Homological computations in the universal Steenrod algebra

by
A. Ciampella and L. A. Lomonaco (Napoli)

Abstract

We study the (bigraded) homology of the universal Steenrod algebra Q over the prime field \mathbb{F}_{2}, and we compute the groups $H_{s, s}(Q), s \geq 0$, using some ideas and techniques of Koszul algebras developed by S. Priddy in [5], although we presently do not know whether or not Q is a Koszul algebra. We also provide an explicit formula for the coalgebra structure of the diagonal homology $D_{*}(Q)=\bigoplus_{s \geq 0} H_{s, s}(Q)$ and show that $D_{*}(Q)$ is isomorphic to the coalgebra of invariants Γ introduced by W. Singer in [6].

Introduction. It is a basic problem of homological algebra to compute the (co)homology of various augmented algebras. The purpose of this paper is to compute the diagonal homology $D_{*}(Q)=\bigoplus_{s \geq 0} H_{s, s}(Q)$ of the universal Steenrod algebra Q and provide a description of $D_{*}(Q)$ as a coalgebra in terms of invariant theory. Q is a graded algebra arising from algebraic topology, for it is the algebra of cohomology operations in the category $\mathcal{C}(2, \infty)$ of H_{∞}-ring spectra. It is an interesting object as it contains Λ, the lambda algebra introduced in [1], as a subalgebra, and the Steenrod algebra arises as a quotient of Q. Hence it would be nice to understand the cohomology algebra $H^{*}(Q)=\operatorname{Ext}_{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ and the homology $H_{*}(Q)=\operatorname{Tor}^{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, but these computational problems are presently unsolved. What makes such computation hard is the fact that Q is by no means locally finite and most of the methods developed by Priddy ([5]) do not apply. The second author succeeded in computing the diagonal cohomology of Q in [4].

In Section 1 of the present paper a description of the homology groups $H_{s, s}(Q)$, i.e. the groups $\operatorname{Tor}_{s, s}^{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), s \in \mathbb{N}$, is provided, with an explicit formula for the coalgebra structure map of $D_{*}(Q)$. In [5] S. Priddy works under the hypothesis of local finiteness for the algebras involved, but the idea we borrow from his work in the proof of Theorem 1 does not depend

[^0]on this assumption. On the contrary, this hypothesis is crucial in Theorem 5.3 of [5], hence we cannot apply that result to our case and deduce that $H_{s, s+h}(Q)=0$ for $s, h \in \mathbb{N}$, although Q is a Poincaré-Birkhoff-Witt algebra.

In Section 2 we use the machinery of invariant theory (see e.g. [6]) to show that $D_{*}(Q)$ is isomorphic, as a coalgebra, to a certain coalgebra of invariants Γ introduced by W. Singer in [6].

1. The diagonal homology of Q. The universal Steenrod algebra Q at $p=2$ can be presented as follows:

$$
Q=\left\langle x_{k} \left\lvert\, x_{2 k-1-n} x_{k}=\sum_{j}\binom{n-1-j}{j} x_{2 k-1-j} x_{k-n+j}\right.\right\rangle
$$

where $k \in \mathbb{Z}$ and $n \in \mathbb{N}_{0}$. The defining relations of the algebra Q are known as generalized Adem relations, since they are a generalization of the Adem relations for the mod 2 Steenrod algebra. A typical monomial $x_{i_{1}} \cdots x_{i_{m}}$ of Q is said to have length m and total degree $i_{1}+\cdots+i_{m}$ (we put x_{k} in degree k). Such generalized Adem relations are homogeneous with respect to both total degree and length; hence Q is a bigraded algebra. For example x_{k} has bidegree $(1, k)$. A linear basis is given by the set \mathcal{B} of all admissible monomials, i.e. monomials of the following type:

$$
x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}: \quad i_{j} \geq 2 i_{j+1} \forall j=1, \ldots, m-1
$$

Q is neither connected, nor of finite type: for example, the monomials $x_{k} x_{-k}$, $k \in \mathbb{N}_{0}$, are all admissible of length 2 and total degree zero. If $x_{i_{1}} \cdots x_{i_{l}} \in \mathcal{B}$, the string $I=\left(i_{1}, \ldots, i_{l}\right)$ will be called the label of $x_{i_{1}} \cdots x_{i_{l}}$ and we write x_{I} instead of $x_{i_{1}} \ldots x_{i_{l}}$. Q is also an augmented algebra, the augmentation $\varepsilon: Q \rightarrow \mathbb{F}_{2}$ is obtained by setting $\varepsilon(\alpha)=0$ for each monomial α of positive length and the identity over \mathbb{F}_{2}. Let $J=\operatorname{ker}(\varepsilon)$ denote the augmentation ideal.

