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Stability modulo singular sets
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J. Iglesias, A. Portela and A. Rovella (Montevideo)

Abstract. A new concept of stability, closely related to that of structural stability,
is introduced and applied to the study of C1 endomorphisms with singularities. A map
that is stable in this sense is conjugate to each perturbation that is equivalent to it in a
geometric sense. It is shown that this kind of stability implies Axiom A and Ω-stability,
and that every critical point is wandering. A partial converse is also shown, providing new
examples of C3 structurally stable maps.

1. Introduction. Denote by Cr(M) the space of Cr self-mappings of
a manifold M , 1 ≤ r ≤ ∞. If M is compact this space has the usual
Cr topology, while for noncompact M it is endowed with the Whitney (or
strong) topology.

Given f ∈ Cr(M) the set of critical (or singular) points of f (denoted Sf )
is the set of points where the differential of f is singular.

Two maps f and g of class C1 are called geometrically equivalent if
there exist C1 diffeomorphisms ϕ and ψ of M such that ϕf = gψ. In this
case, the image of a critical point of f under ψ is a critical point of g, and
the image of a critical value of f under ϕ is a critical value of g. A map
is called Cr geometrically stable if there exists a Cr neighborhood U of f
such that every g ∈ U is geometrically equivalent to f . Moreover, for each
neighborhood Z of the identity of M in C0 topology, the maps f and g are
said to be Z-geometrically equivalent if the diffeomorphisms ϕ and ψ are
contained in Z. Any two C1 diffeomorphisms are geometrically equivalent,
and on compact manifolds, two endomorphisms without critical points are
geometrically equivalent if and only if the absolute values of their degrees are
equal. But the concept is purely geometric, it has no dynamical meaning: for
example, two quadratic polynomials of one variable are always geometrically
equivalent.
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In this article, the notion of stability of maps is considered. Two maps f
and g are topologically equivalent if there exists a homeomorphism h such
that fh = hg. A Cr map f is Cr structurally stable if there exists a Cr

neighborhood U of f such that f is topologically equivalent to each g ∈ U .
In [IPR1], a concept of stability of maps was introduced that generalizes

the usual concept and is more adequate to study maps having critical points.

Definition 1. A map f ∈ Cr(M) is called Cr structurally stable mod-
ulo singular sets, denoted f ∈ Ir(M), if there exist a neighborhood Z of
the identity in C0(M) and a Cr neighborhood U of f such that two Z-
geometrically equivalent maps g1 and g2 in U are topologically equivalent.

An obvious observation, which can be used to find structurally stable
maps, is the following:

If f is Cr geometrically stable and belongs to I1(M), then f is Cr struc-
turally stable.

The need of Z-geometric equivalence (instead of geometric equivalence)
will become apparent in Theorem C. If f is Cr structurally stable then
it belongs to Ir(M). Under generic assumptions on the maps g1 and g2,
topological equivalence implies geometric equivalence.

A map having critical points cannot be C1 structurally stable, but a
map f ∈ I1(M) has the following property: given a C0 neighborhood Z of
the identity, there exists a C1 neighborhood U of f such that Z-geometric
equivalence is an equivalence relation in U and coincides with topological
equivalence in U . Lemma 3 at the end of Section 2 implies that if a map f
belongs to I1(M), then f is topologically equivalent to any C1 perturbation
g that coincides with f in a neighborhood of Sf .

Necessary and sufficient conditions for a diffeomorphism f to be C1 struc-
turally stable are well known (Robinson, [R], 1976 and Mañé [Ma1], 1987).
Since then, no new examples of Cr (r ≥ 2) structurally stable diffeomor-
phisms have been discovered; the question whether there exist any remains
open. Other Cr stable maps are known: stability of expanding maps in com-
pact manifolds was proved by Shub [S]. The case of one-dimensional maps,
where the situation is easier, will not be discussed here.

New examples (apart from the diffeomorphism or expanding cases) of C1

structurally stable maps were provided in [IPR2]. Berger [Ber] has recently
found sufficient conditions and examples of C∞ structurally stable maps.

The first known examples of C3 (but not C2) stable maps were con-
structed in [IPR1]. In that article, it was first proved that a rational map of
the Riemann sphere with the no critical relations property (i.e., no critical
point belongs to the forward orbit of another critical point and no critical
point is periodic) and whose Julia set is hyperbolic and connected, belongs
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to I1(R2). Then these maps were approximated by C3 geometrically stable
maps, providing the C3 structural stability.

Theorems A and B describe some properties of I1(M) maps.

Theorem A. Let M be a compact manifold. If f ∈ I1(M), then every
critical point of f is wandering , and f is Axiom A and C1 Ω-stable.

The definitions involved are the following: a point is wandering if it
has a neighborhood U such that fn(U) ∩ U = ∅ for every n > 0. The set
of nonwandering points of f is denoted by Ω(f). Two maps f and g are
Ω-equivalent if there exists a homeomorphism h : Ω(f) → Ω(g) such that
hf = gh in Ω(f). A map f is Cr Ω-stable whenever all its Cr perturbations
are Ω-equivalent to it.

A map f whose nonwandering set has a hyperbolic structure and whose
set of periodic points is dense in Ω(f), has a spectral decomposition: the
nonwandering set of f is the union of a finite number of basic pieces; these
are compact, invariant, transitive sets. Then the map is called Axiom A if, in
addition, the restriction of f to each basic piece is either injective or expand-
ing. (This is the definition given in [Ma2]; other authors call this concept
strong Axiom A; and Przytycki [P] does not require this last condition for
a map to be Axiom A). A basic piece Λ is expanding if the stable subspace
at x, Es

x, is {0}, for x ∈ Λ. A basic piece Λ is called a repeller if the stable
manifold of each point in Λ is contained in Λ. In this case, the unstable
set of Λ, denoted W u(Λ), and defined as the set of points x ∈ M having a
preorbit whose limit set is contained in Λ, is a neighborhood of Λ. Not every
repeller is expanding, but if the map is Axiom A, then every repeller that
is not expanding must be injective.

Another necessary condition for a map f to belong to I1(M) is that the
critical set must be contained in a particular region of the wandering set:

Theorem B. If f ∈ I1(M) and C is a component of the critical set Sf

of f , then:

• There exists an attracting periodic orbit γ such that C is contained in
its basin of attraction.
• If C intersects the unstable set of a basic piece Λ, then Λ is expanding

and C is contained in its unstable set.

