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On rings with a unique proper essential right ideal

by

O. A. S. Karamzadeh, M. Motamedi and
S. M. Shahrtash (Ahvaz)

Abstract. Right ue-rings (rings with the property of the title, i.e., with the maxi-
mality of the right socle) are investigated. It is shown that a semiprime ring R is a right
ue-ring if and only if R is a regular V-ring with the socle being a maximal right ideal, and
if and only if the intrinsic topology of R is non-discrete Hausdorff and dense proper right
ideals are semisimple. It is proved that if R is a right self-injective right ue-ring (local right
ue-ring), then R is never semiprime and is Artin semisimple modulo its Jacobson radical
(R has a unique non-zero left ideal). We observe that modules with Krull dimension over
right ue-rings are both Artinian and Noetherian. Every local right ue-ring contains a duo
subring which is again a local ue-ring. Some basic properties of right ue-rings and several
important examples of these rings are given. Finally, it is observed that rings such as
C(X), semiprime right Goldie rings, and some other well known rings are never ue-rings.

1. Introduction. Throughout, as usual, all rings and subrings are as-
sociative with identity and all modules are assumed to be right unitary. The
existence of maximal right ideals in rings and proper essential right ideals
in non-semisimple rings is guaranteed by Zorn’s lemma. Commutative rings
with a unique maximal ideal (i.e., local rings) play an indispensable role
in the study of commutative rings. But it seems (at least to us) that rings
with a unique proper essential right ideal have never been systematically
studied till now. In the literature, an essential right ideal is not assumed to
be necessarily proper; see for example [1], [8]. Therefore rings with a unique
essential right ideal are nothing but the Artin semisimple ones. We will ob-
serve shortly that rings with a unique proper essential right ideal, which we
call right ue-rings, are interesting objects of study.
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Our main aim in this article is to study the structure of ue-rings and find
some of their basic properties. We see trivially that right ue-rings are related
to local rings, and also maximal right ideals which are direct summands (we
call them isolated maximal right ideals; see [11], [12], [14], and [16]) appear
naturally in the study of the structure of non-local right ue-rings. It is well
known and very easy to prove that if every maximal right ideal of a ring R
is isolated, then R is Artin semisimple. But if only one maximal right ideal
of R is non-isolated (we then call R a right uem-ring), then the structure of
R is not known in general. Clearly, each right ue-ring is a right uem-ring.
But the converse is not true in general. Indeed, if X is an infinite completely
regular topological space, then we prove that C(X), the ring of real-valued
continuous functions on X, is never a ue-ring. But C(X) is a uem-ring if and
only if X is the one-point compactification of a discrete space. The study
of these rings reveals that as a matter of fact, some important examples
of rings known in the literature are ue-rings, and in fact the property of
being a right ue-ring is responsible for some of their well known interesting
properties. For example, Faith [8, p. 89] has constructed the first example
of a regular (von Neumann) ring which is not a left V-ring (each simple left
module is injective) but is a right V-ring. We observe that this is a right
ue-ring, and indeed any semiprime right ue-ring is a right V-ring. Also, we
show that any local right ue-ring has a duo subring (every one-sided ideal
is two-sided) which is again a right ue-ring.

An outline of this paper is as follows. After some preliminary results
in Section 2, which are useful for the subsequent sections, the next section
concentrates on right ue-rings, describing their properties and demonstrating
their abundance. For example, in Theorem 16 we show that a ring R is a
right ue-ring if and only if it is either a local ring whose maximal right ideal
has square zero, or a right uem-ring whose right socle is the non-isolated
maximal right ideal. Semiprime right ue-rings are characterized in terms of
their intrinsic topology and also via their cyclic modules; see Theorem 18.
We observe that right ue-rings are Max-rings (i.e., every module over these
rings has a maximal submodule). It is shown that C(X), right self-injective
semiprime rings and some other well known rings are never right ue-rings.
Several examples of right ue-rings are given. Finally, in Section 4, we study
duo ue-rings and show that they appear naturally in every local right ue-ring.

2. Preliminaries. Let R be a ring and M be a maximal right ideal
of R. We call M an isolated maximal right ideal provided that M is a direct
summand of R; see [12], [15], and [16]. We recall that a right ue-ring is a
ring with a unique proper essential right ideal, and a right uem-ring is a ring
with a unique essential maximal right ideal. Isolated maximal left ideals, left
ue-rings and left uem-rings are defined similarly. We also define ue-modules
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in a natural way. Let J, J0 denote respectively the Jacobson radical and
the intersection of the isolated maximal right ideals in a ring R. J0 is a
two-sided ideal; see [11], [12]. If R is a semiprime ring, then J0 is also the
intersection of the isolated maximal left ideals; see [12]. In [11] any ring R
is topologized (with the so-called intrinsic topology) by taking as a base of
neighborhoods of zero those right ideals A such that R/A is a projective
semisimple module. A right ideal A of R is open in this topology if and only
if A is the intersection of a finite number of isolated maximal right ideals;
see [11, Proposition 1.3]. By a local ring we mean a ring R with a unique
maximal right ideal (equivalently, R has a unique maximal left ideal). The
reader is referred to [1], [8] for the basic results and undefined terms.

