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On the classes of Lipschitz and smooth
conjugacies of unimodal maps

by

Waldemar Pałuba (Warszawa)

Abstract. Under very mild assumptions, any Lipschitz continuous conjugacy be-
tween the closures of the postcritical sets of two C1-unimodal maps has a derivative at
the critical point, and also on a dense set of its preimages. In a more restrictive situation
of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition
automatically implies the C1-smoothness of the conjugacy. Here the critical degree can
be any real number α > 1.

1. Introduction. This work is devoted to the study of properties of
conjugacies of some unimodal maps of an interval. Those properties have
for long attracted interest of researchers in the field of nonlinear science.
Much progress has been made here over the past two decades, mostly due
to the joint employment of both complex and real techniques. However, those
powerful techniques seem to be intrinsically limited to the maps which have
singularities of an integer critical degree. This is more than a mere inconve-
nience. For noninteger critical degrees α > 1 there is often strong numerical
evidence for essentially similar patterns of behavior, for which we lack any
“pure thought” explanation. A survey of classical (up to the early 1990’s)
results can be found in the monographs of P. Collet and J. P. Eckmann [2]
or W. de Melo and S. van Strien [5]. Among the valuable but few results
that prove a generalized version of a property formerly known for the critical
degree α = 2 there is a recent work of W. Shen (see [9]). The interest in a
real-variable approach to those problems seems to be reviving. We intend
to contribute to this research in a series of three papers. The current ar-
ticle is the first of them and covers the most general results about Lipschitz
continuous conjugacies. The following one is [7].

Let us consider a pair of topologically conjugate one-dimensional maps.
We would like to know as much as possible what one can expect of the conju-
gating homeomorphism in terms of Hölder class, symmetry, smoothness an
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so forth, provided the initial systems are smooth enough. Some properties,
like quasisymmetry for instance, are sought for on the whole domain. Smooth
conjugacy results are usually a bit more subtle and sometimes require extra
assumptions. First, there can appear obvious obstacles to smoothness, like
for instance multipliers of the periodic orbits in the case of diffeomorphisms
of the circle (or renormalizable maps of an interval, see Pałuba [6]). Even in
the more interesting situation when there are no obstacles of that kind, the
conjugacy tends to be, in general, less differentiable than the mappings. This
problem was studied for more than half of the past century (cf. Finzi [3]),
and there are renown results of Arnold [1], Herman [4], Yoccoz [12] and
others on conditions for smoothness of the conjugacies.

In another, very important setting, the presence of hyperbolic expansion
in the system is essential (e.g. Sullivan and Shub [10]).

For nonhyperbolic unimodal maps of an interval this problem is also typ-
ical: there are obstacles to smoothness of the conjugacy on the whole domain
and even for analytic maps restricted to invariant subdomains their conjuga-
cies cannot be, in general, expected to be in any better class of smoothness
than C1+ε, where ε depends on the geometry of the postcritical orbit (cf.
Rand [8], or Pałuba [6]). Thus, in the case of maps of an interval, the closure
of the postcritical set is the natural choice of an invariant subdomain where
we look for possible smoothness of the conjugacy. From now on, we shall
be restricting our maps to these subdomains and study their conjugacy h
there.

First, in Section 2, we give a nice and rather surprising result: if h is
Lipschitz continuous on the restricted domain, then it must automatically
be differentiable at the critical point. No extra assumptions on the dynamics
of our system other than the recurrence of the critical point are needed for
this statement to hold (except that in the setting of C1-smoothness we
also have to get rid of some immediate obstacles, like wandering intervals).
The essence of the argument we give in Section 2 is the repeated use of
homogeneity of the power-law map x 7→ |x|α.

The presence of some extra combinatorial conditions that make the ge-
ometry of the restricted domains simple enough allows for a further strength-
ening of our result. In Section 3 we use the well understood structure of
the infinitely renormalizable maps of bounded combinatorial type (see [11]
and [5]) to derive (Corollary 1 of Theorem 2) that for those maps the classes
of Lipschitz continuous conjugacies on the restricted domains coincide with
the classes of C1-smooth conjugacies. This comes as a rather technical con-
sequence of Theorem 1 of Section 2 and the so called bounded geometry
property of our restricted domains.

