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Presentations of surface braid groups by graphs
by

Paolo Bellingeri (Pisa) and
Vladimir Vershinin (Montpellier and Novosibirsk)

Abstract. We extend and generalise Sergiescu’s results on planar graphs and pre-
sentations for the braid group B, to other topological generalisations of B,.

1. Introduction. Some years after the definition of braid groups by
Artin, Zariski [35, 36] introduced new groups, which were a natural exten-
sion of both the classical braid group B, and the fundamental group of a
surface. These groups were then “rediscovered” in the 60’s in the study of
configuration spaces [17] and called surface braid groups.

A possible definition of such groups is the following. Let X denote an
orientable, connected, compact surface possibly with boundary components.
Fix a set P ={Py,..., P,} of n distinct points in the interior of X. A geo-
metric braid on X based at P is a collection 5 = (¢1,...,%y) of n disjoint
paths on X' x [0, 1], called strands of 3, such that the ith strand runs mono-
tonically in ¢ in [0, 1] from the point (F;, 0) to some point (P;, 1). Two braids
are considered equivalent if they are isotopic. The usual product of paths
defines a group structure on the equivalence classes of braids. This group,
denoted by B,,(X), does not depend on the choice of P and is called the braid
group on n strands on X. The braid group of the disk B,,(D?) is isomorphic
to the classical braid group B,, and it embeds in a canonical way in B, (X)),
when X' is a surface of genus g > 1. Therefore we can consider the standard
generators of the braid group o1,...,0,—1 as elements of B,(X). On the
other hand, the group Bj(X) is isomorphic to the fundamental group of X.

Surface braid groups are related to mapping class groups and links in
3-manifolds [7]. In the last years the interest in these groups has grown
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considerably (see for instance [19, 20, 23, 25, 27, 28|) and several properties
of braid groups (and their singular extensions) have been generalised to
surface braid groups. In particular, some results on braids and links have
been extended to surface braids and links in 3-manifolds [22, 26, 31], and
new features have been discovered [4, 16].

Sergiescu [29, 30] showed how to associate to any planar, connected graph
with n vertices, without loops or intersections, a presentation for the braid
group B,. To each edge e of the graph he associated the braid [, which is a
clockwise half-twist along e (see Figure 1). Sergiescu provided a complete set
of relations using this set of generators for B,,. Afterwards, Birman, Ko and
Lee [9] extended this result to inner-complete graphs in order to give a new
proof for the conjugation problem in B,,. Recently Han and Ko [24] showed
that it is possible to associate braid group presentations to a more general
family of graphs (linearly spanned graphs) containing the above graphs. We
also recall that these presentations turned out to be useful in other related
contexts (see for instance [5] and [6]).

Fig. 1. Edges and geometric braids

The aim of this paper is to provide some analogous results for surface
braid groups. Let I' be a graph on an orientable surface 3’. The graph I is
called normal if it is connected, finite and has no loops or intersections. Let
I' be a normal graph on Y. Let S(I") be the set of vertices of I'. We associate
to the edges of I" the corresponding geometric braids on X' (Figure 1) and
we define Bp(Y) as the subgroup of B|g(ry(¥) generated by these braids.
In Sections 2 and 3 we consider graphs on the sphere and we prove that if I
is a normal graph on the sphere then the set Xy = {0 | 0 is an edge of I'}
is a set of generators for Bjg( p)|(5’2) and thus the group Br(S?) coincides
with Big(ry (S 2). Moreover, we provide a complete system of relations (The-
orem 2.1). In particular, we have the following proposition.
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PROPOSITION 1.1. Let X' be an oriented surface such that w1 (X) # 1
and let I' be a normal graph on X. Then Bp(X) is a proper subgroup of

By (X).

In Section 4 we introduce planar graphs with coloured edges and we show
how to find presentations via graphs for the braid group on the annulus
B (Ann) (Theorem 4.1). In Section 5 we provide similar results for singular
braids on the disk and on the annulus.

