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Lorenz Halbeisen (Belfast)

Abstract. We investigate families of partitions of w which are related to special
coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms
of partitions. The combinatorial properties of these partition-ultrafilters, which we call
Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example it will be
shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features
as Mathias forcing restricted to a Ramsey ultrafilter. Further we introduce an ordering on
the set of partition-filters and consider the dual form of some cardinal characteristics of
the continuum.

0. Introduction. The Stone Cech compactification SN of the natu-
ral numbers, or equivalently, the ultrafilters over w, is a well-studied space
(cf. e.g. [vM90] and [CNT74]) which has a lot of interesting topological and
combinatorial features (cf. [HS98] and [To97]). In the late 1960’s, a partial
ordering on the non-principal ultrafilters SN\ N, the so-called Rudin—Keisler
ordering, was established and “small” points with respect to this ordering
were investigated rigorously (cf. [Bo70], [BI73], [BI81;] and [La89]). The
minimal points have a nice combinatorial characterization which is related
to Ramsey’s Theorem (cf. [Ra29, Theorem A]) and therefore the ultrafil-
ters which are minimal with respect to the Rudin—Keisler ordering are also
called Ramsey ultrafilters (for further characterizations of Ramsey ultrafil-
ters see [BJ95, Chapter 4.5]). Ramsey ultrafilters have combinatorial prop-
erties similar to certain families, not necessarily filters, called happy families
(cf. [Ma77]), which are very important in the investigation of Mathias forcing
(cf. [Ma77]).
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From the category-theoretical point of view, subsets of w and partitions
of w are dual to each other (see e.g. [HLooj, Introduction]), and therefore,
it is natural to look for the dualization of statements about subsets of w in
terms of partitions of w. In this dualization process, a lot of work is already
done. We refer to: [HLooq] for a dualization of SN; [CS84], [Ha98;] and
[HLoog] for the dualization of the Ramsey property and of Mathias forcing;
[CS84] for a dualization of Ramsey’s Theorem; [CW00] and [Ha983] for the
dualization of some cardinal characteristics of the continuum.

To investigate partition-filters, a useful tool is missing: the dualization
of Ramsey ultrafilters. The aim of this paper is to fill this gap.

1. Partition-filters

1.1. Notations and definitions. Most of our set-theoretic notation is
standard and can be found in textbooks like [Je78], [Ku83] or [BJ95]. So, we
consider a natural number n as an ordinal, in particular n = {k : k < n} and
0 = (), and consequently, the set of natural numbers is denoted by w. For a
set S, P(S) denotes the power-set of S. The notation concerning partitions
is not yet standardized. We will use the notation introduced in [Ha98;].

A partition X of a set S consists of pairwise disjoint, non-empty sets,
such that [J X = S. The elements of a partition are called blocks. Mostly,
we will consider partitions of w, so, if not specified otherwise, the word
“partition” refers to a partition of w.

Most of the partitions considered are infinite, or in other words, contain
infinitely many blocks. However, at some places we also have to consider
finite partitions, that is, partitions containing only finitely many blocks.
The unique partition containing just one block is denoted by {w}. The set
of all partitions is denoted by (w)=* and the set of all partitions containing
infinitely many blocks is denoted by (w)¥.

Let X and Y be two partitions of a set .S. We say X is coarser than Y,
or that Y is finer than X (and write X C Y'), if each block of X is a union
of blocks of Y. Let X MY denote the finest partition of S which is coarser
than X and Y.

Further, for n € w and a partition X € (w)=¥, let X M {n} be the
partition we get by gluing together all blocks of X which contain a member
of n. If X and Y are two partitions, then we write X C* Y if there is an
n € w such that X M{n} C Y.

A set F C (w)=¥ is a partition-filter if the following holds:

(a) {w} & 7.
(b) For any X,Y € .# we have XY € .Z.
() f X €F and XCVY € (W)=, then Y € 7.
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A partition-filter .# C (w)= is called principal if there is a partition
X € (w)=¥ such that # = {Y : X T Y}.

A set % C (w)=¥ is a partition-ultrafilter if % is a partition-filter
which is not properly contained in any partition-filter.

Notice that a partition-ultrafilter %7 which does not contain a finite par-
tition is always non-principal, and vice versa, a principal partition-ultrafilter
always contains a finite partition, in fact it contains a 2-block partition (see
[HLooy, Fact 3.1]). Thus, if 7 is a non-principal partition-ultrafilter, X € %
and X C* Y, then Y € .

In what follows we are mostly interested in partition-filters which do not
contain a finite partition, or in other words, in partition-filters .# C (w)“.

For the sake of convenience, we defined the notion of partition-filter only
for partition-filters over w, but it is obvious how to generalize this notion to
partition-filters over arbitrary sets S (see also [HLooq]).

