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Knot theory with the Lorentz group
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Abstract. We analyse perturbative expansions of the invariants defined from unitary
representations of the Quantum Lorentz Group in two different ways, namely using the
Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group
defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and
they both yield C[[h]]-valued knot invariants related with the Melvin–Morton expansion
of the Coloured Jones Polynomial.

Introduction. The main aim of this article is to show a possible path
to define knot invariants from infinite-dimensional representations of the
Lorentz group.

Let A be a Hopf algebra; its category of finite-dimensional representa-
tions is a compact monoidal category. Let q be a complex number not equal
to 1 or −1. Suppose A = Uq(g) is the Drinfeld–Jimbo algebra attached to
the semisimple Lie algebra g. Even though A is not a ribbon Hopf algebra,
it possesses a formal R-matrix and a formal ribbon element. These elements
make sense when applied to finite-dimensional representations of A, and
thus its category of finite-dimensional representations is a ribbon category.
This means we have a knot invariant attached to any finite-dimensional
representation of A. This kind of knot invariants take values in C.

A similar situation happens in the case of the Quantum Lorentz Group D
as defined by Woronowicz and Podleś in [PoW]. We shall use especially the
further developments of its theory by Buffenoir and Roche (see [BR1] and
[BR2]). Despite the fact D is not a Drinfeld–Jimbo algebra, its structure of
a quantum double, namely D = D(Uq(su(2)),Pol(SUq(2))) with q ∈ (0, 1),
makes possible the definition of a formal R-matrix on it. Also, it is possible
to define a heuristic ribbon element.
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The category of finite-dimensional representations of D can be proved
to be a ribbon category, and thus we can define knot invariants from it.
In fact, as observed in [BR2], it is possible to prove that this category is
ribbon equivalent to the category of finite-dimensional representations of
Uq(su(2)) ⊗R−1 Uq(su(2)). This last bialgebra equals Uq(su(2)) ⊗ Uq(su(2))
as an algebra but has a coproduct twisted by R−1, the inverse of the R-
matrix of Uq(su(2)). This equivalence relates the knot invariants obtained
to the Coloured Jones Polynomial in a nice way.

Such a splitting of D is not, however, the most natural when considering
unitary infinite-dimensional representations of D. The general classification
of the unitary representations of the Quantum Lorentz Group is due to Pusz
(cf. [Pu]). In this case, as well as in the case of harmonic analysis, its defini-
tion as a quantum double is usually easier to deal with. As observed in [BR1],
it is possible to describe the action of the formal R-matrix of the Quan-
tum Lorentz Group in a class of infinite-dimensional representations of that
group. For this reason, it is natural to ask whether there exists a knot theory
attached to the infinite-dimensional representations of D (see also [G]).

We shall see the answer is affirmative at least on the perturbative level.
Since we are working with infinite-dimensional representations, the general
approach of Reshetikhin and Turaev for constructing knot invariants cannot
be directly applied. It is possible, though, given a knot diagram, or to be
more precise a connected (1, 1)-tangle diagram, to make a heuristic evalua-
tion of the Reshetikhin–Turaev functor on it. This yields an infinite series for
any knot diagram. This method was also elucidated in [NR]. Unfortunately,
at least for unitary infinite-dimensional representations, these infinite series
do not seem to converge at least for some simple knot diagrams. However,
they converge h-adically for q = exp(h/2), since the order of expansion of
their terms as a power series in h is increasing (where the order of a power
series is the degree of the first non-zero term). Therefore these evaluations
do define C[[h]]-valued knot invariants. This article aims to define these
invariants from the Kontsevich Integral and weight systems.

Let g be a semisimple Lie algebra. The h-adic variant of Drinfeld–Jimbo
algebras, that is, the algebras Uh(g), is usually more practical to deal with if
one wants to define knot invariants from infinite-dimensional representations
of g. Let K be a given knot. The fact that Uh(g) is a ribbon Hopf algebra,
and not merely a formal ribbon Hopf algebra, makes it possible to define
a central element of the algebra from K, or to be more precise from a
2-dimensional diagram of it. See for example [LM]. This central element
is well defined and is a knot invariant. The centre of Uh(g) is isomorphic,
through a canonical isomorphism, to the algebra of formal power series on
the centre of the universal enveloping algebra U(g) of g. This means that
given a Lie algebra g we have a knot invariant taking its values in the
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algebra of formal power series over the centre of U(g). This invariant can
be described by means of the Kontsevich Integral. If we have an irreducible
finite-dimensional representation V of g, each of the terms of the formal
power series associated with the knot K will then act in V as a multiple
of the identity. Therefore we can transform a formal power series on the
centre of U(g) into a formal power series over C. If the representations are
finite-dimensional, these power series have a non-zero radius of convergence
and their value at h = 2 log(q) is the value of the (rescaled) knot invariant
associated with Uq(g), as long as we use the representation of Uq(g) that
quantises the representation V of g with which we are working.

Notice that nothing prevents the same framework from being applied to
an infinite-dimensional representation of g, as long as any central element
of U(g) acts in it as a multiple of the identity. Representations of this kind
appear frequently in Lie algebra theory, and are commonly known as rep-
resentations which admit a central character. Examples are the irreducible
cyclic highest weight representations of g, for g semisimple, which, in the
sl(2,C) context, are simply constructed by perturbing the spin representa-
tion in such a way that we admit arbitrary complex spins. In this case this
yields a knot invariant which is in some sense an analytic continuation of
the Coloured Jones Polynomial.

Other examples of infinite-dimensional representations that admit a cen-
tral character are the representations of the Lie algebra L of the Lorentz
Group which correspond to the representations of the Lorentz Group in the
principal series. These are the classical counterpart of the representations
of the Quantum Lorentz Group considered in [BR2]. Therefore we would
expect the knot power series invariants that result from their use to relate
somehow to the knot invariants that come from infinite-dimensional repre-
sentations of the Quantum Lorentz Group.

One of the main results of this article (Theorem 25) supports these
expectations. Of course the way we construct central elements of the en-
veloping algebra of L must be specified. Notice that the Quantum Lorentz
Group is not the Drinfeld–Jimbo algebra associated with the Lorentz Al-
gebra L. For the reasons pointed out before, one solution is to define the
h-adic quantised universal enveloping algebra of L in a non-standard way as
Uh(su(2)) ⊗R−1 Uh(su(2)). Another solution, which is equivalent, is to use
the Kontsevich Universal Knot Invariant. Using it, we can associate to a
knot a series in the centre of the universal enveloping algebra of L, as long
as we specify an L-invariant, non-degenerate, symmetric bilinear form on
L. These series only depend on the knot isotopy class. Such a bilinear form
can be chosen so that the construction of central elements agrees with the
algebraic structure of the Quantum Lorentz Group. The algebraic properties
of this kind of knot invariants will be another main topic of this article.
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We are mainly interested in the definition of numerical, rather than per-
turbative, knot invariants from infinite-dimensional representations of the
Quantum Lorentz Group. We expect our expansions to relate to them, if we
can define any, as their perturbation series at the origin. These issues will
be dealt with in a separate work, [FM], where the convergence properties of
the power series obtained are analysed. A major result therein is that even
though the power series can have a zero radius of convergence, they are,
at least in some cases, Borel–Gevrey summable. This indicates that some
precise numerical knot invariants may be defined.

I finish by referring to the main motivation of this work, namely its
possible applications to Quantum Gravity. For an example of the use of
the unitary representations of the Lorentz Group in the construction of spin
foam models for Quantum General Relativity we refer to [BC]. See also [NR]
for its quantised counterpart.
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1. PRELIMINARIES

1.1. Chord diagrams. We recall the definition of the algebra of chord
diagrams, which is the target space for the Kontsevich Universal Knot In-
variant. For more details see for example [B] or [K]. A chord diagram is a
finite set w = {c1, . . . , cn} of cardinality two, non-intersecting subsets of the
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oriented circle, modulo orientation preserving homeomorphisms. The sub-
sets ck are called chords. We usually specify a chord diagram by drawing
it as in Figure 1. In all the pictures we assume the circle oriented counter-
clockwise.

Fig. 1. A chord diagram with four chords

For each n ≥ 2, let Vn be the free C-vector space on the set of all chord
diagrams with n chords, that is, the set of formal finite linear combinations
w =

∑
i λiwi, where λi ∈ C and wi is a chord diagram with i chords for any i.

Consider the vector subspace 4Tn of Vn generated by all linear combinations
of chord diagrams of the form displayed in Figure 2. The three intervals
considered in the circle can appear in an arbitrary order in S1. For each
n ∈ N0 = {0, 1, 2, . . . }, define the vector space An = Vn/4Tn. We assume
A0 = V0 and A1 = V1.

− + − = 0

Fig. 2. 4-term relations

For any pair m,n ∈ N0, there exists a bilinear map # : An ⊗ Am →
Am+n, called the connected sum product. As its name says, it is performed
by taking the connected sum of chord diagrams as in Figure 3.

# =

Fig. 3. Connected sum product

Obviously the product is not well defined in Vm ⊗ Vn since it depends
on the points at which we break the circles. The connected sum makes
sense only in Am ⊗ An, since we are considering the 4-term relations. It is
associative, commutative and it has a unit: the chord diagram without any
chord. For more details see [B].
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The vector space Am ⊗Am is mapped via the connected sum product to
Am+n. Therefore the direct sum Afin =

⊕
n∈N0

An has a commutative and
associative graded algebra structure. This permits us to conclude that the
vector space

A =
∏

n∈N0

An

has a structure of abelian algebra over the field of complex numbers. Call
it the algebra of chord diagrams. The algebra A is the target space for the
Kontsevich Universal Knot Invariant.