It remains an open problem whether maps in Ir(M) for r > 1 have to
satisfy any of the conclusions of Theorems A and B. No examples of maps
in Ir(M) \ I1(M) with r > 1 are known.

There is another necessary condition for a map to belong to I1(M).
This condition was found necessary for C1 structural stability by Przytycki
(Theorem C in [P]): Let f ∈ I1(M) and denote by W u(Λ) the unstable set
of a basic piece Λ. If Λ1 and Λ2 are basic pieces such that W u(Λ1)∩Λ2 6= ∅,
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then Λ1 is expanding. The proof of this result will be omitted because it is
similar to that in [P].

There also exists a partial converse to the previous theorems.

Theorem C. Let M be a compact manifold and assume that a map
f ∈ C1(M) satisfies the following conditions:

(1) f is Axiom A.
(2) Every critical point of f is wandering.
(3) Every basic piece is expanding or an attracting periodic orbit.
(4) f−1(Ω′(f)) = Ω′(f), where Ω′(f) denotes the union of the expanding

basic pieces of f .
(5) f has the no critical relations property.

Then f belongs to I1(M).

This will be proved in the last section. The no critical relations property
will be defined later. This condition, and the first two conditions in the
statement above, are also necessary for a map to belong to I1(M). The
third condition is not necessary: it may happen that an I1(M) map has a
saddle type basic piece whose stable and unstable sets do not intersect the
critical set. There are no examples known (apart from diffeomorphisms) of
I1(M) maps having saddle type basic pieces.

2. Critical sets. The objective of this section is to prove that if f ∈
I1(M), then every critical point is wandering. The use of the C1 topology
in the assumption f ∈ I1(M) is essential. The question whether f ∈ Ir(M)
for r > 1 implies the same conclusion is still open. An affirmative answer
would also imply a conjecture stated in [MP]: If f is a Cr structurally stable
map, then every critical point of f is wandering.

We begin with some definitions and known results.

Definition 2. Let f belong to Cr(M).

(1) Sk(f) is the set of points z ∈ Sf such that the dimension of the
kernel of Dfz is equal to k.

(2) If r ≥ 2, a point z ∈ Sk(f) is called generic for f if there exist
local charts (U, τ1) at z and (V, τ2) at f(z) such that the map x ∈
Rm 7→ D(τ−1

2 fτ1)x ∈ L(Rm) is transverse to Lk (where L(Rm) is
the set of linear maps from Rm to Rm, and Lk denotes the possibly
nonclosed submanifold of L(Rm) of transformations having kernel of
dimension k).

(3) If x ∈ Sk(f) is generic, then Sk is (locally at x) a codimension k2 sub-
manifold of M (see next theorem). A generic critical point x ∈ S1(f)
is of fold type if the kernel of Dfx is transverse to S1(f) at x.
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Consider the simpler case of a one-dimensional map f : if x is a critical
point, then x is generic if and only if the second derivative of f does not
vanish at x. Now, let f ∈ C2(M), with M an m-dimensional manifold.
Suppose that x ∈ S1(f). Choose coordinates in a neighborhood of x such
that the first m− 1 rows of the differential Dfx form a linearly independent
set and the last one is 0 ∈ Rm. If f = (f1, . . . , fm) and Hm is the Hessian
matrix of fm (the matrix of second derivatives), then x is a generic critical
point of f if and only if the (2m− 1)×m matrix obtained by adding to Hm

the first m− 1 rows of Df0 has rank m.
It was proved by Whitney that around a critical point of fold type a map

f ∈ C∞(M) is locally geometrically equivalent to the map

q(x1, x2, . . . , xm) = (x2
1, x2, . . . , xm),

acting in Rm. The proofs of the statements of the next theorem from differ-
ential topology can be found in [GG].

Theorem 1. Given any manifold M , there exists an open and dense set
R(M)⊂C∞(M) such that , for every f ∈R(M) the following conditions hold :

(1) Each critical point of f is generic.
(2) S1(f) is a codimension one submanifold of M , and its closure

equals Sf .
(3) The set of fold type points of f is open and dense in S1(f).

It is not true that the genericity of each critical point of a map f implies
that the map belongs to R(M). However, if x is a fold point of f ∈ C∞(M),
then there exists a neighborhood U of x such that f ∈ R(U) and every
critical point of f in U is of fold type. The following semicontinuity holds in
general: given a neighborhood V of Sf ∩ U , we have Sg ∩ U ⊂ V for every
map g in a C1 neighborhood of f .

The first idea for the proof of Theorem A is quite obvious: the set of
critical points can be locally modified in an arbitrary way in C1 topology.
If one wants to preserve the C∞ genericity of the maps considered, the
following can be said.

Lemma 1. Let x ∈ Sf for some f ∈ C1(M). Given a C1 neighborhood
U of f and a codimension one submanifold N ⊂ M containing x, there
exists a map g ∈ U ∩ R(M) such that S1(g) contains a neighborhood of x
in N . In addition, the map g can be C∞ approximated by a map h ∈ R(M)
that is geometrically equivalent to g and such that Sh∩N has empty interior
in the relative topology of N .

This statement contains the perturbation mechanism that will be needed
to obtain a contradiction from the assumption: f ∈I1(M) and Sf ∩ fn(Sf )
6= ∅. The submanifold N will be fn(Sf ) (n > 1).
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Some definitions and remarks concerning the structure of critical sets of
perturbed maps are in order before proceeding with the proof of this lemma.

Remark 1. If x is a critical point of fold type of a map f ∈ R, then the
local geometrical equivalence with q implies that there exist neighborhoods
U of x and V of f(x) such that f(Sf ) separates V into two components
V − and V +; f is two-to-one from U \ Sf onto V + and no point in V −

has preimages in U . If two maps f and g in R are topologically conjugate
(hf = gh) then the homeomorphism h must carry critical points of f to
critical points of g, because the local forms imply that this is true for fold
type points, and the fact that fold type points are dense in Sf implies the
assertion for the other critical points. Analogously, critical values of g are
carried by the conjugacy to critical values of f .

This proves an assertion of the introduction: if two topologically equiv-
alent maps belong to R, then they are geometrically equivalent.

The basic idea to prove that no critical point is periodic is the following.
It is well known that the maps without critical periodic points constitute
a residual set. However, this is not enough for our purposes: we have to
find two geometrically equivalent maps close to f such that one of them
still has a periodic critical point and the other does not. This will give a
contradiction.

