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Some remarks on Radon–Nikodým compact spaces

by

Alexander D. Arvanitakis (Athens)

Abstract. The class of quasi Radon–Nikodým compact spaces is introduced. We
prove that this class is closed under countable products and continuous images. It includes
the Radon–Nikodým compact spaces. Adapting Alster’s proof we show that every quasi
Radon–Nikodým and Corson compact space is Eberlein. This generalizes earlier results
by J. Orihuela, W. Schachermayer, M. Valdivia and C. Stegall. Further the class of almost
totally disconnected spaces is defined and it is shown that every quasi Radon–Nikodým
space which is almost totally disconnected is actually a Radon–Nikodým compact space
embeddable in the space of probability measures on a scattered compact space.

1. Introduction. We call a compact space K quasi Radon–Nikodým if
there exists a lower semicontinuous (as a function on K ×K) fragmenting
quasimetric defined on K. By a quasimetric, we mean a “metric” failing to
satisfy the triangle inequality, i.e. a function f : K ×K → [0, 1] for which:

1. For all x, y ∈ K, f(x, y) = 0⇔ x = y.
2. For all x, y ∈ K, f(x, y) = f(y, x).

In Propositions 3.2 and 3.3, we show that this class of spaces is stable.
More precisely, continuous images, closed subspaces and countable Cartesian
products of quasi Radon–Nikodým compact spaces are also quasi Radon–
Nikodým. In addition, by Proposition 3.4, quasi Radon–Nikodým compact
spaces are fragmented by a metric. This class is closely related to the well
known class of Radon–Nikodým compact spaces, introduced by O. Reynov
[11] and independently by I. Namioka [9]. We recall that by a well known cha-
racterization due to I. Namioka [9], a compact space K is Radon–Nikodým
if and only if there exists a lower semicontinuous fragmenting metric on K.
Thus Radon–Nikodým compact spaces are quasi Radon–Nikodým. Moreover
this remains valid for their continuous images. Actually Theorem 3.6 yields
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that every totally disconnected quasi Radon–Nikodým space is Radon–
Nikodým and further it is homeomorphic to a closed subset of a countable
product of scattered compact spaces. This extends a result due to E. Rez-
nichenko, which asserts the latter for Radon–Nikodým compact spaces.

As a consequence, we deduce that continuous images of Radon–Nikodým
compact spaces are also Radon–Nikodým, provided that they are totally
disconnected. This result is due to S. Argyros [4], and with a different proof
is contained in [7].

Thus the two classes are identical when restricted to totally disconnected
compact spaces.

In Proposition 3.9 we derive a characterization of continuous images of
totally disconnected Radon–Nikodým spaces. As a consequence, we obtain
an equivalent reformulation of the problem whether or not continuous im-
ages of Radon–Nikodým compact spaces remain Radon–Nikodým (Proposi-
tion 3.10).

Section 4 is devoted to the proof that a quasi Radon–Nikodým compact
space is Eberlein, provided that it is Corson. This in particular implies a
well known result which has been proved by J. Orihuela, W. Schachermayer
and M. Valdivia [10] and independently by C. Stegall [14], namely that a
Corson Radon–Nikodým compact space is Eberlein.

Our approach to proving this result is different from those used by the
above mentioned authors. We adapt Alster’s techniques from [1]. We recall
that Alster [1] proved that every scattered Corson compact space is strong
Eberlein.

There are several common points between the quasi Radon–Nikodým
compact spaces and the scattered ones. Roughly speaking, in our approach,
we handle pairs of disjoint closed subsets (K0

i ,K
1
i )i with f -distance greater

than ε > 0 where f is the lower semicontinuous fragmenting quasimetric, in
a similar manner to what Alster did for clopen subsets of scattered spaces.
Also we handle open subsets with f -diameter less than ε similarly to points
of scattered spaces.

In Section 5 we introduce almost totally disconnected compact spaces. A
compact space K is called almost totally disconnected if it can be embedded
in [0, 1]Γ for some set Γ in such a way that for every k ∈ K, the set

{γ ∈ Γ : k(γ) 6= 0, 1}
is at most countable.

These spaces strictly generalize both Corson and totally disconnected
compact spaces. For example the long line which belongs to none of the
above two classes is almost totally disconnected.

We prove that
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Theorem 1.1. An almost totally disconnected quasi Radon–Nikodým
compact space can be embedded in the space of regular Borel probability mea-
sures on some scattered compact space.

The proof requires techniques introduced in Section 4 and moreover we
adopt techniques from [5], related to the well known Ditor Theorem ([6]).
The latter states that for every compact K, there exists a totally discon-
nected compact space L with the same topological weight as K, mapping
continuously onto K by a map that admits a regular averaging operator.

During the preparation of the paper, Professor I. Namioka informed us
about the relation between the class of quasi Radon–Nikodým compact
spaces and that of strongly fragmented compact spaces. Let us recall the
definition of the latter: A metric d defined on a compact space K is called
a Reznichenko metric if for any two distinct elements x, y of K, there are
open neighborhoods Ox, Oy of x and y respectively such that

d(Ox, Oy) = inf{d(x′, y′) : x′ ∈ Ox, y′ ∈ Oy} > 0.

Following A. Arkhangel’skĭı [3, p. 104] a compact space K is called strongly
fragmented if there exists a Reznichenko metric defined on K that frag-
ments K.

As was pointed out to us by Professor I. Namioka, the class of quasi
Radon–Nikodým compact spaces, introduced here, and the class of strongly
fragmented compact spaces are identical. This was proved by B. Cascales,
E. Matoušková, I. Namioka and J. Orihuela.

Acknowledgements. I would like to thank Professor S. Argyros for
his invaluable help during the preparation of this paper and also Professors
B. Cascales, E. Matoušková, I. Namioka and J. Orihuela for their permission
to mention here the above result.

2. Notation and definitions. In what follows, all spaces are assumed
to be compact and Hausdorff. For a set A, we denote by |A| the cardinality
of A. We will need the definitions of the following classes of compact spaces:

Definition 2.1. A compact space K is called Eberlein if it can be em-
bedded as a weakly compact subset in a Banach space.

D. Amir and J. Lindenstrauss in the well known paper [2] have character-
ized Eberlein compact spaces as those compact spaces that can be embedded
as weakly compact subsets in c0(Γ ) for some set Γ .

