n bn ∈ U [2, Theorem 4.4.4].

Now consider the same game, except the winning condition for Player II is
replaced with

⋃
n bn /∈ J . This is certainly easier to win for Player II, and

so Player I still does not have a winning strategy. Now, however, the payoff
set is universally Baire and one can use the large cardinal assumptions and
determinacy results [9] to argue that the game is determined and Player II
must have a winning strategy σ.

Let M be a countable elementary submodel of a large enough structure
containing the strategy σ. For every position p ∈ M of the game that re-
spects the strategy σ and ends with a move of Player II, let up = {b ∈
[ω]<ℵ0 : ∃a ∈ U paaab is a position respecting the strategy σ} and let
Fp = {c ⊂ ω : c has no subset in up}. The sets Fp ⊂ P(ω) are closed
and disjoint from the ultrafilter U , since for every set a ∈ U the strategy
σ must answer a with its subset. Thus, the sets Fp : p ∈ M generate an
Fσ ideal K on ω disjoint from the ultrafilter U . I must show that J ⊂ K
holds.

Suppose c ⊂ ω is not in the ideal K. By induction on n ∈ ω find sets
an ∈ U ∩ M such that when Player I plays these sets in succession, the
strategy σ always responds with a subset of c. Suppose the sets an : n ∈ m
have been built, and let p ∈ M be the corresponding position of the game.
Since c /∈ Fp, there must be a set am such that the strategy responds to the
move am by a subset of c. This concludes the inductive construction. In the
end, the strategy σ won the infinite play against the sequence an : n ∈ ω
of Player I’s challenges. Thus the set

⋃
n bn it produced was not J-positive.

This set is a subset of the set c by the inductive construction, and therefore
c /∈ J as required.
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Now for the ZFC case, let J be an analytic ideal disjoint from the P-point
ultrafilter U . If J can be separated from U by an Fσ set K0, then the ideal
K generated by this set is still Fσ, still disjoint from U , and it includes J
as desired. If J cannot be so separated, then the Kechris–Louveau–Woodin
dichotomy [7, Theorem 21.22] shows that there is a perfect set C ⊂ J ∩ U
such that C ∩ U is countable and dense in C. I will use it to construct a
winning strategy for Player I in the P-point game, yielding a contradiction
and completing the proof. Let cn : n ∈ ω be an enumeration of the set C∩U .
Player I will win by playing sets an ∈ C ∩ U and on the side writing down
finite initial segments b′n ⊂ an which include Player II’s answer bn in such a
way that

• an contains
⋃
i∈n b

′
i as an initial segment;

• an 6= cn and cn does not contain
⋃
i∈n+1 b

′
i as an initial segment.

This is easily possible. In the end, the set
⋃
n∈ω b

′
n ⊂ ω is the limit of the

sets an ∈ C ∩ U , and therefore it belongs to C by the first item, and it is
not equal to any of the sets in C ∩ U by the second item. Consequently, it
must belong to the ideal J , and since the set

⋃
n∈ω bn is included in it, it

means that Player I won.

Theorem 1.6 now follows easily. Suppose P is a proper forcing, P = PI for
some universally Baire σ-ideal on a Polish space X, U is a P-point, B ∈ PI
is a condition and B 
 ḃ ⊂ ω is a set. I must find a condition C ⊂ B and a
set a ∈ U such that C 
 ḃ ∩ ǎ = 0 ∨ ǎ ⊂ ḃ. By strengthening the condition
B I may assume that there is a Borel function f : B → P(ω) such that
B 
 ḃ = ḟ(ẋgen). Consider the set J0 = {a ⊂ ω : ∃C ⊂ B C 
 ǎ∩ḃ = 0∨C 

ǎ ⊂ ḃ} = {a ⊂ ω : {x ∈ B : f(x) ∩ a = 0} /∈ I ∨ {x ∈ Ba ⊂ f(x)} /∈ I}. If it
is not disjoint from the P-point U , then we are done. If J0∩U = 0, then even
the ideal J generated by J0 is disjoint from U . The ideal J is universally
Baire, and if the σ-ideal I is Π1

1 on Σ1
1 then J is in fact analytic. Claim 3.2

now shows that there is an Fσ ideal K ⊃ J disjoint from U . Claim 3.1
shows that there is a condition C ⊂ B and a K-positive set a ⊂ ω such that
C 
 ǎ ∩ ḃ = 0 or C 
 ǎ ⊂ ḃ. This however contradicts the definition of the
set J0 ⊂ K!