The homology of Q is defined as $\operatorname{Tor}_{*}^{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, where Tor is computed in the category of graded Q-modules.

Let $\bar{B}(Q)=T(J)=\bigoplus_{s \in \mathbb{N}_{0}} \underbrace{J \otimes \cdots \otimes J}_{s}$. Thus $\bar{B}(Q)$ is generated by elements of the form $x_{I_{1}} \otimes \cdots \otimes x_{I_{s}}$, where $x_{I_{j}} \in J$. Such elements are written simply as

$$
\left[x_{I_{1}}|\cdots| x_{I_{s}}\right]=\left[x_{i_{1}} \cdots x_{i_{t_{1}}}\left|x_{i_{t_{1}+1}} \cdots x_{i_{t_{2}}}\right| \cdots \mid x_{t_{s-1}+1} \cdots x_{t_{s}}\right]
$$

and are trigraded: s is the homological degree, $t=t_{s}$ is the length and $u=\sum_{k=1}^{t_{s}} i_{k}$ is the total degree, which we usually disregard. Let $\bar{B}_{s}(Q)_{t}$ denote the submodule generated by elements of bidegree (s, t). We define a map

$$
\partial_{s}: \bar{B}_{s}(Q) \rightarrow \bar{B}_{s-1}(Q)
$$

by setting

$$
\partial_{s}\left(\left[x_{I_{1}}|\cdots| x_{I_{s}}\right]\right)=\sum_{j=1}^{s-1}\left[x_{I_{1}}|\cdots| x_{I_{j}} x_{I_{j+1}} \mid \cdots x_{I_{s}}\right]
$$

which is a differential for $\bar{B}(Q)$. The chain complex $(\bar{B}(Q), \partial)$ is known as the reduced bar construction, and from homological algebra we know that it computes the homology of Q, i.e. $H(Q)=\operatorname{Tor}^{Q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is the homology of $(\bar{B}(Q), \partial)$. We set $D_{k}(Q)=H_{k, k}(Q)$. The direct $\operatorname{sum} D_{*}(Q)=\bigoplus_{k \geq 0} D_{k}(Q)$ is the diagonal homology of Q. In order to compute $D_{*}(Q)$, we notice that

$$
\begin{aligned}
D_{k}(Q) & =H_{k, k}(Q) \\
& =\frac{\operatorname{ker}\left[\partial_{k}: \bar{B}_{k}(Q)_{k} \rightarrow \bar{B}_{k-1}(Q)_{k}\right]}{\operatorname{im}\left[\partial_{k+1}: \bar{B}_{k+1}(Q)_{k} \rightarrow \bar{B}_{k}(Q)_{k}\right]} \\
& =\operatorname{ker}\left[\partial_{k}: \bar{B}_{k}(Q)_{k} \rightarrow \bar{B}_{k-1}(Q)_{k}\right]
\end{aligned}
$$

since there exist no non-zero $(k+1)$-chains of length $k(a(k+1)$-chain has length at least $k+1$). Hence, each element of $D_{k}(Q)$ is uniquely represented by a cycle of $\bar{B}_{k}(Q)_{k}$ of the form $\sum_{I} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{k}}\right]$, where $I=\left(i_{1}, \ldots, i_{k}\right)$ and $x_{i_{j}} \in J$. Observe that $D_{0}(Q)=\mathbb{F}_{2}$ and $D_{1}(Q)$ is the \mathbb{F}_{2}-vector space with $\left\{\left[x_{k}\right] \mid k \in \mathbb{Z}\right\}$ as a basis, because $\bar{B}_{0}(Q)=\mathbb{F}_{2}$ and $\partial: \bar{B}_{1}(Q)=J \rightarrow \bar{B}_{0}(Q)$ is the zero homomorphism. In the following statement we describe the groups $D_{m}(Q)=$ ker ∂_{m} in terms of cycles.

