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Presentations of surface braid groups by graphs

by

Paolo Bellingeri (Pisa) and
Vladimir Vershinin (Montpellier and Novosibirsk)

Abstract. We extend and generalise Sergiescu’s results on planar graphs and pre-
sentations for the braid group Bn to other topological generalisations of Bn.

1. Introduction. Some years after the definition of braid groups by
Artin, Zariski [35, 36] introduced new groups, which were a natural exten-
sion of both the classical braid group Bn and the fundamental group of a
surface. These groups were then “rediscovered” in the 60’s in the study of
configuration spaces [17] and called surface braid groups.

A possible definition of such groups is the following. Let Σ denote an
orientable, connected, compact surface possibly with boundary components.
Fix a set P = {P1, . . . , Pn} of n distinct points in the interior of Σ. A geo-

metric braid on Σ based at P is a collection β = (ψ1, . . . , ψn) of n disjoint
paths on Σ× [0, 1], called strands of β, such that the ith strand runs mono-
tonically in t in [0, 1] from the point (Pi, 0) to some point (Pj , 1). Two braids
are considered equivalent if they are isotopic. The usual product of paths
defines a group structure on the equivalence classes of braids. This group,
denoted by Bn(Σ), does not depend on the choice of P and is called the braid

group on n strands on Σ. The braid group of the disk Bn(D2) is isomorphic
to the classical braid group Bn and it embeds in a canonical way in Bn(Σ),
when Σ is a surface of genus g ≥ 1. Therefore we can consider the standard
generators of the braid group σ1, . . . , σn−1 as elements of Bn(Σ). On the
other hand, the group B1(Σ) is isomorphic to the fundamental group of Σ.

Surface braid groups are related to mapping class groups and links in
3-manifolds [7]. In the last years the interest in these groups has grown

2000 Mathematics Subject Classification: Primary 20F36; Secondary 20F05.
Key words and phrases: braids, surface braids, graphs.
The second author was supported by CNRS-NSF grant No 17149 and INTAS grant

No 03-5-3251.

[1]



2 P. Bellingeri and V. Vershinin

considerably (see for instance [19, 20, 23, 25, 27, 28]) and several properties
of braid groups (and their singular extensions) have been generalised to
surface braid groups. In particular, some results on braids and links have
been extended to surface braids and links in 3-manifolds [22, 26, 31], and
new features have been discovered [4, 16].

Sergiescu [29, 30] showed how to associate to any planar, connected graph
with n vertices, without loops or intersections, a presentation for the braid
group Bn. To each edge e of the graph he associated the braid βe which is a
clockwise half-twist along e (see Figure 1). Sergiescu provided a complete set
of relations using this set of generators for Bn. Afterwards, Birman, Ko and
Lee [9] extended this result to inner-complete graphs in order to give a new
proof for the conjugation problem in Bn. Recently Han and Ko [24] showed
that it is possible to associate braid group presentations to a more general
family of graphs (linearly spanned graphs) containing the above graphs. We
also recall that these presentations turned out to be useful in other related
contexts (see for instance [5] and [6]).
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Fig. 1. Edges and geometric braids

The aim of this paper is to provide some analogous results for surface
braid groups. Let Γ be a graph on an orientable surface Σ. The graph Γ is
called normal if it is connected, finite and has no loops or intersections. Let
Γ be a normal graph on Σ. Let S(Γ ) be the set of vertices of Γ . We associate
to the edges of Γ the corresponding geometric braids on Σ (Figure 1) and
we define BΓ (Σ) as the subgroup of B|S(Γ )|(Σ) generated by these braids.
In Sections 2 and 3 we consider graphs on the sphere and we prove that if Γ
is a normal graph on the sphere then the set XΓ = {σ | σ is an edge of Γ}
is a set of generators for B|S(Γ )|(S

2) and thus the group BΓ (S2) coincides

with B|S(Γ )|(S
2). Moreover, we provide a complete system of relations (The-

orem 2.1). In particular, we have the following proposition.
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Proposition 1.1. Let Σ be an oriented surface such that π1(Σ) 6= 1
and let Γ be a normal graph on Σ. Then BΓ (Σ) is a proper subgroup of

B|S(Γ )|(Σ).

In Section 4 we introduce planar graphs with coloured edges and we show
how to find presentations via graphs for the braid group on the annulus
Bn(Ann) (Theorem 4.1). In Section 5 we provide similar results for singular
braids on the disk and on the annulus.