1.2. An ordering on the set of partition-filters. Let PF((w)Sw) denote
the set of all partition-filters. We define a partial ordering on PF((w)S“’)
which has some similarities with the Rudin—Keisler ordering on SN\ N.

To keep the notation short, for 7 C P(P(w)) and a function f:w — w
we define

FU) = {HX) X € )
where for X € 7 we define
) = {0 b X)
with f=1(b) := {n: f(n) € b} for b C w.
Let f : w — w be any surjection from w onto w and let X € (w)<* be

any partition. Then f(X) denotes the finest partition such that whenever n
and m lie in the same block of X, then f(n) and f(m) lie in the same block

of f(X).
For any partition-filter .# € PF((w)=*) define

J(F)={Y € @™ :3X € F (F(X)CY)}.
We define the ordering “<” on PF((w)<¥) as follows:
F <9 ifand only if .7 = f(¥) for some surjection f:w — w.

Since the identity map is a surjection and the composition of two surjec-
tions is again a surjection, the partial ordering “<” is reflexive and transitive.

FacT 1.2.1. Let F,9 € PF((w)=¥) and assume f(¥) = F for some
surjection f:w — w. Then 9 C f~HF) and f~1(F) € PF((w)=¥).

Proof. Let s = f~Y(F), where f : w — w is such that f(¥9) = Z.
Since % is a partition-filter and f is a function, for any X7, Xs € % we
have X1 M Xy € F and f~1(X1 M Xo) = f~1(X1) M f~1(X2), and therefore,



236 L. Halbeisen

A is a partition-filter. Further, for any Y € ¢4 we get f(Y) € % and
F7Y(f(Y)) €Y, which implies & C 7. N

The ordering “<” induces in a natural way an equivalence relation “~”
on the set PF((w)=*) of partition-filters:

F ~9¢ ifandonlyif F SS9 and¥ S 7.

So, the ordering “<” induces a partial ordering on the set of equiva-
lence classes of partition-filters. Concerning partition-ultrafilters, we get the
following.

FacT 1.2.2. Let %,V € PUF((w)S“’) and assume that % is principal or
contains a partition all of whose blocks are infinite. If % ~ V¥, then there
is a permutation h of w such that h(%) = "7 .

Proof. Because % < ¥ and ¥ < %, there are surjections f and g
from w onto w such that ¥ = f(%) and % = g(7'), and because % and
¥ are both partition-ultrafilters, by Fact 1.2.1 we get % = f~1(¥) and
V=g Y U).

First assume that % is principal and therefore contains a 2-block parti-
tion X = {bg, b1 }. Because g~ 1(X) € ¥, the partition-ultrafilter ¥ is also
principal and we get ¥ = {Y € (w)=¥ : g7 (X) C Y}, where g7 1(X) =
{97 (bo), g (b1)} =: {co,c1}. Now, because % = f~1(¥), we must have
f7Hg (X)) = X, which implies f~(g7(b;)) € {bo, b1} (for i € {0,1}). If
one of the blocks of X is finite, say by, then f[,, as well as g|;q,) must be
one-to-one, and therefore, by has the same cardinality as c¢g. Hence, whether
or not any of the blocks of X is finite, we can define a permutation h of w
such that h(by) = co and h(b1) = c¢1, which implies h(%Z ) = 7.

Now assume that % contains a partition X = {b; : ¢ € w} all of whose
blocks b; are infinite. Because g is a surjection, g~*(X), which is a member
of 7, is a partition all of whose blocks are infinite. Let h be a permutation
of w such that h(b;) = g~1(b;). Take any Y € ¥ with Y C ¢g~}(X). By
the definition of h we have h=1(Y) = g(Y) and since % = g(?) there is a
Z € % such that g(Y') = Z, which implies h(Z) =Y, hence, h(Z)="V".

The following proposition shows that “<” is upward directed (for a sim-
ilar result concerning the Rudin—Keisler ordering see [B173, p. 147]).

Fact 1.2.3. For any partition-filters 9,8 € PF((w)S“’), there is a parti-
tion-filter F € PF((w)=¥) such that 2 < .F and & S F.

Proof. Let o1 and gy be functions from w into w defined by g1(n) := 2n
and p2(n) := 2n + 1. For a partition X and ¢ € {0,1}, let 9;(X) := {0i(b) :
b € X}, where g;(b) := {0i(n) : n € b}. Now, take any two partition-filters
2,6 € PF((w)=¥) and define

F={01(X)Up(Y): X e Z2NY € &}.
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Clearly, this defines a partition-filter. Define two surjections f and g from
w onto w as follows:

F(n) = {n/2 if n is even,

0 otherwise. otherwise.