This characterization gives rise to the following generalization:

Definition 2.2. A compact space K is called Corson if it embeds in

Σ([0, 1]Γ ) = {x ∈ [0, 1]Γ : |{γ ∈ Γ : x(γ) 6= 0}| ≤ ℵ0}.
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Since for the weak* topology a definition analogous to that of Eberlein
compact spaces would be vacuous (any compact space can be embedded in
(C(K)∗, w∗)), we restrict ourselves to the duals of Asplund spaces:

Definition 2.3. A compact space K is called Radon–Nikodým if it em-
beds in the dual of an Asplund space equipped with the weak* topology.

For a set K, a map f : K ×K → [0, 1] is called a quasimetric if:

1. For all x, y ∈ K, f(x, y) = 0⇔ x = y.
2. For all x, y ∈ K, f(x, y) = f(y, x).

In other words a quasimetric is a metric failing the triangle inequality.
Hereafter, for a quasimetric f , a subset of M of K and an ε > 0, we shall

denote by Bf (M, ε) the set

{x ∈ K : ∃y ∈M : f(x, y) ≤ ε}.
Let K be a compact space and f : K × K → [0, 1] be a quasimetric

on K (which need not have any relation with the topology of K). We say
that f fragments K if for every ε > 0 and for every closed subset M of
K (or equivalently, by Zorn’s Lemma, for every subset of K) there exists a
relatively open and non-empty subset V of M such that

f-diam(V ) = sup{f(x, y) : x, y ∈ V } < ε.

Using the same notation, we say that f is lower semicontinuous if it is
lower semicontinuous as a map on K × K (i.e. for each a ∈ [0, 1] the set
{(x, y) ∈ K ×K : f(x, y) ≤ a} is closed in K ×K).

For convenience, we shall use the following notation: For W1,W2 ⊂ K
we denote by f(W1,W2) the real number

inf{f(x, y) : x ∈W1, y ∈W2}.
I. Namioka [9] has proved the following simple and useful characterization

of Radon–Nikodým compact spaces:

Theorem 2.1. A compact space K is Radon–Nikodým if and only if
there exists a lower semicontinuous fragmenting metric on K.

Using this characterization, it is not difficult to prove the following:
Any scattered compact space K is Radon–Nikodým, the lower semicon-

tinuous fragmenting metric on K being the discrete metric. (Being Hausdorff
implies the lower semicontinuity in this case.)

Any Eberlein compact space K is Radon–Nikodým, the lower semicon-
tinuous fragmenting metric on K being the norm of c0(Γ ).

Also it is not difficult to prove, using the same characterization, that the
class of Radon–Nikodým compact spaces is closed under taking countable
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products and closed subspaces. Thus a closed subspace of a countable prod-
uct of scattered compact spaces is Radon Nikodým and, as we shall see,
every totally disconnected Radon–Nikodým compact space is of this kind.

Theorem 2.1 also gives rise to the following definition:

Definition 2.4. A compact space K is called quasi Radon–Nikodým if
there exists a lower semicontinuous fragmenting quasimetric on K.

In what follows, for a subspace L of the cube [0, 1]Γ and A ⊂ Γ , we
denote by πA the projection of L to the A coordinates. For γ ∈ Γ we shall
also write πγ instead of π{γ}.

3. Quasi Radon–Nikodým compact spaces

Lemma 3.1. Assume K a Hausdorff compact space, and f :K×K→ [0, 1]
a lower semicontinuous quasimetric on K. Assume moreover that F1, F2 are
disjoint closed subsets of K. Then

1. f(F1, F2) > 0.
2. If f(F1, F2) > ε for some ε > 0, then there are open subsets U, V of

K such that F1 ⊂ U , F2 ⊂ V and f(U, V ) > ε.

Proof. 1. Assume on the contrary that f(F1, F2) = 0, and for each n ∈ N
take xn ∈ F1, yn ∈ F2 such that f(xn, yn) < 1/n. We can pass to subnets of
{xn}n∈N and {yn}n∈N converging to x ∈ F1 and y ∈ F2 respectively. This is a
contradiction, since by the lower semicontinuity and the separating property
of f , there are open sets V1 3 x and V2 3 y such that f(V1, V2) > 0.

2. Fix y ∈ F2. Using the compactness of F1, we can find an open
cover Uy1 , . . . , U

y
n of F1 and open sets V y1 , . . . , V

y
n containing y such that

f(Uyi , V
y
i ) > ε. Then Uy =

⋃n
i=1 Ui contains F1, V y =

⋂n
i=1 Vi contains y,

and f(Uy, V y) > ε. Repeating the same argument using the compactness of
F2, we can find U1, . . . , Un containing F1 and V1, . . . , Vn covering F2 such
that f(Ui, Vi) > ε. Then U =

⋂n
i=1 Ui contains F1, V =

⋃n
i=1 Vi contains F2

and f(U, V ) > ε.

Proposition 3.2. The continuous image of a quasi Radon–Nikodým
compact space is also quasi Radon–Nikodým.

Proof. Let K be a quasi Radon–Nikodým compact space, L a Hausdorff
compact space, and φ : K → L a continuous onto map. Let also f : K×K →
[0, 1] be a lower semicontinuous fragmenting quasimetric for K, and define
g : L × L → [0, 1] by g(x, y) = f(φ−1(x), φ−1(y)). It suffices to show that
g is a lower semicontinuous fragmenting quasimetric. By Lemma 3.1, g is
clearly a quasimetric. To see that it is fragmenting, choose M ⊂ L closed
and ε > 0. By Zorn’s Lemma find N ⊂ K closed such that φ|N : N →M is
onto and irreducible (i.e. for every N ′ ⊂ N closed, φ|N ′ is not onto M). By
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the fragmentability of f , there exists ∅ 6= V ⊂ N relatively open such that
f-diam(V ) < ε, and by the irreducibility of φ|N , it follows that φ(V ) has
non-empty interior in M . Since for every x, y ∈ φ(V ), φ−1(x) ∩ V 6= ∅ and
φ−1(y) ∩ V 6= ∅, it follows that g(x, y) < ε.