It seems intuitively clear that a nongeneric map f ∈ C1(M) having a
nongeneric critical point x can be C1 perturbed to a generic map g ∈ R for
which the same point is still critical. To prove this we make a sequence of
perturbations within a given C1 neighborhood U of f .

Proposition 1. Let f be a C1 map, U a C1 neighborhood of f , and
x ∈ Sf . Then there exists g ∈ R(M) ∩ U such that x is a fold type point
of g. Moreover , if f satisfies one of the following conditions:

(1) fn(x) ∈ Sf for some positive n,
(2) fk(x) is periodic for some k ≥ 0,
(3) x belongs to the stable manifold of a periodic point p of f ,

then the map g ∈ R(M) can also be chosen to satisfy the same condition.

Proof. The idea is the following: we first produce a perturbation ` of f
that has a generic critical point at x, and then we approximate ` by a generic
map; in this manner, the last perturbation still has a critical point close to x
(note that if we begin with a generic perturbation of f using Theorem 1,
then critical points may disappear from a neighborhood of x).

By using local coordinates one can assume that M is euclidean space and
that the critical point x is the origin. Take a one-dimensional subspace V
contained in the kernel of Df0 and let H be a complementary hyperplane.
Now let A be a linear map such that A(V ) = 0 and A is injective in H,
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then choose a symmetric linear B such that the critical point 0 of Q(X) =
AX + 〈BX,X〉 is generic (of course an open and dense set of such B exist),
and finally use a bump function to define ` to be equal to Q close to the
origin and equal to f outside another neighborhood of the origin. It is clear
that ` is C1 close to f and that its critical point 0 is generic.

The final step consists in producing the map g. To do this, first perturb
` to a map g0 in R that is C∞ close to ` in a neighborhood U of x. Because
the critical point x was generic for `, there exists a generic critical point
y ∈ S1(g0)∩U . Let τ be a C∞ map close to the identity and carrying x to y,
and define g = g0 ◦ τ . This map has the property required in the first state-
ment. The proof that the other properties are preserved by suitable small
perturbations is quite similar and relies on the fact that g(x) = f(x) holds
by construction, and the perturbations are local, in a small neighborhood
of x.

The first application of this result is the following:

Proof of Lemma 1. First perturb f to a map (still called f) in R(M) ⊂
C∞(M) for which x is a critical point, as in the last proposition. As the
assertion is local, one can assume without loss of generality that M = Rm

and that 0 is a critical point of f . It can also be assumed that N = {x =
(x1, . . . , xm) ∈ Rm | xm = 0}, because there exists a diffeomorphism T car-
rying N to this set and the origin to itself. In addition, if L is an appropriate
linear isomorphism, then L ◦Df0 ◦DT−1

0 is a linear map whose matrix in
canonical coordinates is diagonal, has the first m− 1 rows linearly indepen-
dent and the last one null. Maintain the notation f for the map in these
coordinates, so that it satisfies all the conditions.

These assumptions imply that the last coordinate of f satisfies fm(x) =
fm(0) + r(x) for some C1 function r such that |r(x)|/‖x‖ → 0 as x → 0.
Given any ε > 0 there exist a number % ∈ (0, ε/2) and a function ϕ = ϕε :
R → [0, 1], of class C∞, that is equal to 0 in |x| ≤ %, equal to 1 outside
|x| < ε, and such that |ϕ′(x)| < 2/ε. Let

gm(x1, . . . , xm) = fm(0) + ϕ(‖x‖)r(x) + (1− ϕ(‖x‖))εx2
m

and define g = (f1, . . . , fm−1, gm). Note that

∇gm(x) =ϕ′(‖x‖) r(x)−εx2
m

‖x‖
x+ϕ(‖x‖)∇r(x)+2(1−ϕ(‖x‖))ε(0, . . . , 0, xm).

Note that for ‖x‖ ≤ %, the determinant of Dgx is equal to 0 if and only if
xm = 0 (because the assumptions on f imply that the upper left (m− 1)×
(m−1) block in the matrix of Dfx is nonsingular). Hence Sg ∩B(0; %) ⊂ N ,
where B(0; %) is the ball centered at the origin and with radius %. It remains
to prove that ε can be chosen so that g ∈ U . Note that f(x) = g(x) for
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x /∈ B(0; ε) and that in this ball we have

|gm(x)− fm(x)| ≤ |ϕ(‖x‖)− 1|(‖r(x)‖+ ε‖x‖2).

Hence g is C0 close to f if ε is small. Finally, note that

‖∇gm(x)−∇fm(x)‖ ≤ (2/ε)|r(x)− εx2
m|+ |ϕ(‖x‖)− 1|(‖∇r(x)‖+ 2ε‖x‖).

Observe that given any δ > 0, one can choose ε such that |r(x)| ≤ δ‖x‖
and ‖∇r(x)‖ ≤ δ for every x ∈ B(0; ε). It follows that the C1 distance
between f and g is at most 2(δ + ε2) + δ + 2ε2. It remains to show that
g ∈ R. Observe that by construction, the critical point at the origin is
generic: indeed, the Hessian matrix of gm at the origin has entries aij ,
where aij = 0 for every (i, j) 6= (m,m), and amm = 2, but the set of
vectors {∇f1(0), . . . ,∇fm−1(0), (0, . . . , 0, 2)} is linearly independent, by the
choice of local coordinates. This implies that g ∈ R(U) for some neigh-
borhood U of the origin. On the other hand, as f was taken in R(M),
it follows that g ∈ R(Bc), where Bc is the complement of B(0; ε) (f and
g coincide there). Take a bump function θ equal to 0 in the complement
of U ∩ B(0; %) and to 1 in a neighborhood V of x. Let d be the C∞

distance fom θ to the null function. As R(M) is dense in C1(M), one
can choose any g1 ∈ R(M) such that the C∞ distance between g and
g1 is less than τ/d (where τ is taken such that every map in the ball
of center g and radius τ belongs to R(U)). Finally, define g0 = θg +
(1 − θ)g1. This g0 satisfies all conditions: it belongs to R(U), because it
is τ -close to g there; it belongs to R(U c) because it is equal to g1 there;
it satisfies Sg1 ∩ V = N ∩ V , because in that neighborhood it coincides
with g.