We begin with the following lemma from [17].

Lemma 1. M is an isolated maximal ideal of a commutative ring R if
and only if M is an isolated point in Max(R), the space of maximal ideals
of R, with the Zariski topology.

Right semiartinian right V-rings, called right SV-rings, are extensively
studied in [4]. We observe the following.

Proposition 2. The following are equivalent :

(1) R is a right SV-ring.
(2) Every non-zero R-module contains a non-zero injective submodule.
(3) Every non-zero R-module contains a maximal submodule which is a

direct summand (i.e., isolated).

Proof. (1)⇔(2) is observed in [4].
(1)⇒(3). Let M 6= 0 be an R-module. Since Soc(M) 6= 0, M contains a

simple submodule, say N . As R is a right V-ring, we infer that N is injective,
i.e., M = N⊕P for some submodule P . Clearly, P is a maximal submodule.

(3)⇒(1). Clearly, each non-zero R-module has non-zero socle, and hence
is a Loewy module, which means that R is semiartinian. To show that R is a
right V-ring, let S be a simple R-module and E(S) be its injective envelope.
We claim that E(S) = S. Suppose not. Then by our hypothesis there exists
a maximal submodule P of E(S) such that E(S) = P ⊕ Q. Clearly, this is
a contradiction, for E(S) is indecomposable.

Lemma 3. In any ring R, we have J ∩ S = J0 ∩ S, where S is the right
socle of R.

Proof. Since every maximal right ideal is either isolated or essential, we
infer that J = J0 ∩ A, where A is the intersection of all essential maximal
right ideals. Thus S ⊆ A and we are done.

For the proof of the following result see Propositions 1.1 and 1.3 in [11].
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Proposition 4. Let A be a right ideal in a ring R. Then the following
are equivalent.

(1) A is open in the intrinsic topology of R.
(2) A+ S = R, where S is the socle of R.
(3) A is a finite intersection of isolated maximal right ideals.

Proposition 5. If M is an isolated maximal right ideal of a ring R
and x 6∈ M , then M ′ = (M : x) = {a ∈ R : xa ∈ M} is also an isolated
maximal right ideal.

Proof. We define f : R/M ′ → R/M by f(r +M ′) = xr +M for r ∈ R.
Clearly, f is an isomorphism. Thus M ′ is a maximal right ideal and since
R/M ′ is projective, M ′ is isolated.

Corollary 6. M is an isolated maximal right ideal of a ring R if and
only if M/J0 is an isolated maximal right ideal of R/J0.

Proof. Suppose M/J0 is an isolated maximal right ideal in R/J0. Then
M = eR + J0, where e − e2 ∈ J0, i.e., (1 − e)M ⊆ J0. But clearly 1 − e
6∈ J0 implies that there exists an isolated maximal right ideal M ′ such that
1− e 6∈M ′. Thus M = (M ′ : 1− e) is an isolated maximal right ideal. The
converse is evident.

We quote the following result from [13]; see also [12], [14].

Proposition 7. Let R be a right self-injective ring. Then a maximal
right ideal is projective if and only if it is isolated.

Remark 8. If R is a commutative self-injective ring or R = C(X), then
the previous result is still true if we replace “maximal right ideal” by “prime
ideal”; see [13].

The following is a characterization of uem-rings.

Proposition 9. R is a right uem-ring if and only if R/Socr(R) is a
local ring.

Proof. If R is local, then the statement is clear. Hence assume that R
is not local and R is a right uem-ring. Let M be the non-isolated maximal
right ideal of R. Then clearly S = Socr(R) ⊆M and M is the only maximal
right ideal containing S. Thus R/S is a local ring. Conversely, if R/S is
local and M/S is its unique maximal right ideal, then M/S is non-isolated
in R/S, i.e., M is not isolated in R. Now we claim that each maximal right
ideal different from M is isolated. Let P be such a maximal right ideal.
Then P is not essential, as otherwise P ⊇ S, which implies that P = M ,
a contradiction. Thus P is isolated.

Let I be an infinite set and F be a field. Put Fi = F for all i ∈ I
and R =

∏
i∈I Fi/

∑
i∈I
⊕
Fi. Then Matlis has observed that no maximal
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ideal of R is isolated; see [13].We conclude this preliminary section with the
following extension of Matlis’s observation.

Proposition 10. Let {Ri}i∈I be an infinite family of non-zero rings.
Then R =

∏
i∈I Ri/

∑
i∈I ⊕Ri has no isolated maximal right (left) ideal.