2. Sphere braid group presentations via graphs

2.1. Definitions and statement of the main theorem. Unless otherwise
stated, in Sections 2 and 3, Γ denotes a normal graph on S2. We need
some preliminary definitions. Suppose that Γ is not a tree. The set S2 \ Γ
is the disjoint union of a finite number of open disks D1, . . . , Dm, m > 1.
The boundary of Dj on S2 is a subgraph Γ (Dj) of Γ . We choose a point
O in the interior of Dj, and an edge σ of Γ (Dj) with vertices v1, v2. We
suppose that the triangle Ov1v2 is oriented anticlockwise. We denote σ by
σ(e1). We define the pseudocycle associated toDj to be the sequence of edges
σ(e1) · · ·σ(ep) such that:

• if the vertex vj+1 is not univalent, then σ(ej+1) is the first edge to the
left of σ(ej) (we consider σ(ej) going from vj to vj+1) and the vertex
vj+2 is the other vertex adjacent to σ(ej+1);

• if the vertex vj+1 is univalent, then σ(ej+1) = σ(ej) and vj+2 = vj ;
• vp+1 = v1.

Let γ = σ(e1) · · ·σ(ep) be a pseudocycle of Γ . Let i = 1, . . . , p. If σ(ei) =
σ(ej) for some j 6= i, then we say that

• σ(ei) is the start edge of a reverse if j = i+ 1 (we set ep+1 = e1).
• σ(ei) is the end edge of a reverse if j = i− 1 (we set e0 = ep).

In the following we write σ1 · · ·σp for the pseudocycle σ(e1) · · ·σ(ep).

Let ∆ be a maximal tree of a normal graph Γ on q + 1 vertices. Then
∆ has q edges. Let v1, v2 be two vertices adjacent to the same edge σ of ∆.
Write σ(f1) for σ. We define the circuit σ(f1) · · ·σ(f2q) as follows:

• if the vertex vj+1 is not univalent, then σ(fj+1) is the first edge on the
left of σ(fj) (we consider σ(fj) going from vj to vj+1) and the vertex
vj+2 is the other vertex adjacent to σ(fj+1);

• if vj+1 is univalent, then σ(fj+1) = σ(fj) and vj+2 = vj .

This way we come back to v1 after passing twice through each edge
of ∆. Write δv1,v2

(∆) for the word in XΓ corresponding to the circuit
σ(f1) · · ·σ(f2q) (Figure 2).
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Fig. 2. δx,y(∆) = σα2β2σγδ2ε2γζ2 and δy,x(∆) = σγδ2ε2γζ2σα2β2

Theorem 2.1. Let Γ be a normal graph with n vertices. The braid group

Bn(S2) admits a presentation 〈XΓ |RΓ 〉, where XΓ = {σ |σ is an edge of Γ}
and RΓ is the set of following relations:

σ
1

σ2

σ
3

Fig. 3. Nodal relation

σ2

σ1

σm σ 1σ2

σ

σ3

4

Fig. 4. Pseudocycle relation. On the left σ1σ2 · · · σm−1 = σ2 · · ·σm = · · · = σm · · ·σm−2;
on the right σ1σ2σ

2

3 = σ2σ
2

3σ4 = σ2

3σ4σ1 and σ3σ4σ1σ2 = σ4σ1σ2σ3

• Disjointedness relations (DR): if σi and σj are disjoint , then σiσj =
σjσi;

• Adjacency relations (AR): if σi, σj have a common vertex , then σiσjσi

= σjσiσj ;
• Nodal relations (NR): if {σ1, σ2, σ3} have only one common vertex and

they are clockwise oriented (Figure 3), then

σ1σ2σ3σ1 = σ2σ3σ1σ2;

• Pseudocycle relations (PR): if σ1 · · ·σm is a pseudocycle and σ1 is not
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the start edge nor is σm the end edge of a reverse (Figure 4), then

σ1σ2 · · ·σm−1 = σ2σ3 · · ·σm.

• Tree relations (TR): δx, y(∆) = 1 for every maximal tree ∆ of Γ and

every ordered pair of vertices x, y that are adjacent to the same edge

σ of ∆.

Remark 2.2. The statement of Theorem 2.1 is highly redundant. For
instance one can show that a (TR) relation on a given maximal tree of Γ ,
together with (DR), (AR), (NR) and (PR), generate (TR) for any other
maximal tree of Γ . Anyway, these presentations are symmetric and one can
read off the relations from the geometry of Γ .

Remark 2.3. Let γ ⊆ Γ be a star (a graph which consists of sev-
eral edges joined in one point). For any clockwise ordered subset {σi1 , . . . ,
σij | j ≥ 2 } of edges of γ the following relation holds in the group 〈XΓ |RΓ 〉:

σi1 · · ·σijσi1 = σijσi1 · · ·σij .