To see that g is lower semicontinuous, let x, y ∈ L and g(x, y) > ε.
Since g(x, y) = f(φ−1(x), φ−1(y)), by Lemma 3.1 and the lower semiconti-
nuity of f , there exist open sets G1 ⊃ φ−1(x) and G2 ⊃ φ−1(y) such that
f(G1, G2) > ε. Let {Ui}i∈I , {Vi}i∈I be neighborhood bases of x and y re-
spectively. Since

⋂
i∈I U i = {x} and

⋂
i∈I V i = {y}, we get

⋂
i∈I φ

−1(U i)
⊂ G1 and

⋂
i∈I φ

−1(V i) ⊂ G2. By the compactness of K, there are open
sets U and V containing x and y respectively such that φ−1(U) ⊂ G1 and
φ−1(V ) ⊂ G2. Consequently, g(U, V ) > ε and the proof is complete.

Remark 3.1. Since a Radon–Nikodým compact space is also quasi
Radon–Nikodým, we deduce that continuous images of Radon–Nikodým
compact spaces are quasi Radon–Nikodým.

Remark 3.2. Letting in the previous proposition f be the discrete met-
ric on K (in this case K is scattered), we infer that g is also a discrete metric
on L, thus showing that a continuous image of a scattered compact space is
also scattered.

Proposition 3.3. A closed subspace of a quasi Radon–Nikodým com-
pact space is also quasi Radon–Nikodým. The Cartesian product of countably
many quasi Radon–Nikodým compact spaces is quasi Radon–Nikodým.

Proof. The first assertion is obvious, since a lower semicontinuous frag-
menting quasimetric, restricted to a closed subspace, remains a lower semi-
continuous fragmenting quasimetric.

For the second statement, let Kn, n ∈ N, be a countable family of quasi
Radon–Nikodým spaces, and fn : Kn × Kn → [0, 1] be a lower semicon-
tinuous fragmenting quasimetric on Kn. Set K =

∏
n∈NKn and define

f : K ×K → [0, 1] by

f(x, y) =
∞∑

n=1

1
2n
fn(πn(x), πn(y)).

We will show that f is a lower semicontinuous fragmenting quasimetric onK.
It is clearly a quasimetric on K. To see that it is lower semicontinuous,

let x = (xn)n∈N, y = (yn)n∈N ∈ K and assume that f(x, y) > ε. Then for
some k ∈ N,

δ =
k∑

n=1

1
2n
fn(xn, yn)− ε > 0.
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By the lower semicontinuity of fn, find now Un, Vn ⊂ Kn open such
that xn ∈ Un, yn ∈ Vn and fn(Un, Vn) > fn(xn, yn) − δ/k. It can be easily
checked that setting

U = {x ∈ K : πn(x) ∈ Un, 1 ≤ n ≤ k},
V = {z ∈ K : πn(z) ∈ Vn, 1 ≤ n ≤ k},

we have x ∈ U , y ∈ V and f(U, V ) > ε.
Let us prove that f is also fragmenting. Let F be a subset of K and

ε > 0. There exists a k ∈ N such that
∑∞
n=k+1 2−n < ε/2. We define

inductively for each 1 ≤ m ≤ k an open subset Um of
∏m
n=1 Kn such that

π{1,...,m}(F ) ∩ Um is non-empty and has
∑m
n=1 2−nfn-diameter less than∑m

n=1 2−nε/2. Assume Um has been defined. Then F ∩ π−1
{1,...,m}(Um) is

non-empty and hence W = πm+1(F ∩ π−1
{1,...,m}(Um)) has a relatively open

subset of fm+1-diameter less than ε/2. Let Vm+1 be an open subset of Km+1

such that W ∩ Vm+1 6= ∅ and fm+1-diam(W ∩ Vm+1) < ε/2. Then

Um+1 =
{
x = (xn)m+1

n=1 ∈
m+1∏

n=1

Kn : (xn)mn=1 ∈ Um and xm+1 ∈ Vm+1

}

clearly satisfies the desired condition. Setting now U = {x = (xn)n∈N ∈ K :
(xn)kn=1 ∈ Uk}, we see that U ∩ F is non-empty and has f -diameter less
than ε.

Remark 3.3. The following proposition follows easily from the result of
B. Cascales, E. Matoušková, I. Namioka and J. Orihuela mentioned in the
Introduction, namely that a compact space is quasi Radon–Nikodým if and
only if it is strongly fragmented. Here we give a proof based on Ribarska’s
characterization of fragmentability.

Proposition 3.4. A quasi Radon–Nikodým compact space is fragmented
by a metric.

Before passing to the proof, recall Ribarska’s characterization ([12], [8]).
A topological space K is said to admit a separating σ-relatively open

partitioning if there exists a family U=
⋃
n∈N Un, each Un={U ξn :0 ≤ ξ ≤ ξn}

being well ordered, such that:

1. Each U ξn is a relatively open subset of K \ {U ζn : ζ < ξ}.
2. For each n ∈ N,

⋃Un = K.
3. For x, y ∈ K and x 6= y, there exists U ∈ U such that U ∩ {x, y} is a

singleton.

Theorem 3.5 (Ribarska’s characterization). A topological space K is
fragmentable if and only if it admits a separating σ-relatively open parti-
tioning.
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Proof of Proposition 3.4. Let K be a quasi Radon–Nikodým compact
space and f a lower semicontinuous fragmenting quasimetric on K. Define
inductively

Un = {U ζn : ζ an ordinal number},
letting U ζn be a non-empty relatively open subset of K \ ⋃η<ζ Uηn of f -
diameter less than 1/n. The verification of Ribarska’s characterization is
routine.

The following theorem shows that the difference (if any) between the
classes of Radon–Nikodým spaces and quasi Radon–Nikodým is very deli-
cate. In fact they cannot be separated if we restrict them to totally discon-
nected compact spaces.

Theorem 3.6. A totally disconnected quasi Radon–Nikodým compact
space is a closed subset of a countable product of scattered compact spaces,
and hence is Radon–Nikodým.

Proof. Let L be a totally disconnected quasi Radon–Nikodým compact
space and f a lower semicontinuous fragmenting quasimetric on L. We may
consider L to be a subset of {0, 1}Γ for some set Γ . For each γ ∈ Γ , set
V 0
γ = π−1

γ (0) and V 1
γ = π−1

γ (1). Since V 0
γ , V

1
γ are closed and disjoint subsets

of L, Lemma 3.1 implies that there exists n ∈ N such that f(V 0
γ , V

1
γ ) > 1/n.