Theorem 1. Let $x=\sum_{I \in \mathcal{C}} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{m}}\right] \in \bar{B}_{m}(Q)_{m}$, where \mathcal{C} is a suitable set of labels. Then x is a cycle if and only if for each $j(1 \leq j$ $\leq m-1)$ and each $\left(k_{1}, \ldots, k_{j-1}\right) \in \mathbb{Z}^{j-1},\left(k_{j+2}, \ldots, k_{m}\right) \in \mathbb{Z}^{m-j-1}$, the following condition holds:

$$
\sum_{I} f_{I} x_{i_{j}} x_{i_{j+1}}=0
$$

where the summation runs over all $I \in \mathcal{C}$ such that $\left(i_{1}, \ldots, i_{j-1}\right)=\left(k_{1}, \ldots\right.$ $\left.\ldots, k_{j-1}\right)$ and $\left(i_{j+2}, \ldots, i_{m}\right)=\left(k_{j+2}, \ldots, k_{m}\right)$.

Proof. Let us compute ∂x :

$$
\partial x=\sum_{I} \sum_{j=1}^{m-1} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{j}} x_{i_{j+1}}|\cdots| x_{i_{m}}\right]
$$

where $\left[x_{i_{1}}|\cdots| x_{i_{j}} x_{i_{j+1}}|\cdots| x_{i_{m}}\right] \in \bar{B}_{m-1}(Q)_{m}$. Hence $\partial x=0$ if and only if for each $j(1 \leq j \leq m-1)$ and each $\left(k_{1}, \ldots, k_{j-1}\right) \in \mathbb{Z}^{j-1}$, we have

$$
\sum_{I} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{j}} x_{i_{j+1}}|\cdots| x_{i_{m}}\right]=0
$$

where the summation is taken over all I such that $\left(i_{1}, \ldots, i_{j-1}\right)=\left(k_{1}, \ldots\right.$ $\left.\ldots, k_{j-1}\right)$ and $\left(i_{j+2}, \ldots, i_{m}\right)=\left(k_{j+2}, \ldots, k_{m}\right)$. But this is equivalent to $\sum_{I} f_{I} x_{i_{j}} x_{i_{j+1}}=0$, summed over the same values of I.

Corollary 2. Suppose that $x=\sum_{I \in \mathcal{C}} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{m}}\right]$ is a cycle of $\bar{B}_{m}(Q)_{m}$. For each $K=\left(k_{1}, \ldots, k_{q}\right) \in \mathbb{Z}^{q}$ and $K^{\prime}=\left(k_{q+1}, \ldots, k_{m}\right) \in \mathbb{Z}^{m-q}$, let

$$
x_{K}=\sum_{I} f_{I}\left[x_{i_{q+1}}|\cdots| x_{i_{m}}\right]
$$

where the summation runs over the labels $I \in \mathcal{C}$ such that $i_{1}=k_{1}, \ldots$, $i_{q}=k_{q}$, and

$$
x_{K^{\prime}}=\sum_{I} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{q}}\right],
$$

where the summation runs over the labels $I \in \mathcal{C}$ such that $i_{q+1}=k_{q+1}, \ldots$, $i_{m}=k_{m}$. Then x_{K} is a cycle of $\bar{B}_{m-q}(Q)_{m-q}$ and $x_{K^{\prime}}$ is a cycle of $\bar{B}_{q}(Q)_{q}$.

Proof. We have

$$
\begin{aligned}
\partial x_{K^{\prime}} & =\sum_{j=1}^{q-1} \sum_{\left(i_{q+1}, \ldots, i_{m}\right)=K^{\prime}} f_{I}\left[x_{i_{1}}|\cdots| x_{i_{j}} x_{i_{j+1}}|\cdots| x_{i_{q}}\right] \\
& =\sum_{j=1}^{q-1} \sum\left[x_{l_{1}}|\cdots| x_{l_{j-1}}\left|\sum_{I} f_{I} x_{i_{j}} x_{i_{j+1}}\right| x_{l_{j+2}}|\cdots| x_{l_{q}}\right]
\end{aligned}
$$