2. Sphere braid group presentations via graphs

2.1. Definitions and statement of the main theorem. Unless otherwise
stated, in Sections 2 and 3, I" denotes a normal graph on S?. We need
some preliminary definitions. Suppose that I is not a tree. The set S?\ I"
is the disjoint union of a finite number of open disks D1, ..., Dy, m > 1.
The boundary of D; on 52 is a subgraph I'(Dj) of I'. We choose a point
O in the interior of Dj;, and an edge o of I'(D;) with vertices vy, vo. We
suppose that the triangle Ovyvy is oriented anticlockwise. We denote o by
o(e1). We define the pseudocycle associated to D to be the sequence of edges
o(er)---o(ep) such that:

e if the vertex v;1; is not univalent, then o(e;1) is the first edge to the
left of o(e;) (we consider o(e;) going from v; to vj11) and the vertex
Vj42 is the other vertex adjacent to o(ej+1);

e if the vertex vj41 is univalent, then o(ej;1) = o(e;) and vjr2 = vj;

[ ] Up+1 = V1.

Let vy =o(e1)---o(ep) be a pseudocycle of I'. Let i = 1,...,p. If o(e;) =
o(e;) for some j # i, then we say that

e o(e;) is the start edge of a reverse if j =i+ 1 (we set ep11 = e1).
e o(e;) is the end edge of a reverse if j =1 — 1 (we set eg = ep).

In the following we write o1 - - - o), for the pseudocycle o(e1) ---o(ep).

Let A be a maximal tree of a normal graph I" on ¢ + 1 vertices. Then
A has g edges. Let v1,v2 be two vertices adjacent to the same edge o of A.
Write o(f1) for . We define the circuit o(f1)---o(f2q) as follows:

e if the vertex v;41 is not univalent, then o(f;41) is the first edge on the
left of o(f;j) (we consider o(f;) going from v; to vj11) and the vertex
vj42 is the other vertex adjacent to o(fj+1);

e if vj4 is univalent, then o(fj+1) = o(f;) and vj42 = v;.

This way we come back to v; after passing twice through each edge
of A. Write 6y, 4,(A) for the word in Xy corresponding to the circuit

o(f1) - o(fzq) (Figure 2).
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Fig. 2. §,.4(AQ) = 0a?B%076%c*v¢? and 6§, . (A) = 0v62e* ¢ 0?32

THEOREM 2.1. Let I' be a normal graph with n vertices. The braid group
B, (S?) admits a presentation (Xr | Rr), where X = {0 | o is an edge of I'}
and R is the set of following relations:

Fig. 3. Nodal relation

9y

Fig. 4. Pseudocycle relation. On the left o102+ om—1 =02 Om =+ = Om -+ - Om—2;
on the right 0102035 = 020304 = 020401 and 03040102 = 04010203

e Disjointedness relations (DR): if o; and o; are disjoint, then o;0; =
0j0i;

o Adjacency relations (AR): if 05,05 have a common vertex, then o;0;0;
= O'jO'iO'j;

e Nodal relations (NR): if {o1, 02,03} have only one common vertex and
they are clockwise oriented (Figure 3), then

01020301 = 02030102;

e Pseudocycle relations (PR): if o1 -+ - oy, is a pseudocycle and o1 is not
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the start edge nor is oy, the end edge of a reverse (Figure 4), then

o Tree relations (TR): 0y,y(A) =1 for every mazimal tree A of I' and
every ordered pair of vertices x,y that are adjacent to the same edge

o of A.

REMARK 2.2. The statement of Theorem 2.1 is highly redundant. For
instance one can show that a (TR) relation on a given maximal tree of I,
together with (DR), (AR), (NR) and (PR), generate (TR) for any other
maximal tree of I'. Anyway, these presentations are symmetric and one can
read off the relations from the geometry of I'.

REMARK 2.3. Let v C I' be a star (a graph which consists of sev-
eral edges joined in one point). For any clockwise ordered subset {o;,, ...,
0i;|j > 2} of edges of y the following relation holds in the group (Xr | Rr):

(X Uz'jo'il = O‘l'].O'il . 'Ul'j.