Thus if we set
Γn = {γ ∈ Γ : f(V 0

γ , V
1
γ ) > 1/n},

then Γ =
⋃
n∈N Γn. Since L is a closed subset of

∏
n∈N πΓn(L), it suffices

to prove that each πΓn(L) is scattered. So choose a closed subset M of
πΓn(L). By Zorn’s Lemma there exists a closed subset N of L such that
πΓn |N : N →M is irreducible (i.e. it is onto M and it is not onto M when
restricted to any closed subset of N). In this case, if V is a relatively open
subset of N of f -diameter less than 1/n, then πΓn(V ) has non-empty interior
in M . Since moreover, for every γ ∈ Γn, f(π−1

γ (0), π−1
γ (1)) > 1/n, it follows

that
either V ∩ π−1

γ (0) = ∅ or V ∩ π−1
γ (1) = ∅.

Consequently, πΓn(V ) is a single point in πΓn(L) and hence an isolated point
of M .

Since a Radon–Nikodým compact space is also quasi Radon–Nikodým,
we obtain:

Corollary 3.7 (E. Reznichenko). A totally disconnected Radon–Niko-
dým compact space is a closed subspace of a countable Cartesian product of
scattered compact spaces.
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Since moreover a continuous image of a Radon–Nikodým compact space
is quasi Radon–Nikodým, the following corollary solves the problem of con-
tinuous images in the case that they are also totally disconnected.

Corollary 3.8 (S. Argyros). A totally disconnected continuous image
of a Radon–Nikodým compact space is Radon–Nikodým.

It is natural to ask at this point whether a lower semicontinuous frag-
menting quasimetric characterizes a continuous image of a Radon–Nikodým
compact. In this direction, we can prove the following:

Proposition 3.9. A compact space K is the continuous image of a to-
tally disconnected Radon–Nikodým compact if and only if it can be embedded
in a compact space K ′ in such a way that there exists a lower semicontin-
uous quasimetric f defined on K ′ and closed scattered subsets Ln, n ∈ N,
of K ′ such that each Ln is 1/n-f -dense in K ′ (i.e. for each x ∈ K ′, there
exists y ∈ Ln such that f(x, y) < 1/n).

The above proposition easily yields an equivalent reformulation of the
problem whether or not continuous images of totally disconnected Radon–
Nikodým compact spaces are also Radon–Nikodým:

Proposition 3.10. The following are equivalent :

(i) Every continuous image of a totally disconnected Radon–Nikodým
compact is Radon–Nikodým.

(ii) If L is a compact space, Ln closed scattered subspaces of L, and f
a lower semicontinuous quasimetric on L such that each Ln is 1/n-f -dense
in L, then L is Radon–Nikodým.

Proof. If (i) is true and L is as in (ii), then by Proposition 3.9, L is the
continuous image of a totally disconnected Radon–Nikodým compact space,
being embeddable in itself. Hence it is Radon–Nikodým.

Conversely, if (ii) is true, and L is the continuous image of a totally
disconnected Radon–Nikodým compact space, then by the same proposition
it is embeddable in a compact space L′ which satisfies the conditions in (ii).
Thus L′ and therefore L as a closed subset are Radon–Nikodým.

Proof of Proposition 3.9. For the “only if” part assume L is a closed
subset of

∏
n∈NMn where each Mn is scattered, and φ : L → K is a con-

tinuous onto map. First we extend φ to all of
∏
n∈NMn: Let fi : K → [0, 1]

for i ∈ I be continuous maps separating the points of K. For each i ∈ I
we can extend fiφ to all of

∏
n∈NMn by Tietze’s Theorem. Let fiφ be this

extension. Define now K ′ ⊂ [0, 1]I by

x ∈ K ′ ⇔ ∃y ∈
∏

n∈N
Mn : x(i) = fiφ(y).
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It is easy to check that K ′ is closed, K ⊂ K ′ (as subsets of the cube [0, 1]I)
and moreover the map φ :

∏
n∈NMn → K ′ defined by φ(y)(i) = fiφ(y) is

continuous and onto.
The map d :

∏
n∈NMn ×

∏
n∈NMn → [0, 1] defined by

d(x, y)

=
{

1/(min{n ∈ N : x(n) 6= y(n)}+ 1) if min{n ∈ N : x(n) 6= y(n)} <∞,
0 otherwise,

is easily checked to be a lower semicontinuous fragmenting metric on∏
n∈NMn. Since each Mn is embeddable in the full product

∏
n∈NMn we

can set Ln = φ(Mn). Clearly each Ln is scattered as a continuous image
of a scattered compact space. Thus, setting f(x, y) = d(φ−1(x), φ−1(y)) for
x, y ∈ K ′, we find as in Proposition 3.2 that f is a lower semicontinuous
fragmenting quasimetric, and it easily follows that each Ln is 1/n-f -dense
in K ′.

For the “if” part, since it suffices to show that K ′ is a continuous image
of a totally disconnected Radon–Nikodým compact space, we may assume
that K = K ′.

Set L =
∏
n∈N Ln and define h : L→ 2K by

h((xn)n∈N) =
⋂

n∈N
Bf (xn, 1/n).

Claim 1. For each x ∈ L, h(x) is either an empty set , or a singleton.

Assume y1, y2 ∈ h(x) with y1 6= y2. Since
⋂

n∈N
Bf (y1, 1/n) ∩

⋂

n∈N
Bf (y2, 1/n) = {y1} ∩ {y2} = ∅

and the sets are closed by the lower semicontinuity of f , there exists an
n0 ∈ N such that Bf (y1, 1/n0) ∩ Bf (y2, 1/n0) = ∅. Since moreover y1, y2 ∈
Bf (πn0(x), 1/n0) we deduce that πn0(x) ∈ Bf (y1, 1/n0) ∩ Bf (y2, 1/n0),
which is a contradiction.

Claim 1. The set L∅ = {x ∈ L : h(x) = ∅} is open in L.

Assume x0 ∈ L and h(x0) = ∅. Thus
⋂
n∈NBf (πn(x0), 1/n) = ∅. Con-

sequently, there are n1, . . . , nk such that
⋂k
i=1 Bf (πni(x0), 1/ni) = ∅. It is

easy to see, using nets, that in this case there are open sets

(1) Uni 3 πni(x0) with
k⋂

i=1

Bf (yi, 1/ni) = ∅ for every yi ∈ Uni .