It remains to prove the second assertion of the lemma. Let ϕ be a C∞

diffeomorphism of M such that ϕ(x) = x, ϕ(V ) = V and ϕ−1(N) ∩N does
not contain a neighborhood of x in N . It is clear that such a map can be
obtained arbitrarily C∞ close to the identity (for example, Dϕ0 can take
T0N to any other hyperplane contained in T0M). Observe that h = gϕ is C∞

close to g, so that it belongs to U ∩R(M); h is geometrically equivalent to g
(because ih = gϕ, where i is the identity map) and Sh ∩ V = ϕ−1(Sg ∩ V ),
so that Sh cannot contain a neighborhood of x in N .

Remark 2. A point x is preperiodic for f if there exist k ≥ 0 and p > 0
such that fk+p(x) = fk(x). If k = 0 then x is periodic. The period of a
preperiodic point is the minimum p satisfying the above equation. Denote
by Pk,p(f) the set of points x such that the above holds and k is minimum,
and by Per(f) the union of the P0,p(f) for positive p.

A periodic point x of period p is hyperbolic if the differential of fp at x
has no eigenvalue null or of modulus one. It is well known that given any
p ≥ 1, the set Gp of maps for which every periodic point of period at most
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p is hyperbolic, is open and dense in every Cr(M). For every map in this
open and dense set, the number of periodic points of period at most p is
finite and locally constant. It is clear that if f ∈ Gp then P0,p(f) ∩ Sf = ∅.
This argument can be completed to obtain an open and dense set Gk,p of
maps such that Pk,p(f) ∩ Sf is empty.

On the other hand, assume that a map f ∈ C1(M) has a critical point
x ∈ Pk,p(f). The second assertion of Proposition 1 gives a map g ∈
R(M) ∩ Gp, C1 close to f , such that x still belongs to Pk,p(g) ∩ Sg.

Lemma 2. If f ∈ I1(M), then no preperiodic point of f is critical.

Proof. Note that intersections between Pk,p(f) and Sf can be avoided
by small perturbations; what must be proved now is that this can be done
within the same class of geometric equivalence. Therefore one can assume
that x ∈ S1(f) is an isolated point of Pk,p(f), that fk(x) is hyperbolic, and
that f ∈ R(M). We will arrive at a contradiction if we can find a map g
that is C1 close to f , geometrically equivalent to f and such that no critical
point of g belongs to Pk,p(g).

This will be done in local charts. Let (U, τ1) and (V, τ2) be local charts
at x and f(x) respectively. The local coordinates can be chosen so that
f̃(x1, . . . , xm) = τ2fτ

−1
1 (x1, . . . , xm) = (x2

1, . . . , xm). Let h(x1, . . . , xm) =
(h1(x), x2, . . . , xm), where h1(x) = x2

1 − ε%(‖x‖)x1, ε is an arbitrary posi-
tive number and % satisfies the following conditions: The function % is C∞,
%(0) = 1, %(x) = 0 for every |x| > 1 and the C2 norm of % is less than a
constant k. The map g will be τ−1

2 hτ1. To see that g satisfies the above con-
dition we note that h is C1 close to f̃ if ε is small enough, that g(x) = f(x)
and that x is not a critical point of g; hence Pk,p(g) ∩ Sg = ∅. It remains to
show that f and g are geometrically equivalent and for this it is enough to
prove that f̃ and h are geometrically equivalent.

The equation of the critical points of h is ∂1h1(x) = 0; as ∂11h1 is close
to 2 if ε is small, it follows by the implicit function theorem that there exists
a C∞ function c(x2, . . . , xm) whose graph is the set of critical points of h.
Define

ψ(y) = (y1 − h1(c(y2, . . . , ym), y2, . . . , ym), y2, . . . , ym),

so that

ψ(h1(x), x2, . . . , xm) = (h1(x)− h1(c(x2, . . . , xm), x2, . . . , xm), x2, . . . , xm).

If ϕ1(x) is a function such that ϕ2
1(x) = h1(x)−h1(c(x2, . . . , xm), x2, . . . , xm)

then f̃ϕ = ψh, where ϕ(x) = (ϕ1(x), x2, . . . , xm). It remains to prove that
ϕ is a C∞ diffeomorphism. Indeed,

h1(x)− h1(c(x2, . . . , xm), x2, . . . , xm) = α(x1, . . . , xm)(x1 − c(x2, . . . , xm))2

with α a positive C∞ function.
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Proposition 2. If f ∈ I1(M), then there exist neighborhoods U of f
and U of Sf such that U ∩ hn(U) = ∅ for every n ≥ 1 and every h ∈ U .

Proof. We first claim that fn(Sf ) does not intersect Sf if n ≥ 1.
Assume by contradiction that f ∈ I1(M), and that there exists a point

x ∈ Sf such that fn(x) ∈ Sf for some (minimum) n > 0. By Proposition 1,
one can assume that f ∈ R and x ∈ S1(f). Let {Uj | 0 ≤ j ≤ n} be a
disjoint sequence of open sets such that each Uj is a neighborhood of f j(x)
and f(Uj) ⊂ Uj+1. This is possible since x is not preperiodic.

Note then that fn(Sf ) is a codimension one submanifold of M containing
fn(x); indeed, f(Sf ∩U0) is a submanifold since the restriction of f to S1(f)
is an immersion whenever x is a fold point. Then the fact that Dffj(x) is an
immersion for every j ≥ 1 implies the assertion.

Now apply Lemma 1. The first assertion there gives a map g ∈ R for
which Sg contains a neighborhood of gn(x) in N = fn(Sf ∩ U0) (note that
the support of this perturbation is contained in Un, so fn(Sf ∩ U0) ∩ Un =
gn(Sg ∩ U0) ∩ Un). The second perturbation in Lemma 1 gives a map h
for which Sh ∩ hn(Sh) has empty interior in the submanifold hn(Sh ∩ Un).
The support of this last perturbation is also contained in Un, hence the
set of critical points in U0 and their images until n are the same for f ,
g and h. A contradiction follows, because, on one hand, g and h must be
topologically conjugate since Lemma 1 says that g and h are geometrically
equivalent C1 perturbations of f , and on other hand, g and h cannot be
topologically conjugate since such a conjugacy must carry points in the
interior of Sg∩gn(Sg) (a nonempty set) to points in the interior of Sh∩hn(Sh)
(empty). This proves the claim.