∆( ) = ⊗ + ⊗

+ ⊗ + ⊗

Fig.4. Coproduct maps

There also exist coproduct maps ∆ : Am →
⊕

k+l=mAk ⊗ Al which
have the form of Figure 4 on chord diagrams. They extend to a linear map
∆ : A → A ⊗̂ A. Here A ⊗̂ A is the vector space

∏

m∈N0

⊕

k+l=m

Ak ⊗Al.

Notice that A⊗A is a proper vector subspace of A ⊗̂ A.
An element w ∈ A is called group-like if ∆(w) = w ⊗̂ w, that is, if

w =
∑

n∈N0
wn with n ∈ An for n ∈ N0 then

∆(wn) =
∑

l+k=n

wk ⊗ wl.

For example, exp(⊖) is a group-like element. Here ⊖ is the unique chord
diagram with only one chord. This is a trivial consequence of the fact that
∆(⊖) = ⊖⊗ 1+1⊗⊖. Here 1 stands for the chord diagram without chords.

1.2. The Kontsevich Integral. We skip the definition of the (framed)
Kontsevich Integral Z, for which we refer for example to [K], [LM] or [W]. See
also [B, CS] for the definition of the unframed version of the so-called Kontse-
vich Universal Knot Invariant. We take the normalisation of the Kontsevich
Integral for which the value of the unknot is the wheels element Ω of [BLT].
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That is, Z(O) = Z(∞) (cf. [B, p. 447]. This is a different normalisation from
the one used in [B]. We now gather the properties of the Kontsevich integral
which we are going to use in what follows:

Theorem 1. There exists an (oriented and framed) knot invariant K 7→
Z(K), where Z(K) is in the algebra A of chord diagrams. Given a framed

knot K, Z(K) satisfies:

(i) Z(K) is group-like (cf. [B]).
(ii) If Kf is obtained from K by changing its framing by a factor of 1

then Z(Kf ) = Z(K) # exp(⊖) (cf. [LM]).
(iii) If K∗ is the mirror image of K, and Z(K) =

∑
n∈N0

wn with

wn ∈ An for n ∈ N0 then Z(K∗) =
∑

n∈N0
(−1)nwn (cf. [CS]).

(iv) If K− is the knot obtained from K by reversing the orientation of

it then Z(K−) =
∑

n∈N0
S(wn). Here S : An → An is the map that

reverses the orientation of each chord diagram (cf. [CS]).

Suppose we are given a family of linear maps (weights) Wn : An → C,
n ∈ N0. A knot invariant whose value on each knot is a formal power series
with coefficients in C is called canonical if it has the form

K 7→
∑

n∈N0

Wn(wn)hn

whenever Z(K) =
∑

n∈N0
wn with wn ∈ An for n ∈ N0.

1.3. Infinitesimal R-matrices. Let g be a Lie algebra over the field C.
An infinitesimal R-matrix of g is a symmetric tensor t ∈ g ⊗ g such that
[∆(X), t] = 0 for all X ∈ g. The commutator is taken in U(g) ⊗ U(g),
where U(g) denotes the universal enveloping algebra of g. The map ∆ :
U(g) → U(g)⊗U(g) is the standard coproduct in U(g). It satisfies ∆(X) =
X ⊗ 1 + 1 ⊗X if X ∈ g.

Suppose we are given an infinitesimal R-matrix t. Write t =
∑

i ai ⊗ bi.
We will then have
∑

i,j

(ajai ⊗ bi ⊗ bj − aiaj ⊗ bi ⊗ bj + ai ⊗ ajbi ⊗ bj − ai ⊗ biaj ⊗ bj) = 0,

which resembles the 4T relations considered previously. Given a chord dia-
gram w and an infinitesimal R-matrix t =

∑
i ai ⊗ bi it is thus natural to

construct an element φt(w) of U(g) in the following fashion: Start at an ar-
bitrary point of the circle and go around it in the direction of its orientation.
Order the chords of w by the order in which you pass them as in Figure 5.
Each chord has thus an initial point and an end point. Then go around the
circle again and write (from right to left) aik or bik depending on whether
you got to the initial or final point of the kth chord. Finally, sum over all
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1

1

2

2

3

3

Fig. 5. Enumerating the chords of a chord diagram

the ik’s. For example for the chord diagram of Figure 5 the element φt(w)
is ∑

i1,i2,i3

bi2bi3bi1ai3ai2ai1 .

See [K] or [CV] for more details. It is possible to prove that φt(w) is well
defined as an element of U(g), that is, it does not depend on the starting
point on the circle. Moreover:

Theorem 2. Let g be a Lie algebra and t ∈ g⊗ g be an infinitesimal R-

matrix. The linear map φt : Vn → U(g) satisfies the 4T relations, therefore

it descends to a linear map φt : An → U(g). Moreover :

(i) The image of φt is contained in C(U(g)), the centre of U(g).
(ii) The degree of φt(w) in U(g) with respect to the natural filtration of

U(g) is not greater than twice the number of chords of w.

(iii) Given w ∈ Am and w′ ∈ An we have φt(w # w′) = φt(w)φt(w
′).

(iv) Consider the map φt,h : A→C(U(g))[[h]] such that if w=
∑

n∈N0
wn

with wn ∈ An for each n ∈ N0 then

φt,h =
∑

n∈N0

φt(wn)hn.

Then φt,h is a C-algebra morphism.

Recall that the Kontsevich Integral is a sum of the form Z(K)=
∑

n∈N0
wn

with wn ∈ An for all n ∈ N0. Therefore, given an infinitesimal R-matrix t
in a Lie algebra g, we can define a knot invariant Zt by

Zt(K) = φt,h(Z(K)) =
∑

n

φt(wn)hn.

The target space of Zt is therefore the C-algebra of formal power series over
the centre of U(g).

Suppose we are given a morphism f : C(U(g)) → C. Then composing it
with Z(K) we obtain a canonical knot invariant f ◦ Zt, that is:

(f ◦ Zt)(K) =
∑

n

f(φt(wn))hn.
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It is not difficult to examine when this kind of knot invariants are un-
framed. Let t =

∑
i ai ⊗ bi be an infinitesimal R-matrix in a Lie algebra.

Define Ct =
∑

i aibi = −φt(⊖). It is a central element of the universal en-
veloping algebra of g. Call it the quadratic central element associated with t.
The infinitesimal R-matrix t can be recovered from Ct by the formula

t =
∆(Ct) − 1 ⊗ Ct − Ct ⊗ 1

2
.

A morphism f : C(U(g)) → C is said to be t-unframed if f(Ct) = 0. From
Theorems 1(ii) and 2(iii) it is straightforward to conclude that:

Theorem 3. Let g be a Lie algebra with an infinitesimal R-matrix t.
Consider also a morphism f from the centre of U(g) to C. Then the knot

invariant f ◦ Zt is unframed if and only if the morphism f is t-unframed.

Notice that the Kontsevich integral of each knot is invertible in A. This
is because the term w0 ∈ A0 is the unit of A.

1.3.1. Constructing infinitesimal R-matrices. There exists a standard
way to construct infinitesimal R-matrices in a Lie algebra g. Suppose we are
given a g-invariant, non-degenerate, symmetric bilinear form 〈 , 〉 in g. Here
g-invariance means that 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0 for all X,Y, Z ∈ g. If g

is semisimple, the Cartan–Killing form has all these properties. Take a basis
{Xi} of g and let {X i} be the dual basis of g∗. Then it is easy to show that
for any λ ∈ C the tensor t = λ

∑
iXi ⊗X i is an infinitesimal R-matrix of g.

We are identifying g∗ with g using the non-degenerate bilinear form 〈 , 〉.
Suppose g is a semisimple Lie algebra and let t =

∑
i ai ⊗ bi be an

infinitesimal R-matrix in g. Let also 〈 , 〉 denote the Cartan–Killing form
on g. Then the map g → g such that X 7→∑

i〈X, ai〉bi is an intertwiner of
g with respect to its adjoint representation. Therefore if g is simple it is a
λ-multiple of the identity. This permits us to conclude that t = λXi ⊗X i.

Let us now look at the case of g semisimple. Then g has a unique de-
composition g ∼= g1 ⊕ · · · ⊕ gn, where each gi is a simple Lie algebra. The
Cartan–Killing form in each gi will yield an infinitesimal R-matrix ti in
each gi. Obviously each linear combination t = λ1t1 + · · · + λntn is an in-
finitesimal R-matrix for g. An argument similar to the one before proves
that any infinitesimal R-matrix in g is of the form above.

Note that if an infinitesimal R-matrix in a Lie algebra g comes from a
non-degenerate, symmetric and g-invariant bilinear form then our construc-
tion of central elements yields the same result as in [B] (cf. [CV]).

1.3.2. A factorisation theorem. Suppose the Lie algebra g ∼= g1 ⊕ g2 is
the direct sum of two Lie algebras. If t1 and t2 are infinitesimal R-matrices
in g1 and g2 then t = t1 + t2 is also an infinitesimal R-matrix in g. It is easy
to prove that given a chord diagram w we have the following identity (cf.
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[B]):
φt(w) = (φt1 ⊗ φt2)∆(w).