2.2. Geometric interpretation of relations. It is geometrically evident
that (AR) and (DR) hold in BΓ (S2). Let Γ contain a triangle σ1, σ2, τ as
in Figure 8. The corresponding braids satisfy the relation τ = σ1σ2σ

−1
1

and thus τσ1 = σ1σ2 in BΓ (S2). The relation σ1σ2 = σ2τ follows from
the braid relation σ1σ2σ

−1
1 = σ−1

2 σ1σ2. Let σ1, σ2, σ3 be arranged as in
Figure 5. We add three edges τ1, τ2, τ3. The nodal relation follows from
the pseudocycle relations on the triangles τ1σ2σ3, τ2σ1σ3 and τ3σ1σ2. In
fact, σ1σ2σ3σ1 = σ2τ3σ3σ1 = σ2σ3τ3σ1 = σ2σ3σ1σ2. All other pseudocycle
relations follow by induction on the length of the cycle.

σ
2

σ
3

1
σ

τ

τ

τ

1

2

3

Fig. 5. Nodal relation holds in BΓ (S2)

Let ∆ be a maximal tree of Γ . Let σ be an edge of ∆ and let x, y
be the two adjacent vertices. The element δx,y(∆) corresponds to a (pure)
braid such that the braid obtained by removing the string starting from
the vertex x is isotopic to the trivial braid. This string goes around (with
clockwise orientation) all other vertices (Figure 6, left). The braid δx,y(∆)
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is isotopic to the trivial braid in BΓ (S2) and so δx,y(∆) = 1 (Figure 6).
Therefore the natural map φΓ : 〈XΓ |RΓ 〉 → BΓ (S2) is a homomorphism.
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Fig. 6. The braid δx,σ(∆) associated to the tree ∆ = Γ \ τ

3. Proof of Theorem 2.1. We need some preliminary lemmas.

Lemma 3.1. Let Γ be a normal graph on the sphere and let P be a pseu-

docycle of Γ . Let RP denote the set of pseudocycle relations associated to P .

The group presentations 〈XΓ |RΓ 〉 and 〈XΓ |RΓ \ {RP }〉 are isomorphic.

Proof. We consider the sphere S2 as the unit sphere in R3. We suppose
that the disk bounded by P contains the point (0, 0,−1). Then we enlarge
the disk bounded by P and we can also suppose that the graph Γ is contained
in the half-space z > 0. We orthogonally project the graph on the xy-
plane along the z-axis. Let σ1, . . . , σm be the edges of the pseudocycle P
as in Figure 7. Since we consider the projection of Γ on the xy-plane, the
pseudocycle relations on P will be clockwise oriented.

∆
∆

∆

∆

σ

m−1σ

2

σ∆

∆

∆

σ

mσ

m−1σ

2
1

(2)

(m)

(1)

(2)

(m)

(1)

∆

Fig. 7. The maximal trees ∆ and ∆′ of Γ

Therefore, in order to prove the lemma we need to show that the relation
σm · · ·σ2 = σm−1 · · ·σ1 holds in 〈XΓ |RΓ \ {RP }〉.
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Consider two maximal trees ∆,∆′ of Γ such that the tree ∆ contains
σ2, . . . , σm, the tree ∆′ contains σ1, . . . , σm−1, and ∆ ∪ {σ1} = ∆′ ∪ {σm}.
The graph ∆ \ {σ2, . . . , σm} = ∆′ \ {σ1, . . . , σm−1} is a set of subtrees
∆(1), ∆(2), . . . , ∆(m) of Γ (Figure 7). The (TR) relations on ∆ and ∆′ yield

(1) σm · · ·σ2 α2 σ2 α3 · · ·σm α1 = σm−1 · · ·σ1 α1 σ1 α2 · · ·σm−1 αm,

where α1, . . . , αm are subwords associated to the respective subtrees∆(1), . . .
. . . , ∆(m). Let α1 = ζ1 · · · ζn−1ζnζn+1 · · · ζq, where ζn−1 = ζn and ζi 6= ζj,
for i, j ≥ n. We apply the (PR) relation to the pseudocycle ζnζn+1 · · · ζq
σ1α2 · · ·σmζ1 · · · ζn−2ζn−1, to get

ζnζn+1 · · · ζqσ1α2 · · ·σmζ1 · · · ζn−2 = ζn+1 · · · ζqσ1α2 · · ·σmζ1 · · · ζn−2ζn−1 ,

and we derive

ζ−1
q · · · ζ−1

n+1ζnζn+1 · · · ζqσ1α2 · · ·σmζ1 · · · ζn−2 = σ1α2 · · ·σmζ1 · · · ζn−2ζn−1.

Multiply by σ−1
1 and apply (AR) to obtain

ζnζn+1 · · · ζqσ1ζ
−1
q · · · ζ−1

n+1ζ
−1
n α2 · · ·σmζ1 · · · ζn−2 = α2 · · ·σmζ1 · · · ζn−2ζn−1.

It follows that

α1σ1α
−1
1

= ζ1 · · · ζn−1α2 · · ·σmζ1 · · · ζn−2ζn−1(ζ1 · · · ζn−1α2 · · ·σmζ1 · · · ζn−2)
−1.