To prove the assertion of the proposition, we use the following version
of Franks’ lemma ([F]), whose proof is exactly the same:

Let f be a C1(M) map and U0 a C1 neighborhood of f . Then there
exist a C1 neighborhood U1 of f and a positive number δ with the following
property. If x ∈M and n is a positive integer , and Ti is a sequence of linear
maps such that for i ≤ n we have ‖Ti −Dgxi‖ < δ for some g ∈ U1, where
xi = gi(x) and xi 6= xj whenever i 6= j, then there exists g1 ∈ U0 such that
D(g1)xi = Ti and gi

1(x) = gi(x) for every i ≤ n.

Let U0 be a neighborhood of f such that every map in U0 belongs
to I1(M). Let U1 and δ be as above, let U be a neighborhood of Sf and let
U2 ⊂ U1 be such that for every x ∈ U and every g ∈ U2 there exists a unit
vector v ∈ TxM such that ‖Dgx(v)‖ < δ. If the conclusion of the proposition
is false, then there exists a map g ∈ U2, a point x0 and an integer n such
that x0 and gn(x0) belong to U . Let v0 and vn be such that ‖Dgx0(v0)‖ and
‖Dgxn(vn)‖ are both smaller than δ. For i ≤ n, let Ti be linear transforma-
tions such that T0(v0) = 0, Tn(vn) = 0, any other Ti is equal to Dgxi , and
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‖Ti −Dgxi‖ < δ. Now the map g1 given by Franks’ lemma contradicts the
first claim of the proof.

We have the desired conclusion:

Corollary 1. If f ∈ I1(M), then Ω(f) ∩ Sf = ∅.

We finish this section with another perturbation result.

Lemma 3. Let M be a compact manifold , f be a map in I1(M) and W
a neighborhood of Sf . There exists a C1 neighborhood U of f such that if a
map g ∈ U is equal to f in W , then f and g are geometrically equivalent.

Proof. We first claim that there exist % > 0 and a C1 neighborhood U0

of f such that for every x ∈ W c (the complement of W ) and g ∈ U0 the
restriction of g to the ball B(x; %) is one-to-one. This is clear, since for every
g in a C1 neighborhood of f , the norm of the inverse of Dgx at x ∈ W c is
uniformly bounded.

The claim implies that the distance between two different preimages of
the same point is at least %, so both preimages belong to W . To prove the
lemma, C1 diffeomorphisms ϕ and ψ must be found such that fϕ = ψg.
Take ψ equal to the identity map. Then define ϕ to be the identity in W
and f−1g in W c. To ensure that ϕ is a diffeomorphism close to the identity,
one must choose an appropriate branch of f−1, which is possible by the
claim.

3. Hyperbolicity

Lemma 4. If f ∈ I1(M) then every periodic point of f is hyperbolic.

Proof. Suppose that f has a nonhyperbolic periodic point x with pe-
riod n. Let g be a map in R such that x is periodic nonhyperbolic for g, has
period n and every other periodic point of g of period less than or equal to
n is hyperbolic. To find g, first perturb f to a map such that the periodic
point x is nonhyperbolic but is isolated in the set of periodic points of pe-
riod n of f . Then apply the usual mechanisms to make the other periodic
points of period at most n hyperbolic. Now we construct two C∞ maps, ar-
bitrarily C1 close to f , such that the periodic point x is hyperbolic for both
maps but has different character (the dimension of the stable space changes)
and the perturbation has support outside the set of critical points of f . By
Lemma 3 these maps are geometrically equivalent, which contradicts the
fact that f ∈ I1(M).

Proof of Theorem A. By Corollary 1 no critical point is wandering. By
Lemma 4, every periodic point is hyperbolic. Now we use Theorem A of
Aoki, Moriyazu and Sumi [AMS], which implies the following:



166 J. Iglesias et al.

If a map f with Sf∩Ω(f) = ∅ has a C1 neighborhood contained in the set
of mappings having every periodic point hyperbolic, then the nonwandering
set of f has a hyperbolic structure and the set of periodic points of f is
dense in the nonwandering set of f .

As shown by Przytycki [P], this is not enough to obtain the C1 Ω-stability
of f : for this it will be necessary to show first that each basic piece is either
expanding or injective. We will prove the Ω-stability of f directly from the
definition.

Let U be the neighborhood of f given by the definition of I1(M) and
U such that the conclusion of Proposition 2 holds for U and U . Let W be
a neighborhood of Sf whose closure is contained in U . There exists a C1

neighborhood U0 ⊂ U of f such that:

(1) The conclusions of Lemma 3 hold for the neighborhoods W of Sf

and U0 of f .
(2) If f1 and f2 belong to U0 then there exists a map F = F (f1, f2) ∈ U

such that F is equal to f1 in W and equal to f2 in the complement
of U .

Let U1 ⊂ U0 be a neighborhood of f such that F (f1, f2) ∈ U0 whenever f1

and f2 belong to U1.
Let g ∈ U1, and h = F (g, f) ∈ U0. By Lemma 3, g and h are topo-

logically equivalent. By Proposition 2, the periodic points of f and h are
contained in U c, where the maps coincide. It follows that Per(f) = Per(h),
which implies that f = h in Ω(f) = Ω(h), and we conclude that f and h
are Ω-equivalent.

4. Location of critical sets. In this section we prove Theorem B. It
was already shown that every critical point of an f ∈ I1(M) is wandering,
and that f is an Axiom A map. It follows that every point is contained in
the stable set of some basic piece and in the unstable set of a basic piece. It
will be shown that a basic piece whose stable (resp. unstable) set intersects
Sf must be a periodic attractor (resp. an expanding set). Indeed, if this is
not the case, and a stable or unstable manifold of a basic piece of another
type contains a critical point, then this critical point can be perturbed in the
same class of geometric equivalence in order to produce some nonequivalent
dynamical consequences.

We refer the reader to the article of Przytycki [P] for the definitions of
stable and unstable sets and properties of Axiom A maps. It is clear, and
will be used below, that Pk,p(f) is an invariant of topological conjugacy, as
also is the union of the stable (resp. unstable) sets of its points.
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The idea is the following: Let z be a generic critical point of fold type of
f and assume that it belongs to the stable manifold of a basic piece that is
not an attracting periodic orbit. By the density of periodic points in each
basic piece, it can be assumed without loss of generality that there exists a
periodic point x of f whose stable manifold contains z.