{ n—1)/2 if nis odd,
It is easy to verify that f(%#) = & and g(.%) = &, which implies ¥ < 7
and & S Z. =

2. Ramseyan ultrafilters

2.1. Coloring segments. If X is a partition of a set S, then we say that .S
is the domain of X, written dom(X ) = S. The set of all partitions of natural
numbers n € w, called segments, is denoted by (N). Thus, s € (N) implies
dom(s) € w. In particular, {) is the unique partition of 0 and {{@}} = {1} is
the unique partition of 1. For s € (N), |s| denotes the cardinality of s, which
simply means the number of blocks of s, and |J s := {dom(s)}.

For a set b C w, let min(b) be the least element of b, and for a set
P C P(w), let Min(P) := {min(b) : b € P}. Further, for a finite set b C w,
let max(b) be the greatest element of b. For X € (w)=¥, s € (N) and n € w,
let X(n) and s(n) be the nth block of X and s, respectlvely, where we
start counting with 0 and assume that the blocks are ordered by their least
element.

Let s,t € (N) and X € (w)=*. We write s C X if each block b € s
is the union of some sets b; N dom(s), where each b; is a block of X; we
write s < ¢t and s < X if for each b € s there is a ¢, € t and a d; € X,
respectively, such that b = ¢, N dom(s) = dp N dom(s) (notice that s < ¢
implies dom(s) C dom(t)); and for s C X, sM X denotes the finest partition
Y € (w)=¥ such that s x Y C X.

For s € (N), let s* denote the partition s U {{dom(s)}}. In particular,
0* = {1}. Notice that |s*| = |s| + 1.

For s € (N) and X € (w)¥ with s C X, let

(5, X)“ ={Y e (w):sxYLC X}
A set (s,X)¥, where s and X are as above, is called a dual Ellentuck
neighborhood (cf. [CS84, p. 275]). In particular, (0, X)¥ = ({1}, X)¥ =
(X)°,

For n € w, (w)™ denotes the set of all u € (N) such that |u| = n. Further,
forn € wand X € (w)* let

(X)) ={ue (N): ju/=nAu"C X}
and if s € (N) is such that [s| <n and s C X, let
(5, X)" :={ue (N): Jul=nAsxuAu"C X}
From the so-called Dual Ramsey Theorem of Carlson and Simpson (The-
orem 1.2 of [CS84]), we get the following.
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PROPOSITION 2.1.1. For any coloring of (w)("+1)* with » 4+ 1 colors,
where r,n € w, and for any Z € (w)¥, there is an infinite partition X € (Z)¥
such that (X)™*tV* is monochromatic.

This combinatorial result is the dualization of Ramsey’s Theorem [Ra29,
Theorem A] in terms of partitions.

We say that a surjection f :w — w respects the partition X € (w)* if
fYH(f(X)) = X; otherwise, we say that it disregards X. If f~1(f(X)) =
{w}, then we say that f completely disregards X.

LEMMA 2.1.2. For any surjection f : w — w and for any Z € (w)%,
there is a partition X € (Z)* such that f either respects or completely
disregards X .

Proof. For a surjection f : w —» w, define the coloring 7 : (w)* — {0, 1}
as follows. 7(s) := 0 if and only if f(s(0))Nf(s(1)) = 0. By Proposition 2.1.1,
there is a partition X € (Z)“ such that (X)?* is monochromatic with respect
to m, which implies that f respects X if 7|x)2« = {0}, and completely
disregards X if 7| xy2. = {1}. -

In what follows we will use a slightly stronger version of Proposition 2.1.1,
which is given in the following two corollaries.

COROLLARY 2.1.3.  For any coloring of (w) D% with r + 1 colors,
where r,n,k € w, and for any dual Ellentuck neighborhood (s,Y)¥, where
|s| = n+1, there is an infinite partition X € (s,Y)* such that (s, X )k+D*
1s monochromatic.

Proof. Let (s,Y)“ be any dual Ellentuck neighborhood with |s| =n+1
>1.8et Y':=5sNY, R:=U,; 01 Y'(i) and Yg := Y\ {Y'(i) : i <n + 1},
and take any order-preserving bijection f : w\R — w. Then Z := f(YR) is an
infinite partition of w. For u € (Z)"*F+D* we define £(u) € (s,Y)nHrtDx
as follows: dom(&(u)) := f~!(dom(u)) and for i < n +k + 1,

~ [ (Y'(i) ndom(u)) U fH(u(i)) fori<mn-+1,
) = {f‘l (u(i)) otherwise.