We are obviously considering the standard isomorphism U(g) ∼= U(g1) ⊗
U(g2) such that (X,Y ) 7→ X ⊗ 1 + 1 ⊗ Y for (X,Y ) ∈ g.

If we are given two algebra morphisms fi : C(U(gi)) → C, i = 1, 2, then
f = f1 ⊗ f1 is an algebra morphism C(U(g)) ∼= C(U(gi)) ⊗ C(U(gi) → C. It
thus makes sense to consider the knot invariant f ◦ Zt. It can be expressed
in a simple form in terms of fi ◦ Zti , i = 1, 2. In fact (see [BG]):

Theorem 4. Given any (oriented and framed) knot K we have

(f ◦ Zt)(K) = (f1 ◦ Zt1)(K) × (f2 ◦ Zt2)(K)

as formal power series.

Proof (taken from [BG]). Write Z(K) =
∑

n∈N0
wn with wn ∈ An for all

n ∈ N0. We have

(f ◦ Zt)(K) =
∑

n∈N0

(f ◦ φt)(wn)hn =
∑

n∈N0

(f1 ⊗ f2) ◦ (φt1 ⊗ φt2)(∆(wn))hn

=
∑

n∈N0

∑

k+l=n

(f1 ⊗ f2) ◦ (φt1 ⊗ φt2)(wk ⊗ wl)h
n

=
∑

n∈N0

∑

k+l=n

[(f1 ◦ φt1)(wk)][(f2 ◦ φt2)(wl)]h
k+l

= (f1 ◦ Zt1)(K) × (f2 ◦ Zt2)(K).

1.4. The Coloured Jones Polynomial. Let g be a semisimple Lie
algebra over C. It is a well known result (see for example [V]) that any
algebra morphism C(U(g)) → C is the central character of some represen-
tation of g, which can be infinite-dimensional. Recall that C(U(g)) stands
for the centre of U(g). To be more precise, let g be any Lie algebra and ̺ a
representation of g in the vector space V . Then ̺ is said to admit a central

character if every element of C(U(g)) acts on V as a multiple of the identity.
In this case there exists an algebra morphism λ̺ : C(U(g)) → C such that
̺(a)(v) = λ̺(a)v for all a ∈ C(U(g)) and v ∈ V . The algebra morphism λ̺

is called the central character of the representation ̺. In particular, if g is a
Lie algebra with an infinitesimal R-matrix t then given any representation
̺ of g with a central character, we can construct the knot invariant λ̺ ◦ Zt.

The Coloured Jones Polynomial is, up to normalisation, a particular
example of this construction. Let t be the infinitesimal R-matrix of sl(2,C)
corresponding to the bilinear form on it which is minus the Cartan–Killing

form. Consider for any α ∈ 1
2 N0 the representation

α
̺ of sl(2,C) with spin α;

then
α
̺ admits a central character which we denote by λα. Given a framed

knot K let Jα(K) denote the framed Coloured Jones Function of K. Notice
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that we “colour” the Jones polynomial with its spin of the representation,
rather than with its dimension. The latter is the usual convention. We have

Jα(K)

2α+ 1
= (λα ◦ Zt)(K), ∀α ∈ 1

2
N0.

Write
Jα(K)

2α+ 1
=
∑

n∈N0

Jα
n (K)hn.

It is known that Ja
n(K) is a polynomial in α of degree at most 2n (cf.

[MM], [C]). This is a consequence of the fact that the centre of U(sl(2,C))
is generated by the Casimir element of it, together with Theorem 2(ii).
Therefore we can write

Jα(K)

2α+ 1
=
∑

n∈N0

2n∑

k=0

a
(n)
k (K)αkhn.

For any complex number z it thus makes sense to consider the z-Coloured

Jones Function, that is,

Jz(K)

2z + 1
=
∑

n∈N0

Pn(K)(z)hn.

This yields a knot invariant whose value at a knot is a formal power series
in two variables:

K 7→
∑

m,n∈N0

a
(n)
k (K)zkhn,

with a
(n)
k (K) = 0 for k > 2n. It is an interesting task to investigate whether

or not this kind of series defines an analytic function in two variables. As
mentioned in the introduction, they have in general a zero radius of conver-
gence, so this can only be made precise by taking a perturbation theory point
of view (cf. [FM]). This relates to the question of whether it is possible to
define numerical knot invariants from infinite-dimensional representations
of the Lorentz Group. Notice that if α is a half integer then

Jα(K)

2α+ 1
=
∑

m∈N0

( 2n∑

k=0

a
(n)
k (K)αk

)
hn

defines an analytic function of h.

For the unknot O the series Jz(O)/(2z + 1) has a non-zero radius of
convergence at any point z ∈ C. The proof is not very difficult as we can have
an explicit expression for the series. Define, for each z ∈ C, the meromorphic
function

Fz(h) =
1

2z + 1

sinh((2z + 1)h/2)

sinh(h/2)
.
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Thus for each α ∈ 1
2 N0 we have

Fα(h) =
Jα(O)

2α+ 1
=
∑

n∈N0

Jα
n (O)hn.

Consider the expansion

Fz(h) =
∑

n∈N0

c(z)nh
n.

It is not difficult to check that each c(z)n is a polynomial in z for fixed n.
Moreover c(α)n = Jα

n (O) for all α ∈ 1
2 N0. This implies

Jz(O)

2z + 1
= Fz(h)

as power series in h. In particular the power series for the unknot are con-
vergent. This means it makes sense to speak about the quantum dimension
of the representations of spin z, to be defined later. To be more precise we
give a meaning to their quantum dimension divided by their dimension as
vector spaces. But notice that the dimension of a representation of spin z
with z /∈ 1

2 N0 is infinite. For some more explicit examples see [FM].

1.4.1. A representation interpretation of the z-Coloured Jones Polyno-

mial. We can give an interpretation of the z-Coloured Jones Polynomial
in the framework of central characters. To this end, define the following
elements of sl(2,C):

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
.

Then the infinitesimal R-matrix which we are considering in sl(2,C) takes
the form

t = −1

4

(
E ⊗ F + F ⊗ E +

H ⊗H

2

)
.

Notice that t is defined from the inner product in sl(2,C) which is minus
the Cartan–Killing form. In particular, the Casimir element C of sl(2,C) is
equal to −Ct, where Ct is the quadratic central element associated with t.
Recall Subsection 1.3.

Given a half integer α, the representation space
α
V of the representation

of spin α has a basis of the form {v0, . . . , v2α}. The action of the elements

E,F and H of sl(2,C) in
α
V is:

Hvk = (k − α)vk, Evk = (2α− k)vk+1, Fvk = kvk−1.

For an arbitrary complex number z /∈ 1
2 N0, it also makes sense to speak of

the representation
z
̺ of spin z. Consider

z
V as being the infinite-dimensional
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vector space which has the basis {v2z, v2z−1, v2z−2, . . . }. Then the represen-

tation
z
̺ of spin z can be defined by

Hvk = (k − z)vk, k = 2z, 2z − 1, . . . ,

Evk = (2z − k)vk+1, k = 2z, 2z − 1, . . . ,

Fvk = kvk−1, k = 2z, 2z − 1, . . . .

The representations of spin z /∈ 1
2 N0 have a central character λz, since

it is easily proved that each intertwiner
z
V →

z
V must be a multiple of

the identity. But (see [V, 4.10.2]) they are the unique irreducible cyclic
highest weight representations with maximal weight z, relative to the usual
Borel decomposition of sl(2,C). Consider, given z ∈ C, the framed knot
invariant λz ◦ Zt. If α is a half integer, λα is the central character of the
usual representation of spin α. Given a framed knot K the invariant has the
form

(λz ◦ Zt)(K) =
∑

n∈N0

Rz
n(K)hn,

where, by definition,

Rz
n(K) = (λz ◦ φt)(wn) =

∑

n∈N0

λz(φt(wn))hn

for
Z(K) =

∑

n∈N0

wn, wn ∈ An, ∀n ∈ N0.

Also
Jα(K)

2z + 1
=
∑

n∈N0

Rα
n(K)hn, ∀α ∈ 1

2
N.

Suppose w is a chord diagram with n chords. Let us have a look at
the dependence of λz(φt(w)) on z. It is not difficult to check that it is a
polynomial in this variable of degree at most 2n. This is a trivial consequence
of the definition of the central element φt(w) as well as the kind of action

of the terms appearing in the infinitesimal R-matrix t on
z
V (see also [V]

or [FM]). In particular if K is a framed knot, Rz
n(K) is a polynomial in z.

Since we also have Rα
n(K) = Jα

n (K) for all α ∈ 1
2 N0, we can conclude that

Jz(K)

2z + 1
= (λz ◦ Z)(K),

which gives us an equivalent definition of the z-Coloured Jones Polynomial.
The central characters of the representations of imaginary spin are ac-

tually the infinitesimal characters (cf. [Kir]) of the unitary representations
of SL(2,R) in the principal series (cf. [L]) with the same parameter. Notice
however that their derived representation in sl(2,R) ⊗R C ∼= sl(2,C) is not
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any of the representations of imaginary spin just defined. This is the point
of view considered in [FM].