A first lemma will be needed to show that by means of a C1 perturbation,
one can create a map g having a segment L close to z such that the image
of L is a single point. If maps g1 and g2 are geometrically equivalent to g,
then there exists a segment L1 (resp. L2) where g1 (resp. g2) is constant.
Then g1 and g2 are topologically equivalent, and the conjugacy must send
L1 to L2 and g1(L1) to g2(L2).

A contradiction will be found if one can put the point g1(L1) in the
stable manifold of the g1-periodic point x and the point g2(L2) outside the
stable manifold of a periodic point of period equal to that of x. This will be
possible since, by assumption, the periodic point x of f was not an attractor.
The proof for the repelling case uses a similar argument.

Note that by Proposition 1, one can choose the map f in R, preserving
its other properties.

Lemma 5. Let z be a fold point of a map f in R, U a C1 neighborhood
of f and U a neighborhood of z. Then there exists a map g ∈ U and a
segment L ⊂ U such that Sg = Sf ∪ L and L ∩ Sf = ∅. Moreover , g is
constant in L.

A segment is the image of a smooth injective curve α : [0, 1]→M .

Proof. One can assume that f(x1, . . . , xm) = (x2
1, x2, . . . , xm) and that

the point z is the origin. Let ε be a positive number.
A point X ∈ Rm will be denoted by X = (x, Y ), where x ∈ R and

Y ∈ Rm−1. Given a segment I ⊂ R+, let Q1(x) = 2x and take a C1 function
Q0 defined in R such that Q0(x) = 0 if and only if x ∈ I or x = 0. If I was
the segment [a, b], one can take b < ε/2 (a is positive) to obtain a function
Q0 that is ε-C0 close to the function Q1. Assume also that Q0(x) = 2x for
every x /∈ [0, 1], that Q0(x) ≥ 0 for every x > 0, and that

	1
0Q0 = 1. Let

{Qy : y ∈ [0, 1]} be a homotopy from Q0 to Q1 such that the following
conditions hold:

(1) Qy is ε-C0 close to Q1 for every y.
(2)

	1
0Qy = 1 for every y.

(3) For every x /∈ [0, 1], Qy(x) = 2x.
(4) If y > 0 then Qy(x) > 0 for every x > 0.
(5) For every x fixed the function y 7→ Qx(y) is C1, with derivative

smaller than 3b.
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For y > 1 set Qy = Q1. Next define, for every Y ∈ Rm, the function

g1(x, Y ) =
x�

0

Q|Y |(t) dt.

We now claim that g(x, Y ) = (g1(x, Y ), Y ) satisfies the assertions of the
lemma if L is defined to be I × {0}. Indeed, ∂1g1(x, Y ) = Q|Y |(x) is equal
to 0 if and only if x = 0 or (x, Y ) ∈ L (by (4)). Conditions (2) and (3)
imply that g(x, Y ) = f(x, Y ) whenever x /∈ [0, 1] or |Y | > 1. It follows from
properties (1) and (5) that g is 3b-C1 close to f .

Note that g(L) /∈ g(Sg \ L) because Q0 is positive in (0, a).

Proof of Theorem B. Part 1. The map f belongs to I1(M), and has a
critical point z contained in the stable manifold W s(x, f) of a fixed point x
that is not an attractor. It can also be assumed that f is generic and that
z is a fold type point.

To produce a perturbation g1 of f such that L ∩ W s(x, g1) 6= ∅, just
take the map g of the previous lemma. If the neighborhood U was taken
such that its forward iterates under f do not intersect U , then g(L) = f(z)
belongs to the stable manifold of x.

The construction of the map g2 is not so easy, because the intersection of
the stable manifold of x with the neighborhood U can have infinitely many
components. Consider first the case where the basic piece that contains the
periodic point x is not an attractor. The same proof made for Axiom A
diffeomorphisms can be adapted to show that the union of the basins of
the attracting basic pieces is open and dense. Before applying the lemma,
perturb the map f in U so that z belongs to the basin of an attractor,
without changing the class of geometric equivalence f nor the condition
that z is a critical point. Indeed, let τ be a translation supported in a
small neighborhood W of f(U) (that is not necessarily open) such that
τ(f(z)) ∈ B where B is equal to the intersection of the basin of an attractor
with f(U). Define the new map f ′ as follows: if y ∈ U , then f ′(y) = τ(f(y)),
and if y /∈ U , then f ′(y) = f(y). Note that if W is sufficiently small, then
the preimages of W are disjoint open sets, so f ′ is well defined, smooth, and
close to f . Moreover, by the choice of U (disjoint from its forward iterates)
the set B is still contained in the basin of an attractor of f ′. Now one can
apply the lemma, with L contained in the basin ot the attractor in question,
giving a map g2 that is geometrically but not topologically equivalent to g1.

To treat the remaining case, assume Λ is an attracting basic piece and
x ∈ Λ. Let W be a neighborhood of Λ such that f(W ) ⊂ W and f is
injective in W (f is injective in Λ because f is Ω-stable). Let g be a map as
in the lemma so that L is contained in the basin of Λ. Let k > 0 be the first
positive integer such that y = gk(L) ∈W ; as periodic points are dense in Λ,
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one can perturb g in a neighborhood of Λ to a map g2 such that y belongs
to the stable manifold of a periodic point of period greater than that of x.
This last perturbation must be geometrically equivalent to g1, but cannot
be topologically equivalent. This proves the first assertion in part 1. Let C
be a component of Sf that intersects the basin B of an attracting periodic
orbit. As B is open and its boundary does not intersect the basin of another
attractor, it follows that C ∩ ∂B = ∅, so C ⊂ B.

Part 2. The map f belongs to I1(M) and there exists a nonrepelling
fixed point x whose unstable set contains a critical point z. The unstable
set is defined as the union of the images of a local unstable manifold. Now
there exists a neighborhood U of z such that the future images of U do not
intersect U . This implies that a perturbation of f in U does not produce
any change in W u(x, f)∩U . So one can find a perturbation such that both
extreme points of L are contained in the complement of W u and another
perturbation such that at least one extreme point of L belongs to W u.
Finally, to prove the second assertion in this part, assume that C intersects
the unstable set W of an expanding piece Λ. Now W is not necessarily open,
but its boundary is contained in the set

⋃
n>0 f

n(Sf ). By Proposition 2 it
follows that C ∩ ∂W = ∅, so C ⊂W .