4. Proof of Example 1.7. Suppose that the Continuum Hypothesis
holds, and fix a Ramsey ultrafilter U . Consider the partial order PU consist-
ing of those pruned trees T ⊂ 2<ω such that there is a set a ∈ U such that
a node in T is a split node if and only if its length is in the set a ordered by
inclusion. The forcing PU witnesses the conclusion of Example 1.7. It is clear
that the generic real ẋgen, the union of the intersection of all trees in the
generic filter, is a function in 2ω which is not constant on any set in the ultra-
filter U . The forcing also has the Sacks property and adds no splitting reals.
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Instead of the somewhat slippery argument for this latter statement, I
will prove a closely related fact. Consider the symmetric Sacks forcing P of
[13]. It consists of those pruned trees T ⊂ 2<ω such that there is an infinite
set a ⊂ ω such that a node in T is a splitnode if and only if its length is
in the set a, ordered by inclusion. It is not difficult to see that the forcing
P splits into a two-step iteration, P = Q ∗ PU̇ , where Q is the ordering of
infinite subsets of ω with modulo finite inclusion, and U̇ is the Q-name for
the Ramsey ultrafilter added by Q. A standard fusion argument directly
transferred from the usual Sacks forcing case shows that the symmetric
Sacks forcing has the Sacks property. It is significantly harder to show that
P adds no splitting reals; it follows for example from the upcoming work
of [15]. Now, summing up, it is clear that in the Q extension, there is a
forcing, namely PU , which has the Sacks property and adds no splitting
reals, and adds a function from ω to 2 which is not constant on any set in
the Ramsey ultrafilter U .

5. Applications of the main theorems. Theorems 1.5 and 1.6 can
be used in two directions: to ensure that certain forcings preserve P-points,
and to prove that other forcings do not preserve P-points. In this brief section
I will give examples of both.

An important and well studied class of forcings consists of the quotient
forcings obtained from ideals on a Polish space X generated by a compact
collection of compact sets in the hyperspace K(X) [17, Theorem 4.1.8]; this
is a slight generalization of the fairly common limsup infinity tree forcings
of [14]. These quotient forcings do not add splitting reals and have the weak
Laver property; therefore, they preserve P-points. Their countable products
are more difficult to analyze. However, a simple fusion argument shows that
the products possess the weak Laver property, and a subtle combinatorial ar-
gument [15] shows that the products do not add splitting reals. Theorem 1.6
then implies the conclusion:

Proposition 5.1. The countable product of quotient forcings of σ-ideals
generated by a compact collection of compact sets preserves P -points.

The methods of [15] show that many other forcings, including the wide
Silver forcing, symmetric Sacks forcing [13], and the E0 and E2 forcings [17,
Section 4.7], do not add splitting reals. The forcings just named all have
the weak Laver property, and therefore, by Theorem 1.6, they also preserve
P-points. This is perhaps not quite surprising, but a direct proof seems to
be out of reach.

As an example of the application in the opposite direction, let me include

Proposition 5.2. (CH) If P is a forcing adding a bounded eventually
different real , then P fails to preserve P-points.
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Note that every bounding forcing making the set of all ground model
reals meager falls into this category essentially by [2, Theorem 2.4.7]. Thus,
for example, forcing with an ideal associated with a Ramsey capacity is
bounding and adds no splitting reals [17, Theorem 4.3.25], but it must de-
stroy a P-point. On the other hand, the Blass–Shelah forcing makes the set
of ground model reals meager, it is not bounding, and it preserves P-points.

Proof. It will be enough to show that P fails the weak Laver property.
Suppose ġ and f are a P -name and a function in ωω respectively such that
P 
 ġ < f̌ and for every ground model function h ∈ ωω, ġ ∩ ȟ is finite. Let
ω =

⋃
n bn be a partition of ω into finite sets of the respective size 2n, let

f̄(n) be the set πi∈bnf(i) and let ḡ ∈ Πnf̄(n) be the name for the function in
the extension defined by ḡ(n) = ġ�b̌(n). I claim that f̄ , ḡ witness the failure
of the weak Laver property.

Indeed, if a ⊂ ω were an infinite set, h a ground model function on
a such that h(n) is a subset of f̄(n) of size < 2n and p ∈ P a condition
forcing ∀n ∈ a ḡ(n) ∈ ȟ(n), one could find surjections un : bn → h(n) for
every number n ∈ a, find a function k ∈ ωω such that k(i) = un(i)(i) for
every n ∈ a and every i ∈ bn, and conclude that p 
 ǩ ∩ ġ is infinite. This
contradicts the assumptions on the name ġ.
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