2. LORENTZ GROUP

Let g be a semisimple Lie algebra. As proved by Drinfeld in [D], there is
a one-to-one correspondence between gauge equivalence classes of quantised
universal enveloping algebras H of g over C[[h]] (cf. [K]) and infinitesimal
R-matrices in g. Let us be more explicit about this. It is implicit in the
definition of a quantised universal enveloping algebra H that there exists a
C-algebra morphism f : H/hH → U(g). Having chosen such a morphism,
the canonical 2-tensor of A is defined as t = f((R21R − 1)/h). It is an
infinitesimal R-matrix of A. Here R denotes the universal R-matrix of H. If
H quantises the pair (g, r) where r is a classical r-matrix in g (see [CP]), then
t is the symmetrisation of r. Each quantised universal enveloping algebra can
be given a structure of ribbon quasi Hopf algebra (cf. [AC]), and therefore
there is a knot invariant attached to each finite-dimensional representation
of it, or what is the same, of g. These knot invariants take their values in
the ring of formal power series over C. If the representation used is finite-
dimensional and irreducible then it has a central character. In particular,
the framework of the last section can be applied, using for example the
infinitesimal R-matrix t which is the canonical 2-tensor of H. It is a deep
result that with these choices the two approaches for knot invariants are the
same, up to division by the dimension of the representation considered. To
be more precise we also need to change the sign of the infinitesimal R-matrix
t (cf. [K]).

If we consider a q-deformation A of the universal enveloping algebra
of a Lie algebra g, then no such classification of gauge equivalence classes
of quantised universal enveloping algebras exists. But sometimes it is pos-
sible to give a meaning to the formula for t. This is because we have a
q-parametrised family of braided Hopf algebras that tends to the universal
enveloping algebra of g as q goes to 1, or alternatively because A quantises
the pair (g, r) where r is an r-matrix in g.

As mentioned in the introduction, despite the fact that the q-Drinfeld–
Jimbo quantised universal enveloping algebras Uq(g) of semisimple Lie alge-
bras are not ribbon Hopf algebras, their category of finite-dimensional rep-
resentations is a ribbon category. That is, they have formal R-matrices and
ribbon elements, which make sense when acting in their finite-dimensional
representations. The target space for the knot invariants in this context is
the complex plane. These numerical knot invariants can be obtained, up to
rescaling, by summing the power series which appear in the context of h-adic
Drinfeld–Jimbo algebras; in other words, by summing the power series that



Knot theory with the Lorentz group 73

come from the approach making use of the Kontsevich Integral and of the
infinitesimal R-matrix which is the heuristic canonical 2-tensor t of Uq(g).

Let us now pass to the Quantum Lorentz Group D as defined in [BR1]
and [BR2]. It is a quantum group depending on a parameter q ∈ (0, 1).
As said in the introduction, we wish to analyse the question of whether
or not there exists a knot theory attached to the infinite-dimensional rep-
resentations of D. The situation is more or less the same as in the case
of q-Drinfeld–Jimbo algebras. Namely we have a heuristic R-matrix which
comes from its structure of a quantum double as well as a heuristic ribbon
element. It is possible to describe how they act in the unitary representa-
tions of D. The situation is simpler if the minimal spin of the representation
is zero, in which case the representation is said to be balanced. Represen-
tations of this kind are called simple in [NR]. In this context, the ribbon
element acts as the identity and therefore the knot invariants obtained will
be unframed. These invariants express as infinite sums as we will see in
Section 3.

One natural thing to do would be to analyse whether the “derivatives” of
these sums define or not Vassiliev invariants, or whether it is possible to give
them a meaning in the framework of the Kontsevich Universal Invariant. It
is not difficult to find an expression for the heuristic canonical 2-tensor of the
Quantum Lorentz Group. Also the unitary representations of the Quantum
Lorentz Group in the principal and complementary series have a classical
counterpart. They are infinite-dimensional representations of the Lie algebra
of the Lorentz Group which admit a central character and therefore the
framework of the last section can be used. This is the program we wish to
undertake now.

2.1. The Lorentz Algebra. Consider the complex Lie group SL(2,C).
Its Lie algebra sl(2,C) is a complex Lie algebra of dimension 3. A basis of
sl(2,C) is {σX , σY , σZ} where

σX =
1

2

(
i 0

0 −i

)
, σY =

1

2

(
0 i

i 0

)
, σZ =

1

2

(
0 −1

1 0

)
.

The commutation relations are

[σX , σY ] = σZ , [σY , σZ ] = σX , [σZ , σX ] = σY .

We can also consider a different basis {H+, H−, H3}, where

H+ = iσX − σY , H− = iσX + σY , H3 = iσZ ,

the new commutation relations being

[H+, H3] = −H+, [H−, H3] = H−, [H+, H−] = 2H3.
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Restricting the ground field we are working in to R, we obtain a 6-dimen-
sional real Lie algebra sl(2,C)R, the realification of sl(2,C). It is isomorphic
to the Lie algebra of the Lorentz Group.

Definition 5. The Lorentz Lie algebra L is defined to be the com-
plex Lie algebra which is the complexification of sl(2,C)R. That is, L =
sl(2,C)R ⊗R C. It is therefore a complex Lie algebra of dimension 6. The
Lorentz Algebra is the complex algebra U(L) which is the universal envelop-
ing algebra of the complex Lie algebra L.

The set {σX , BX = −iσX , σY , BY = −iσY , σZ , BZ = −iσZ} is a real
basis of sl(2,C)R, and thus a complex basis of L. The commutation relations
are

[σX , σY ] = σZ , [σY , σZ ] = σX , [σZ , σX ] = σY ,

[σZ , BX ] = BY , [σY , BX ] = −BZ , [σX , BX ] = 0,

[σZ , BY ] = −BX , [σY , BY ] = 0, [σX , BY ] = BZ ,

[σZ , BZ ] = 0, [σY , BZ ] = BX , [σX , BZ ] = −BY ,

[BX , BY ] = −σZ , [BY , BZ ] = −σX , [BZ , BX ] = −σY .

We can also consider the basis {H+, H−, H3, F+, F−, F3} of L, where

H+ = iσX − σY , H− = iσX + σY , H3 = iσZ ,

F+ = iBX −BY , F− = iBX +BY , F3 = iBZ .

The new commutation relations are

[H+, H3] = −H+, [H−, H3] = H−, [H+, H−] = 2H3,

[F+, H+] = [H−, F−] = [H3, F3] = 0,

[H+, F3] = −F+, [H−, F3] = F−,

[H+, F−] = −[H−, F+] = 2F3,

[F+, H3] = −F+, [F−, H3] = F−,

[F+, F3] = H+, [F−, F3] = −H−, [F+, F−] = −2H3.

The following simple theorem will be one of the most important in our
discussion.

Theorem 6. There exists a unique isomorphism of complex Lie algebras

τ : sl(2,C) ⊕ sl(2,C) → L ∼= sl(2,C)R ⊗R C such that

σX ⊕ 0 7→ σX − iσX ⊗ i

2
=
σX + iBX

2
,

0 ⊕ σX 7→ σX + iσX ⊗ i

2
=
σX − iBX

2
,
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σY ⊕ 0 7→ σY − iσY ⊗ i

2
=
σY + iBY

2
,

0 ⊕ σY 7→ σY + iσY ⊗ i

2
=
σY − iBY

2
,

σZ ⊕ 0 7→ σZ − iσZ ⊗ i

2
=
σZ + iBZ

2
,

0 ⊕ σZ 7→ σZ + iσZ ⊗ i

2
=
σZ − iBZ

2
.

Thus we also have a Hopf algebra isomorphism

τ : U(sl(2,C)) ⊗ U(sl(2,C)) → U(L).

Proof. Easy calculations.

GivenX ∈ sl(2,C), defineX l = τ(X⊕0), Xr = τ(0⊕X) and analogously
for X ∈ U(sl(2,C)). We have

H l
+ =

H+ + iF+

2
, H l

− =
H− + iF−

2
, H l

3 =
H3 + iF3

2
,

Hr
+ =

H+ − iF+

2
, Hr

− =
H− − iF−

2
, Hr

3 =
H3 − iF3

2
.

Consider also C l = τ(C ⊗ 1) and Cr = τ(1 ⊗ C), where C is the Casimir
element of sl(2,C) defined in 1.4. The elements C l and Cr are called the left
and right Casimirs and their explicit expressions are

4C l =
H2

3 − F 2
3

2
+ i

H3F3

2
+ i

F3H3

2

+
H+H−

4
+ i

H+F−

4
+ i

F+H−

4
− F+F−

4

+
H−H+

4
+ i

H−F+

4
+ i

F−H+

4
− F−F+

4
,

4Cr =
H2

3 − F 2
3

2
− i

H3F3

2
− i

F3H3

2

+
H+H−

4
− i

H+F−

4
− i

F+H−

4
− F+F−

4

+
H−H+

4
− i

H−F+

4
− i

F−H+

4
− F−F+

4
.

We can also consider the left and right image under τ⊗τ of the infinites-
imal R-matrix of U(sl(2,C)). We now take t ∈ sl(2,C) ⊗ sl(2,C) to be the
infinitesimal R-matrix coming from the Cartan–Killing form, that is, minus
the one considered in 1.4. These left and right infinitesimal R-matrices are:
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4tl =
H3 ⊗H3

2
− F3 ⊗ F3

2
+ i

H3 ⊗ F3

2
+ i

F3 ⊗H3

2

+
H+ ⊗H−

4
+ i

H+ ⊗ F−

4
+ i

F+ ⊗H−

4
− F+ ⊗ F−

4

+
H− ⊗H+

4
+ i

H− ⊗ F+

4
+ i

F− ⊗H+

4
− F− ⊗ F+

4
,

4tr =
H3 ⊗H3

2
− F3 ⊗ F3

2
− i

H3 ⊗ F3

2
− i

F3 ⊗H3

2

+
H+ ⊗H−

4
− i

H+ ⊗ F−

4
− i

F+ ⊗H−

4
− F+ ⊗ F−

4

+
H− ⊗H+

4
− i

H− ⊗ F+

4
− i

F− ⊗H+

4
− F− ⊗ F+

4
.