From iterated applications of (AR) and (NR) it follows that

σmζ1 · · · ζn−2ζn−1ζ
−1
n−2 · · · ζ

−1
1 σ−1

m = ζ−1
n−1ζ

−1
n−2 · · · ζ

−1
1 σmζ1 · · · ζn−2ζn−1.

Then
α1σ1α

−1
1 = α2σ2 · · ·αmσmα

−1
m · · ·σ−1

2 α−1
2

holds in 〈XΓ |RΓ \{RP }〉. The braids α1 and α−1
m · · ·σ−1

2 α−1
2 commute, and

thus
α2σ2 · · ·αmσmα1 = α1σ1α2 · · ·αm.

From equation (1), it follows that

σm · · ·σ2 = σm−1 · · ·σ1.

The following lemma generalises a result on classical braids and planar
graphs proved in [30] (Lemmas 2 and 3) to braids on the sphere. The lemma
states that for any graph Γ ′ obtained from a given Γ on S2 by removing or
adding “triangles” the groups 〈XΓ ′ |RΓ ′〉 and 〈XΓ |RΓ 〉 defined in Theorem
2.1 are isomorphic.

Lemma 3.2. Let σ1, σ2 be two adjacent edges of Γ , not contained in any

pseudocycle. Let Γ ′ = Γ∪τ be the graph obtained by adding an edge τ to Γ to

form an anticlockwise triangle τσ1σ2 (Figure 8). Then 〈XΓ |RΓ 〉 is a group

presentation for BΓ (S2) if and only if 〈XΓ ′ |RΓ ′〉 is a group presentation

for BΓ ′(S2).
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σ σ

τ

1 2

Fig. 8. Adding or removing a triangle

Proof. Note that by the Tietze transformation 〈XΓ ′ |RΓ , τ = σ1σ2σ
−1
1 〉

is isomorphic to 〈XΓ |RΓ 〉. Hence in order to prove that 〈XΓ ′ |RΓ ′〉 is a
group presentation for BΓ ′(S2) if and only if 〈XΓ ′ |RΓ ′〉 is a group presen-
tation for BΓ (S2), it is sufficient to prove that the groups 〈XΓ ′ |RΓ ′〉 and
〈XΓ ′ |RΓ , τ = σ1σ2σ

−1
1 〉 are isomorphic. Since {RΓ , τ = σ1σ2σ

−1
1 } ⊂ RΓ ′ ,

we just need to show that the relations RΓ ′ are satisfied in the group
〈XΓ ′ |RΓ , τ = σ1σ2σ

−1
1 〉. Sergiescu showed (Lemma 1.3 in [30]) that (DR),

(AR) and (NR) for Γ ′ are consequences of (DR), (AR) and (NR) for Γ
and of the relation τ = σ1σ2σ

−1
1 . The edge τ belongs to the pseudocycle

τσ1σ2. The corresponding pseudocycle relations derive from τ = σ1σ2σ
−1
1

and σ1σ2σ1 = σ2σ1σ2. We prove that the relation δx,y(∆) = 1 is a conse-
quence of the set of relations RΓ ∪ {τ = σ1σ2σ

−1
1 }, for every maximal tree

∆ of Γ ′ and every ordered pair of vertices x, y that are adjacent to the same
edge σ of ∆. If τ /∈ ∆ the claim follows. Suppose that τ ∈ ∆. We have two
cases (we refer to Figure 9):

(1) δx,y(∆) = α0τα1σ2α2σ2τα3, where the αi are the subwords obtained
by following the rest of ∆;

(2) δx,y(∆) = β0σ1β1τβ2τσ1β3, where the βi are the subwords obtained
by following the rest of ∆.

α

β
τ

σ

α

α

α

0 1

2

3

2

2

β β

β

1σ

1

0 3

τ

Fig. 9. Tree relations for Γ ′ = Γ ∪ τ are generated by the set RΓ ∪ {τ = σ1σ2σ
−1

1
}
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Replace τ by σ1σ2σ
−1
1 . In the first case, write α2 = σ3ζ3σ3 · · ·σpζpσp, where

σk for k = 1, . . . , p corresponds to an edge of Γ adjacent to σ1 and σ2, and ζk
for k = 1, . . . , p corresponds to a tree disjoint from σ1 and σ2. The elements
σk (k = 1, . . . , p) and σ1σ2σ

−1
1 commute, so that

σkσ1σ2σ
−1
1 = σ−1

2 σ1σ2σk = σ1σ2σ
−1
1 σk.

One derives that [α2, σ1σ2σ
−1
1 ] = 1. From σ1α1 = α1σ1 it follows that

α0σ1σ2σ
−1
1 α1σ2α2σ2σ1σ2σ

−1
1 α3 = α0σ1σ2α1σ

−1
1 σ2α2σ1σ2σ

−1
1 σ1α3

= α0σ1σ2α1σ
−1
1 σ2σ1σ2σ

−1
1 α2σ1α3 = α0σ1σ2α1σ2α2σ1α3.