Set Vni = Lni∩Uni . Thus the set V = {x ∈ L : πni(x) ∈ Vni , i = 1, . . . , k} is
open in L. Clearly x0 ∈ V by (1). Let x ∈ V . Since then πni(x) ∈ Vni ⊂ Uni ,
again by (1),

⋂k
i=1 Bf (πni(x), 1/ni) = ∅, and consequently h(x) = ∅.
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The set L′ = L\L∅ is a closed subset of L and thus a totally disconnected
Radon–Nikodým compact space. Define φ : L′ → K by φ(x) ∈ h(x). It
remains to show that φ is continuous and onto.

Assume that y ∈ K and find xn ∈ Ln such that y ∈ Bf (xn, 1/n). Then
y ∈ ⋂n∈NBf (xn, 1/n), showing that φ is onto.

To show the continuity of φ, let ∅ 6= U be an open subset of K and
x ∈ φ−1(U). We will find a basic open V such that x ∈ V ⊂ φ−1(U). Set
M = K \U . Since M is closed and φ(x) 6∈M , there exists n1 ∈ N such that
f(φ(x),M) > 1/n1. Thus Bf (M, 1/n1) is closed, contains M and does not
contain φ(x). Set

(2) V ′ = K \Bf (M, 1/n1).

Since
⋂
n∈NBf (φ(x), 1/n) = {φ(x)} ⊂ V ′, there exists n2 ≥ n1 such that

(3) Bf (φ(x), 1/n2) ⊂ V ′.
Set V = {y ∈ L : πn2(y) ∈ Ln2 ∩ V ′}. To see that x ∈ V , observe that
{φ(x)} =

⋂
n∈NBf (πn(x), 1/n), thus πn2(x) ∈ V ′ ∩ Ln2 by (3). By the

definition of V , x ∈ V .
It remains to show that φ(V ) ⊂ U . Let y ∈ V . Thus πn2(y) ∈ V ′. Accord-

ing to (2), f(πn2(y),M) > 1/n1 ≥ 1/n2. Thus Bf (πn2(y), 1/n2) ∩M = ∅,
and since φ(y) ∈ Bf (πn2(y), 1/n2), it follows that φ(y) 6∈ M . Since now
M = K \ U , it follows that φ(y) ∈ U , which is what we needed to prove.

4. Quasi Radon–Nikodým and Corson compact spaces. In this
section we shall prove the following:

Theorem 4.1. Let K be a quasi Radon–Nikodým compact space. If K
is Corson compact , then it is already Eberlein.

Corollary 4.2 (J. Orihuela, W. Schachermayer, M. Valdivia, C. Ste-
gall). A Radon–Nikodým Corson compact space is Eberlein.

Corollary 4.3 (C. Stegall). A continuous image of a Radon–Nikodým
compact space is Eberlein provided that it is Corson.

Before passing to the proof of Theorem 4.1, we need first to define
“derivative” sets in a quasi Radon–Nikodým compact space:

Remark 4.1. Let K be a quasi Radon–Nikodým compact space, and
f : K ×K → [0, 1] a lower semicontinuous fragmenting quasimetric on K.
For M a closed subset of K and n ∈ N, we define αn(M) to be an ordinal
number and βn(M) to be a closed subset of M such that:

1. If M2 ⊃ M1 then αn(M2) ≥ αn(M1). If moreover αn(M2) = αn(M1)
then βn(M2) ⊃ βn(M1).
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2. βn(M) is covered by finitely many relatively open sets of f -diameter
less than 1/n.

First we define the set M (α,n) for a given ordinal α by induction:

• M (0,n) = M .
• If α is a successor ordinal, then

M (α,n) = M (α−1,n) \
⋃
{U ⊂M (α−1,n) : U is relatively open

and f-diam(U) < 1/n}.
• If α is a limit ordinal, then M (α,n) =

⋂
β<αM

(β,n).

Since every closed subset of K has a relatively open subset of f -diameter
less than 1/n, it follows that we can define the ordinal

γ0 = min{γ : γ ordinal and M (γ,n) = ∅}.
It is not the case that γ0 could be a limit ordinal, since then ∅ = M(γ0, n) =⋂
γ<γ0

M (γ,n) and each M (γ,n) is closed and non-empty, which is a contra-
diction. Thus γ0 is a successor ordinal and consequently

M (γ0−1,n) \
⋃
{U ⊂M (γ0,n) : U relatively open

and f-diam(U) < 1/n} = ∅.
Thus there exists a finite subcover of M (γ0,n) by relatively open sets of
f -diameter less than 1/n. We set

αn(M) = γ0 − 1 and βn(M) = M (αn(M),n).

It remains to show the first statement: Observe that for any ordinal
α, M (α,n)

2 ⊃ M
(α,n)
1 . Thus M (αn(M1),n)

2 ⊃ M
(αn(M1),n)
1 6= ∅. Consequently,

αn(M2) ≥ αn(M1). If αn(M2) = αn(M1), then βn(M2) = M
(αn(M2),n)
2 ⊃

M
(αn(M1),n)
1 = βn(M1).

Remark 4.2. Let {Mk}k∈N be a sequence of closed subsets of K such
that

⋂
k∈NMk 6= ∅. Then there exists m ∈ N such that βn(M1 ∩ . . .∩Mm)∩

Mk 6= ∅ for all k ≥ m.
For m ∈ N, set Cm =

⋂m
r=1Mr. Since {Cm}m∈N is a decreasing sequence

of closed subsets, by Remark 4.1, (αn(Cm))m∈N is a decreasing sequence
of ordinals. Hence, there exists m ∈ N such that αn(Ck) = αn(Cm) for all
k ≥ m. Then

βn(Cm) ∩Mk = C(αn(Cm),n)
m ∩Mk

⊃ (Cm ∩Mk)(αn(Cm),n) ⊃ C(αn(Ck),n)
k 6= ∅.

Before passing to the next lemma, let us recall some definitions:
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A family U of subsets of a topological space K is called point countable
(resp. point finite) if for every x ∈ K the set {U ∈ U : x ∈ U} is countable
(resp. finite).
U is called σ-point finite if it can be decomposed into countably many

point finite subfamilies.
Also, it is called weakly separating if for every x, y ∈ K with x 6= y there

exists U ∈ U such that {x, y} ∩ U is a singleton.
H. Rosenthal, using the characterization of D. Amir and J. Lindenstrauss

for Eberlein compact spaces mentioned in the Introduction, has proved in
[13] the following characterization:

Theorem 4.4 (Rosenthal’s characterization). A compact space K is
Eberlein compact if and only if it admits a σ-point finite weakly separat-
ing family of open Fσ sets.