The results of Section 3 may seem to resemble the well-known state-
ments about Lipschitz continuous or C1+ε-smooth conjugacies on the in-



Conjugacies of unimodal maps 217

variant Cantor sets (cf. [8], [6] and the last chapter in [5]). However, the
latter results were derived from the exponential contracting property of the
renormalization operator. Here, we want to emphasize very strongly that
no convergence—not even nonexponential!—of renormalization needs to be
assumed for Theorem 2 to hold. What we actually prove is that as soon as
we know about the Lipschitz continuity of h we can show it is C1-smooth;
then, convergence of renormalization (though not an exponential conver-
gence) can be derived from the Lipschitz condition itself. So what we have
here is a purely qualitative statement: the problem of universality of the
Feigenbaum-like attracting Cantor sets reduces to the question of Lipschitz
continuity of the conjugacies.

It is generally expected that for the maps we study in Section 3 the
derivative of h should be Hölder continuous (C1+ε-smoothness of h), and of
course the very presumption of Lipschitz continuity of h should be redun-
dant. While the bounds on the geometry of the Cantor sets we deal with
do provide for the quasisymmetry of h, we do not intend to suggest that
closing the gap between the quasisymmetry and the Lipschitz continuity of
h could possibly be easy (but then we would be getting the universality of
the Feigenbaum attractors also for the noninteger critical degrees). Thus,
what we get here is a global result for all α > 1 at the cost of stronger
starting hypothesis.

Finally, we outline the logical structure of the proofs in this work. We
start with the conjugacy between postcritical orbits of the two maps and in-
troduce a notion of distortion of the conjugacy itself from being smooth. The
power-law singularity makes this distortion decrease every time the itinerary
passes through a small enough vicinity of the critical point c. Since we are
close to c infinitely many times, we conclude that, in the infinitesimally
small scale, the distortion is nonexistent and so the conjugacy is differen-
tiable (Theorem 2 and the subsequent Corollary). Technically the argument
turns out more complicated, but the underlying idea is exactly as described.
We emphasize that throughout we work with a pair of maps (and their con-
jugacy) rather than with the intrinsic properties shared by all the maps in
the class considered. While the original argument can be carried out also
in the setting of Hölder bounds, the difficulty is that only with Lipschitz
bounds in place is it true that what we get from this argument is more than
we put into it.

Why the Lipschitz bounds should hold for all singularities α > 1 remains
unknown.

2. Upgrading Lipschitz continuous conjugacies. In this section,
we shall be concerned with dynamical systems arising from C1-smooth uni-
modal maps of the interval I with singularity of the critical order α > 1 at
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the critical point c. Here α is an arbitrary real number greater than 1, not
necessarily an integer.

For simplicity of notation we assume that I is an interval symmetric
about 0 (c = 0) and f : I → I is a map of the type f = φ(|x|α), where φ is
a C1-smooth diffeomorphism with range within I.

We fix the critical degree α and let A denote the class of maps f of the
above type, such that:

• the critical point of f is recurrent,
• the postcritical set Cf = cl{fn(c)}∞n=1 contains a dense subset made of

some preimages of c.

The latter condition has been explicitly stated to avoid possible silly patholo-
gies (i.e. wandering intervals) that can arise when we deal with systems
which are only C1-smooth.
Cf is a closed metric subspace of I. The action of f restricted to Cf ,

f̃ = f |Cf , makes the pair {f̃ , Cf} into a transitive topological dynamical
system. From now on we restrict our attention to this system.

Let us consider another map in the class A, say g, and suppose that the
systems {f̃ , Cf}, {g̃, Cg} are topologically conjugate by a homeomorphism
h : Cf → Cg (in this section we shall not need to extend the homeomorphism
h to the whole interval). Set

x := h(x).

It makes sense to say that h has a derivative at a point x in Cf if the limit

lim
y→x, y∈Cf

y − x
y − x

exists. Here we have a theorem.