In the second case, from (DR) it follows that σ1β2 = β2σ1 and then

β0σ1β1σ1σ2σ
−1
1 β2σ1σ2σ

−1
1 σ1β3 = β0σ1β1σ1σ2σ

−1
1 β2σ1σ2β3

= β0σ1β1σ1σ2β2σ2β3.

One deduces that the relation δx,y(∆) = 1 holds in 〈XΓ ′ |RΓ , τ = σ1σ2σ
−1
1 〉.

We remark that τ also belongs to the pseudocycle P bounding the other
connected component of S2\Γ . According to Lemma 3.1 we can suppose that
the pseudocycle relations associated to P are redundant and thus 〈XΓ ′ |RΓ ′〉
is isomorphic to 〈XΓ ′ |RΓ , τ = σ1σ2σ

−1
1 〉.

3.1. Inductive steps

Definition 3.3. A node is a vertex of valence greater than two. We
define the valence of Γ , v(Γ ), to be the sum of the valences of all nodes
of Γ .

In order to prove Theorem 2.1, we proceed by induction on the number
of connected components of S2 \ Γ .

(i) Let Γ be a tree. We recall that the braid group of the sphere is a
quotient of the braid group of the disk.

Theorem 3.4 ([18, 37]). The group Bn(S2) admits the following presen-

tation:

• Generators: σ1, . . . , σn−1;
• Relations:

σiσi+1σi = σi+1σiσi+1;

σiσj = σjσi for |i− j| ≥ 2;

σ1σ2 · · ·σ
2
n−1 · · ·σ2σ1 = 1.

It follows that the assertion of Theorem 2.1 holds when Γ is a straight
line and v(Γ ) = 0. Suppose that it holds for all trees with valence less than
q > 0 and let Γ be a tree such that v(Γ ) = q. Let v0 be a univalent vertex
of Γ . We follow the tree Γ starting from v0 and turning right at each node.
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Let v1 be the vertex preceding the first node. Let v2 be the first univalent
vertex after v0 (see Figure 10).

��
��

�� ��

��

��
��

��

��

v

v

v

Γ

1 

2

0

τ

Fig. 10. We suppose Γ embedded in the sphere

We replace the edge τ between v1 and the first node with an edge τ1
joining v1 to the vertex v2 (see Figure 11). The graph Γ1 so obtained is such
that v(Γ1) < v(Γ ), and thus the assertion of Theorem 2.1 holds for Γ1.

��
��

�� ��

��

��
��

��

��

v

v

v

τ

Γ1 

1 

1 

2

0

Fig. 11. Replacing the edge τ with τ1

From Lemma 3.2 it follows that this assertion is also satisfied for the
graph Γ2 obtained by adding an edge τ2 between v1 and the other vertex
adjacent to v2 (see Figure 12).

From Lemma 3.2 one deduces that the conclusion of Theorem 2.1 holds
for the graph Γ3 = Γ2 \ {τ1}. Iterating the process we derive that it holds
for the initial tree Γ .

(ii) Suppose that the conclusion of Theorem 2.1 holds when the number
of connected components of S2 \ Γ is less than p > 1. Let Γ be a normal
graph such that S2 \Γ has p connected components. We remove an edge σ1

which bounds two pseudocycles σ1, σ2, . . . , σn and σ1, τ2, . . . , τm of Γ . We
encounter two cases.
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v

v

v

τ

Γ

1 

2

0

τ 2

1 

2

Fig. 12. Adding and removing triangulations

(1) σn is not the end edge of a reverse. From the induction hypothe-
sis and Tietze transformation, we deduce that 〈XΓ |RΓ\{σ1}, σ1 · · ·σn−1 =

σ2 · · ·σn〉 is a group presentation for BΓ (S2). As we remarked in Section 2.2,
the set RΓ is a system of relations for Bn(S2). Since {RΓ\{σ1}, σ1 · · · σn−1 =

σ2 · · ·σn} is a complete system of relations for Bn(S2) and it is a subset of
RΓ , we conclude that 〈XΓ |RΓ 〉 is a group presentation for BΓ (S2).

(2) Suppose that σn is the end edge of a reverse. If there exists l < n
such that σl = σl+1 and σi 6= σj for l + 1 ≤ i < j ≤ n, then the relation

σl+1σl+2 · · ·σnσ1σ2 . . . σl−1 = σl+2 · · ·σnσ1σ2 · · ·σl−1σl

holds in 〈XΓ |RΓ 〉. Multiplying by σ−1
1 σ−1

n · · ·σ−1
l+2 and applying (AR) we

obtain

σ2 . . . σl−1σl = σ−1
1 σ−1

n · · ·σ−1
l+2σl+1σl+2 · · ·σnσ1σ2 · · ·σl−1

= σl+1σl+2 · · ·σnσ1σ
−1
n · · ·σ−1

l+2σ
−1
l+1σ2 · · ·σl−1,

which yields

σ1 = σ−1
n · · ·σ−1

l+1σ2 · · ·σl−1σlσ
−1
l−1 · · ·σ

−1
2 σl+1 · · ·σn.