Let 7 : (w)™*+1* _ 11 be any coloring. Define 7 : (w)TF+D* — 41
by stipulating 7(u) := 7(£(w)). By Proposition 2.1.1 there is an infinite
partition X’ € (Z)“ such that (X")®*++D* is monochromatic with respect
to the coloring 7. Now let X € (w)“ be such that
X(i) = Y'(@) U fH(X'(4) fori<n+1,
LX) otherwise.
Then, by definition of 7 and X', X € (s,Y)* and (s, X)®*%+1* is monochro-
matic with respect to . =
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COROLLARY 2.1.4. For any coloring of UnEw(w)(’”kH)* with r+ 1 col-
ors, where rk € w, and for any Z € (w)¥, there is an infinite partition
X € (Z)¥ such that for any n € w and for any s < X with |s| = n + 1,
(5, X)(Hh+D% 45 monochromatic.

Proof. Using Corollary 2.1.3 repeatedly, we can construct the partition
X € (w)¥ straightforwardly by induction on n. -

We say that a family 4 C (w)“ has the segment-coloring property if
for every coloring of UnEw(w)(”+k+1)* with r + 1 colors, where r, k € w, and
for any Z € € there is an infinite partition X € (Z)“ N% such that for any
n € w and for any s < X with [s| = n+41, (s, X)"*+D* is monochromatic.

If a partition-ultrafilter % € PUF((w)“’) has the segment-coloring prop-
erty, then it is called a Ramseyan ultrafilter.

The next lemma shows that every partition-filter .# € PF((w)*) which
has the segment-coloring property is a partition-ultrafilter. We have a similar
result for Ramsey filters over w, since every Ramsey filter is an ultrafilter.

LEMMA 2.1.5. If # C (w)¥ is a partition-filter which has the segment-
coloring property, then . C (w)¥ is a partition-ultrafilter.

Proof. Take any Z € (w)* such that for any X € ., ZM X € (w)~.
Define the coloring 7 : (w)?* — {0, 1} by stipulating 7(u) = 0 if and only if
u € (Z)**. Because .Z has the segment-coloring property, there is a partition
X € .7 such that (X)?* is monochromatic with respect to 7, which implies
that X C Z if 7| x)2« = {0}, and X M Z = {w} if 7|(x)2- = {1}. By the
choice of Z we must have X C Z, thus Z € ., since .Z is a partition-filter.

The following lemma gives a relation between Ramseyan and Ramsey
ultrafilters.

LEMMA 2.1.6. If % is a Ramseyan ultrafilter, then {Min(X) \ {0} :
X € %} is a Ramsey ultrafilter over w (to be pedantic, one should say
“over w \ {0}7).

Proof. Let 7 : [w]™ — r be any coloring of the n-element subsets of w with
r colors, where n and r are positive natural numbers. Define 7 : (w)™ — r
by stipulating m(s) := 7(Min(s*) \ {0}). Take X € % such that (X)™*
is monochromatic with respect to w. Then, by the definition of 7, the set
[Min(X) \ {0}]™ is monochromatic with respect to 7. a

Ramsey ultrafilters over w are the minimal points of the Rudin—Keisler
ordering on SN\ N. This fact can also be expressed by saying that a non-
principal ultrafilter &/ is a Ramsey ultrafilter if and only if any function
g : w — w is either constant or one-to-one on some set of ¢/. By Lemma 2.1.2,

we get a similar result for Ramseyan ultrafilters with respect to the ordering
“<77
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THEOREM 2.1.7. If % is a Ramseyan ultrafilter, then for any surjection
f i w — w there is an X € U such that [ either respects or completely
disregards X .

Proof. The proof is the same as the proof of Lemma 2.1.2, but restricted
to the partition-ultrafilter % . =

2.2. On the existence of Ramseyan ultrafilters. As we have seen in Lem-
ma 2.1.6, every Ramseyan ultrafilter induces a Ramsey ultrafilter over w.
It is not clear if the converse holds as well. However, Ramseyan ultrafilters
are always forceable: Let U be the forcing notion consisting of infinite par-
titions, stipulating X <Y & X C* Y. Then U® is the natural dualization
of the forcing notion (P(w)/fin, C*), denoted by U in what follows, and it
is not hard to see that if ¢ is U’-generic over V, then ¢ is a Ramseyan
ultrafilter in V[#]. Since U’ is o-closed, we deduce (see below) that Ram-
seyan ultrafilters exist if we assume the continuum hypothesis (denoted by
CH). On the other hand we know by Lemma 2.1.6 that Ramseyan ultrafil-
ters cannot exist if there are no Ramsey ultrafilters. Kenneth Kunen proved
(cf. [Je78, Theorem 91]) that it is consistent with ZFC that Ramsey ultra-
filters do not exist. We wish to mention that Saharon Shelah showed that
even p-points, which are weaker ultrafilters than Ramsey ultrafilters, may
not exist (see [Sh98, VI§4]). He also proved that it is possible that—up to
isomorphisms—there exists a unique Ramsey ultrafilter (see [Sh98, VI §5]).