Any linear combination atl+btr of the left and right infinitesimal R-matrices
is an infinitesimal R-matrix for L. We wish to consider the combination
tL = tl − tr, that is,

tL = i
1

4
H3⊗F3+

1

4
iF3⊗H3+

i

8
H−⊗F++

i

8
F−⊗H++

i

8
H+⊗F−+

i

8
F+⊗H−.

Notice another expression of it:

tL =
i

8
(BX ⊗ σX + σX ⊗BX +BY ⊗ σY + σY ⊗BY +BZ ⊗ σZ + σZ ⊗BZ).

The quadratic central element of U(L) associated with tL is

CL = CtL = i
H3F3

4
+ i

F3H3

4
+ i

H+F−

8
+ i

F+H−

8
+ i

H−F+

8
+ i

F−H+

8
.

The reason why we consider this particular combination of the left and right
infinitesimal R-matrices is because it corresponds to the heuristic canonical
2-tensor of the Quantum Lorentz Group considered in [BR2]. Notice that
it is the symmetrisation of the classical r-matrix of sl(2,C)R (see [BNR,
p. 4969]). See also [FM]. We shall see later (Theorem 25) that it is the right
one.

2.1.1. The irreducible balanced representations of the Lorentz Group.

Given a complex number p = |p|eiθ, 0 ≤ θ < 2π, different from zero, we

define once for all the square root
√
p of p to be

√
|p|eiθ =

√
|p| eiθ/2. For

m ∈ Z define the set Wm = {p ∈ C : |p| /∈ N|m|+1}, where, in general,
Nm = {m,m+1, . . . } for any m ∈ N. Consider the set P = {(m, p) : m ∈ Z,
p ∈Wm}. Define, for any α ∈ N and (m, p) ∈ P,

Cα(m, p) =
i

α

√
(α2 − p2)(α2 −m2)

4α2 − 1
, Bα(m, p) =

ipm

α(α+ 1)
.

Thus Cα(m, p) 6= 0 for α = |m| + 1, |m| + 2, . . . and all p ∈Wm.
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Consider the complex vector space

V (m) =
⊕

α∈N|m|

α
V

where
α
V denotes the representation space of the representation of sl(2,C)

of spin α. The set {α
vi : i = −α,−α+ 1, . . . , α;α ∈ N|m|} is a basis of V (m).

Consider the inner product in V (m) for which this basis is orthonormal.
Define also V (m) to be the Hilbert space which is the completion of V (m).

Given (m, p) ∈ P, consider the following linear operators acting on V (m):

H3
α
vk = k

α
vk,

H−
α
vk =

√
(α+ k)(α− k + 1)

α
vk−1,

H+
α
vk =

√
(α+ k + 1)(α− k)

α
vk+1,

F+
α
vk = Cα(m, p)

√
(α− k)(α− k − 1)

α−1
v k+1

−Bα(m, p)
√

(α+ k + 1)(α− k)
α
vk+1

+ Cα+1(m, p)
√

(α+ k + 1)(α+ k + 2)
α+1
v k+1,

F−
α
vk = − Cα(m, p)

√
(α+ k)(α+ k − 1)

α−1
v k−1

−Bα(m, p)
√

(α− k + 1)(α+ k)
α
vk−1

− Cα+1(m, p)
√

(α+ 1)2 − k2 α+1
v k−1,

F3
α
vk = Cα(m, p)

√
α2 − k2 α−1

v k −Bα(m, p)k
α
vk

− Cα+1(m, p)
√

(α+ 1)2 − k2 α+1
v k,

k = −α,−α+ 1, . . . , α, α ∈ N|m|.

Obviously we are considering
α
vk = 0 if k > α or k < −α. We have the

following theorem, whose proof can be found in [GMS]:

Theorem 7. If (m, p) ∈ P, the operators H−, H+, H3, F−, F+, F3 define

an infinite-dimensional representation of the Lorentz Algebra.

Notice that the representations (m, p) and (−m,−p) are equivalent. This
statement has a trivial proof.

Denote the representations above by {̺(m, p) : (m, p) ∈ P}. One can
prove with no difficulty that they have a central character, for any inter-

twiner V (m) → V (m) needs to send each space
α
V to itself and act on it

as a multiple of the identity. Considering the action of F+, for example, we

conclude that the multiples are the same in each space
α
V . Therefore we have
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Theorem 8. For any (m, p) ∈ P the representation ̺(m, p) of L has a

central character λm,p.

For any (m, p) ∈ P the representation ̺(m, p) of L can always be inte-
grated to a representation R(m, p) of the Lorentz Group in the completion
V (m) of V (m), or to be more precise of its connected component of the
identity. The representation is unitary if and only if p is purely imaginary,
for any m ∈ N0, in which case the representation is said to belong to the
principal series, or if m = 0 and p ∈ [0, 1), in which case the representation
is said to belong to the complementary series. The vector space V (m) is
contained in the space of smooth vectors (cf. [Kir]) of V (m); thus λm,p is
the infinitesimal character of R(m, p), in the unitary case. This unifies the
approach here with the approach in [FM].

The parameter m is called the minimal spin of the representation. A
representation is called balanced if its minimal spin is 0. Balanced rep-
resentations depend therefore on a parameter p ∈ W0. Denote them by
{̺p : p ∈ W0}. Two balanced representations ̺p and ̺q of L are equivalent
if and only if p = q or p = −q. These representations were used in [BC] for
the construction of a spin foam model for Quantum Gravity. The extension
of that work to their quantised counterpart was dealt with in [NR].

Since the representations {̺(m, p) : (m, p) ∈ P} have a central char-
acter, the left and right Casimirs defined in 2.1 act on V (m) as multiples
of the identity. These multiples are the following functions of m and p:
(p2 + 2mp+m2 − 1)/8 for C l and (p2 − 2mp+m2 − 1)/8 for Cr. There-
fore we have

Proposition 9. If the infinitesimal R-matrix on U(L) is the tensor tL
defined in 2.1, then the central characters {λp : p ∈W0} of the balanced rep-

resentations are tL-unframed (recall the terminology introduced before The-

orem 3).

This can obviously be proved without using the explicit expression of
the action of the Casimir elements.

Notice also that we can consider the minimal spin of the representations
considered to be a half integer, making an obvious change in the form of the
representation. This kind of representations cannot be integrated to repre-
sentations of the Lorentz Group, even though they define representations of
SL(2,C). They are called two-valued representations of the Lorentz Group
in [GMS].

2.2. The Lorentz knot invariant. Consider again the infinitesimal
R-matrix tL = tl − tr of the Lorentz Lie Algebra. We consider for each
(m, p) ∈ P the representation ̺(m, p) of L. It has a central character λm,p.
We propose to consider the framed knot invariants {X(m, p) : (m, p) ∈ P}
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such that for any knot:

K 7→ X(m, p,K) = (λm,p ◦ Zt)(K).

Recall the notation of 1.3. Notice that X(m, p) = X(−m,−p), for the rep-
resentations ̺m,p and ̺−m,−p are equivalent.

The value of X(m, p) in a framed knot K is therefore a formal power
series with coefficients in C. It is a difficult task to analyse the analytic
properties of such power series. We expect they will be perturbation series
for some numerical knot invariants that can be defined (cf. [FM]).

As we have seen, ifm = 0, that is, in the case of balanced representations,
the central character λp is tL-unframed. This is also the case for p = 0. Notice
we have an explicit expression for the action of the left and right Casimir
elements of L. This yields

Theorem 10. The knot invariant X(m, p) with (m, p) ∈ P is unframed

if and only if m = 0 or p = 0.

Obviously, for different combinations of the left and right infinitesimal
R-matrices, the representations which have unframed central characters with
respect to the resulting infinitesimal R-matrix (see 1.3.1) are different. This
gives us a way to define an unframed knot invariant from any (m, p) ∈ P.
But notice this can be done without changing the infinitesimal R-matrix tL
of L, since we know how the invariants behave with respect to framing (cf.
Theorem 1).

2.2.1. Finite-dimensional representations. Let us now analyse the knot
invariants that come from finite-dimensional representations of the Lorentz
Group. We are mainly interested in the representations which are irreducible.

Since we have the isomorphism U(L) ∼= U(sl(2,C)) ⊗ U(sl(2,C)), the
finite-dimensional irreducible representations of U(L), or what is the same
of L, are classified by pairs (α, β) of half integers. That is, each finite-

dimensional irreducible representation of L is of the form
α
̺ ⊗ β

̺ as a repre-
sentation of U(L) ∼= U(sl(2,C)) ⊗ U(sl(2,C)). There is an alternative way
to construct these finite-dimensional representations that shows their close
relation to infinite-dimensional representations (see [GMS]). Let us explain
how the process goes. It is very similar to the sl(2,C) case.