Theorem 1. If the maps f and g are both in the class A and the gen-
erated systems {f̃ , Cf}, {g̃, Cg} are topologically conjugate by a homeomor-
phism h such that h and h−1 are both Lipschitz continuous, then there exist
nonvanishing derivatives h′(c) and (h−1)′(h(c)). Moreover , the first deriva-
tives of h (and of h−1) exist at all preimages of the critical point c contained
in Cf (in Cg respectively).

Proof. We may assume that all the points in the following considerations
are actually preimages of c, since those are dense in Cf . It will become
clear throughout the proof that this assumption does not cause any loss of
generality. This becomes relevant in Step 2 of the proof.

For all points t ∈ Cf , we will introduce two quantities which locally mea-
sure the “distortion from smoothness” (or more precisely: “distortion from
symmetry”, but here we work under the hypothesis of Lipschitz condition).
They will be referred to as badness and (capitalized) Badness. Here they
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are:
badness = b(t) = lim sup

δ→0
bδ(t),

where bδ(t) is given by

bδ(t) =
(

sup
z∈(x−δ,x+δ)∩Cf

∣∣∣∣
t− z
t− z

∣∣∣∣
)

:
(

inf
z∈(x−δ,x+δ)∩Cf

∣∣∣∣
t− z
t− z

∣∣∣∣
)
.

Similarly,
Badness = B(t) = lim sup

δ→0
Bδ(t),

where

Bδ(t) =
(

sup
z1,z2∈(x−δ,x+δ)∩Cf

∣∣∣∣
z1 − z2

z1 − z2

∣∣∣∣
)

:
(

inf
z1,z2∈(x−δ,x+δ)∩Cf

∣∣∣∣
z1 − z2

z1 − z2

∣∣∣∣
)
.

Of course we always have M/K ≥ B ≥ b ≥ 1, where M and K are the
upper and lower Lipschitz bounds on h respectively. Notice that by their
very definition Badness (and badness) are C1-smoothly invariant.

Differentiability of h at c amounts to b(c) = 1, since we have the Lipschitz
condition in hand.

We assume that c is not periodic; otherwise the theorem holds trivially.
Proceeding by contradiction, suppose that the derivative does not exist;

then there is a positive ε such that arbitrarily close to c one can find a pair
of points x, y ∈ Cf satisfying

y

y
:
x

x
> 1 + ε.(1)

In the argument below we proceed along the following lines. Assuming
that badness is not equal to 1, we consider the (capitalized) Badness. Making
essential use of the homogeneity of the power-law map, combined with the
lower bound on badness, we prove that there exists an infinite sequence of
close returns into nested neighborhoods of the critical point, such that in
each of those returns the a priori bounds on Badness are getting strictly
closer to 1.

Eventually, by the C1-invariance of Badness we derive that Badness must
have been equal to 1 from the beginning, which contradicts the hypothesis
we made about the badness.

Step 1: The “four points” argument. We find x, y satisfying (1) in U ,
where U is some small neighborhood of 0. On tiny neighborhoods of x and
y the mapping f acts almost linearly, as f ′(x) and f ′(y) respectively, with
an arbitrarily small error. On the conjugate picture g acts almost linearly
in small (conjugate) neighborhoods of x and y. Thus by C1-invariance the
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following estimates hold:

B(f(x)) = B(x) ≤ M

K
e
−
∣∣log f ′(x)

g′(x)

∣∣
(2)

and also

B(f(y)) = B(y) ≤ M

K
e
−
∣∣log f ′(y)

g′(y)

∣∣
.(3)

The maps f and g are both of the type power-law postcomposed with a
diffeomorphism, say f = φ(|x|α) and g = ψ(|x|α). If the neighborhood U has
been chosen small enough, then the term in the chain rule for the derivative,
coming from the diffeomorphism part, is about the same for both x and y,
and approximately equals φ′(0) (or ψ′(0) respectively for |x|, |y|). Now the
key argument for the discrepancy between the values of the logarithms in (2)
and (3) comes from the homogeneous power-law part.