5. Sufficient conditions and examples. This section contains the
proof of the partial converse, Theorem C of the introduction. In [IPR1], the
existence of C3 structurally maps was shown. These were perturbations of
complex polynomials, so the components of the set of critical points were
arbitrarily small, which makes the proof simpler than the one presented
here, which follows the same ideas.

Definition 3. A C1 map f has the no critical relations property if there
exist open connected sets U1, . . . , Un such that:

(1) Sf ⊂
⋃

i Ui.
(2) The closures of the sets Ui are disjoint.
(3) Given nonnegative integers j and l such that f j(Uk) ∩ f l(Ui) 6= ∅,

then j = l and k = i.
(4) The restriction of f to the closure of f j(Ui) is injective for every

j > 0 and 1 ≤ i ≤ n.

It is important to note that items (3) and (4) do not represent an infi-
nite number of conditions, since, under the hypothesis of Theorem C, each
component of Sf is entirely contained in the basin of a unique attracting
periodic orbit and hence is eventually contained in an open set where the
map is injective. Therefore, each Ui is contained in a component of the basin
of an attractor.
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Denote by Bf the union of the basins of the periodic attractors of f .
Define also the Julia set of f to be the set of nonwandering points of f
that are not periodic attractors. This set was denoted by Ω′(f) before.
The first assertion describes global aspects of the dynamics of every g in a
neighborhood of f .

Lemma 6. If f satisfies the hypothesis of Theorem C , then:

(1) M = Bf ∪Ω′(f).
(2) Either Bf is empty (and f is an expanding map) or M = Bf (the

bar denoting closure).
(3) f is C1 Ω-stable, and hence the same conclusions hold for every map

g in a C1 neighborhood of f .

Proof. Assume that there exists a point x ∈ M \ Bf and let U be a
neighborhood of x. As the sequence {fn(x)} converges to Ω(f), there exists
an m > 0 such that fm(x) ∈ Ω′(f) and hence x ∈ Ω′(f) by assumption (4).
This proves the first item. If U ⊂ Ω′(f) then Ω′(f) = M , hence Bf is empty
or U ∩Bf 6= ∅.

As f is Axiom A, has no cycles by hypothesis (3) of Theorem C, and
every critical point is wandering, the theorem of Przytycki implies that f is
C1 Ω-stable.

There exists a uniform expansiveness constant for the restrictions of the
maps g in a neighborhood of f to the respective Julia sets. Let ε be this
constant. Let α > 0 be less than ε and less than the distance between
different Ui’s. Let U be a C1 neighborhood of f such that every g ∈ U is
Ω-equivalent to f and Sg ⊂

⋃
Ui. The number α and neighborhood U will be

diminished later. Take g1 and g2 in U that are Z-geometrically equivalent,
where Z is the C0 neighborhood of the identity of size α. One has

(1) ϕg1 = g2ψ,

where the distance from ψ(x) and ϕ(x) to x is less than α for every x ∈M .

Proof of Theorem C. The idea is to construct a conjugacy h from Bg1

to Bg2 that is ε-C0 close to the identity in a neighborhood of Ω′(g1), and
then continuously extend it to the closure of Bg1 = M , using the fact that
Ω′(g1) is expanding.

Construction of a fundamental domain. Let x be an attracting periodic
point of f ; assume that x is fixed to simplify notation. Let V be a neighbor-
hood of x such that the closure of f(V ) is contained in V and f restricted
to V is injective. The first step is to construct an open set V ′ ⊂ V with
the same properties of V and such that for every Ui contained in the basin
of x there exists a positive integer ni such that fni(Ui) is contained in the
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interior of the fundamental domain V ′ \ f(V ′). Assume first that only one
of the sets Ui is contained in the basin of x. Let n be the minimum positive
integer such that the closure W of fn(Ui) is contained in V . As x cannot
belong to W , there exist a finite number of forward iterates of V that in-
tersect W , say fp(V ) ∩ W is empty for every p > N . Define a sequence
{W0,W1, . . . ,WN} of compact sets such that:

• W0 = W .
• Wk is contained in the interior of Wk+1 for every k = 0, . . . , N − 1.
• WN is contained in V and does not intersect fp(V ) for any p > N .
• f(WN ) ∩WN = ∅.

Then we define

V ′ = V \
N⋃

k=1

f−k(Wk),

and prove that V ′ satisfies the above claim. Indeed, if x ∈ V , then f(x)
belongs to the interior of V ; if, in addition, x /∈ f−k(Wk), then f(x) does
not belong to f1−k(Wk), whose interior contains f1−k(Wk−1), because f is
a diffeomorphism in V . This proves that V ′ \f(V ′) is a fundamental domain
for f . Finally, if y ∈ V ′, then y /∈ f−1(W1), which contains f−1(W ) in its
interior; this implies that W is contained in the interior of the fundamental
domain.

Assume now that U1, . . . , UL are contained in the basin of x, and let
ni be such that fni(Ui) is contained in V for the first time. The proof is
identical if one defines now W =

⋃
fni(Ui), because the preimage of one of

the sets fni(Ui) cannot intersect an image of a Uj .
The open set U can be diminished again so that V ′\g(V ′) is a fundamen-

tal domain whose intersection with fni(Ui) contains gni(Sg ∩ Ui) whenever
Ui is contained in the basin of x and g ∈ U . For i = 1, 2, denote by xi the
fixed point that the map gi has in V ′.

Definition of the conjugacy h in the neighborhood V ′ of x1. It is easy
to construct a local conjugacy between g1 and g2 that is close to the iden-
tity, but this local homeomorphism may not preserve critical images. We
refer the reader to [IPR1] where a similar construction was done (there,
the critical components Ui were arbitrarily small and the manifold was two-
dimensional).