2.2. Geometric interpretation of relations. It is geometrically evident
that (AR) and (DR) hold in Bp(S?). Let I' contain a triangle oy, 09,7 as
in Figure 8. The corresponding braids satisfy the relation 7 = 01020, !
and thus 701 = o102 in Br(S?). The relation o109 = o97 follows from
the braid relation 010201_1 = 02_10102. Let 01,092,053 be arranged as in
Figure 5. We add three edges 71,72, 73. The nodal relation follows from
the pseudocycle relations on the triangles o903, 90103 and T30109. In
fact, 01090301 = 09730301 = 09037301 = 09030102. All other pseudocycle
relations follow by induction on the length of the cycle.

Fig. 5. Nodal relation holds in Br(S%)

Let A be a maximal tree of I'. Let o be an edge of A and let x,y
be the two adjacent vertices. The element J,,(A) corresponds to a (pure)
braid such that the braid obtained by removing the string starting from
the vertex x is isotopic to the trivial braid. This string goes around (with
clockwise orientation) all other vertices (Figure 6, left). The braid 6, ,(A)
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is isotopic to the trivial braid in Bp(S?) and so 6,,(A) = 1 (Figure 6).
Therefore the natural map ¢r : (Xr | Rr) — Br(S?) is a homomorphism.

Fig. 6. The braid d,,,(A) associated to the tree A =1\ 7

3. Proof of Theorem 2.1. We need some preliminary lemmas.

LEMMA 3.1. Let I' be a normal graph on the sphere and let P be a pseu-
docycle of I'. Let Rp denote the set of pseudocycle relations associated to P.
The group presentations (Xr | Rr) and (Xr|Rr \ {Rp}) are isomorphic.

Proof. We consider the sphere S? as the unit sphere in R3. We suppose
that the disk bounded by P contains the point (0,0, —1). Then we enlarge
the disk bounded by P and we can also suppose that the graph I is contained
in the half-space z > 0. We orthogonally project the graph on the zy-
plane along the z-axis. Let o1,...,0,, be the edges of the pseudocycle P
as in Figure 7. Since we consider the projection of I' on the xy-plane, the
pseudocycle relations on P will be clockwise oriented.

Fig. 7. The maximal trees A and A’ of I’

Therefore, in order to prove the lemma we need to show that the relation
Om*""092 = 0Om—1-""01 holds in (XF | RF \ {RP}>
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Consider two maximal trees A, A’ of I' such that the tree A contains
09,...,0m, the tree A’ contains o1,...,0m,-1, and AU {o1} = A" U {0}
The graph A\ {o2,...,0m} = A"\ {0o1,...,0m-1} is a set of subtrees
AW A A of [ (Figure 7). The (TR) relations on A and A’ yield
(1) om- 0202020301 =01+ 01 Q10102 Opy—1 O,

where o, . . ., oy, are subwords associated to the respective subtrees A .

. ’A(m) Let oy = Cl e 'Cn—lCnCn-i—l e 'qu where Cn—l = Cn and Cz 7£ ij
for i,7 > n. We apply the (PR) relation to the pseudocycle (,Cnt1--- ¢y

o109 0;,C1 - Gu—2Gn—1, to get
CnGnt1 -+ Cgo102 - 0mC1 " Cn—2 = Cuy1 "+ Gq0102 - TmC1 -+  Cn—2Cn—1,

and we derive

G GGGt Gonan oG Cnma = 0102+ O(r e+ Gu2 Gt
Multiply by oy U and apply (AR) to obtain

Cnlng1 Go1 Gt GGt ol e = a2 0mCa e GGt
It follows that

alalafl

=G Gnorog omr Go2Gn1(Ce - G102 oG- Gua)

From iterated applications of (AR) and (NR) it follows that

Om1 Cne2Cn-1Gte ot = GGy G o GGt
Then

alalal_l = 09 - - -amama;ll e 02_1@2_1

holds in (Xr | Rr\ {Rp}). The braids a; and o;;)! - - - 05, 'ay ' commute, and
thus
209 * OO = (X101 * * * Oy«

From equation (1), it follows that
Om -+ 02 =0m_1---01. B

The following lemma generalises a result on classical braids and planar
graphs proved in [30] (Lemmas 2 and 3) to braids on the sphere. The lemma
states that for any graph I'” obtained from a given I" on S? by removing or
adding “triangles” the groups (X | Ryv) and (Xp | Rpr) defined in Theorem
2.1 are isomorphic.