For a homogeneous map the ratio of the arguments determines the ratio
of the corresponding derivatives. Therefore whenever y/x differs “signifi-
cantly” from y/x (as in (1)), so does the quantity f ′(y)/f ′(x) compared to
f ′(y)/f ′(x). Precisely, taking into account that the derivative of the power-
law map is of the form α · |x|α−1, the inequality (1) yields

f ′(y)
g′(y)

<
f ′(x)
g′(x)

· 1
(1 + ε)α−1 ,

provided that the neighborhood U was small enough.
Consequently, at least one of the absolute values of the logarithms in (2)

or (3), say the one in (2), has to be larger than − log β, where

− log β =
α− 1

2
log(1 + ε).

Thus we get

B(x) <
M

K
β.(4)

So we have found a point, namely x, at which Badness does not reach
the a priori upper bound of M/K but is smaller than M/K by a definite
multiplicative factor of β < 1.

(4) also holds true for δ-Badness Bδ if δ is small enough. Once again,
replacing the stretching (or contraction) of the lengths of all short intervals
in a sufficiently small neighborhood of x (x, respectively) by |f ′(x)| (or
|g′(x)|, respectively), we see that δ-Badness, and so Badness itself, must be
bounded from above by βM/K not only at x, but also at all points of Cf
sufficiently close to x.

Step 2: Recurrence. Now, recall that x (and y) could have been chosen
as a preimage of c, say fm(x) = c. By the smooth invariance of Badness,
B(f l(x)) = B(x) for any finite l so B(c) < βM/K. By the way, notice
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that due to this remark, Badness must also be smaller than βM/K at any
preimage of c ∈ Cf .

On tiny neighborhoods of x the action of fm is virtually linear with
arbitrarily small error, so δ-Badness can be transported forward finitely
many steps nearly unperturbed, if δ is small enough. Thus we also have
Bδ1(c) < βM/K, provided δ1 is sufficiently small. Put U0 = U and let U1 be
a symmetric neighborhood with diameter equal to such a δ1. The same can
be claimed (upon possibly decreasing δ1 further) for all points t ∈ Cf ∩ U1:
Badness at those points satisfies B(t) < βM/K, and this same inequality
holds for δ-Badness with sufficiently small δ. Let l be the time of first return
of the orbit of c into such a neighborhood U1.

Now consider a new x and a new y (we keep the same notation as in
Step 1) which satisfy (1); additionally we require them to be very close to c,
compared to the diameter of U1. On the neighborhoods of those new x and
y with tiny diameter as compared to min(|x|, |y|), f acts almost linearly
changing the lengths of intervals by approximately |f ′|. On the conjugate
picture the same is true for g.

At the first iterate of f (and g), we apply a homogeneous map postcom-
posed with a diffeomorphism, so there is a definite discrepancy between the
ratios of the derivatives for f and g, as in Step 1. Then along the orbits of
f(x) and f(y) the mapping f l−1 acts almost linearly on the intervals f(tiny
neighborhood of x) and f(tiny neighborhood of y) respectively, and simi-
larly for g. However, this time we return into U1 (and U1), where we knew
a priori that Badness is bounded by βM/K, so we have a modified version
of (2), (3), namely

B(f l(x)) = B(x) ≤ β M
K
e
−
∣∣log f ′(x)

g′(x)
· (f

(l−1))′(f(x))

(g(l−1))′(g(x))

∣∣
,(5)

B(f l(y)) = B(y) ≤ β M
K
e
−
∣∣log f ′(y)

g′(y) ·
(f(l−1))′(f(y))

(g(l−1))′(g(y))

∣∣
.(6)

Now notice that choosing the new x and y sufficiently close to c we can
have the distance |f(x) − f(y)| (|g(x) − g(y)|, respectively) so small that
(f (l−1))′(f(x))/(f (l−1))′(f(y)) and (g(l−1))′(g(x))/(g(l−1))′(g(y)) will be both
arbitrarily close to 1, or in other words the quantities

(f (l−1))′(f(x))
(g(l−1))′(g(x))

,
(f (l−1))′(f(y))
(g(l−1))′(g(y))

(7)

can be made nearly identical, with an arbitrarily small error.
Thus, by the argument as in Step 1, at least one of the absolute values

of the logarithms in (5) or (6) has to be larger than − log β. This tells
us that B(x) (and/or equivalently B(y)) does not exceed β2M/K. Neither
does B(c), as x is a preimage of c. So also δ-Badness, for sufficiently small
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δ’s on an appropriately small symmetric neighborhood U2 of c, is smaller
than β2M/K, by the same argument we used for U1 at the beginning of this
recurrence step.