Diminish α again to make it less than the distance between different
fni(Ui)’s. Let Zi(g1) be the closure of gni

1 (Ui) and Zi(g2) = ϕ(Zi(g1)). As ϕ
is α-C0 close to the identity, it follows that Zi(g2) contains gni

2 (Sg2∩Ui). For
each g = g1, g2 let Z ′i(g) be a small neighborhood of Zi(g). The construction
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begins with a homeomorphism

h : V ′ \
⋃
i

⋃
n≥0

gn
1 (Z ′i(g1))→ V ′ \

⋃
i

⋃
n≥0

gn
2 (Z ′i(g2))

such that hg1 = g2h and the C0 distance between h and the identity is
less than %, an arbitrary positive constant to be determined later. Next
define h = ϕ in Zi(g1) and finally extend h to Z ′i(g1) \ Zi(g1) so that h is a
homeomorphism α-C0 close to the identity. To prove that this last extension
is possible, note that the boundary of Zi(g) can be taken smooth, and Z ′i(g)
may be taken to be the union of a tubular neighborhood of the boundary of
Zi(g) with Zi(g). Note also that the boundary of fni(Ui) has a finite number
of components, so the positive number α can be taken small enough that ϕ
identifies components of the boundaries of Zi(g1) and Zi(g2) in the same way
as h identifies components of the boundary of Z ′i(g1) and Z ′i(g2). It follows
that the problem of constructing this last extension is reduced to showing
that a C1 map that is C0 close to the identity on an embedded manifold, can
be extended to a homeomorphism that coincides with the identity outside
a tubular neighborhood of it. Once h is defined in the fundamental domain,
one can extend it dynamically to the whole V ′.

Definition of h in the basin Bg1. This part is subdivided into two steps.
The first is extending h to the complement in Bg1 of the union of the preim-
ages of

⋃
i Zi(g1). First extend h to the first preimage of V ′. For g = g1, g2

let
V 1(g) = g−1

(
V ′ \

⋃
Zi(g)

)
.

Note that hg1 is a finite-to-one covering map from each component of V 1(g1)
to a component of V ′ \

⋃
Z ′i(g2). The map g2 is a covering map from each

component of V 1(g2) to a component of V ′ \
⋃
Zi(g2). The domains of these

covering maps are homeomorphic and there exists an obvious isomorphism
between the first homotopy groups associated. The actions of the corre-
sponding coverings on homotopy groups are equal modulo that isomorphism.
From this it follows that there exists a unique lift h̃ : V 1(g1)→ V 1(g2) such
that hg1 = g2h̃ and h̃(x1) = x2. By construction the map h̃ is a homeomor-
phism that extends h.

This procedure can be repeated for further preimages, thus giving an
extension of the conjugacy h to a homeomorphism

(2) h : Bg1 \
⋃
n≥0

g−n
1

(⋃
i

Zi(g1)
)
→ Bg2 \

⋃
n≥0

g−n
2

(⋃
i

Zi(g2)
)
.

The second step is the extension of h to the preimages of Zi. The homeo-
morphism h can be extended in a unique way to a conjugacy defined in the
preimages of g−j

1 (Zi(g1)) for all i and j such that j < ni, because g1 was
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injective there. To define it in g−ni
1 (Zi(g1)) = Ui one must use the map ψ of

equation (1), to take care of the critical set contained there.
We now claim that h (given by equation (2)) must coincide with ψ in the

boundary of Ui. Note that f is an immersion if restricted to the (smooth)
boundary of Ui. It follows that there exists a number c > 0 such that two
points in the boundary of Ui that have the same image under f must be at a
distance at least 2c. Diminish α again so that α < c. If also the neighborhood
U of f is diminished, then the same property holds for every g there. Note
also that as the restrictions of both ψ and h to the boundary of Ui satisfy the
functional equation Φg1 = g2ϕ (with unknown Φ), it follows that ψ and h
coincide in a relatively open subset of the boundary of Ui. But as both maps
are α-C0 close to the identity, the claim follows. Therefore one can extend
h to Ui by setting it equal to ψ; the remaining extension to the preimages
of the sets Ui is now obvious.

Extension to the boundary. This part is similar to the proof given
in [IPR1]. Fix a neighborhood U of the Julia set of f where f is expand-
ing; say with an adapted metric the differential of f expands in U at a
rate λ > 1. By Lemma 6 there exists some positive constant N such that
f−n(V ′\f(V ′)) ⊂ U for every n ≥ N . This also holds for every g ∈ U . More-
over, the constant % given in the definition of h in the fundamental domain
can be taken so small that h is ε-C0 close to the identity in g−N

1 (V ′\g1(V ′)).
Using the expansiveness of g1 in U one can show, as in [IPR1, Corollary 3],
that h is ε-C0 close to the identity. Then, taking sequences and using the
expansiveness of g1 in Ω′(g1), the fact that h extends to the boundary of
Bg1 can be shown as in the above reference. Trivially the extended h is a
conjugacy between g1 and g2. This proves the theorem.

An example. Some examples of perturbations of complex polynomials
were shown to be C3 structurally stable in [IPR1]. In that case, each com-
ponent of the set of critical points was a small Jordan curve whose image
was disjoint from the interior of the curve. We now show how to construct a
stable map in the sphere such that Sf is a circle whose image is contained in
the component of its complement that contains the fixed attracting point.
This map will be a perturbation of the holomorphic map z 7→ %z2. Let
f(x, y) = %(x2 − y2 + λy, 2xy + µx) be defined in a ball Br of center the
origin and radius r = 1/2. If %, λ and µ are small positive numbers, then
the origin is an attractor and the set of critical points is a circle contained
in Br. Moreover, if % is diminished again, then f(Sf ) is contained in the
bounded component of the complement of Sf . It can also be seen that the
restriction of f to Sf is injective, hence f(Sf ) is also a topological circle and
the origin is contained in the bounded component of its complement. This
makes f a C3 geometrically stable map.
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To define f in the whole sphere, let it coincide with z 7→ z2 in the annulus
{z : |z| ∈ [3/4, 5/4]}, and with a map g in the complement of the ball of
radius 2 where 1/g(1/z) = f(z). Then extend f to the whole sphere. The set
of critical points of f has two components, each contained in the basin of an
attracting fixed point, the origin and ∞. The nonwandering set contains an
expanding basic piece {z : |z| = 1}. Moreover, the extended map f is still
C3 geometrically stable. By Theorem C it follows that f is C3 structurally
stable.

Final comment. Other examples of maps satisfying the hypothesis of
Theorem C in dimension greater than two can be found in [IPR2] (however,
in that case, the maps have no critical points, and the conclusion is that the
map is C1 structurally stable). To find other examples of structurally stable
maps, one would have to admit saddle type basic pieces (or repelling pieces
that are not expanding), which represents an additional difficulty, since their
unstable manifolds have a wild behavior, as they can have infinitely many
intersection points. Przytycki presented the simplest possible example in the
last section of [P]. As far as we know, nobody has ever answered his question
about the C1 structural stability of his example.

Acknowledgements. Thanks are due to the referee for several im-
provements. The work was partially supported by Conicyt, Uruguay.
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