LEMMA 3.2. Let 01,09 be two adjacent edges of I', not contained in any
pseudocycle. Let I'" = I'UT be the graph obtained by adding an edge T to I' to
form an anticlockwise triangle To102 (Figure 8). Then (X | Rr) is a group
presentation for Br(S?) if and only if (X | Rp) is a group presentation
for Br/(S?).
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Fig. 8. Adding or removing a triangle

Proof. Note that by the Tietze transformation (X | Rp, 7 = 010201_1>
is isomorphic to (X |Rr). Hence in order to prove that (X | Rpv) is a
group presentation for Bp(S?) if and only if (X | Rpv) is a group presen-
tation for Bp(S?), it is sufficient to prove that the groups (X | Rp/) and
(Xp|Rp, T = Ulazafl) are isomorphic. Since {Rp, 7 = Jlazafl} C Ry,
we just need to show that the relations Ry are satisfied in the group
(Xp/ | Rp, 7 = 010907 ). Sergiescu showed (Lemma 1.3 in [30]) that (DR),
(AR) and (NR) for I are consequences of (DR), (AR) and (NR) for I’
and of the relation 7 = 010207 ! The edge T belongs to the pseudocycle
To102. The corresponding pseudocycle relations derive from 7 = 010207 !
and 010201 = 020102. We prove that the relation 9, ,(A) = 1 is a conse-
quence of the set of relations R U {1 = 010207 1}, for every maximal tree
A of I'" and every ordered pair of vertices x, y that are adjacent to the same
edge o of A. If 7 ¢ A the claim follows. Suppose that 7 € A. We have two
cases (we refer to Figure 9):

(1) 62,4(A) = apTano20209T3, where the «; are the subwords obtained
by following the rest of A;

(2) dzy(A) = Boo1P17[2701 3, where the [; are the subwords obtained
by following the rest of A.

ap (11

agz

a2

Fig. 9. Tree relations for I" = I' U T are generated by the set Rr U {r = 010201_1}
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Replace 7 by 010201_1. In the first case, write as = 03(303 - - - 0,,(p0p, Where

o for k =1,...,pcorresponds to an edge of I" adjacent to o1 and o9, and (.
for k =1,...,p corresponds to a tree disjoint from o1 and o2. The elements
o (k=1,...,p) and 010201_1 commute, so that

Uk010201_1 = 0'2_10'1020'k = 010201_10k-
One derives that [ag, Jlagafl] = 1. From o007 = ay07 it follows that
aoalagal_1a102a20201020f1a3 = 0400'10'20110'1_10'2&20'10'20'1_10'10(3
= a00102a1UflagalagaflaQGlag = Q0102010200201 Q3.
In the second case, from (DR) it follows that o182 = 201 and then

Boo1 1010907  Bacioacy ta1 By = Booi fro10207  Bao109 35
= Boo1B10102820203.
One deduces that the relation 6, ,(A) = 1 holds in (X | R, T = g10207 ).
We remark that 7 also belongs to the pseudocycle P bounding the other
connected component of S?\I". According to Lemma 3.1 we can suppose that

the pseudocycle relations associated to P are redundant and thus (X | Rpr)
is isomorphic to (X | Rp, T = 01090, ). =

3.1. Inductive steps

DEFINITION 3.3. A node is a vertex of valence greater than two. We

define the wvalence of I', v(I"), to be the sum of the valences of all nodes
of I'.

In order to prove Theorem 2.1, we proceed by induction on the number
of connected components of S\ I'.

(i) Let I" be a tree. We recall that the braid group of the sphere is a
quotient of the braid group of the disk.