where the second summation is over all $\left(l_{1}, \ldots, l_{j-1}\right) \in \mathbb{Z}^{j-1},\left(l_{j+1}, \ldots, l_{q}\right)$ $\in \mathbb{Z}^{q-j}$ and the innermost summation is over all I such that

$$
\begin{aligned}
\left(i_{1}, \ldots, i_{j-1}\right) & =\left(l_{1}, \ldots, l_{j-1}\right) \\
\left(i_{j+2}, \ldots, i_{q}, i_{q+1}, \ldots, i_{m}\right) & =\left(l_{j+2}, \ldots, l_{q}, k_{q+1}, \ldots, k_{m}\right)
\end{aligned}
$$

Since $\partial x=0$, Theorem 1 implies that each of the summations over I is zero. Hence $\partial x_{K^{\prime}}=0$. A similar argument shows $\partial x_{K}=0$. This completes the proof.

Example 1. Set

$$
R_{k, n}=x_{2 k-1-n} x_{k}+\sum_{j}\binom{n-1-j}{j} x_{2 k-1-j} x_{k-n+j}
$$

then $\left\{R_{k, n}\right\}_{k \in \mathbb{Z}, n \in \mathbb{N}_{0}}$ is a (linear) \mathbb{F}_{2}-basis of $D_{2}(Q)$.
Example 2. The chain $z=\left[x_{3}\left|x_{3}\right| x_{2}\right]+\left[x_{5}\left|x_{1}\right| x_{2}\right]+\left[x_{5}\left|x_{3}\right| x_{0}\right]$ is a cycle of $\bar{B}_{3}(Q)_{3}$ since $x_{3} x_{2}=0, x_{1} x_{2}=x_{3} x_{0}, x_{3} x_{3}=x_{5} x_{1}, x_{5} x_{3}=0$. More generally, for each $h \in \mathbb{Z}$,

$$
z(h)=\left[x_{4 h-5}\left|x_{2 h-1}\right| x_{h}\right]+\left[x_{4 h-3}\left|x_{2 h-3}\right| x_{h}\right]+\left[x_{4 h-3}\left|x_{2 h-1}\right| x_{h-2}\right]
$$

is a cycle of $\bar{B}_{3}(Q)_{3}$, as $x_{2 k-1} x_{k}=0, x_{2 k-2} x_{k}=x_{2 k-1} x_{k-1}, x_{2 k-3} x_{k}=$ $x_{2 k-1} x_{k-2}$. Another example is $z^{\prime}=\left[x_{4 h-3}\left|x_{2 h-1}\right| x_{h}\right]$, since $4 h-3=$ $2(2 h-1)-1$. More generally, for a fixed $k \in \mathbb{N}_{0}$ and for each $m \in \mathbb{Z}$,

$$
z^{\prime}(m)=\left[x_{2^{k}(m-1)+1}\left|x_{2^{k-1}(m-1)+1}\right| \cdots\left|x_{2(m-1)+1}\right| x_{m}\right]
$$

is a cycle of $\bar{B}_{k+1}(Q)_{k+1}$.

Example 3. Using the relations $x_{7} x_{5}=x_{9} x_{3}$ and $x_{6} x_{6}=x_{11} x_{1}+$ $x_{10} x_{2}+x_{9} x_{3}$, we can exhibit the following cycle in $\bar{B}_{4}(Q)_{4}$:

$$
z^{\prime \prime}=\left[x_{7}\left|x_{5}\right| x_{3} \mid x_{2}\right]+\left[x_{9}\left|x_{3}\right| x_{3} \mid x_{2}\right]+\left[x_{9}\left|x_{5}\right| x_{1} \mid x_{2}\right]+\left[x_{9}\left|x_{5}\right| x_{3} \mid x_{0}\right] .
$$

Corollary 2 allows us to endow the diagonal homology of Q with a coalgebra structure described in the following statement.