Applying this argument recurrently to a nested sequence of neighbor-
hoods U2, U3, etc. [log(K/M)/log β] + 1 times, we get B(c) < 1, a contra-
diction.

Similarly, because of the Lipschitz bounds, the derivative (h−1)′(h(c))
also exists. Of course for all positive integers i and all inverse branches such
that f−i(c) ∈ Cf we also have b(f−i(c)) = 1 and so the derivative of h exists
at all the preimages of c in Cf .

Remark 1. In our general setting there is no way to carry this differ-
entiability property over onto the whole set Cf , despite the density of the
preimages of c. Compare the next section.

Remark 2. Notice that although Badness rather than badness was our
main tool in the proof we cannot prove in this general setting that B(c) = 1.
Actually we have only proved that b(c) must be equal to 1, because otherwise
B(c) = 1. But if b(c) = 1, there is no contradiction in assuming B(c) > 1.

3. The infinitely renormalizable case. In this section we restrict our
attention to those maps in A that are infinitely renormalizable of bounded
combinatorial type. We also require them to be C2-smooth, except of course
in the immediate vicinity of the critical point, where the power-law map
x 7→ |x|α is not C2 if α < 2.

The maps in the class A that are of the form f = φ(|x|α) with the
diffeomorphism φ being of class C2 rather than C1 is a subclass of A which
we shall simply denote by A2.

Our main goal is to investigate the classes of Lipschitz continuous con-
jugacies for maps like this. The conjugating homeomorphism h can now be
defined on the whole interval, h : I → I. The Lipschitz continuity of such an
h requires an additional condition on the eigenvalues of the periodic orbits
of f and g (see [6]). So in general the class of Lipschitz conjugacy (on the
whole I) is small. Thus we restrict h to the closure of the postcritical orbit
Cf as in the previous section. We will be assuming that the restricted conju-
gating homeomorphism h : Cf → Cg satisfies the bi-Lipschitz condition with
upper and lower bounds M and K respectively. From now on we consider a
pair of conjugate maps f and g satisfying all of the hypotheses above.

Let Ln 3 c, n = 0, 1, 2, . . . , be the basic small renormalization interval
(i.e. bounded by the appropriate points of the postcritical orbit) at depth n
in the process of renormalization, L0 = [f(c), f2(c)].

By the definition of Ln there exists a positive integer r = r(f, n) such
that f rLn = Ln and f iLn ∩ f jLn = ∅ for 0 ≤ i < j < r. Denote by Cn the
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collection of intervals {f iLn}r−1
i=0 . Of course

Cf =
⋂

n≥0

⋃

L∈Cn
L.

Bounded combinatorics with bound T means that at most T elements of
Cn+1 are contained in Ln for all n ≥ 0.

Now in place of standard Lipschitz bounds K and M on h|Cf we shall
consider new bounds K, M related to the way the Cantor set Cf is obtained
through the nested family of collections of intervals. Set

Kn = inf
L∈⋃i≥n Ci

|L|
|L|

, Mn = sup
L∈⋃i≥n Ci

|L|
|L|

(8)

and
K = lim

n→∞
Kn, M = lim

n→∞
Mn.(9)

Clearly K ≤ K ≤ h′(c) ≤ M ≤ M , where h′(c) is the derivative of the
conjugacy at the critical point c in the sense of the previous section.

As a technical tool we will introduce one more notion of distortion. For
x ∈ Cf set

(10) Bδ(x) =
(

sup
L⊂(x−δ,x+δ),L∈⋃Ci

|L|
|L|

)
:
(

inf
L⊂(x−δ,x+δ),L∈⋃Ci

|L|
|L|

)
,

B(x) = lim
δ→0
Bδ(x).

Here we prove the following theorem.

Theorem 2. If infinitely renormalizable maps f and g are both in the
class A2, share the same bounded combinatorial type, and the conjugating
homeomorphisms h and h−1 satisfy the Lipschitz condition on the postcrit-
ical Cantor sets Cf and Cg respectively , then B(x) = 1 at every x ∈ Cf .