Consider m = α − β and p = α + β + 1. Notice that now Cα(m, p) 6= 0
if α ∈ |m|, |m| + 1, . . . , p, and Cp(m, p) = 0. The underlying vector space

for the representation with spins (α, β) is V (m, p) =
|m|

V ⊗
|m|+1

V ⊗ · · · ⊗
p−1

V ,
and the explicit form of the representation is given exactly by the same
formulae of the infinite-dimensional representations. The equivalence of the
representations is a trivial consequence of the Clebsch–Gordan formula. This
construction gives us a finite-dimensional representation ̺(m, p) for each
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pair (m, p) with m, p ∈ Z/2 and p − |m| ∈ N1. It also makes sense for
|p| − |m| ∈ Z, with appropriate changes. As before we have the equivalence
̺(m, p) ∼= ̺(−m,−p).

Since we completed the sets Wm defined at the beginning of 2.1.1, we
have a representation ̺(m, p) of the Lorentz Algebra for each pair (m, p) with
m ∈ Z/2 and p ∈ C. All of them have a central character λm,p, since the
new representations considered are finite-dimensional and irreducible. The
finite-dimensional representations give us a framed knot invariant Xfin(m, p)
for each pair m, p ∈ Z/2 with |p| − |m| ∈ N1. This invariant is independent
of the framing if and only if m = 0, that is, if α = β.

Consider now the algebra morphisms λm,p ◦ φtL : A → C, where m ∈ Z

and p ∈ C. The argument is now similar to the one in 1.4.1. If we look at the
expression of the representations ̺m,p, it is easy to conclude that given any
chord diagram w with n chords, the evaluation λm,p ◦φtL(w) is, for fixed m,
a polynomial in p of degree at most 2n. Notice that any factor of the form
Cα(m, p) appears in the expression for λm,p ◦ φtL(w) an even number of
times. For the case of balanced representations, that is, m = 0, we can also
prove that it is a polynomial in p2. Also the value of the polynomials at
p = 1 is zero if n > 0, for the pair with m = 0 and p = 1 yields the trivial
one-dimensional representation of L. We have proved:

Theorem 11. Consider the framed knot invariants {X(m, p) : m ∈ N0,
p ∈ C}. If we fix m ∈ N0 then the term of order n in the expansion of

X(m, p,K) as a power series is a polynomial in p of degree at most 2n. Here

K is any framed knot. If m = 0 then only the even terms of the expansion

are non-zero. Moreover the polynomials are zero at p = 1 for n > 0.

Therefore, if we know the value of X(m, p,K) for the finite-dimensional
representations, that is, if |p| − |m| ∈ N, we can determine it for any value
of the parameter p. This is similar to the sl(2,C) case.

2.2.2. Relation to the Coloured Jones Polynomial. The relation between
the Lorentz knot invariants that come from finite-dimensional and infinite-
dimensional representations remarked after Theorem 11 gives us a way to
relate the Coloured Jones Polynomial to the Lorentz Group invariants. In
fact, we have

Theorem 12. Let K be some oriented framed knot , and K∗ its mirror

image. Then for any z, w ∈ C with z − w ∈ Z we have

Jz(K∗)

2z + 1
× Jw(K)

2w + 1
= X(z − w, z + w + 1,K)

as formal power series over C.

Proof. For any m ∈ Z/2 and x ∈ C, let z(x,m) = m+ x and w(x,m) =
−m + x. Thus each pair (z, w) ∈ C

2 with z − w ∈ Z is of the form
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(z(x,m), w(x,m)) for some m and x. Fix m ∈ Z/2. We want to prove that

Jm+x(K∗)

2m+ 2x+ 1
× J−m+x(K)

−2m+ 2x+ 1
= X(m, 2x+ 1,K), ∀x ∈ C.

Each term of the formal power series on both sides of the equality is a
polynomial in x, thus we only need to prove the equality if both x−m and
x+m are half integers.

Let t be the infinitesimal R-matrix in sl(2,C) coming from the Cartan–
Killing form. Notice that it is minus the one considered in 1.4. Let α be a
half integer. Recall that for a framed knot K we have

Jα(K)

2α+ 1
= (λα ◦ Z−t)(K).

Therefore by Theorem 1(iii),

Jα(K∗)

2α+ 1
= (λα ◦ Zt)(K),

since φt(w) = (−1)nφ−t(w) if w is a chord diagram with n chords.
Let K be a framed knot and x be such that α = x−m and β = x+m

are half integers. By Theorem 4 we have

Jα(K∗)

2α+ 1
× Jβ(K)

2β + 1
= (λα ◦ Zt)(K) × (λβ ◦ Z−t)(K)

= (λα ◦ Ztl)(K) × (λβ ◦ Z−tr)(K)

= ((λα ⊗ λβ) ◦ ZtL)(K).

Recall tL = tl − tr.

Now, λα ⊗ λβ is the central character of the representation ̺α ⊗ ̺β of
U(L) ∼= U(sl(2,C))⊗U(sl(2,C)). As we have seen before, this representation
is equivalent to ̺(α − β, α + β + 1) = ̺(m, 2x + 1). Thus their central
characters are the same. This proves

((λα ⊗ λβ) ◦ ZtL)(K) = (λm,2x+1 ◦ ZtL)(K)

if both x−m and x+m are half integers, and the proof is finished.

We have the following simple consequences.

Corollary 13. Given a framed knot K, the term of order n in the

power series of X(m, z,K) is a polynomial in m and z.

Corollary 14. If O is the unknot , then X(m, p,O) is a convergent

power series.

Corollary 15. For balanced representations, that is, if m = 0, the

invariant X(0, p) does not distinguish a knot from its mirror image.

Corollary 16. The framed knot invariants X(m, p) are unoriented.
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3. RELATIONS TO THE APPROACH OF BUFFENOIR AND ROCHE

The aim of this section is to give a sketch of how the Buffenoir and
Roche description of the infinite-dimensional unitary representations of the
Quantum Lorentz Group relates to our approach. The Quantum Lorentz
Group was originally defined by Woronowicz and Podleś in [PoW]. The
classification of its irreducible unitary representations appeared first in [Pu].

For an expanded treatment of the issues considered in this section, we
refer the reader to [PhD].

3.1. Representations of the Quantum Lorentz Group and R-

matrices. We now follow [BR1]. Other good references are [BR2] and
[BNR]. These references contain all the notation and conventions we use.
The Quantum Lorentz Group D at a point q ∈ (0, 1) is defined as the
quantum double D(Uq(su(2)),Pol(SUq(2))). Notice that both Uq(su(2)) and
Pol(SUq(2))cop are Hopf subalgebras of D. The Quantum Lorentz Group
thus has a formal R-matrix coming from its quantum double structure.
Even though it is defined by an infinite sum, it is possible to describe its
action in any pair of infinite-dimensional irreducible representations of D
in the principal series. See [BR1, BR2] for their description. For the dual
counterpart of the theory, in other words for the theory of corepresentations
of the algebra of functions in the Quantum Lorentz Group SLq(2,C), we
refer to [PuW].

Let us describe what the situation is in the case when the two represen-
tations are the same. Suppose also their minimal spin m is zero. Similarly
to the classical case described above, representations ̺(p) of this kind will
be called balanced. They depend on a parameter p ∈ C. If p ∈ iR then the
representations ̺(p) can be made unitary. Choosing p ∈ [0, i2π/h], where
q = eh/2, parametrises all the unitary representations in the principal series
which have minimal spin zero. The latter are called simple representations
in [NR].

Similarly to the classical case, the underlying vector space of the balanced
representations ̺(p), p ∈ C, of the Quantum Lorentz Group is

V = V (p) =
⊕

α∈N0

α
V ,

where
α
̺ : Uq(su(2)) → L(

α
V )

is the irreducible representation of Uq(su(2)) with spin α. A basis of
α
V is

thus given by the vectors {α
vi : i = −α,−α+ 1, . . . , α}. Any element x of
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Uq(su(2)) acts in V as ∏

α∈N0

α
̺(x).

A group-like element of the Lorentz Group is given by G = q2Jz . The heuris-
tic ribbon element of the Quantum Lorentz Group is easily proved to act as
the identity in balanced representations. See [NR].

Given half integers A,B,C and D, define the complex numbers

(1) ΛBC
AD(p) =

∑

σ

(
0

A

∣∣∣∣
C B

σ −σ

)
q2σp

(−σ σ

B C

∣∣∣∣
D

0

)
.

For the correct definition of the phases of the Clebsch–Gordan coefficients
see [BR2]. We display their explicit expression later. The formal universal
R-matrix of the Quantum Lorentz Group is (see [BR1])

R =
∑

α∈ 1

2
N0

−α≤iα,jα≤α

α
X iα

jα
⊗ α
gjα

iα
,

its inverse being

R−1 =
∑

α∈ 1

2
N0

−α≤iα,jα≤α

α
X iα

jα
⊗ S−1(

α
gjα

iα
).

This antipode S is the one of Pol(SUq(2))cop ⊂ D, which is the inverse of
the one in Pol(SUq(2)), thus

S−1(
α
gjα

iα
) = q−iα+jα(−1)−jα+iαα

g−iα
−jα

(see [BR2, equation (25)]). The action of
α
giα

jα
in the space V (p) is given by

(2)
α
giα

jα

β
viβ

=
Fβ

Fγ

∑

D,γ,x∈ 1

2
N0

∑

−γ≤iγ≤γ

∑

−D≤x≤D

γ
viγ

(
iγ iα

γ α

∣∣∣∣
D

x

)(
x

D

∣∣∣∣
α β

jα iβ

)
ΛαC

γβ .