Theorem 3. For each non-negative integer m, let ψ_{m} be the map

$$
\begin{gathered}
\psi_{m}: D_{m}(Q) \rightarrow \bigoplus_{p+q=m}\left(D_{p}(Q) \otimes D_{q}(Q)\right) \\
x=\sum_{I} f_{I}\left[x_{i_{1}}\left|x_{i_{2}}\right| \cdots \mid x_{i_{m}}\right] \mapsto x \otimes 1+1 \otimes x+\sum x^{\prime} \otimes x^{\prime \prime}
\end{gathered}
$$

where the cycles x^{\prime} and $x^{\prime \prime}$ are obtained by splitting all the summands of x and suitably grouping the common terms. Then the sequence $\left\{\psi_{m}\right\}_{m \in \mathbb{N}_{0}}$ defines a coproduct in $D_{*}(Q)$.

In other words, the coalgebra structure of $D_{*}(Q)$ is the obvious one.
Example 4. If x is the cycle in $\bar{B}_{4}(Q)_{4}$ of Example 3, then

$$
\begin{aligned}
\psi(x)= & {\left[x_{7}\right] \otimes\left[x_{5}\left|x_{3}\right| x_{2}\right]+\left[x_{9}\right] \otimes\left(\left[x_{3}\left|x_{3}\right| x_{2}\right]+\left[x_{5}\left|x_{1}\right| x_{2}\right]+\left[x_{5}\left|x_{3}\right| x_{0}\right]\right) } \\
& +\left(\left[x_{7}\left|x_{5}\right| x_{3}\right]+\left[x_{9}\left|x_{3}\right| x_{3}\right]+\left[x_{9}\left|x_{5}\right| x_{1}\right]\right) \otimes\left[x_{2}\right] \\
& +\left[x_{9}\left|x_{5}\right| x_{3}\right] \otimes\left[x_{0}\right]+\left(\left[x_{7} \mid x_{5}\right]+\left[x_{9} \mid x_{3}\right]\right) \otimes\left[x_{3} \mid x_{2}\right] \\
& +\left[x_{9} \mid x_{5}\right] \otimes\left(\left[x_{1} \mid x_{2}\right]+\left[x_{3} \mid x_{0}\right]\right) .
\end{aligned}
$$

It is quite obvious that the groups of the form $H_{s, t}(Q)$, with $s>t$, all vanish, while it is still unclear what happens when $s<t$. But at least we know that $H_{1,2}(Q)=0$, since each cycle of the form

$$
\sum_{\left(i_{1}, i_{2}\right) \in \mathcal{D}} f_{\left(i_{1}, i_{2}\right)}\left[x_{i_{1}} x_{i_{2}}\right] \in \bar{B}_{1}(Q)_{2}
$$

(where \mathcal{D} is a suitable set of indices) is the boundary of the chain

$$
\sum_{\left(i_{1}, i_{2}\right) \in \mathcal{D}} f_{\left(i_{1}, i_{2}\right)}\left[x_{i_{1}} \mid x_{i_{2}}\right] \in \bar{B}_{2}(Q)_{2} .
$$

2. Invariant theory. For each $n \geq 1$, let $P_{n}=\mathbb{F}_{2}\left[t_{1}, \ldots, t_{n}\right]$ be the polynomial ring in n indeterminates, which are assigned degree 1 , and let $Q_{n, 0}$ be its Euler class, that is, the product of all the elements of degree 1 in P_{n}. There is a standard action of the general linear group $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$ and its upper triangular subgroup T_{n} on P_{n}, and we consider the following rings of invariants:

$$
P_{n}^{T_{n}}=\mathbb{F}_{2}\left[V_{1}, \ldots, V_{n}\right], \quad P_{n}^{\mathrm{GL}}{ }_{n}=\mathbb{F}_{2}\left[Q_{n, 0}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]
$$

and their localizations Δ_{n} and Γ_{n} obtained by formally inverting the Euler class,

$$
\begin{aligned}
\Delta_{n} & =P_{n}^{T_{n}}\left[Q_{n, 0}^{-1}\right]=\mathbb{F}_{2}\left[V_{1}^{ \pm 1}, \ldots, V_{n}^{ \pm 1}\right] \\
\Gamma_{n} & =P_{n}^{\mathrm{GL}}\left[Q_{n, 0}^{-1}\right]=\mathbb{F}_{2}\left[Q_{n, 0}^{ \pm 1}, Q_{n, 1}, \ldots, Q_{n, n-1}\right]
\end{aligned}
$$