In the following, ¢ denotes the cardinality of the continuum and 2° de-
notes the cardinality of its power-set.

Andreas Blass proved that Martin’s Axiom, denoted by MA, implies the
existence of 2° Ramsey ultrafilters (see [BI73, Theorem 2]). He mentions
in that paper that with CH in place of MA, this result is due to Keisler,
and with 1 in place of 2, to Booth (cf. [Bo70, Theorem 4.14]). Further he
mentions that his proof is essentially the union of Keisler’s and Booth’s
proofs. However, Blass’ proof uses at a crucial point the fact that MA im-
plies that the tower number is equal to ¢. Such a result does not hold for
partitions, because Timothy Carlson proved that the dual-tower number is
equal to N; (see [Mt86, Proposition 4.3]). So, concerning the existence of
Ramseyan ultrafilters under MA, we cannot simply translate the proof of
Blass, and it seems that MA and sets of partitions are quite unrelated. But
as mentioned above, if one assumes CH, then Ramseyan ultrafilters exist.
Moreover, for the equivalence relation “~" (defined in Section 1.2) we get
the following (for a similar result for the Rudin-Keisler ordering see [B173,
p. 149]).

THEOREM 2.2.1. CH implies the existence of 2° pairwise non-equivalent
Ramseyan ultrafilters.
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Proof. Assume V = CH. Let x be large enough such that P((w)¥) €
H(y), i.e., the power-set of (w)“ (in V) is hereditarily of size < x. Let N
be an elementary submodel of (H(x), €) with |IN| = Ry, containing all reals
(or equivalently, all partitions) of V. We consider the forcing notion U’ in
the model N. Since |N| = 8y, in V there is an enumeration {D, C (w)* :
o < wi} of all dense sets of U” which lie in N. For any Z € (w)* NV, let
v Yl € D, be such that Y, ' C* Z, V' C* Z and Y ' MY & (w)©
(since D, is dense, such partitions exist). For any function ¢ : ¢ — {0, 1}
we can construct a set Hr = {X, : @ < w} in V such that for all § <
a < w; we have X, C* Y)g[’f(ﬁ ), By construction, for any function (, the
set G¢ = {X € (w)¥ : Xo C" X for some X, € H¢} is U°-generic over N,
thus, a Ramseyan ultrafilter in N[G], and since U’ is o-closed and therefore
adds no new reals, G is also a Ramseyan ultrafilter in V. Furthermore, if
¢ # (', then the Ramseyan ultrafilters G¢ and G are different (consider
the partitions X1 € H¢ and Xj, | € Her, where ((8) # ¢'(8)). Hence, in
V, there are 2° Ramseyan ultrafilters. Because there are only ¢ surjections
from w onto w, no equivalence class (w.r.t. “~”) can contain more than ¢
Ramseyan ultrafilters, so, in V, there must be 2° pairwise non-equivalent
Ramseyan ultrafilters. B

3. The happy families’ relatives

3.1. Relatively happy families. As we will see below, the partition-fam-
ilies which have the segment-coloring property are related to special coide-
als, so-called happy families, which were introduced and rigorously investi-
gated by Adrian Mathias in [Ma77]. So, partition-families with the segment-
coloring property can be considered as “relatives of happy families”.

Let us first consider the definition of Mathias’ happy families.

Let [w]“ be the set of all infinite subsets of w, and let [w]<“ be the set
of all finite subsets of w. A set 7 C P(w) is a free ideal if 7 is an ideal
which contains the Fréchet ideal [w]<“. A set F C P(w) is a free filter
if {y : w\y € F} is an ideal containing the Fréchet ideal. For a € [w]<¥,
let a* := max{n + 1 : n € a}, in particular, 0* = 0. For z,y € P(w) we
write y C* x if y \ z € [w]<“. For a set B C P(w), let fil(B) be the free filter
generated by B; so x € fil(B) if and only if there is a finite set yg, ...,y € B
such that yoN ... Ny, C" x.

A set © C w is said to diagonalize the family {z, : a € [w]<“} if x C g
and for all a € [w]<¥, if max(a) € z, then z \ a* C x,.

The family A C P(w) is happy if P(w) \ A is a free ideal and whenever
fil{zy : a € [w]<¥} C A, there is an z € A which diagonalizes {z, : a €
[w] =}
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In terms of happy families one can define Ramsey ultrafilters as follows:
A Ramsey ultrafilter is an ultrafilter that is also a happy family.

Now we turn back to partitions. The Fréchet ideal corresponds to the set
of finite partitions, and therefore, the notion of a free filter corresponds to
partition-filters containing only infinite partitions, hence, to partition-filters
F C(w)v.