THEOREM 3.4 ([18, 37]). The group B, (S?) admits the following presen-
tation:

e Generators: o1,...,0,_1;
e Relations:

0i0i+10; = Oi+10i0i+1;
oio; =ojo;  for |i—j| > 2;
o109 -+ -0721_1 ---0901 = 1.

It follows that the assertion of Theorem 2.1 holds when I is a straight
line and v(I") = 0. Suppose that it holds for all trees with valence less than
g > 0 and let I" be a tree such that v(I") = ¢. Let vg be a univalent vertex
of I'. We follow the tree I" starting from vy and turning right at each node.
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Let v1 be the vertex preceding the first node. Let v9 be the first univalent
vertex after vy (see Figure 10).

Fig. 10. We suppose I' embedded in the sphere

We replace the edge 7 between v; and the first node with an edge 7
joining v; to the vertex vy (see Figure 11). The graph I} so obtained is such
that v(I1) < v(I"), and thus the assertion of Theorem 2.1 holds for I7.

Vo

M

Fig. 11. Replacing the edge 7 with 71

From Lemma 3.2 it follows that this assertion is also satisfied for the
graph I5 obtained by adding an edge 7o between v; and the other vertex
adjacent to ve (see Figure 12).

From Lemma 3.2 one deduces that the conclusion of Theorem 2.1 holds
for the graph Iy = Iy \ {71}. Iterating the process we derive that it holds
for the initial tree I

(i) Suppose that the conclusion of Theorem 2.1 holds when the number
of connected components of S?\ I' is less than p > 1. Let I" be a normal
graph such that S$?\ I" has p connected components. We remove an edge oy
which bounds two pseudocycles o1, 09,...,0, and o1,79,...,Tm of I'. We
encounter two cases.
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Vo

V1

P

Fig. 12. Adding and removing triangulations

(1) oy, is not the end edge of a reverse. From the induction hypothe-
sis and Tietze transformation, we deduce that (Xr|Rp\ (s}, 01+ 0n-1 =
o9+ - 0,) is a group presentation for By (S?). As we remarked in Section 2.2,
the set R is a system of relations for B,,(S?). Since {Rp\ {5y}, 01+ On—1 =
o9 ---0y,} is a complete system of relations for B, (S?) and it is a subset of
Rr, we conclude that (X | Rr) is a group presentation for Bp(S?).

(2) Suppose that o, is the end edge of a reverse. If there exists [ < n
such that o; = 0y41 and o; # o for [ +1 <i < j <n, then the relation

01410142+ Op0102...0]—1 = 0|42 0p0102 " 0]—10]

holds in (X | Rr). Multiplying by o o1 "71—+12 and applying (AR) we
obtain

-1 _-1 -1
02...01-10] =01 0y = 01500410142 00102 " O]
-1 -1 __—1
which yields

1 -1 -1 -1
...O'l+lo'2...0'l_1o'lo'l_1...0'2 o'l_"_l...o'n.

o1 =0,
Otherwise if o; = 041 only for [ = n — 1, then the relation
On0109 - Op_9 = 0102 Op_20p_1
holds in (X | Rr). Multiplying by o, 1 and applying (AR) we obtain
09 " Op_90pn_1 = O'l_l(fno'lO'Q ce e Op_9 = Gno’la;lag C e Op—2,

which yields
1

o1 = a;lag .- -on_gan_la;_lQ 0y Op.
This concludes the proof. =
3.2. Automorphisms and isometries. Let F be a subset of R? (respec-
tively of S2). The symmetry group of F, X(F), is the set of congruent trans-
formations of R? (respectively of S?) that leave F invariant. We denote by
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Y(F)* the subgroup of Y'(F) generated by rotations. The symmetry group
Y(F) is discrete if the set {¢(P) | ¢ € X(F)} is discrete for any point
PeF.

COROLLARY 3.5. Ewery finite subgroup H of O(3) is isomorphic to a
subgroup of Aut(B,(S?)) for some n.