Here we follow the notation of [6] and, as in [6], we set

$$
\Delta=\bigoplus_{n \geq 0} \Delta_{n}, \quad \Gamma=\bigoplus_{n \geq 0} \Gamma_{n}
$$

where $\Delta_{0}=\Gamma_{0}=\mathbb{F}_{2}$. As shown in [6], Δ is a coalgebra with comultiplication $\psi: \Delta \rightarrow \Delta \otimes \Delta$ induced by the maps

$$
\psi_{p, q}: \Delta_{p+q} \rightarrow \Delta_{p} \otimes \Delta_{q} \quad\left(p, q \in \mathbb{N}_{0}\right)
$$

defined by setting

$$
\psi_{p, q}\left(v_{1}^{i_{1}} \cdots v_{p+q}^{i_{p+q}}\right)=v_{1}^{i_{1}} \cdots v_{p}^{i_{p}} \otimes v_{1}^{i_{p+1}} \cdots v_{q}^{i_{p+q}}
$$

and Γ is a subcoalgebra of Δ. As an example, if we set $n=p+q$, we have

$$
\psi_{p, q}\left(Q_{n, s}\right)=\sum_{j \geq 0} Q_{p, 0}^{2^{q}-2^{j}} Q_{p, s-j}^{2^{j}} \otimes Q_{q, j}
$$

We now borrow some ideas from N. H. V. Hung ([2]) and apply them to Q. Let us consider the \mathbb{F}_{2}-linear maps

$$
\pi_{m, q}: \Delta_{m} \rightarrow \bar{B}_{m-1}(Q)_{m} \quad(m \geq 2, q=1, \ldots, m-1)
$$

defined by setting

$$
\pi_{m, q}\left(v_{1}^{i_{1}} \cdots v_{m}^{i_{m}}\right)=\left[x_{i_{1}+1}|\cdots| x_{i_{q-1}+1}\left|x_{i_{q}+1} x_{i_{q+1}+1}\right| \cdots \mid x_{i_{m}+1}\right] .
$$

We remark that, in particular, $\operatorname{ker} \pi_{2,1}=\Gamma_{2}$. In fact, as shown in [3] (though in a slightly different context), the elements of Γ_{2} correspond to the generalized Adem relations under the map $\pi_{2,1}$. For example

$$
\begin{aligned}
& \pi_{2,1}\left(Q_{2,0}^{n}\right)=\pi_{2,1}\left(v_{1}^{2 n} v_{2}^{n}\right)=x_{2 n+1} x_{n+1}=0 \\
& \pi_{2,1}\left(Q_{2,1}\right)=\pi_{2,1}\left(v_{1}^{2}+v_{1} v_{2}\right)=x_{3} x_{1}+x_{2} x_{2}=0
\end{aligned}
$$

Lemma 4. For any $m \geq 2$ and $q=1, \ldots, m-1$, we have

$$
\operatorname{ker} \pi_{m, q}=\Delta_{q-1} \otimes \Gamma_{2} \otimes \Delta_{m-q-1}
$$

Proof. We consider the map

$$
f=\left(\psi_{q-1,2} \otimes 1\right) \circ \psi_{q+1, m-q-1}: \Delta_{m} \rightarrow \Delta_{q-1} \otimes \Delta_{2} \otimes \Delta_{m-q-1}
$$

and define, for each $t \in \mathbb{N}$,

$$
\alpha_{t}: \Delta_{t} \rightarrow \bar{B}_{t}(Q)_{t}, \quad v_{1}^{i_{1}} \cdots v_{t}^{i_{t}} \mapsto\left[x_{i_{1}+1}|\cdots| x_{i_{t}+1}\right]
$$

Clearly

$$
\pi_{m, q}=\left(\alpha_{q-1} \otimes \pi_{2,1} \otimes \alpha_{m-q-1}\right) \circ f
$$

and the maps f, α_{t} are both linear \mathbb{F}_{2}-isomorphisms. The result now follows.