Proof. We prove more, by showing that no non-zero principal right (resp.
left) ideal is a minimal right (resp. left) ideal of R. To see this, let aR be a
non-zero right ideal of R. Then a = 〈ai〉 + S, where S =

∑
i∈I
⊕
Ri, and

ai 6= 0 for i ∈ T ⊆ I and T is infinite. Now put T = A∪B,A∩B = ∅, where
A and B are both infinite. Then if we put x = 〈xi〉 + S, where xi = ai for
all i ∈ A and xi = 0 for all i ∈ B, then clearly aR ⊃ xR, and we are done.

3. Right ue-rings. Before giving some examples of right ue-rings, we
prove the following sequence of results about ue-modules.

Proposition 11. Let R be a ring. Then the following statements are
equivalent.

(1) R is a right ue-ring.
(2) The right socle of R is a maximal right ideal of R and J2 = 0.
(3) Each right ideal of R is either semisimple or a direct summand of R

and R is not Artin semisimple.

Proof. (1)⇒(2). Clearly the right socle of R, say S, is the unique es-
sential right ideal of R. Let M ⊇ S be a maximal right ideal. Then M is
essential, i.e., M = S. Now, J ⊆ S and SJ = 0 implies that J2 = 0.

(2)⇒(3). If A is a right ideal of R, then there exists a right ideal B such
that either A ⊕ B is proper essential or A ⊕ B = R. Clearly, if A ⊕ B is
proper essential, then A ⊕ B is the socle, i.e., in this case A is semisimple.
Finally, it is evident that R is not Artin semisimple.

(3)⇒(1). Let E be any essential right ideal. Then by (3), E must be
semisimple, therefore E must be the right socle.

Corollary 12. Each semiprime right ue-ring is right hereditary.

Proof. Evident.

Remark 13. Proposition 11 is also true for ue-modules.

Corollary 14. If M is a ue-module over a ring R, then for any proper
non-zero submodule N of M , either M/N is semisimple, or M/N is a ue-
module and N is semisimple.

Proof. If M/N is not semisimple, then M/N has a proper essential sub-
module P/N . Clearly, P is essential in M , i.e., P = S = Soc(M). This means
that M/N has a unique essential submodule, namely, S/N . Thus M/N is a
ue-module and N ⊆ S is semisimple.
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Proposition 15. A non-semisimple R-module M is a ue-module if and
only if for each submodule N of M , either N is a direct summand of M or
N is semisimple. Moreover , if N is non-semisimple, then N is a ue-module
and M/N is semisimple.

Proof. The first part is Remark 13. Now, let M = N ⊕ P , where N is
not semisimple. Clearly, N is a ue-module, for otherwise M contains more
than one essential submodule, which is not possible. Now it remains to
show that P is semisimple. To see this, assume by way of contradiction that
P 6⊂ Soc(M) = S. Then M = P+S. Letting S = P ∩S⊕Q, i.e., M = P⊕Q,
shows that M/P ∼= Q ∼= N is semisimple, a contradiction, and therefore P
must be semisimple.

Next, we characterize right ue-rings.

Theorem 16. A ring R is a right ue-ring if and only if either R is a
local ring with unique maximal right ideal M such that M2 = 0, or R is a
right uem-ring and the non-isolated maximal right ideal is the socle of R.

Proof. Let R be a right ue-ring and S be its right socle. If R is a local ring
with the unique maximal right ideal M , we must have S = M . But SJ = 0
implies that M2 = 0. If R is not local, then each maximal right ideal except
the right socle must be isolated. Conversely, if R is a local ring with the
unique maximal right ideal M such that M 2 = 0, then Annr(x) = M for all
0 6= x ∈ M . Thus each xR is a minimal right ideal, so M is the socle of R
and we are done by Proposition 11. Finally, if R is a right uem-ring whose
right socle is a maximal right ideal, the proof is evident.

The next proof shows that each right ideal of a reduced right ue-ring is
two-sided.

Corollary 17. Let R be a reduced (i.e., with no non-zero nilpotent ele-
ment) right ue-ring. Then each non-semisimple right ideal contains all min-
imal right ideals except finitely many.

Proof. Let S =
∑
i∈I
⊕
Ai be the right socle of R. Since R is semiprime,

each minimal right ideal Ai is of the form Ai = eiR, i ∈ I, where ei is a
central idempotent. Now let A be a right ideal of R which is not semi-
simple. Then by Proposition 15, A is a direct summand of R and R/A is a
semisimple R-module. Therefore A is a finite intersection of maximal right
ideals Mk, k = 1, . . . , n. But by Theorem 16, each Mk is isolated, for A is
not semisimple. Now it is clear that Mk = (1 − eik)R for each k and some
ik ∈ I. Since eiej = 0 for all i 6= j, we immediately infer that ej ∈ Mk for
j 6= ik. As A =

⋂n
k=1 Mk, we see that ej ∈ A for all j 6= i1, . . . , in. This

means that Aj ⊆ A for j 6= i1, . . . , in, and we are done.
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In [6] right V-rings R with non-finitely generated right socle, say S, such
that R/S is a division ring are characterized. We note that these are nothing
but semiprime right ue-rings which are nicely characterized as follows.