For a set # C (w)¥, let fil(#) be the partition-filter generated by #; so
X € fil(#) if and only if there is a finite set of partitions Yp,...,Y, € £
such that Yo ...MY, C* X.

A partition X is said to diagonalize the family { X : s € (N)}if X T X
and for all s € (N), if s* < X, then Js* M X C X,.

The family 7 C (w)* is relatively happy if whenever fil{ X : s € (N)}
C o, there is an X € & which diagonalizes {X; : s € (N)}.

An example of a relatively happy family is (w)¥, the set of all in-
finite partitions (cf. [Ma77, Example 0.2]). Another example of a much
smaller relatively happy family is given in the following theorem (cf. [Ma77,
p. 63]).

THEOREM 3.1.1. Every Ramseyan ultrafilter is relatively happy.

Proof. Let % C (w)¥ be a partition-ultrafilter which has the segment-
coloring property and let {X; : s € (N)} C % be any family. Since % is a
partition-filter, we obviously have fil{ Xs : s € (N)} C %. For t € (N) with
|t| > 2, let s; be such that sf < ¢ and |s¢| = |t| — 2. Define the coloring
7t Upew(@)™F2* — {0,1} by stipulating

() ::{0 if (Js;mt* C X,
1 otherwise.

Let X € (Xy)¥ N % be such that for any n € w and for any s* < X with
|s| = n, (s*, X)"*+2* is monochromatic with respect to 7. Take any s* < X.
Since (s*, X)(#+2)* is monochromatic with respect to m, each t* C X with
s* 5t and |t| = |s| + 2 gets the same color. Hence, for all such ¢’s we have
either |Js* M¢* C X,, which implies X C* X, or |Js* Mt* Z X,, which
implies X M Xg ¢ (w)“. The latter is impossible, since it contradicts the
assumption that % is a partition-filter. So, we are always in the former
case, which completes the proof. =

3.2. A game characterization. There is a characterization of happy ul-
trafilters over w, i.e., of Ramsey ultrafilters, in terms of games (cf. [BJ95,
Theorem 4.5.3]). We get a similar characterization for relatively happy par-
tition-ultrafilters.
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Let % be a partition-ultrafilter. Define a game G(%) played by players I
and IT as follows:

I Xq Xs X3

II s1 S9 S3

On the nth move, player I plays a partition X,, € % . Player II responds
with a segment s,, € (N) such that |s,| =n, s¥_; < s, and s}, M) T
X1 for all m < n, where sg := (). Player I wins if and only if the unique

partition X with s, < X (for all n) is not in %

THEOREM 3.2.1. Let % € PUF((w)“). Then player I has a winning strat-
egy in G(%) if and only if % is not relatively happy.

Proof. Assume first that the partition-ultrafilter % is relatively happy
and that {X, : s € (N)} is a strategy for player I. This means that player I
begins with Xy and if s, is the nth move of player II, then player I plays
X, . Because 7% is relatively happy, there is a partition X € % which
diagonalizes the family {X : s € (N)}, in particular, X C Xj. Now, by the
definition of X and by the rules of the game G(% ), player II can play the
segments of X. More precisely, on the nth move player II plays the segment
$p so that |s,| =n and s} < X. Since X € %, the strategy {X; :s € (N)}
was not a winning strategy for player 1.

Now assume that the strategy 0 = {X; : s € (N)} is not a winning
strategy for player I. Consider the game where player I is playing according
to the strategy o. In this game, player II can play segments s,, such that the
unique partition X with s, < X (for all n) is in %. We have to show that
X diagonalizes the family {X; : s € (N)}. For n € w, let s, € (N) be such
that s} < X and [s,| = n. Fix m € w; then, by the rules of the game, for
any n > m we have | Js}, Ms’ C X,,11, which implies s}, M X C Xpp41.
Since player I follows the strategy o, we have X,,+1 = X, , and because m
was arbitrary, for all m € w we get |Js!, M X C X, . Hence, X diagonalizes
the family {X,: s € (N)}. —|

4. The combinatorics of dual Mathias forcing. First we recall the
Ellentuck topology on [w]¥. For z € [w]¥ and a € [w]<¥ with z N (max(a)
+1) = a, let [a,2]” == {y € [w]“ : a Cy C z}, and let the basic open
sets on [w]“ be the sets [a, z]“. These sets are called Ellentuck neighbor-
hoods. The topology induced by the Ellentuck neighborhoods is called the
Ellentuck topology (cf. [E174]).

The Mathias forcing M, introduced in [Ma77], consists of ordered pairs
(a,x) such that [a,z]* is an Ellentuck neighborhood and the ordering on M
is defined by stipulating (a,z) < (b,y) < [a,z]* C [b,y]“.
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Mathias forcing restricted to a non-principal ultrafilter ¢/, denoted by
My, consists of the ordered pairs (a,z) € M where in addition we require
that x € U.