Proof. Similarly to the notions of b(x) and B(x) of the previous section
B(x) is smoothly invariant and the chain rule can be applied. If there ex-
isted a point x ∈ Cf with B(x) = γ > 1 then since the action of a finite
(though perhaps very long) composition of f ’s (or g’s, respectively) is nearly
linear on sufficiently small neighborhoods of x, and might be replaced by
the composition of the derivatives, we could push this property forward to
every arbitrarily small neighborhood of the critical point c. So it is enough
to show that B(c) = 1. Suppose then that B(c) = γ > 1.

First we invoke two well known properties of maps in our class.

Fact 1.
∑

Γ∈Cl |Γ | decreases exponentially in l for every infinitely re-
normalizable map (cf. §3 of [11]).
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Fact 2. The quantity ∑
Γ⊂Ln\Ln+1, Γ∈Cl |Γ |

|Ln+1|
is exponentially small in l−n for infinitely renormalizable maps of bounded
type ≤ T , because of the “bounded geometry property” (cf. §15 of [11]).

Now consider an interval Λ ∈ Cl (l will vary in the considerations below)
and another interval Ω ⊂ Λ, Ω ∈ ⋃Ci (we should think of Ω as being very
short relative to Λ or Ω ∈ Cl+p, p � 1). Let s be the first moment when
the itinerary of Λ under f intersects Ln, f sΛ ⊂ Ln. First we shall explain
that the distortion of the ratio of the lengths Ω/Λ along this part of the
itinerary is negligible, provided l − n is large enough.

Consider the quantity

exp
{∣∣∣∣log

( |Λ|
|f sΛ| :

|Ω|
|f sΩ|

)∣∣∣∣
}
.(11)

By Facts 1 and 2, for sufficiently large l − n this quantity can be made
arbitrarily close to 1. This is true because in the part of the itinerary that
goes through I\U (see the notation at the beginning of the previous section)
f ′ is Lipschitz, bounded away from zero and we can use Fact 1 there; the total
distortion coming from that part of the itinerary disappears exponentially
fast in l. On the set U , f ′ can be small and we need the bounded geometry
property there. If l−n is large then the images of Λ till time s all have lengths
very small relative to their distances to the critical point. By Fact 2, also
the part of the itinerary that goes through U contributes to the distortion
of the quantity (11) from 1 only the amount that is a tail of a geometric
series. So given ε > 0, there exists n0 such that if l− n ≥ n0, this tail sums
up to less than ε. Then the logarithm of the quantity (11) is much smaller
than log γ. We can also claim the same for g, increasing n0 if necessary.

Thus, if we had |Λ|/|Λ| = τ and |Ω|/|Ω| = σ we can still have an ap-
proximate equality

|f sΛ|
|gsΛ|

:
|f sΩ|
|gsΩ|

≈ τ

σ

with an arbitrarily small error.
Above, we have been using the chain rule for the part of the itinerary

of Λ relatively distant from the critical point. Now we deal with those re-
turns where the length of the image of Λ is no longer negligible compared
to its distance from c. There are only finitely many such steps—at most nT0 ,
where n0 was chosen to fit the required accuracy of an a priori picked ε > 0.
There we will use the existence of h′(c), already proven in Section 2, as the
“checkpoint”—relative positions of conjugate long intervals (i.e. those whose
lengths are comparable to their distances from zero) are about the same
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for f and g. For those return times we essentially use the homogeneity of
|x|α—same relative positions are changed in the same way for both f and g.
It is also important that the lengths of the images of Ω are still negligible.

If the length of Λ is comparable to its distance from c, but we are in
a very small vicinity of c (i.e. n is very large), we can have the following
approximate equalities:

|f sΛ|
|gsΛ| ≈ h

′(c)

and also
dist(c, f s(Ω))
dist(c, gs(Ω))

≈ h′(c)

with an arbitrarily small error (recall we assumed |Ω|/|Λ| � 1). In the set U ,
the maps f and g act as |x|α, so after one more step we have (again, with
an arbitrarily small error)

|f s+1Λ|
|gs+1Λ|

≈ |f
sΛ|
|gsΛ|

· α · (h′(c))α−1

and if Ω was very short compared to dist(c,Ω) we also have (with an arbi-
trarily small error)

|f s+1Λ|
|gs+1Λ|

:
|f s+1Ω|
|gs+1Ω|

≈ τ

σ
.