Theorem 18. The following statements are equivalent for a semiprime
ring R.

(1) R is a right ue-ring.
(2) The intrinsic topology of R is a non-discrete Hausdorff topology and

a dense proper right ideal must be semisimple.
(3) R is a regular , right V-ring and R/Soc(R) is a division ring with

Soc(R) 6= 0.
(4) Each cyclic R-module is either non-singular or injective, and does

not have a finite Goldie dimension.

Proof. (1)⇒(2). If S is the right socle of R, then we know that SJ = 0.
Hence (S ∩ J)2 = 0, i.e. S ∩ J = 0, because R is semiprime. This implies
that J = 0. Now by Lemma 3, we have S ∩ J0 = S ∩ J = 0, i.e., J0 = 0 and
the intrinsic topology of R is Hausdorff (note that J0 = {0}, see also [11]).
Now let I be a dense proper right ideal. Then by Proposition 15, either I
or R/I is semisimple. Assume that I is not semisimple but R/I is, and seek
a contradiction. Since R/I is cyclic, it is Artin semisimple, i.e., I is a finite
intersection of maximal right ideals. Each of them is isolated, for I is not
contained in the right socle. Thus by Proposition 4, I is an open ideal, and
hence closed, which is a contradiction.

(2)⇒(3). We claim that R is a right ue-ring. To see this, it suffices to
show that each proper essential right ideal E is dense. As the right socle,
say S, is dense (see [11]), we infer immediately that E is also dense. Now we
recall that in semiprime rings the right socle is a regular ideal (see [4, Lemma
2.1]), and since R/S is a division ring (i.e., a regular ring), we immediately
see that R is a regular ring. Thus it remains to show that R is a right V-ring.

Let M be a simple R-module. We must show that each homomorphism
f : I → M , where I is a right ideal, can be extended to a homomorphism
from R to M . First, we observe that in any ring, I can be taken to be
essential, so in right ue-rings we can always take I to be the right socle S.
Now we consider two cases. First, suppose that M = R/S. Clearly, S is
generated by idempotents. If e ∈ S is one, then consider f : S → R/S,
i.e., f(e) = f(e).e ∈ R/S.S = 0. Thus f is the zero mapping and we are
done. Secondly, let M = R/I, where I is an isolated maximal right ideal. If
f : S →M is a non-zero homomorphism then Ker f is a maximal submodule
of S. But S is semisimple, i.e., S = Ker f ⊕ A. This implies that A is a
minimal right ideal and therefore A = eR, where e = e2. But f = f|A and
trivially f|A can be extended to a homomorphism from R to M , and the
proof is complete.
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(3)⇒(4). Clearly R is a right ue-ring and since R is a regular ring, it
does not have a finite Goldie dimension, for otherwise it is Artin semisimple,
which is absurd. Let R/I be a cyclic R-module. By Proposition 15, either
I ⊆ S = Soc(R) or R/I is Artin semisimple. If I 6⊂ S, then R/I is Artin
semisimple, i.e., I is a finite intersection of isolated maximal right ideals.
Now by Proposition 5, we immediately infer that R/I is non-singular.

Hence assume that I ⊆ S. Then S = I ⊕ A for some right ideal A.
Put R = R/I and A = (A+ I)/I = S/I. Now let B = (B + I)/I be an
R-submodule of R/I maximal with respect to the property that A∩B = 0.
Then either B = 0, which means that A is essential in R/I, or A+B = R,
for A is maximal in R (note that R/A ∼= R/S).

Now if B 6= 0 and R = A ⊕ B, then clearly A is cyclic, and since
A = S/I is semisimple, it is a finite direct sum of simple modules. Thus A
is injective, because R is a V-ring. We also note that B ∼= R/A is simple,
i.e., B is injective and therefore R = R/I is injective.

Finally, let B = 0, i.e., A is essential in R. Then clearly, A = S = S/I
is the only proper essential submodule of R, i.e., R/I ⊇ A ∼= A. But clearly
A is non-singular, for R is regular, and since A is essential in R/I, we infer
that R/I is also non-singular.

(4)⇒(1) follows from the main result of [6] (namely, Theorem 6).

Remark 19. In the proof of part (2)⇒(3) of the previous theorem, in
order to prove the injectivity of simple modules we considered two cases.
Observe that the proof of the second case works equally well for the first
case. But in the first case we have actually shown something more, that is,
that there is only the zero homomorphism.