Mathias forcing has a lot of nice combinatorial properties (some of them
are mentioned below) which also hold for Mathias forcing restricted to a
Ramsey ultrafilter (see [Ma77]).

The dual Ellentuck topology on (w)“ is the topology induced by
the dual Ellentuck neighborhoods (defined in Section 2.1). Now, the dual
Mathias forcing M°, introduced in [CS84], is defined similarly to Mathias
forcing M, using the dual Ellentuck topology instead of the Ellentuck topol-
ogy. So, M consists of the ordered pairs (s, X) such that (s, X)“ is a dual
Ellentuck neighborhood and the ordering on M’ is defined by stipulating
(s, X) < (t,Y) < (s, X)“ C (t,Y)“.

Dual Mathias forcing restricted to a partition-ultrafilter % € PUF ((w)®),
denoted by M, , consists of the ordered pairs (s, X) € M’ where in addition
we require that X € % (see e.g. [Ha98;] and [HLoog]).

Both Mathias forcing and dual Mathias forcing are proper forcings.
Moreover, both have (i) a decomposition, (ii) pure decision and (iii) the
homogeneity property (see e.g. [Ma77], [CS84] and [Ha98;]):

w

(i) Decomposition: M ~ U x My, where U is the canonical U-name
for the U-generic object (U as in Section 2.2).
M’ ~ U’ * M%V’ where W is the canonical U-name for the U’-generic

object (U as in Section 2.2).

(ii) Pure decision: For any M-condition (a,z) and any sentence @ of
the forcing language M, there is an M-condition (a,y) < (a,z) such that
either (a,y) =y @ or (a,y) -y —P.

For any M’-condition (s, X) and any sentence @ of the forcing language
M, there is an M’-condition (s,Y) < (s, X) such that either (s,Y) Iy, ®
or (s,Y)l—yp —9.

(iii) Homogeneity property: If x4 is M-generic over V and y € [z5]%,
then y is also M-generic over V.

If Xg is MP-generic over V and Y € (Xg)*, then Y is also M’-generic
over V.

In [Ha98;] it is shown that if .# C (w)“ is a so-called game-family,
then M; has pure decision and the homogeneity property ([Ha98;, Thm.
4.3 & 4.4]). Game-families have the segment-coloring-property and therefore,
the so-called game-filters, i.e., game-families which are partition-filters, are
Ramseyan ultrafilters. Unlike for Ramseyan ultrafilters, it is not clear if
CH implies the existence of game-filters, so, it seems that game-filters are
stronger than Ramseyan ultrafilters. However, in what follows we show that
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it e PUF((w)“’ ) is a Ramseyan ultrafilter, then Mb% has pure decision and
the homogeneity property.

Recently, Stevo Todorcevi¢ gave an abstract presentation of Ellentuck’s
theorem by introducing the notion of a quasi-ordering with approximations
which admits a finitization and the notion of a Ramsey space. The Abstract
Ellentuck Theorem says that a quasi-ordering with approximations which
admits a finitization and satisfies certain axioms is a Ramsey space.

Let % € PUF((w)*”) be a partition-ultrafilter and let “C” be the quasi-
ordering on % . For each n € w, let p, : Z — (N) be such that p,(X) is
the unique s with s* < X and |s| = n. Let p be the sequence (pn)new- It is
easy to verify that the triple (%,C, p) is a quasi-ordering with approx-
imations. For n,m € w and X,Y € % define: p,(X) Can pn(Y) if and
only if dom(p,(X)) = dom(p,(Y)) and p,(X) C pn,(Y). This definition
verifies that (% ,C, p) admits a finitization. If (s, X)* is a dual Ellentuck
neighborhood and X € %, then (s,X)Y N % is called a % -dual Ellen-
tuck neighborhood. The topology on %, induced by the % -dual Ellentuck
neighborhoods, is called the %-dual Ellentuck topology. With respect
to the % -dual Ellentuck topology, the topological space % is a Ramsey
space if for any subset S C % which has the Baire property with respect
to the % -dual Ellentuck topology, and for any %/ -dual Ellentuck neighbor-
hood (s,Y)¥ N %, there is a partition X € (s,Y)¥ N % such that either
(s, X) "% CSor (s,X)“N% CU\S.

Let % € PUF((w)“) be a Ramseyan ultrafilter. Since the triple (%, C, p)
satisfies certain axioms, by Todorcevi¢’s Abstract Ellentuck Theorem, the
Ramseyan ultrafilter % with respect to the % -dual Ellentuck topology is a
Ramsey space. Moreover, we get the following two results.

THEOREM 4.1. If % is a Ramseyan ultrafilter, then Mb% has pure deci-
S10M.