Note that this is a finite sum. The constants Fα are defined in [BR2, Propo-
sition 1]. They will not be used directly. In fact their values are (almost)
arbitrary and they only appear to ensure that the representations ̺(p) are
unitary for p ∈ iR and the natural inner product in V . Their appearance
does not change the representation itself, therefore does not affect the cal-
culations of knot invariants.

The coefficients ΛBC
AD(p) are originally defined in [BR2] from an analytic

continuation of 6j-symbols, and at the end are proved to coincide with (1).
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One can show directly that (2) does define a representation of the Quantum
Lorentz Group for any p ∈ C, since equation (76) of [BR2] holds (see [PhD]).

In some particular cases, equation (2) simplifies to

(3)
α
giα

jα

0
v0 =

F0

Fγ

∑

γ,iγ

(
iγ iα

γ α

∣∣∣∣
α

jα

)
Λαα

γ0

γ
viγ ,

and

(4) 〈0
v0,

α
giα

jα

β
viβ 〉 =

Fβ

F0

(
iα

α

∣∣∣∣
α β

jα iβ

)
Λαα

0β .

All these formulae are consequences of well known symmetries of Clebsch–
Gordan coefficients listed for example in [BR2]. Using them we can also
prove Λ0α

αα = 1, from which it follows that

(5)
0
g0
0
α
viα =

α
viα .

The elements
α
X iα

jα
∈ Pol(SUq(2))∗, α ∈ 1

2
N0, iα = −α, . . . , α,

act simply as matrix elements, that is:

(6)
α
X iα

jα

β
viβ = δ(α, β)δ(iα, iβ)

α
vjα .

Notice Uq(su(2)) is naturally embedded in Pol(SUq(2))∗. Moreover any fi-
nite-dimensional irreducible representation of Uq(su(2)) induces one of

span{
α
X iα

jα
} ⊂ Pol(SUq(2))∗ which has exactly this form (cf. [PoW, The-

orem 5.1]).
The action of the group-like element G is

(7) G
α
viα = q2iαα

viα .

It is easy to compute how R acts:

R(
α
viα ⊗ β

viβ ) =
∑

D,x,γ,iγ ,jα

(
iγ jα

γ α

∣∣∣∣
D

x

)(
x

D

∣∣∣∣
α β

iα iβ

)Fβ

Fγ
ΛαD

γβ (
α
vjα ⊗ γ

viγ )

(see [BR1, Proposition 13]). The summation range is the obvious one. The
action of R in V ⊗ V is thus well defined. Note we are considering the
algebraic, rather than topological, tensor product. Moreover R defines a
braid group representation. Denote it by b ∈ B(n) 7→ Rb ∈ L(V ⊗). Here
B(n) denotes the n-strand braid group and L(V ⊗n) the vector space of
linear maps V ⊗n → V ⊗n. Notice that the braiding operators Rb extend to
unitary operators if p ∈ iR since R∗⊗∗ = R−1, where ∗ is the star structure
on the Quantum Lorentz Group (see [BNR]), because ̺(p) is unitary in this
case.
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3.2. Associated knot invariants. We now use the framework just
introduced to define quantum lorentzian knot invariants. As we will see,
they relate to our approach before.

3.2.1. Some heuristics. Let q ∈ (0, 1) and p ∈ C. Suppose we are given
a braid b with n + 1 strands. There is a map Rb : V ⊗(n+1) → V ⊗(n+1)

attached to it. Consider the map Ab = (id ⊗ G ⊗ · · · ⊗ G)Rb. Suppose the
closure of the braid b is a knot. If the representations we are considering were
finite-dimensional, then the partial trace T 1(Ab) : V → V of Ab over the last
n variables would be an intertwiner and thus a multiple of the identity, since
the representations we are considering are irreducible. Moreover this multi-
ple of the identity would be a knot invariant, which would have the form

(8) b 7→ Sb(q, p)

=
∑

α1,...,αn∈
1

2
N0

−αk≤iαk
≤αk, k=1,...,n

〈0
v0 ⊗ α1

v iα1 ⊗ · · · ⊗ αn
v iαn , Ab(

0
v0 ⊗

α1
v iα1

⊗ · · · ⊗ αn
v iαn

)〉.

Even though the sums above may not be convergent, the assignment of one
sum of this kind to a braid whose closure is a knot is not ambiguous. In
fact, suppose b has m + 1 strands and n crossings. We can always express
this sum in a more suggestive way, namely as

(9) Sb(q, p) =
∑

a1,...,αn

−αk≤ik,jk≤αk, k=1,...,n

〈
0
v0,

2n+m∏

l=1

T (α, i, j, l)
0
v0

〉
,

where if α=(α1, . . . , αn), i=(i1, . . . , in) and j=(j1, . . . , jn), then T (α, i, j, l)

can be either a term of the form
αk
g i

j or
αk

X i
j for some k ∈ {1, . . . , n}, or G;

and moreover for any k there exists an l such that T (α, i, j, l) is an
αk

X i
j , and

the same for
αk
g i

j . The two examples below should clarify what we mean. We
obviously need to suppose that the closure of b is a knot for this to hold.
Notice that the transition from (8) to (9) is totally clear if the representa-
tions are finite-dimensional. We take (9) as the definition of Sb(q, p) if b is
a braid whose closure is a knot.

Let us look at the sums above in a bit more detail. We consider the left
and right handed trefoil knots displayed in Figure 6. Call the two braids we
have chosen to represent them T+ and T−. The sum for the right handed
trefoil knot is

ST+
(q, p) =

∑

α,β,γ∈ 1

2
N0

−α≤iα,jα≤α
−β≤iβ ,jβ≤β
−γ≤iγ ,jγ≤γ

〈0
v0,

γ
g

jγ

iγ

β

X
iβ
jβ

α
gjα

iα
G

γ

X
iγ
jγ

β
g

jβ

iβ

α
X iα

jα

0
v0〉,
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γ

β

α α

β

γ

Fig. 6. Right and left handed trefoil knots

whereas for the left handed trefoil it is

ST−(q, p) =
∑

α,β,γ∈ 1

2
N0

−α≤iα,jα≤α
−β≤iβ ,jβ≤β
−γ≤iγ ,jγ≤γ

〈0
v0,

γ

X
iγ
jγ
S−1(

β
g

jβ

iβ
)

α
Xiα

jα
GS−1(

γ
g

jγ

iγ
)

β

X
iβ
jβ
S−1(

α
gjα

iα
)
0
v0〉.

Many of the terms will be zero in the expressions above. Let us look at ST− .

We only want the 0 → 0 matrix element, and 〈0
v0,

α
X iα

jα
v〉 = δ(α, 0)〈0

v0, v〉.
Thus we can make γ = 0, and then note that

0
g0
0 acts as the identity. We

obtain (we skip unnecessary indices)

ST−(q, p)

=
∑

α,β∈ 1

2
N0

q−iα+jα−iβ+jβ (−1)iα+iβ−jα−jβ 〈βg−iβ
−jβ

α
X iα

jα
G

β

X
iβ
jβ

α
g−iα
−jα

0
v0,

0
v0〉.

From (6) and (7) it follows that α = β and iα = jβ. By (3) and (4) we
conclude that

ST−(q, p) =
∑

α∈ 1

2
N0

α∑

iβ ,jβ ,jα=−α

qjα−iβ+2jβ (−1)iβ−jβ

×
(−iβ
α

∣∣∣∣
α α

−jβ jα

)(
iβ −jβ
α α

∣∣∣∣
α

−jα

)
Λαα

0αΛ
αα
α0 .

Using the standard symmetries of the Clebsch–Gordan coefficients, we can
express this as

ST−(q, p)

=
∑

α∈N0

α∑

iβ ,jβ ,jα=−α

q2jβ

(−iβ −jα
α α

∣∣∣∣
α

−jβ

)(−jβ
α

∣∣∣∣
α α

−iβ −jα

)
Λαα

0αΛ
αα
α0 .

Notice that Λαα
α0 is zero unless α is an integer. Therefore the final expression
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for the sum is

ST−(q, p) =
∑

α∈N0

dαΛ
αα
0αΛ

αα
α0 .

Here da is the quantum dimension of the representation
α
̺, which equals

(q2α+1 − q−2α−1)/(q − q−1). This last sum is easily proved to be equal to
ST+

, therefore, if the sums do define a knot invariant, they make no dis-
tinction between the trefoil and its mirror image. We would expect this
from Corollary 15. The calculations for other knot diagrams follow the same
procedure, which can be represented by an obvious graphical calculation.

Notice that the series S(T−) seems to be divergent due to the presence
of the dα term. Therefore these sums do not seem to define C-valued knot
invariants. This tells us that the method of Borel re-summation sketched in
[FM] is perhaps more powerful.

3.2.2. Finite-dimensional representations. Let Y (α, β, γ) = 1 if
α
̺ ap-

pears in the decomposition of
β
̺ ⊗ γ

̺ in terms of irreducible representations
of Uq(su(2)) and zero otherwise, where α, β, γ ∈ 1

2Z. Let also Y (α, iα) = 1
if iα ∈ {−α, . . . , α} and zero otherwise. We have (see [BR2])

(10)

(
m n

I J

∣∣∣∣
K

p

)
= Y (I,m)Y (J, n)Y (K, p)δ(m+ n, p)Y (I, J,K)

× qm(p+1)+ 1

2
(J(J+1)−I(I+1)−K(K+1))eiπ(I−m)

×
√

[2K + 1][I + J −K]![I −m]![J − n]![K − p]![K + p]!