Otherwise if σl = σl+1 only for l = n− 1, then the relation

σnσ1σ2 · · ·σn−2 = σ1σ2 · · ·σn−2σn−1

holds in 〈XΓ |RΓ 〉. Multiplying by σ−1
1 and applying (AR) we obtain

σ2 · · ·σn−2σn−1 = σ−1
1 σnσ1σ2 · · ·σn−2 = σnσ1σ

−1
n σ2 · · ·σn−2 ,

which yields

σ1 = σ−1
n σ2 · · ·σn−2σn−1σ

−1
n−2 · · ·σ

−1
2 σn.

This concludes the proof.

3.2. Automorphisms and isometries. Let F be a subset of R2 (respec-
tively of S2). The symmetry group of F , Σ(F ), is the set of congruent trans-
formations of R2 (respectively of S2) that leave F invariant. We denote by
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Σ(F )+ the subgroup of Σ(F ) generated by rotations. The symmetry group
Σ(F ) is discrete if the set {φ(P ) | φ ∈ Σ(F )} is discrete for any point
P ∈ F .

Corollary 3.5. Every finite subgroup H of O(3) is isomorphic to a

subgroup of Aut(Bn(S2)) for some n.

Proof. Let Γ be a normal graph on the sphere such that Σ(Γ ) = H
(see for instance [14]). Since relations of BΓ (S2) are preserved by rotations
we associate to every rotation ̺ ∈ H the corresponding automorphism ̺ of
BΓ (S2). To every reflection χ ∈ H we associate the morphism χ that moves
the generator σ ofBΓ (S2) to the braid χ(σ)−1. This map is an automorphism
of BΓ (S2). The subgroup K of Aut(BΓ (S2)) generated by the set {g | g a
generator of H} is isomorphic to H.

4. Braids on the annulus. The braid groups are included in the series
of so-called “generalised braid groups” defined by Brieskorn [10]. They were
called Artin groups in [11], and are defined as the groups with generators
{si | i ∈ I} and relations

prod(mi,j, si, sj) = prod(mj,i, sj , si).

We use here the notation of P. Deligne [15]: prod (m,x, y) denotes the prod-
uct xyxy . . . (m factors). From this presentation we obtain the presentation
of the corresponding reflection group W [12] by adding the relation s2i = e
for any i ∈ I.

Let us consider the nth Artin group of type B. This group is given by
the following presentation:

• Generators: τ, σ1, . . . , σn−1;
• Relations:

σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n− 2);

σiσj = σjσi (|i− j| ≥ 2);

τσj = σjτ (j 6= 1);

τσ1τσj = σ1τσjτ.

This group can be identified with the fundamental group of the configu-
ration space of distinct points on the plane with one point deleted [32], which
means the same as the braid group on n strands on the annulus, Bn(Ann).
A geometric interpretation of the generators τ, σ1, . . . , σn−1 is given in Fig-
ure 13.

We recall that the group Bn(Ann) embeds in the braid group Bn+1. More
precisely, it is isomorphic to the subgroup of braids on n+ 1 strands whose
first strand is isotopic to the trivial one.
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P1 P Pi i+1

σ iτ

Fig. 13. Geometric interpretation of the generators τ, σ1, . . . , σn−1 of Bn(Ann)

In the following we consider a normal (connected, finite and without
loops or intersections) planar graph Γ such that there exists a distinguished
vertex v with the property that the graph Γ minus the vertex v and all the
edges adjacent to v is still connected. We label by {τ1, . . . , τm} the edges
adjacent to v and by {σ1, . . . , σp} the other ones. We call Γ a 1-punctured

graph.

Theorem 4.1. Let Γ be a 1-punctured graph with n + 1 vertices.

The braid group Bn(Ann) admits the presentation 〈XΓ |RΓ 〉, where XΓ =
{σa, τb | a is an edge of Γ not adjacent to the distinguished vertex v and b
is an edge adjacent to v} and RΓ is the set of the following relations:

• Disjointedness relations (DR): if the edges a and c (respectively b
and c) are disjoint , then σaσc = σcσa (respectively τbσc = σcτb);

• Adjacency relations (AR): if the edges a and c (respectively b and c)
have a common vertex , then σaσcσa = σcσaσc (τbσcτbσc = σcτbσcτb);

• Nodal relations (NR): Let a, b, c be three edges that have only one

common vertex and are clockwise ordered. If the edges a, b, c are not

adjacent to v, then

σaσbσcσa = σbσcσaσb;

if the edges a, c are not adjacent to v and b is adjacent to v, then

σaσbτcσa = σbτcσaσb, τbσcσaτbσc = σaτbσcσaτb;

• Pseudocycle relations (PR): if the edges a1, . . . , am form a pseudocy-

cle, a1 is not the start edge nor is am the end edge of a reverse, and

no ai is adjacent to v, then

σa1
σa2

· · ·σam−1
= σa2

σa3
· · ·σam .
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If a1, am are adjacent to v, then

τa1
σa2

· · ·σam−1
= σa2

σa3
· · · τam .