Proof. Let I' be a normal graph on the sphere such that X(I") = H
(see for instance [14]). Since relations of By (S?) are preserved by rotations
we associate to every rotation o € H the corresponding automorphism g of
Br(S5?). To every reflection y € H we associate the morphism ¥ that moves
the generator o of By (S?) to the braid x(¢)~!. This map is an automorphism
of Br(S?). The subgroup K of Aut(Br(S?)) generated by the set {g | g a
generator of H} is isomorphic to H. =

4. Braids on the annulus. The braid groups are included in the series
of so-called “generalised braid groups” defined by Brieskorn [10]. They were
called Artin groups in [11], and are defined as the groups with generators
{si | i € I} and relations

prod(msj, si, sj) = prod(myi, s;, 5;).

We use here the notation of P. Deligne [15]: prod (m, z,y) denotes the prod-
uct zyzy ... (m factors). From this presentation we obtain the presentation
of the corresponding reflection group W [12] by adding the relation s? = e
for any ¢ € I.

Let us consider the nth Artin group of type B. This group is given by
the following presentation:

e Generators: 7,01,...,0p_1;
e Relations:
00410 = 054100141 (1=1,...,m—2);
0i0j = 0j0; (li =3l = 2);
TO; = 04T (7 #1);

TO1TOj = 01T0;T.

This group can be identified with the fundamental group of the configu-
ration space of distinct points on the plane with one point deleted [32], which
means the same as the braid group on n strands on the annulus, B, (Ann).
A geometric interpretation of the generators 7,01,...,0,_1 is given in Fig-
ure 13.

We recall that the group B, (Ann) embeds in the braid group By,+1. More
precisely, it is isomorphic to the subgroup of braids on n + 1 strands whose
first strand is isotopic to the trivial one.
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?Tl\ — PP

~ | I

~
~
~
N
L—

T (o

Fig. 13. Geometric interpretation of the generators 7,01,...,0n—1 of Bn(Ann)

In the following we consider a normal (connected, finite and without
loops or intersections) planar graph I" such that there exists a distinguished
vertex v with the property that the graph I minus the vertex v and all the
edges adjacent to v is still connected. We label by {7i,..., 7} the edges
adjacent to v and by {o1,...,0,} the other ones. We call I" a 1-punctured
graph.

THEOREM 4.1. Let I' be a l-punctured graph with n + 1 wvertices.
The braid group Bp(Ann) admits the presentation (Xr|Rr), where Xp =
{04, 7 | a is an edge of I' not adjacent to the distinguished vertex v and b
is an edge adjacent to v} and Ry is the set of the following relations:

e Disjointedness relations (DR): if the edges a and c (respectively b
and c¢) are disjoint, then 0,0, = 0.0, (respectively Tyo. = 0cTp);

o Adjacency relations (AR): if the edges a and c (respectively b and c)
have a common vertezx, then 0,0.0q = 0.040c (Th0cThOc = OcTH0OCTh);

e Nodal relations (NR): Let a,b,c be three edges that have only one
common vertex and are clockwise ordered. If the edges a,b,c are not
adjacent to v, then

0q0p0c0q = Op0c0q00;
if the edges a,c are not adjacent to v and b is adjacent to v, then
0a0bTcOq = ObTcOa0b, Tv0cO0aThOc = 0aTv0c0aTh;

e Pseudocycle relations (PR): if the edges ay, ..., an, form a pseudocy-
cle, a1 is not the start edge nor is a,, the end edge of a reverse, and
no a; is adjacent to v, then

UalaQQ . e O'am,1 e O'a20'a3 s 0q

m*
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If a1, a,, are adjacent to v, then
Ta10az " Oam—1 = Taz0as """ Tam-
REMARK 4.2. As in Theorem 2.1, the nodal relation (NR) also implies
the equality

Oa0p0c0q = Op0c0q0h = Oc0q0p0c.