For convenience we use the following notation: A family {U γ : γ ∈ Γ} of
sets over a set Γ is also denoted by U (Γ ).

The following lemma gives a hint on how we are planning to prove that
a Corson quasi Radon–Nikodým compact is Eberlein:

Lemma 4.5. Assume that K is a quasi Radon–Nikodým compact , f a
lower semicontinuous fragmenting quasimetric on K, and F (Γ )

0 ={F γ0 :γ∈Γ}
and F (Γ )

1 = {F γ1 : γ ∈ Γ} two families of closed sets of K such that for each
γ ∈ Γ ,

(4) f(F γ0 , F
γ
1 ) > 1/n.

If the family {K \ F γ0 : γ ∈ Γ} is point countable, then the family F (Γ )
1 is

σ-point finite.

Note that condition (4) implies that F γ1 ⊂ K \ F γ0 .

Proof. We shall use induction on |Γ |, the cardinality of Γ .
For Γ countable we have nothing to prove. Let |Γ | > ℵ0 and assume that

the statement holds for all cardinals less than |Γ |. Let Γ = {γα : α < |Γ |}
be an enumeration of Γ . For every α < |Γ | we define a set Γα ⊂ Γ such that⋃
α<|Γ | Γα = Γ and |Γα| < |Γ |, as follows:

• For a successor ordinal,

Γα = {γβ : β ≤ α}
∪ {γ ∈ Γ : ∃γ1, . . . , γk ∈ Γα−1 : βn(F γ1

1 ∩ . . . ∩ F γk1 ) ∩ F γ1 6= ∅}.
• For a limit ordinal, Γα =

⋃
β<α Γβ.

Clearly Γ =
⋃
α<|Γ | Γα. We shall show that |Γα| ≤ ℵ0|α|. This obviously

holds for α = 1. It also holds if α is a limit ordinal, since |Γβ | ≤ ℵ0|β| ≤ ℵ0|α|
for all β < α.
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Assume that α is a successor ordinal and |Γα−1| ≤ ℵ0|α − 1|. Since the
finite subsets of Γα−1 are at most ℵ0|α − 1| many, it suffices to show that
to each of them (say {γ1, . . . , γk}), there correspond countably many γ ∈ Γ
such that

(5) βn(F γ1
1 ∩ . . . ∩ F γk1 ) ∩ F γ1 6= ∅.

By Remark 4.1, βn(F γ1
1 ∩ . . . ∩ F γk1 ) =

⋃m
r=1Gr with f-diam(Gr) < 1/n.

Assuming that (5) holds for uncountably many γ ∈ Γ , there must be an
r ≤ m such that Gr ∩F γ1 6= ∅ also holds for uncountably many γ ∈ Γ . Since
f-diam(Gr) < 1/n and f(F γ1 , F

γ
0 ) > 1/n, for all those γ’s it must be the case

that Gr ⊂ K \F γ0 , which contradicts the assumption that {K \F γ0 : γ ∈ Γ}
is a point countable family.

Set now ∆α = Γα+1 \ Γα. Since |∆α| < |Γ |, by the inductive hypothesis
there must exist ∆n

α for n ∈ N such that
⋃
n∈N∆

n
α = ∆α and the family

F (∆nα)
1 is point finite. Set also En =

⋃
α<|Γ |∆

n
α. Apparently Γ =

⋃
n∈NEn.

It suffices to show that each F (En)
1 is point finite. Since F (∆nα)

1 is point
finite, we just have to show that if γi ∈ ∆αi with α1 < α2 < . . . , then⋂
k∈N F

γk
1 = ∅. Assume not. By Remark 4.2 there exists m ∈ N such that

βn(F γ1
1 ∩ . . . ∩ F γm1 ) ∩ F γk1 6= ∅ for all k ≥ m. Since F γi1 ∈ F (∆αi )

1 and
∆αi = Γαi+1 \Γαi ⊂ Γαi+1 ⊂ Γαm+1 we deduce by the definition of Γk that
γk ∈ Γαm+2 for all k > m and thus γk ∈ ∆αm+1 for all k > m, which is a
contradiction.

The following lemma generalizes Lemma 4.5.

Lemma 4.6. Assume that K is a quasi Radon–Nikodým compact space,
and F (Γ )

0 = {F γ0 : γ ∈ Γ} and F (Γ )
1 = {F γ1 : γ ∈ Γ} are two families of

closed subsets of K such that F γ0 ∩ F γ1 = ∅ for each γ ∈ Γ . If the family
{K \ F γ0 : γ ∈ Γ} is point countable, then the family F (Γ )

1 is σ-point finite.

Proof. This is immediate, since by Lemma 3.1 we can decompose Γ =⋃
n∈N Γn in such a way that f(F γ0 , F

γ
1 ) > 1/n for each γ ∈ Γn (where f is

the lower semicontinuous fragmenting quasimetric on K).

Proof of Theorem 4.1. Let fδ : K → [0, 1] for δ ∈ ∆ be continuous
functions separating the points of K, such that for every x ∈ K the set
{δ ∈ ∆ : fδ(x) 6= 0} is countable. Let Q ∩ (0, 1] = {qn : n ∈ N} and set
Γ = ∆× N. Set also, for γ = (δ, n) ∈ Γ ,

Uγ1 = f−1
δ ((qn, 1]), F γ0 = f−1

δ (0), F γ1 = f−1
δ ([qn, 1]).

Since {K \F γ0 : γ ∈ Γ} is point countable and F γ0 ∩F γ1 = ∅ for each γ ∈ Γ , it
follows by Lemma 4.6 that F (Γ )

1 is σ-point finite. Since moreover Uγ1 ⊂ F γ1
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for each γ ∈ Γ , U (Γ )
1 is also σ-point finite and it is easy to check that it is

moreover a weakly separating family consisting of open Fσ sets.
By Rosenthal’s characterization 4.4, the proof is complete.

5. Quasi Radon–Nikodým spaces embeddable in P(S) for scat-
tered S. In what follows we shall denote by P(K) the space of regular
Borel probability measures on K, endowed with the weak* topology.

We introduce a new class of compact spaces, the so-called almost to-
tally disconnected spaces, which are a natural generalization of both totally
disconnected and Corson spaces.