The following is interesting.

Corollary 20. Let R be a right ue-ring. Then each element of R is
either a left or right zero divisor or a right unit.

Proof. If R is a local ring, then the assertion is clear. Let 0 6= a ∈ R be
an element which is not a right unit and assume that R is not local. Let M
be a maximal right ideal of R containing a. If M is isolated, then we are
done. If not, M must be the right socle, and if J 6= 0, then MJ = 0 finishes
the proof. Thus we may assume that J = 0. Then by the previous theorem
R is regular, and the proof is complete.

Remark 21. If R is a right ue-ring, then each R-module is a Loewy
module with Loewy length less than or equal to 2.

Now we are ready to present some examples of right ue-rings.

1. Let R be a ring with a maximal right ideal M such that M is two-
sided and non-idempotent (for example, let R be a duo ring with the latter
property for M). Then by Theorem 16, R/M 2 is a local right ue-ring. Thus
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for any commutative ring R with infinitely many non-idempotent maximal
ideals we have infinitely many non-isomorphic (as R-modules) local ue-rings.

2. A right chain ring is a right ue-ring if and only if it has a unique
proper non-zero right ideal; see also our Proposition 33.

3. Let D be a division ring and

R =
{[

a b
0 c

]
: a, b, c ∈ D

}
=
[
D D
0 D

]
.

Then the right socle of R is S1 =
[
O D
O D

]
and the left socle is S2 =

[
D D
O O

]
.

These are the only maximal right ideals of R. Now S1 as a left ideal is a
direct summand, but as a right ideal it is not even principal, i.e., S1 is an
essential right ideal. Similarly, S2 is isolated as a right ideal and essential as
a left ideal. Thus R is both a right and a left ue-ring.

4. If Q is a right quotient of a right ue-ring R with respect to a set of
regular elements of R, then Q is also a right ue-ring. Thus, a semiprime
right Goldie ring is never a right ue-ring.

5. Let M be a non-semisimple Artinian R-module with composition
length two. Then clearly M is indecomposable and it is easy to see that
T = End(MR) is a right ue-ring.

6. Let D be a division ring and

R =








a b 0 . . . 0
0 a 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . c
0 0 0 . . . a




:
aii = a ∈ D, a12 = b ∈ D, an−1,n = c ∈ D,

all other entries are zero




.

Then the set of all elements of R with zero diagonals is the unique maximal
right ideal M of R such that M 2 = 0. Clearly, R/M ∼= D and R is an
Artinian ue-ring which is also a duo ring.

7. Let F be a division ring and T = {〈ai〉 ∈
∏∞
i=1 Fi : ai = aj for all i, j,

and Fi = F}. Put R = S + T , where S =
∑∞
i=1

⊕
Fi. Then clearly R is a

strongly regular ring which is a ue-ring (note that S is the socle of R and
R/S ∼= T ).

8. Let F be a division ring and A =
∑
i∈I
⊕
Fi, where Fi = F for all

i ∈ I and I is an infinite set. Put R = A× F with coordinatewise addition
and multiplication given by (a1, b1)(a2, b2) = (a1a2 + a1b2 + a2b1, b1b2).
Then R is a right ue-ring which is also a strongly regular, right V-ring; see
Theorem 18.

9. In [22, Definition 6.1], a ring R is called a special ring if R is a non-
Noetherian semiprime ring whose right ideals are two-sided and the socle of
R is a maximal ideal. A ring R is called a T-ring if every Loewy module is a
direct sum of certain submodules; see [22, Remark 4.1]. Now it is interesting
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to note that from Proposition 6.1 of [22] we immediately infer that given
any duo ring R, either R is a T-ring or there exists an ideal I such that
R/I is a semiprime ue-ring (i.e., by our Theorem 18, R/I is also a regular
V-ring). This shows that duo rings behave nicely when we study ue-rings.

10. There are division ring extensions G ≤ F and H ≤ F with dim(GF )
= dim(FH) = 3,dim(FG) = dim(HF ) = 2, and ring isomorphisms α :
F → G and β : F → H (see [24]). Let R = F × F as abelian group and
define (a, b)(c, d) = (ab, β(a)d + bc), moreover, let T = F × F and define
(a, b)(c, d) = (ab, α(a)d + bc). Then both R and T are local Artinian right
ue-rings. These examples were constructed in [24] for other purposes.