Proof. Let @ be any sentence of the forcing language Mb%. With respect
to @ we define

Dy:={Y € % : forsome t XY, (t,Y) s, -},
Dy :={Y e % : forsome t LY, (t,Y) "_MZ,, P}

Clearly Dy and D; are both open (w.r.t. the %/-dual Ellentuck topology)
and Do U D; is dense (w.r.t. the partial order in M"%) Because % is a
Ramsey space, for any % -dual Ellentuck neighborhood (s,Y)¥ N% there is
an X € (s,Y)“N% such that either (s, X)“N% C Dy or (s, X)*N% NDy =
(. In the former case we have (s, X) =y, ~® and we are done. In the latter
case we find X’ € (s, X)¥ N % such that (s, X")*N% C D;. (Otherwise we
would have (s, X")*N% N(DyUD;) = (), which is impossible by the density
of Do U D;.) Hence, (s, X') s, @ -
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THEOREM 4.2. If % is a Ramseyan ultrafilter, then Mb@/ has the homo-
geneity property.

Proof. For a dense set D C M?,, let
UD ={X € (w)”: X € (s,Y)” for some (s,Y) € D}.

It is clear that a partition X¢ is Mb%—generic if and only if Xg € JD for
each dense set D C M"%. Let D C M"% be an arbitrary dense set and let
D' be the set of all (s, Z) € M), such that (¢, 2)* C |JD for all t C s with
dom(t) = dom(s).

First we show that D’ is dense in Mb@/. For this, take an arbitrary
(s,W) € M’ and let {t; : 0 < i < m} be an enumeration of all ¢ € (N)
such that ¢+ C s and dom(t) = dom(s). Because D is dense in M’,, |JD
is open (w.r.t. the %-dual Ellentuck topology), and since % is a Ramsey
space, for every t; we find a W' € % such that t; T W' and (¢;, W) C U D.
Moreover, if we define W_q1 := W, for every ¢ < m we can choose a par-
tition W; € % such that W; C W;_1, s < W; and (ti,Wi)w - UD Thus,
(8, W) € D', and because (s, W,,) < (s, W), D' is dense in MJ,.

Let X be M’,-generic and let Y € (X¢)* be arbitrary. Since D' is
dense, there is a condition (s, Z) € D’ such that s x Xg C Z. Since Y €
(Xg)¥, we have t x Y C Z for some t C s with dom(¢) = dom(s), and
because (¢, Z)* C |JD, we get Y € |JD. Hence, Y € |J D for each dense set
D C Mb%, which completes the proof. .

Appendix. In this section we gather some results concerning the dual
form of some cardinal characteristics of the continuum. For the definition of
the classical cardinal characteristics, as well as for relations between them,
we refer the reader to [Va90].

First we consider the shattering cardinal . This cardinal was introduced
in [BPS80] as the minimal height of a tree m-base of SN \ N. Later it was
shown by Szymon Plewik [PI86] that h = add(r’) = cov(r"), where r°
denotes the ideal of Ramsey-null sets. It is easy to see that p < b, and
therefore, MA(o-centered) implies h = c.

The dual forms of the classical cardinal characteristics were introduced
and investigated in [CWO00] and further investigated in [Ha982]. Concerning
the dual-shattering cardinal §, one easily gets N1 < § < b, and in [Ha98,]
it is shown that $ > Xy is consistent with ZFC and $ = add(R°) = cov(R"),
where R denotes the ideal of dual Ramsey-null sets. After all these sym-
metries, one would not expect the following: MA + (¢ > §) is consistent with
ZFC. This was proved by Jorg Brendle in [Br00] and implies that $ < p is
consistent with ZFC.
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Concerning the reaping number v and the dual-reaping number R, the
situation is different. It is shown in [Ha98;| that p < R < min{r,i}, and
thus MA(o-centered) implies R = ¢. Further, it is easy to show that R < §(
where U denotes the partition-ultrafilter base number, i.e., the dual form of
u, and consequently, MA(o-centered) implies 4 = .

For a Ramsey ultrafilter &, Brendle [Br95] introduced the ideal ry, of
Ramsey-null sets with respect to the ultrafilter &/. He showed for example
that hom < non(rg), where hom is the homogeneity number investigated
by Blass in [B193, Section6]. There, Blass also investigated the so-called
partition number par and showed that par = min{b,s}. Now, replacing the
Ramsey ultrafilter U by a Ramseyan ultrafilter %, one obtains the ideal R,
of dual Ramsey-null sets with respect to % as the dualization of the ideal
rg, and replacing the colorings of [w]?—involved in the definition of hom and
par—by colorings of (w)?*, one obtains the cardinal characteristics $om and
Par and could begin to investigate them. But this is left to the reader.
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