Remark 4.2. As in Theorem 2.1, the nodal relation (NR) also implies
the equality

σaσbσcσa = σbσcσaσb = σcσaσbσc.

The geometric interpretation of the generators is the following. The dis-
tinguished vertex corresponds to the deleted point of R. To any edge a not
adjacent to v we associate the corresponding positive half-twist as in Fig-
ure 1. To any edge b adjacent to v we associate the braid τb as in Figure 14.

����
���� ����

����

����
���� ����

��������v

b

����
����

����

����

τb

Fig. 14. Geometric interpretation of τb

We show the geometric interpretation of the relation τbσcσaτbσc =
σaτbσcσaτb. The other ones can be easily verified as in Section 2.2. We add
two edges d and e, with their corresponding braids τd and τe as in Figure 15.
The braid τd is equivalent to σ−1

c τbσc, and τe is equivalent to σaτbσ
−1
a . Then

σ−1
c τbσc and σa commute, as do σaτbσ

−1
a and σc. So we have the following

equalities, which can be easily verified on corresponding braids:

v
b

d

e

a

c

Fig. 15. Nodal relation τbσcσaτbσc = σaτbσcσaτb holds in BΓ (Ann)

τbσcσaτbσc = σcσ
−1
c τbσcσaτbσc = σcσaσ

−1
c τbσcτbσc

= σcσaσ
−1
c σcτbσcτb = σcσaτbσ

−1
a σaσcτb = σaτbσ

−1
a σcσaσcτb = σaτbσcσaτb.

A proof of Theorem 4.1 is given in [34]. The steps of the proof are the
same as for Theorem 2.1.
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Corollary 4.3. The automorphism group of Bn(Ann) contains a group

isomorphic to the dihedral group Dn−1.

Proof. One can associate to the graph given in Figure 16 a presenta-
tion for Bn(Ann). The same argument used in Corollary 3.5 concludes the
proof.

an

a1 a2

v

Fig. 16. A graph associated to Bn(Ann)

We remark that one can generalise this approach to braid groups on a
planar surface, i.e. a surface of genus 0 with l > 1 boundary components. In
such a case one considers a normal planar graph with k (= l−1) distinguished
vertices v1, . . . , vk such that there are no edges connecting distinguished
vertices and the graph Γ minus the vertices v1, . . . , vk and all the edges
adjacent to v1, . . . , vk is still connected. We label by {τ1,j , . . . , τm,j} the edges
adjacent to vj and by {σ1, . . . , σp} the edges disjoint from {v1, . . . , vk}. We
say that Γ is a k-punctured graph. As in Theorem 4.1 one can associate
to any k-punctured graph Γ on n vertices a set of generators for the braid
group on n strands on a surface of genus 0 with k+1 boundary components,
with the above geometrical interpretation of generators.

5. Singular braids and graphs. Singular braids have been introduced
in [1, 8] as a generalisation of classical braids, by allowing strands to intersect
in finitely many double points.

The set of singular braids on n strands SBn, up to isotopy, forms a
monoid. To the standard generator σj of the braid group Bn one can asso-
ciate the singular braid xj obtained by replacing the positive crossing of the
jth and (j + 1)th strands by a singular point.

Baez and Birman provided a monoid presentation for SBn. The gen-
erators are σ1, . . . σn−1, their inverses σ−1

1 , . . . σ−1
n−1 and the singular braids

x1, . . . , xn−1. To the usual braid relations (and the invertibility of σj) one
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has to add the following relations:

xi σj σi = σj σi xj for |i− j| = 1;

xi xj = xj xj for |i− j| ≥ 2;

xi σj = σj xi for |i− j| ≥ 2;

xi σi = σi xi for i = 1, . . . , n− 1.

Singular braids are related to the Vassiliev–Goussarov theory of finite
type invariants. The Birman–Ko–Lee presentation for the monoid SBn was
obtained in [33]. As in the case of classical braids, one can extend the group
Bn(Σ) to the monoid SBn(Σ) of singular braids on n strands on the sur-
face Σ. This monoid has been introduced in [22], in order to define finite
type invariants for surface braids. Presentations for this monoid are given
in [2] and [21].

In this section we provide presentations by graphs for the monoid SBn

and for the monoid SBn(Ann) of singular braids on n strands of the annulus.
Let Γ be a normal planar graph. We associate to any edge a three sin-

gular braids: σa will denote the positive half-twist associated to a (as in
Figure 1), σ−1

a will denote the corresponding negative half-twist, and xa the
corresponding singular crossing.