11. Let V be an infinite-dimensional vector space over a field F , and
set Q = EndF (V ). We can identify F with the subring of Q of all scalar
transformations. Put R = S + F , where S is the ideal consisting of all
transformations with finite-dimensional range. The subring R of Q was con-
sidered for the first time by Faith (see [8, p. 89]); it is a regular ring which
is not a left V-ring. However, it is actually a right V-ring; see [8]. It is well
known that R is a unit-regular ring and whenever dimF V = a, where a is
an infinite cardinal, then the Goldie dimension of R is greater than or equal
to a. We also observe that R is a right ue-ring and hence a right V-ring
(see our Theorem 18). Again by Theorem 18 and the fact that R is not a
left V-ring, we infer that R is not a left ue-ring. To show that R is a right
ue-ring, it suffices to prove that S is the right socle of R. But it is well known
that S is the socle of Q. Now let A be a minimal right ideal of Q, and let
0 6= a ∈ A. We must show that A = aR. Now Annr(S) = Annl(S) = 0 in Q
implies that aS 6= 0, i.e., aS = A = aR. But R/S ∼= F , and therefore S is a
maximal right ideal of R.

Let us return to further results on right ue-rings.

Proposition 22. No infinite product of rings can be a right ue-ring ,
and R =

∏n
k=1Rk is a right ue-ring if and only if for some k,Rk is a right

ue-ring and Rj is Artin semisimple for j 6= k.

Proof. If R =
∏
i∈I Ri, where I is an infinite set, then clearly E =∑

i∈I
⊕
Ri is a proper essential right (left) ideal of R which is not a maximal

right ideal, i.e., R is not a right ue-ring.
Now suppose R =

∏n
k=1 Rk is a right ue-ring. Then each proper essential

right ideal I of R is of the form I =
∏n
k=1 Ik, where each Ik is either proper

essential in Rk or Ik = Rk and Ik 6= Rk for some k. This implies that we
cannot have two Rk with proper essential right ideal. Therefore for some k,
Rk must be a right ue-ring and Rj must be Artin semisimple for all j 6= k.
The converse is evident.

A ring R is called a Max-ring if each non-zero R-module has a maximal
submodule (some authors call it a B-ring; see [8]).
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In [18], it is shown that every module with Krull dimension which is also
a Loewy module is Artinian. It is well known that Artinian modules over
Max-rings are Noetherian; see [18]. These facts and Remark 21, together
with the next result, imply that modules with Krull dimension over a right
ue-ring are both Artinian and Noetherian.

Proposition 23. Every right ue-ring is a Max-ring.

Proof. First, assume that R is a local right ue-ring with maximal right
ideal M . Let A be any non-zero R-module. Since M is nilpotent we infer
that A 6= AM . Hence A/AM is a vector space over the division ring R/M .
Thus A/AM and therefore A has a maximal submodule.

Now, let R be a non-local right ue-ring with right socle S. If A is any
non-zero R-module, then we consider two cases. First, suppose A = AS.
Then A is semisimple (note that for each a ∈ A and each minimal right
ideal I, either aI = 0 or aI ∼= I is a simple submodule of A) and therefore
A has a maximal submodule. Secondly, suppose A 6= AS. Then A/AS is a
vector space over the division ring R/S. Thus A/AS and therefore A has a
maximal submodule.

The following evident result shows that some mild finiteness condition
on a ue-module M forces M to be both Artinian and Noetherian.

Remark 24. If M is a ue-module with finite Goldie dimension, then M
has a composition series.

We need the following lemma.

Lemma 25. If R is a right ue-ring , then the right singular ideal Zr(R) =
{a ∈ R : Annr(a) is an essential right ideal} is nilpotent.

Proof. Let x ∈ Zr(R). We show that x2 = 0. For if x2 6= 0, then clearly
Annr(x) = Annr(x2) = S, where S is the right socle of R, implies that
xR∩Annr(x) = 0, which is impossible. Thus Zr(R) ⊆ J and by Proposition
11, we are done.

The following is now immediate.

Proposition 26. If R is a commutative ue-ring , then Zr(R) = J .

Proof. By the previous lemma, Zr(R) ⊆ J . Conversely, if R is a local
ring, then J = M is the unique maximal ideal with M 2 = 0, i.e., M ⊆ Zr(R)
and we are done. If R is a non-local ue-ring, then SJ = 0, where S is the
socle of R. Hence, Ann(x) = S for all x ∈ J , i.e., J ⊆ Zr(R).

The following is also interesting.

Proposition 27. If R is a right ue-ring and M is a non-zero R-module,
then Zr(M) = Soc(M) if and only if no simple submodule of M is projective.
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Proof. If 0 6= x ∈ Zr(M), then Annr(x) is a proper essential right ideal,
i.e., Annr(x) = S = Socr(R) for all 0 6= x ∈ Zr(M). This implies that Zr(M)
is a vector space over the division ring R/S. Hence Zr(M) is semisimple over
R, i.e., Zr(M) ⊆ Soc(M). Now let A ⊆ M be a simple R-submodule of M
which is not projective, i.e., A ∼= R/S. This shows that A is singular and
therefore A ⊆ Zr(M). Thus Zr(M) = Soc(M). The converse is evident.