The geometric interpretation of the generators is the following. The dis-
tinguished vertex corresponds to the deleted point of R. To any edge a not
adjacent to v we associate the corresponding positive half-twist as in Fig-
ure 1. To any edge b adjacent to v we associate the braid 7, as in Figure 14.

o/
N (.
N

Th

Fig. 14. Geometric interpretation of 7

We show the geometric interpretation of the relation mo.0,7p0. =
0aTp0c04Tp. The other ones can be easily verified as in Section 2.2. We add
two edges d and e, with their corresponding braids 74 and 7, as in Figure 15.
The braid 74 is equivalent to o, '7,0., and 7, is equivalent to 0,70, . Then
o; lno. and o, commute, as do OuThO, 1 and o.. So we have the following
equalities, which can be easily verified on corresponding braids:

Fig. 15. Nodal relation m,0.04T,0c = 04T60¢0aTy holds in Br(Ann)

TpO O aTHOc = Ucdc_lTbUcdaTbJC = JCUadc_lTbO'CTbUC
= Ucaaaglacn,acrb = acaaTbaglaaach = UaTbaglacaaach = 04Tp0cOaTh-

A proof of Theorem 4.1 is given in [34]. The steps of the proof are the
same as for Theorem 2.1.
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COROLLARY 4.3. The automorphism group of B,(Ann) contains a group
isomorphic to the dihedral group D,_1.

Proof. One can associate to the graph given in Figure 16 a presenta-

tion for B, (Ann). The same argument used in Corollary 3.5 concludes the
proof. m

ap a2

>S5

Fig. 16. A graph associated to B, (Ann)

We remark that one can generalise this approach to braid groups on a
planar surface, i.e. a surface of genus 0 with [ > 1 boundary components. In
such a case one considers a normal planar graph with k£ (= [—1) distinguished

vertices v1,...,v such that there are no edges connecting distinguished
vertices and the graph I' minus the vertices vi,...,v; and all the edges
adjacent to vy, . .., vy is still connected. We label by {7y j,..., 7 ;} the edges

adjacent to vj and by {o1,...,0,} the edges disjoint from {v1,...,v;}. We
say that I is a k-punctured graph. As in Theorem 4.1 one can associate
to any k-punctured graph I" on n vertices a set of generators for the braid
group on n strands on a surface of genus 0 with £+ 1 boundary components,
with the above geometrical interpretation of generators.

5. Singular braids and graphs. Singular braids have been introduced
in [1, 8] as a generalisation of classical braids, by allowing strands to intersect
in finitely many double points.

The set of singular braids on n strands SB,, up to isotopy, forms a
monoid. To the standard generator o; of the braid group B, one can asso-
ciate the singular braid z; obtained by replacing the positive crossing of the
jth and (j + 1)th strands by a singular point.

Baez and Birman provided a monoid presentation for SB,. The gen-

erators are o1,...0,_1, their inverses o L a;_ll and the singular braids
Z1,...,Zp—1. To the usual braid relations (and the invertibility of o;) one
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has to add the following relations:

T3040 =0504T for |i—j|:1;

TiTj = TjT; for |i — j| > 2;
Ti0; = 0;T; for |i — j| > 2;
T;0; = 0; X4 fOI‘iZl,...,?l—l.

Singular braids are related to the Vassiliev—Goussarov theory of finite
type invariants. The Birman—Ko—Lee presentation for the monoid SB,, was
obtained in [33]. As in the case of classical braids, one can extend the group
B, (X) to the monoid SB,(X) of singular braids on n strands on the sur-
face X. This monoid has been introduced in [22], in order to define finite
type invariants for surface braids. Presentations for this monoid are given
in [2] and [21].

In this section we provide presentations by graphs for the monoid SB,
and for the monoid SBy,(Ann) of singular braids on n strands of the annulus.

Let I' be a normal planar graph. We associate to any edge a three sin-
gular braids: o, will denote the positive half-twist associated to a (as in
Figure 1), o, ! will denote the corresponding negative half-twist, and x, the
corresponding singular crossing.