Theorem 5.1. Let Γ be a normal planar graph with n vertices. The

singular braid monoid SBn has the presentation 〈XΓ , RΓ 〉 where XΓ =
{σa, σ

−1
a , xa | a is an edge of Γ} and RΓ is formed by the following six

types of relations:

• Disjointedness: if the edges a and b are disjoint , then

σaσb = σbσa, xaxb = xbxa, σaxb = xbσa;

• Commutativity :

σaxa = xaσa;

• Invertibility :

σaσ
−1
a = σ−1

a σa = 1;

• Adjacency : if the edges a and b have a common vertex , then

σaσbσa = σbσaσb, xaσbσa = σbσaxb;

• Nodal : if the edges a, b and c have a common vertex and are placed

clockwise, then

σaσbσcσa = σbσcσaσb = σcσaσbσc,

xaσbσcσa = σaσbσcxa,

σaσbxcσa = σbxcσaσb,

xaσbxcσa = σbxcσaxb;
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• Pseudocycle: if the edges a1, . . . , an form an irreducible pseudocycle

and if a1 is not the start edge nor is an the end edge of a reverse,
then

σa1
· · ·σan−1

= σa2
· · ·σan , xa1

σa2
· · ·σan−1

= σa2
· · ·σan−1

xan .

A proof of Theorem 5.1 is given in [34]. The steps of the proof are the
same as for Theorem 2.1.

The last aim of this section is to give graph presentations for the singular
braid monoid on n strands of the annulus.

Theorem 5.2. The singular braid monoid on n strands of the annulus

SBn(Ann) admits the following presentation:

• Generators: σi, σ
−1
i , xi, i = 1, . . . , n− 1, τ, τ−1;

• Relations:

(R1) σiσj = σjσi if |i− j| > 1;

(R2) xixj = xjxi if |i− j| > 1;

(R3) xiσj = σjxi if |i− j| 6= 1;

(R4) σiσi+1σi = σi+1σiσi+1;

(R5) σiσi+1xi = xi+1σiσi+1;

(R6) σi+1σixi+1 = xiσi+1σi;

(R7) τσ1τσ1 = σ1τσ1τ ;

(R8) τσ1τx1 = x1τσ1τ ;

(R9) τσi = σiτ if i ≥ 2;

(R10) τxi = xiτ if i ≥ 2;

(R11) σiσ
−1
i = σ−1

i σi = ττ−1 = τ−1τ = 1.

Proof. The geometric interpretation of σi and τ is given in Figure 13, and
σ−1

i and τ−1 are their inverses. The generator xi corresponds to a singular
crossing between strands i and i+ 1.

�������� ���� ����

�������� ���� ���� �������� ���� ����

�������� ���� ����

Fig. 17. The words τσ1τx1 and x1τσ1τ represent the same element in SBn(Ann)
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We obtain the Reidemeister moves for singular knot theory in a solid
torus if we add the move depicted in Figure 17 to the regular (without
singularities) Reidemeister moves of knot theory in a solid torus.

This Reidemeister move means how a singular point goes around the
axis of the torus (fixed string). The proof that relations (R1)–(R11) give a
complete list is standard: every isotopy can be decomposed into a sequence
of elementary isotopies which correspond to relations (R1)–(R11) (see also
[21]).

Remark 5.3. The singular braid monoid on n strands of the annulus
differs from the singular Artin monoid of type B as defined by R. Corran
[13], where the numbers of singular and regular generators are the same.
The singular generator associated to τ cannot be interpreted geometrically
as above.

As in Section 4 we consider 1-punctured graphs. To any edge a disjoint
from the distinguished vertex v of Γ we associate three singular braids:
σa will denote the positive half-twist associated to a (as in Figure 1), σ−1

a

the corresponding negative half-twist, and τa the corresponding singular
crossing.

The graph presentations for the singular braid monoid in the solid torus
arise from Theorems 5.1 and 5.2 (see [34]).

Theorem 5.4. Let Γ be a 1-punctured graph on n vertices. The monoid

SBn(Ann) admits the presentation 〈XΓ , RΓ 〉, where

• XΓ = {σa, σ
−1
a , xa, τb, τ

−1
b }, for any edge a of Γ not incident with the

distinguished vertex v, and for any edge b of Γ adjacent to v;
• RΓ is formed by the relations given in Theorems 4.1 and 5.1 and the

following new nodal and invertibility relations:

σaτbσcxa = xcσaτbσc,

τbσcσaτbxc = xaτbσcσaτb,

τbτ
−1
b = τ−1

b τb = 1.
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24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math. 317, Springer,
Berlin, 1973, 21–44.

[11] E. Brieskorn und K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17
(1972), 245–271.
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