Some rings are never right ue-rings. For example, R[x] and R[[x]] are
never ue-rings, because the right socles of both rings are zero (note that if
I is a non-zero minimal right ideal of R[x] and f ∈ I is of least degree with
deg f = n, then I = Ixn+1, i.e., deg f ≥ n + 1, which is absurd; the proof
for R[[x]] is similar). Also, if {Ri : i ∈ I} is an infinite set of rings, then∏
i∈I Ri/

∑
i∈I ⊕Ri is never a right (or left) ue-ring.

In what follows we are going to show that some other well known rings,
namely, C(X) and right self-injective regular rings, are never right ue-rings.

Proposition 28. If R is a right self-injective right ue-ring , then R/J
is Artin semisimple.

Proof. If R is local, then the assertion is clear. Now suppose R is non-
local. Then in view of Corollary 14, R/J is either semisimple or a right
ue-module over R. But R/J is regular by Theorem 18 (note that it is also
well known that R/J is regular and self-injective even without assuming R
is a ue-ring). Now suppose R/J is a ue-module and seek a contradiction.
Let M/J be the unique proper essential right ideal of R/J which is also a
maximal right ideal and the right socle ofR/J . Now clearlyM/J is the direct
sum of minimal right ideals of R/J which are generated by idempotents.
Hence M/J is projective and then Proposition 7 shows that M/J is isolated,
which is the desired contradiction.

The next result is now immediate.

Corollary 29. A right self-injective regular ring is never a right ue-
ring.

The above corollary and Theorem 18 immediately yield the following.

Corollary 30. A right self-injective right ue-ring is never semiprime.

The reader is referred to [10] for some information on C(X) for the next
two results.

Proposition 31. An infinite completely regular topological space X is
the one-point compactification of a discrete space if and only if C(X) is a
uem-ring.

Proof. We recall that in any space X, Mx = {f ∈ C(X) : f(x) = 0}
is a maximal ideal, and x is an isolated point of X if and only if Mx is an
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isolated maximal ideal (see [17]). Now if X is the one-point compactification
of a discrete space D, then each maximal ideal of C(X) is fixed (i.e., of the
form Mx; see [10]). Thus each maximal ideal of C(X) is either of the form
Ma, a ∈ D, which is isolated by what we have already shown at the beginning
of the proof, or of the form Mx, where x is the unique point which is not
isolated, i.e., Mx is not isolated.

Conversely, if C(X) is a uem-ring, then each maximal ideal is isolated
except one, say M . This shows that in X we cannot have two non-isolated
points, say x1, x2, for in that case we would have two non-isolated maxi-
mal ideals, Mx1 ,Mx2 . Therefore there is only one non-isolated point x, i.e.,
M = Mx. But it is clear that each isolated maximal ideal is fixed (see [17]),
i.e., all maximal ideals are fixed, which implies that X is compact and there-
fore the one-point compactification of a discrete space.

Corollary 32. C(X) is never a ue-ring.

Proof. If X is finite, then C(X) is a finite product of fields, and hence
not a ue-ring. Now suppose X is infinite and C(X) is a ue-ring. Then by
the previous proposition, X is the one-point compactification of a discrete
space, and in view of Theorem 18, C(X) is regular, i.e., X is a P-space
(see [10, 4.J]. But every compact P -space is finite (see [10, 4.K]), which is a
contradiction.

Before concluding this section, we note that Corollary 30 naturally raises
the question if a right ue-ring can be right self-injective. The answer is
trivially affirmative, for if p ∈ Z is a prime number, then Z/(p2) is a self-
injective local ring with a unique non-zero ideal, namely (p)/(p2), i.e., a
ue-ring (see Example 1). Motivated by this example we conclude this section
with the following interesting observation.

Proposition 33. Let R be a right self-injective local right ue-ring. Then
R has a unique non-zero left ideal.

Proof. Let M be the unique maximal right ideal of R. It suffices to
show that M is the smallest non-zero left ideal of R. To this end, we prove
that given any 0 6= a ∈ M , we have M = Ra. Now M 2 = 0 implies that
Annr(x) = Annl(x) = M for all 0 6= x ∈ M . Thus let 0 6= b ∈ M be an
arbitrary element of M and consider the homomorphism f : aR → bR de-
fined by f(ar) = br for all r ∈ R (note that Annr(a) = Annr(b)). The right
self-injectivity of R implies that f can be extended to R, i.e., f is multipli-
cation by some element 0 6= t ∈ R. Hence b = f(a) = ta ∈ Ra, i.e., M = Ra.

4. Duo ue-rings. Duo rings, although non-commutative, have many
properties of commutative rings. Every idempotent in these rings is cen-
tral and prime ideals are completely prime and commute with each other
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(see [15]). These rings can be localized at their prime ideals. Unfortunately,
this localization may not be a duo ring. Nevertheless, for a large class of duo
rings, including Noetherian duo rings, and duo rings whose ideals commute,
this localization is again a duo ring (see [5], [15]). As we have already ob-
served in Example 9, duo rings are appropriate objects to consider when we
are dealing with ue-rings. In this section we show that any local right ue-ring
R contains a duo subring Rd which is a local ue-ring, and if Rd is Artinian,
then so is R. We also characterize Artinian duo rings which are ue-rings.