THEOREM 5.1. Let I' be a normal planar graph with n vertices. The
singular braid monoid SB, has the presentation (X, Rp) where Xp =
{04,024 | a is an edge of I'} and R is formed by the following six
types of relations:

e Disjointedness: if the edges a and b are disjoint, then
0q0bh = Op0a, Lalp = TpLa, 0aqTp = TpOa;

o Commutativity:
Oaqla = TqO0a;

o [Invertibility:
000, =0, 00 =15
o Adjacency: if the edges a and b have a common vertex, then
0a0p0q = O0p0q0p, LaO0p0aq = Op0alh;
e Nodal: if the edges a, b and ¢ have a common vertex and are placed

clockwise, then
0aq0p0c0q = O0p0c0q0ph = 0c0q0p0c,

LqO0p0cOq = 0q0p0cLaq,
0a0pTcOq = OpLcOq0p,

LaO0pTcOq = OpLcOqlb;
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e Pscudocycle: if the edges a1,...,a, form an irreducible pseudocycle
and if a1 is not the start edge nor is a, the end edge of a reverse,
then

Oay """ Oapn—1 = Oaz """ Oans  TarOaz """ Oan_1 = Oaz """ Oan_1Tan-

A proof of Theorem 5.1 is given in [34]. The steps of the proof are the
same as for Theorem 2.1.

The last aim of this section is to give graph presentations for the singular
braid monoid on n strands of the annulus.

THEOREM 5.2. The singular braid monoid on n strands of the annulus
SBy,(Ann) admits the following presentation:

- —1.
e Generators: 0,0, ,x,t=1,....,n—1,7,77%

e Relations:

s

0,0 = 005 if |i—j|>1;

=
B

TiTj = TjT; if ‘Z —j‘ > 1;
Ti0j = 0455 if ‘i—j‘#l;

0i0i4+10 = 0i410304+1;

e N e e N s N e e N Y
[ S SEJV)
S e e e N N N N N

0i0i4+1T; = Ti4+1040441;

R6 0i4103Tit1 = Ti034104;

R7 TO1TOl = O1TO|T;

RS TO1TX] = X1TO1T;

R9 TO; = 03T af 1> 2;

R10) 7x; =a7  if i > 2

(R11) aiai_l = Ji_lai =rr l=r"lr=1.

Proof. The geometric interpretation of o; and 7 is given in Figure 13, and

o, Land 77! are their inverses. The generator x; corresponds to a singular

crossing between strands ¢ and ¢ + 1.

<;/ -

7

S

q |
]
O - - - O \ - - -

Fig. 17. The words 71721 and z17017 represent the same element in SB,(Ann)
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We obtain the Reidemeister moves for singular knot theory in a solid
torus if we add the move depicted in Figure 17 to the regular (without
singularities) Reidemeister moves of knot theory in a solid torus.

This Reidemeister move means how a singular point goes around the
axis of the torus (fixed string). The proof that relations (R1)—(R11) give a
complete list is standard: every isotopy can be decomposed into a sequence
of elementary isotopies which correspond to relations (R1)—(R11) (see also
[21]). =

REMARK 5.3. The singular braid monoid on n strands of the annulus
differs from the singular Artin monoid of type B as defined by R. Corran
[13], where the numbers of singular and regular generators are the same.
The singular generator associated to 7 cannot be interpreted geometrically
as above.

As in Section 4 we consider 1-punctured graphs. To any edge a disjoint
from the distinguished vertex v of I' we associate three singular braids:
o, will denote the positive half-twist associated to a (as in Figure 1), o, !
the corresponding negative half-twist, and 7, the corresponding singular
crossing.

The graph presentations for the singular braid monoid in the solid torus
arise from Theorems 5.1 and 5.2 (see [34]).

THEOREM 5.4. Let I' be a 1-punctured graph on n vertices. The monoid
SBy(Ann) admits the presentation (X, Rr), where

e X = {O’a,O’a_l,:L'a,Tb,Tb_l}, for any edge a of I' not incident with the
distinguished vertex v, and for any edge b of I' adjacent to v;

e Rp is formed by the relations given in Theorems 4.1 and 5.1 and the
following new nodal and invertibility relations:

0aTp0cTg = TcO0qThOc,
Tv0cOaTpLc = LaTh0cO0aTh,

-1 _ _-1_ _
T, =T, Tp= 1.
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