Proposition 5. For each $m \geq 2$, we have

$$
\bigcap_{q=1}^{m-1} \operatorname{ker} \pi_{m, q}=\Gamma_{m} .
$$

Proof. We simply use the fact that $\mathrm{GL}_{m}\left(\mathbb{F}_{2}\right)$ is generated by all the matrices of the form

$$
B=\left(\begin{array}{ccc}
I_{q-1} & O & O \\
O & A & O \\
O & O & I_{m-q-1}
\end{array}\right)
$$

where $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$. Thus

$$
\Gamma_{m}=\bigcap_{q=1}^{m-1} \Delta_{q-1} \otimes \Gamma_{2} \otimes \Delta_{m-q-1}=\bigcap_{q=1}^{m-1} \operatorname{ker} \pi_{m, q}
$$

as claimed.
We now look at the commutative diagram

where β_{m} and $\partial_{m, q}$ are defined by setting

$$
\beta_{m}\left[x_{j_{1}}|\cdots| x_{j_{m}}\right]=v_{1}^{j_{1}-1} \cdots v_{m}^{j_{m}-1}
$$

and

$$
\partial_{m, q}\left[x_{j_{1}}|\cdots| x_{j_{m}}\right]=\left[x_{j_{1}}|\cdots| x_{j_{q}} x_{j_{q+1}}|\cdots| x_{j_{m}}\right] .
$$

We remark that the β_{m} 's induce a map of coalgebras

$$
\beta: \bigoplus_{m} \bar{B}_{m}(Q)_{m} \rightarrow \Delta .
$$

Clearly each β_{m} is a linear isomorphism. We are now ready to state and prove the following result.

Theorem 6. The diagonal homology $D_{*}(Q)$ of the algebra Q and the subcoalgebra Γ of Δ are isomorphic as coalgebras.

Proof. We have already pointed out that a chain $x \in \bar{B}_{m}(Q)_{m}$ is a cycle (i.e. the unique representative of an element in $D_{m}(Q)$) if and only if $\partial_{m, q}(x)=0$ for each q, i.e. if and only if $\pi_{m, q} \beta_{m}(x)=0$ for each q, i.e. if and only if $\beta_{m}(x) \in \Gamma_{m}$. Therefore β_{m} induces, by restriction, an isomorphism

$$
\bar{\beta}_{m}: D_{m}(Q)=H_{m, m}(Q)=\operatorname{ker} \partial_{m} \rightarrow \Gamma_{m}
$$

of coalgebras.
Example 5. Another basis for $D_{2}(Q)$ is given by the set

$$
\mathcal{B}=\left\{c_{s, k} \mid k \in \mathbb{Z}, s \in \mathbb{N}_{0}\right\}
$$

where

$$
c_{s, k}=\sum_{i=0}^{s}\binom{s}{i}\left[x_{2 k-1-i} \mid x_{k-s+i}\right] .
$$

These cycles correspond to the elements $Q_{2,0}^{k-s-1} Q_{2,1}^{s}$, which form a basis of Γ_{2}. The cycles $z(h) \in D_{3}(Q)$ and $z^{\prime}(m) \in D_{k+1}(Q)$ of Example 2 correspond to the invariants $Q_{3,0}^{h-3} Q_{3,1}^{2}$ and $Q_{k+1,0}^{m-1}$ respectively. Finally, the invariant $Q_{4,0}^{-1} Q_{4,1}^{2}$ corresponds to the cycle $z^{\prime \prime}$ of Example 3.

References

[1] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, The mod p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342.
[2] N. H. V. Hung, Spherical classes and the Lambda algebra, Trans. Amer. Math. Soc. 353 (2001), 4447-4460.
[3] L. A. Lomonaco, Dickson invariants and the universal Steenrod algebra, Suppl. Rend. Cir. Mat. Palermo (2) 24 (1990), 429-444.
[4] -, The diagonal cohomology of the universal Steenrod algebra, J. Pure Appl. Algebra 121 (1997), 315-323.
[5] S. P. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.
[6] W. Singer, Invariant theory and the Lambda algebra, ibid. 280 (1983), 673-693.
Dipartimento di Matematica e Applicazioni
Università di Napoli "Federico II"
Napoli, Italy
E-mail: ciampell@unina.it
lomonaco@unina.it

Received 3 December 2003;
in revised form 11 November 2004

[^0]: 2000 Mathematics Subject Classification: 55S10, 18G15, 55T15.
 Key words and phrases: Koszul algebras, homology of algebras, universal Steenrod algebra.