The following is interesting.

Proposition 34. Let R be a duo ue-ring. Then the socle of R is pro-
jective if and only if R is regular (i.e., strongly regular : ∀a ∈ R ∃b ∈ R with
a = a2b).

Proof. Suppose S = Soc(R) is projective. Note that SJ = JS = 0. We
claim that J = 0, which completes the proof in view of Theorem 18. So
suppose x ∈ J is non-zero and seek a contradiction. Clearly, Annr(x) = S,
i.e., xR ∼= R/S. But xR ⊆ S, so xR is a direct summand of S. This implies
that xR is projective, and hence the exact sequence 0→ S → R→ R/S → 0
shows that S is a direct summand, which is a contradiction. The converse
is evident.

Next, we show that duo ue-rings are zero-dimensional.

Proposition 35. If R is a duo ue-ring , then each prime ideal in R is
maximal.

Proof. If R is a local ring, then there is only one prime ideal and we are
done. Hence assume that R is non-local. If J = 0, then by Theorem 18, R is
regular and therefore each prime ideal is maximal. So assume J 6= 0. Then
SJ = 0, where S is the socle of R. Now for any prime ideal P of R we have
either S ⊆ P or J ⊆ P . If S ⊆ P , then S = P , i.e., P is maximal. If J ⊂ P ,
then by Corollary 14, either R/J is an Artin semisimple ring or a ue-ring.
If R/J is Artin semisimple, then P/J and therefore P is maximal, and if
R/J is a ue-ring, then by Theorem 18, R/J is regular, so again P/J and
therefore P is maximal, and the proof is complete.

The next result shows that duo ue-rings appear naturally inside local
right ue-rings.

Theorem 36. Let R be a local right ue-ring with Socr(R) = S. Then R
contains a subring Rd with socle S such that Rd is a duo ue-ring. Moreover ,
R is right Artinian whenever Rd is.

Proof. For each t ∈ S, we put Rt = {r ∈ R : rt = tr}. Clearly, Rt is a
subring of R containing S. Now put Rd =

⋂
t∈S Rt. We claim that Rd has

the required properties.



Right ue-rings 243

First, we show that Rd is a right ue-ring. It suffices to show that S is
the unique maximal right ideal in Rd. Therefore we must prove that each
non-unit of Rd belongs to S. To this end, we show that each non-unit a ∈ Rd
is in fact a non-unit of R, and this completes the proof. Suppose that a ∈ R
is a unit and seek a contradiction. For each 0 6= t ∈ S, we have at = ta,
i.e., a−1t = ta−1, which implies that a−1 ∈ Rt for all t ∈ S, i.e., a−1 ∈ Rd,
which is the desired contradiction.

To show that Rd is a duo ring, we note that aRd = Rda = R if a ∈ Rd
is a unit, and if a ∈ S, then aRd = Rda by the definition of Rd. Hence Rd
is a duo ring.

For the proof of the last part, we note that in order that a local right
ue-ring be right Artinian it suffices that its unique maximal right ideal be
finitely generated. But the maximal right ideal S is inside both rings R
and Rd, so S being f.g. as an Rd-module implies that it is also f.g. as an
R-module.

Remark 37. By the above proof, each Rt is a local right ue-ring. There-
fore if R is not a duo ring, then for some t ∈ S, Rt is a proper subring.
Moreover, R is right Artinian if some Rt is.

Remark 38. If the characteristic of a local right ue-ring R is a prime
number p, then S + Zp is a commutative subring of R which is a local
ue-ring, where S is the socle of R. Moreover, R has a maximal commutative
ue-subring with socle S.

Remark 39. Let R be a local right ue-ring with Socr(R) = S. For each
t ∈ R, put Rt = {r ∈ R : rt ∈ tR and tr ∈ Rt} and R0 =

⋂
t∈S Rt. Then

by applying the above proof we can show that R0 and each Rt are local
right ue-rings and clearly R0 contains Rd. Moreover, Rd is contained in a
maximal duo ue-subring of R with socle S.

We conclude this section with the following observation, which charac-
terizes Artinian duo ue-rings.

Proposition 40. R is an Artinian duo ue-ring if and only if R is the
product of a local Artinian duo ue-ring and a finite product of division rings.

Proof. Let R be an Artinian duo ue-ring. Then using the usual proof of
the well known result on the decomposition of Artinian commutative rings
(without any change), we show that R is a finite product of local Artinian
rings. Now by Proposition 22, we are done. The converse is evident.
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