Definition 5.1. A compact space K is called almost totally discon-
nected if it can be embedded in the cube [0, 1]Γ in such a way that for
each x ∈ K, the set {γ ∈ Γ : 0 < x(γ) < 1} is countable.

Almost totally disconnected spaces are a strict generalization of totally
disconnected and Corson spaces. Let us indicate an example that illustrates
this:

The extended long line L (see also [9]) is obtained from the ordinal space
[0, ω1] by inserting a copy of the interval (0, 1) between α and α+ 1 for each
ordinal α less than ω1.

For each α < ω1 consider the map fα : L → [0, 1] which is constantly 1
for x ≥ α+ 1, constantly 0 for x ≤ α and linear between α and α+ 1. It is
easy to see that {fα : α < ω1} separates the points of L and moreover for
each x ∈ L the cardinality of the set {α < ω1 : 0 < fα(x) < 1} is at most
one. Thus L is almost totally disconnected. (In [9] it is proved that it is also
Radon–Nikodým.) Clearly L is not totally disconnected, and an application
of the Pressing Down Lemma shows that it is not Corson.

We are going to prove the following:

Theorem 5.1. An almost totally disconnected quasi Radon–Nikodým
compact can be embedded in P(S) for some scattered compact S.

Since by [9, Theorem 2.5] for any Radon–Nikodým compact space K,
P(K) is also Radon–Nikodým, we derive

Corollary 5.2. An almost totally disconnected compact space is Ra-
don–Nikodým if and only if it is quasi Radon–Nikodým.

Since continuous images of Radon–Nikodým compact spaces are quasi
Radon–Nikodým, we obtain

Corollary 5.3. If a continuous image of a Radon–Nikodým compact is
almost totally disconnected , then it is Radon–Nikodým.

In order to prove Theorem 5.1, we need first some technical lemmas:
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Lemma 5.4. Let F (Γ )
i and K(Γ )

i for i = 0, 1 be four families of closed
subsets of a quasi Radon–Nikodým compact space K, over a countable set Γ .
Let f : K ×K → [0, 1] be a lower semicontinuous fragmenting quasimetric
for K. Assume that there exists m0 ∈ N such that for all γ ∈ Γ ,

f(K \ (F γ0 ∩ F γ1 ),Kγ
0 ∩Kγ

1 ) > 1/m0, f(K \Kγ
0 ,K \Kγ

1 ) > 1/m0,

and the family N (Γ ) = {Nγ = F γ0 ∩ F γ1 : γ ∈ Γ} is point finite. Set

L =
{
x ∈ {0, 1}Γ :

⋂

γ∈Γ
Kγ
x(γ) 6= ∅

}
.

Then L is metrizable scattered , and therefore countable.

Proof. It is easy to see that L is a closed subset of {0, 1}Γ . It suffices
to prove that if M ⊂ L is closed, then there exists an open subset V of L
such that V ∩M is non-empty and finite. For every x ∈M and every finite
A ⊂ Γ consider the ordinal number α(x,A) = αm0(

⋂
γ∈AK

γ
x(γ)) where αm0

is the map of Remark 4.1. Let

α0 = α(x0, A0) = min{α(x,A) : x ∈M and A ⊂ Γ finite}
and set V = {x ∈ L : x(γ) = x0(γ) for all γ ∈ A0}.

Clearly V ∩M 6= ∅. Set F = βm0(
⋂
γ∈A0

Kγ
x0(γ)), βm0 being the map of

Remark 4.1. Let also F =
⋃λ
r=1Gr with f-diam(Gr) < 1/m0.

Claim 3. For every x ∈ V ∩M and for every finite B ⊃ A0,

(6) F ∩
⋂

γ∈B
Kγ
x(γ) 6= ∅.

Since B ⊃ A0, we have
⋂
γ∈BK

γ
x(γ) ⊂

⋂
γ∈A0

Kγ
x(γ) =

⋂
γ∈A0

Kγ
x0(γ).

Thus
αm0

( ⋂

γ∈B
Kγ
x(γ)

)
≤ αm0

( ⋂

γ∈A0

Kγ
x0(γ)

)
,

that is,
α(x,B) ≤ α(x0, A0) = α0.

By the choice of α0 we have α(x,B) = α0 and consequently

βm0

( ⋂

γ∈B
Kγ
x(γ)

)
⊂ βm0

( ⋂

γ∈A0

Kγ
x0(γ)

)
= F.

Using (6) and the compactness of the sets involved in the intersection,
we infer that F ∩⋂γ∈Γ K

γ
x(γ) 6= ∅ for every x ∈ V ∩M . Assume now that

V ∩M is infinite. Since F is a finite union of Gr’s, there must exist r0 such
that the set

Mr0 =
{
x ∈ V ∩M : Gr0 ∩

⋂

γ∈Γ
Kγ
x(γ) 6= ∅

}
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is also infinite. Since the family N (Γ ) is point finite, there must exist a finite
subset B0 of Γ such that Gr0 6⊂ F γ0 ∩ F γ1 for all γ ∈ Γ \ B0. For each such
γ ∈ Γ \B0,

Gr0 ∩Kγ
0 ∩Kγ

1 = ∅

since f-diam(Gr0) < 1/m0 and f(K \ (F γ0 ∩ F γ1 ),Kγ
0 ∩Kγ

1 ) > 1/m0. Also,
since f(K \Kγ

0 ,K \Kγ
1 ) > 1/m0 we find that

Gr0 ∩Kγ
0 = ∅ or Gr0 ∩Kγ

1 = ∅.
Hence for each γ ∈ Γ \ B0, we can define y0(γ) ∈ {0, 1} such that Gr0 ∩
Kγ
y0(γ) = ∅. Thus x(γ) 6= y0(γ) for each x ∈Mr0 and each γ ∈ Γ \B0. Since

B0 is a finite set we have arrived at a contradiction assuming that Mr0 is
infinite.

Lemma 5.5. Assume K is a Hausdorff compact space and K(Γ )
ε = {Kγ

ε :
γ ∈ Γ} for ε = 0, 1 are two families of closed subsets of K such that for
each γ ∈ Γ , (Kγ

0 )o ∪ (Kγ
1 )o = K, and for each x ∈ {0, 1}Γ , the cardinality

of the set
⋂
γ∈Γ K

γ
x(γ is at most 1. Let L = {x ∈ {0, 1}Γ :

⋂
γ∈Γ K

γ
x(γ) 6= ∅}.