Notice that we first choose and fix n0 = n0(ε) to make the change of
τ/σ along the circuit far from the critical point very small and then we
move that information toward the critical point by increasing n to have the
change of τ/σ arbitrarily small in the step close to the critical point. Now
we go through the next circuit until the image of f s+1Λ falls again into Ln.
Because the estimate of the change in τ/σ we gave above by Facts 1 and 2
was an upper estimate using all the intervals of Cl not contained in Ln, we
only used a fraction of those in the first circuit, and we can keep the same
estimate for the itinerary containing the first and second circuits. Then we
are again inside Ln and use the argument about |x|α a second time; then
we follow the next circuit keeping the original estimate for the whole part
of the itinerary outside Ln and so forth till after no more than nT0 visits
in Ln, Λ falls onto Ll. But if n was large enough (recall again we choose
n after n0 was fixed), the change of τ/σ during the nT0 power-law steps
can be made arbitrarily small. The conclusion of the above argument is the
following property:

Fact 3. For any Λ ∈ Cl, and Ω ⊂ Λ, Ω ∈ Cl+p, p > n0, if

|Λ|
|Λ| :

|Ω|
|Ω| =

τ

σ
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and t is the smallest number such that f tΛ = Ll then

|f tΛ|
|gtΛ|

:
|f tΩ|
|gtΩ|

≈ τ

σ

with an arbitrarily small error , provided l and n0 are large enough.

Having established this, we proceed towards the completion of the proof.
For any given interval ∆ ∈ Cn, we set

κ(∆) = inf
Γ⊂∆,Γ∈⋃m≥n Cm

|Γ |
|Γ |

,

and analogously

µ(∆) = sup
Γ⊂∆,Γ∈⋃m≥n Cm

|Γ |
|Γ |

.

Now we pick an interval Λ ∈ Cn, for some large n, such that µ(Λ) ≈ M.
Consider an arbitrary interval Ω ∈ ⋃i≥0Cn+i, Ω ⊂ Λ. We have the following
dichotomy: either Ω ∈ ⋃n0

i=0Cn+i (i.e. Ω is relatively long with respect to Λ),
or Ω ∈ Cl with l − n > n0. In the former case, because the derivative h′(c)
exists, and f tΛ 3 c is very short, we have

h′(c) ≈ |f
tΩ|
|gtΩ|

.

Here, as before, t is the smallest number such that f tΛ is a basic renormal-
ization interval containing c.

In the latter case, because of Fact 3 and by the definition ofM, we have
an inequality

|f tΩ|
|gtΩ|

< h′(c) + ε,

where ε can be arbitrarily small, provided n0, n were large enough. In either
case, for all intervals Υ ∈ ⋃Ci contained in a sufficiently small neighborhood
of c, we have

|Υ |
|Υ |

< h′(c) + ε.

Now we pick another interval Λ′ ∈ Cn such that κ(Λ′) ≈ K. This time,
because we start with the lower rather than the upper bound, the same
argument shows that for all Υ ∈ ⋃Ci in a sufficiently small neighborhood
of c, the following inequality must hold true:

|Υ |
|Υ |

> h′(c)− ε.

But ε could have been chosen arbitrarily small, for instance smaller than
(γ − 1)/4, which contradicts B(c) > γ.
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Considering the derivative h′(x) for x ∈ Cf (in the sense defined at the
beginning of the previous section), the above theorem—by virtue of the
Lipschitz condition—immediately yields the main result of this section:

Corollary 1. If f, g ∈ A2 are infinitely renormalizable maps of the
same bounded combinatorial type and the conjugating homeomorphisms h
and h−1 satisfy the Lipschitz condition on the postcritical Cantor sets Cf
and Cg respectively , then for every x ∈ Cf the first derivative h′(x) exists,
and the derivative function h′ is continuous in the metric on Cf inherited
from I.
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