Then L is a closed subspace of {0, 1}Γ and there exists an embedding of K
into P(L).

For a more detailed proof than the one presented here, we refer to [5].

Proof. It is easy to see that L is indeed a closed subspace of {0, 1}Γ .
Using Urysohn’s Lemma we define for each γ ∈ Γ a continuous map

fγ : K → [0, 1] such that fγ |K \ (Kγ
0 )o = 1 and fγ |K \ (Kγ

1 )o = 0. For each
k ∈ K and γ ∈ Γ we can define a probability measure pγ(k) on {0, 1} with
pγ(k)({1}) = fγ(k) and pγ(k)({0}) = 1− fγ(k). Next we define the map

u : K 3 k 7→ ⊗
γ∈Γ

pγ(k) ∈ P({0, 1}Γ )

where
⊗

γ∈Γ pγ(k) denotes the product measure of pγ(k). It can be checked
that indeed u(K) ⊂ P(L) and since for each x ∈ {0, 1}Γ ,

⋂
γ∈Γ K

γ
x(γ) is at

most a singleton, u is one-to-one.

Lemma 5.6. Let Sn be Hausdorff compact spaces,

L =
∏

n∈N
Ln, Sk =

k∏

n=1

Ln

and S be the one-point compactification of the disjoint union of the Sk’s.
Then P(L) is embeddable in P(S).

Again, for a more detailed proof, we refer to [5].
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Proof. We define a map h : C(S)→ C(L) by

h(f)((`n)n∈N) =
∞∑

n=1

1
2n
f((`k)nk=1).

It is easy to verify that h(f) is a continuous function on
∏
n∈N Ln. Moreover,

since h is positive, ‖h‖ ≤ 1 and h(1S) = 1L, it follows that h∗(P(L)) ⊂ P(S).
It is also easy to see that h(C(S)) is norm dense in C(L). Therefore h∗ is
also one-to-one.

Remark 5.1. Using the notation of the previous lemma, it is easy to
check that if each Ln is scattered, then so is S.

Lemma 5.7. Assume that K is a quasi Radon–Nikodým compact space
and F (Γ )

ε = {F γε : γ ∈ Γ} and K(Γ )
ε = {K(Γ )

ε : γ ∈ Γ} for ε = 0, 1 are
families of closed subsets of K such that :

1. For each x ∈ {0, 1}Γ the set
⋂
γ∈Γ K

γ
x(γ) is at most a singleton.

2. (Kγ
0 )o ∪ (Kγ

1 )o = K for all γ ∈ Γ .
3. The family N (Γ ) = {Nγ = F γ0 ∩ F γ1 : γ ∈ Γ} is σ-point finite.
4. Kγ

ε ⊂ (F γε )o for all γ ∈ Γ and ε = 0, 1.

Then there exists a totally disconnected Radon–Nikodým compact space L
such that K is embeddable in P(L).

Proof. By Lemma 5.5, if we set

L =
{
x ∈ {0, 1}Γ :

⋂

γ∈Γ
Kγ
x(γ) 6= ∅

}

then K is embeddable in P(L).
It remains to show that L is a closed subset of a countable product of

scattered compact spaces.
Because of condition 2, (K \Kγ

0 ) ∩ (K \Kγ
1 ) = ∅. Also, by condition 4,

Kγ
0 ∩ Kγ

1 ⊂ (F γ0 ∩ F γ1 )o and hence (K \ (F γ0 ∩ F γ1 )) ∩ (Kγ
0 ∩ Kγ

1 ) = ∅. By
Lemma 3.1, for each γ ∈ Γ , there exists m(γ) ∈ N such that

f(K \Kγ
0 ,K \Kγ

1 ) >
1

m(γ)
, f(K \ (F γ0 ∩ F γ1 ),Kγ

0 ∩Kγ
1 ) >

1
m(γ)

.

Let Γ =
⋃
n∈N Γn be such that eachN (Γn) is point finite, and define Γ(n,m) =

{γ ∈ Γn : m(γ) ≤ m}. It suffices to show that πΓ (n,m)(L) is scattered.
Let A ⊂ Γ(n,m) be countable. By Lemma 5.4, the set

L|A =
{
x ∈ {0, 1}A :

⋂

γ∈A
Kγ
x(γ) 6= ∅

}

is countable and hence using a tree argument, we find that L cannot contain
any perfect set.
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Proof of Theorem 5.1. Let {xn}n∈N be an enumeration of the set {(q0, q1)
∈ ((0, 1) ∩ Q)2 : q0 > q1}. For n ∈ N we find ε(n) > 0 such that if xn =
(q0, q1) then q0 − ε(n) > q1 + ε(n). Let moreover fδ : K → [0, 1] for δ ∈ ∆
be a family of continuous maps separating the points of K, such that for
all x ∈ K, |{δ ∈ ∆ : fδ(x) 6= 0, 1}| ≤ ℵ0. Set Γ = ∆ × N and for given
γ = (δ, n) ∈ Γ and xn = (q0, q1), define

F γ0 = f−1
δ ([0, q0]), F γ1 = f−1

δ ([q1, 1]),

Kγ
0 = f−1

δ ([0, q0 − ε(n)]), Kγ
1 = f−1

δ ([q1 + ε(n), 1]).

For the families F (Γ )
0 , F (Γ )

1 , K(Γ )
0 , K(Γ )

1 we check the conditions of Lemma
5.7. Only condition 3 needs some verification:

For each γ = (δ, n) ∈ Γ set Nγ = F γ0 ∩F γ1 and Mγ = f−1
δ ({0, 1}). Then

Nγ ∩Mγ = ∅ and by the hypothesis of the theorem, the family {K \M γ :
γ ∈ Γ} is point countable. Thus by Lemma 4.6 the family N (Γ ) is σ-point
finite.

Thus there exists a totally disconnected Radon–Nikodým compact space
L such that K is embeddable in P(L). Since in turn, by Remark 5.1, P(L) is
embeddable in the space of probability measures on some scattered compact
space, the proof is complete.

We conclude this section with the following problem, posed by S. Argy-
ros, which remains open:

Problem 1. Find whether every Radon–Nikodým compact space is em-
beddable in the space of probability measures on some scattered compact
space.
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