[K + J − I]![I +K − J ]![I + J +K + 1]![I +m]![J + n]!

×
K−p∑

V =0
−J+K−m≤V ≤I−m

qV (K+p+1)eiπV [I +m+ V ]![J +K −m− V ]!

[V ]![K − p− V ]![I −m− V ]![J −K +m+ V ]!
.

Let p ∈ C. We thus have an infinite-dimensional representation ̺(p) of the
Quantum Lorentz Group given by the constants ΛBC

AD(p). Its representation

space is by definition V = V (p) =
⊕

α∈N0

α
V . From equation (10), we can

easily calculate the coefficients ΛBC
AD if B = 1/2:

Lemma 17. Let C ≥ 0 be an integer. We have

Λ
1/2,C−1/2
CC (p) =

qC(qp + q−p)

q2C + 1
, Λ

1/2,C+1/2
C,C+1 (p) =

q2C+2qp − q−p

q2C+2 + 1
,

Λ
1/2,C+1/2
CC (p) = −q

C+1(qp + q−p)

q2C+2 + 1
, Λ

1/2,C+1/2
C+1,C (p) =

q2C+2q−p − qp

q2C+2 + 1
.
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Notice that all the other ΛBC
AD(p) coefficients with B = 1/2 are zero. See

also [BR2, proof of Theorem 3].

In particular, if p ∈ N, then the representation ̺(p) has a finite-dimen-

sional subrepresentation ̺(p)fin in V (p)fin =
0
V ⊗

1
V ⊕ . . . ⊕

p−1

V . Compare
with 2.2.1. Using Schur’s lemma as in [BR2, proof of Theorem 3], one proves
these representations are irreducible.

Notice that
0
v0 ∈ V (p)fin. Therefore, looking at (9) we obtain

Lemma 18. If p ∈ N and b is a braid whose closure is a knot , then the

infinite sum Sb(q, p) reduces to a finite sum for any q ∈ (0, 1).

As mentioned in the introduction, the category of finite-dimensional
representations of the Quantum Lorentz Group is (almost) ribbon equiv-
alent to the category of finite-dimensional representations of Uq(su(2))⊗R−1

Uq(su(2)) where R is the R-matrix of Uq(su(2)). Let us explain what this
means. We follow [BR2] and [BNR] closely. The ribbon Hopf algebra
Uq(su(2))⊗R−1 Uq(su(2)) is isomorphic to Uq(su(2))⊗Uq(su(2)) as an alge-
bra, but has a coalgebra structure of the form

∆(a⊗ b) = R−1
23 a

′ ⊗ b′ ⊗ a′′ ⊗ b′′R23,

whereas the antipode is defined as

S(a⊗ b) = R21S(a) ⊗ S(b)R−1
21 .

This Hopf algebra has an R-matrix given by

R̂ = R
(−)
14 R

(−)
24 R

(+)
13 R

(+)
23 ,

where R(+) = R and R(−) = R−1
21 . The algebra Uq(su(2)) ⊗R−1 Uq(su(2)) is

a ribbon Hopf algebra with group-like element G⊗G, where G = q2Jz is the
group-like element of Uq(su(2)) (see [BNR, p. 4969]).

The irreducible finite-dimensional representations
α
̺w of Uq(su(2)) are

parametrised by α ∈ 1
2 N0 and w ∈ {1,−1, i,−i}, the level of the representa-

tion (see [KS, Theorem 13]). The irreducible representations
α
̺ of spin α are

the ones for which w = 1. They are the natural quantisation of the repre-
sentations of SU(2) of spin α. The action of the R-matrix of Uq(su(2)) is, a
priori, only defined on pairs of representations of level 1, or their direct sums.
Nevertheless, the category of finite-dimensional representations of Uq(su(2))

of this kind is a ribbon category. Let
α
̺ and

β
̺ be two finite-dimensional

irreducible representations of Uq(su(2)) of level 1 which will then gener-

ate a representation
α
̺ ⊗ β

̺ of Uq(su(2)) ⊗R−1 Uq(su(2)). The action of the
R-matrix of Uq(su(2)) ⊗R−1 Uq(su(2)) is well defined on pairs of represen-
tations of this kind. The same is true for the group-like element, thus we
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can define a framed knot invariant I(
α
̺⊗ β

̺). Unpacking its expression yields
immediately

Lemma 19. For any framed knot K we have

I(
α
̺⊗ β

̺)(K) = I(
α
̺)(K∗)I(

β
̺)(K)

where K∗ is the mirror image of K. Here I(
α
̺) is the Uq(su(2))-framed knot

invariant defined from
α
̺, in other words the Coloured Jones Polynomial ,

and the same for I(
β
̺).

There exists a Hopf algebra morphism ψ : D → Uq(su(2))⊗R−1Uq(su(2))
of the form

ψ : (x, f) 7→
∑

(x)(f)

x′(f ′′ ⊗ id)(R(+)) ⊗ x′′(f ′ ⊗ id)(R(−)).

The comultiplications are taken in Uq(su(2)) and Pol(SUq(2)). This mor-

phism naturally extends to the elements
α
X iα

jα
∈ Pol(SUq(2))∗.

There also exists a morphism s : Pol(SUq(2)) → Pol(SUq(2)) such that

s(
α
giα

jα
) = (−1)2αα

giα
jα

. It extends to all the Quantum Lorentz Group pro-

vided we define its restriction to Uq(su(2)) (thus also to span{
α
X iα

jα
} ⊂

Pol(SUq(2))∗) to be the identity. The main result of [T, Theorem 5.4], is
the following:

Theorem 20. Let ̺ be an irreducible finite-dimensional representation

of the Quantum Lorentz Group D which has a structure of a Pol(SUq(2))-
crossed bimodule. In our case this means that the representation ̺ restricted

to Uq(su(2)) is a direct sum of representations
α
̺w with ω = 1, which is what

happens for the representations ̺(p)fin, p ∈ N (see [T, Proposition 5.1]);
(these representations define corepresentations of the algebra SqL(2,C), thus

representations of the Quantum Lorentz Group in the sense of [PoW]). Then

there exist α, β ∈ 1
2 N0 such that either ̺ = (

α
̺⊗ β

̺) ◦ψ or ̺ = (
α
̺⊗ β

̺) ◦ψ ◦ s.
See [BR2, p. 507]. Therefore if p ∈ N and α = (p − 1)/2, then either

̺(p)fin = (
α
̺ ⊗ α

̺) ◦ ψ or ̺(p)fin = (
α
̺ ⊗ α

̺i) ◦ ψ ◦ s, since the minimal spin of
̺(p)fin is zero (note that ψ restricted to Uq(su(2)) is simply the coevaluation
∆). With a bit more work one can actually prove that the latter case holds
(see [PhD]).

If we consider the action in finite-dimensional representations of the

form ̺ = (
α
̺ ⊗ β

̺) ◦ ψ, then ψ transforms the R-matrix of the Quantum
Lorentz Group into the R-matrix of Uq(su(2)) ⊗R−1 Uq(su(2)), and anal-
ogously for their inverses. This is an easy consequence of the fact that
(∆⊗ id)(R) = R13R23 and (id⊗∆)(R) = R13R12. The same is true for the
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balanced representations ̺(p)fin
∼= (

α
̺⊗ α

̺) ◦ ψ ◦ s since given that
α
X iα

jα
⊗ α
gjα

iα
acts as zero in V (p)fin ⊗ V (p)fin if α ∈ N + 1/2, it follows that the actions
of (s ⊗ s)(R) and R in V (p)fin ⊗ V (p)fin are the same. The detailed calcu-
lation appears in [PhD]. The map ψ preserves the group-like elements since
∆(q2Jz) = q2Jz ⊗ q2Jz. Therefore from Lemma 19 we obtain:

Proposition 21. Let q ∈ (0, 1) and p ∈ N. Let also α = (p − 1)/2.
Given a braid b, let Kb be the closure of b with an arbitrary framing and K∗

b
its mirror image. Suppose Kb is a knot. Then

Sb(q, p) =
I(

α
̺)(K∗

b )I(
α
̺)(Kb)

[2α+ 1]2
= X(0, p,Kb)(h)

(2α+ 1)2

[2α+ 1]2
,

where q = exp(h/2). The last equality follows from Theorem 12.

Recall also Lemma 18 and notice that X(0, p,Kb)(h) is a convergent
power series if p ∈ N. Therefore the perturbative framework of the previous
sections is correct, at least for finite-dimensional representations. In the
following we will generalise this to infinite-dimensional representations.

3.2.3. The series are convergent h-adically. We now define the h-adic
version of the theory developed by Buffenoir and Roche. Let q ∈ (0, 1) and

consider the element
α
giα

jα
∈ Pol(SUq(2)). For any p ∈ C, we have a balanced

representation ̺(p) of the Quantum Lorentz Group in V (p). The term

〈βviβ |̺(p)(α
giα

jα
)|γviγ 〉q

can be seen as a function of q. Since the building blocks of ̺(p) are Clebsch–
Gordan coefficients, it can be expressed as a sum of square roots of rational
functions of q, which extends to a well defined analytic function in a neigh-
bourhood of 1. We can see this for example from (10). In addition we have
some terms of the form qpσ, σ ∈ Z, which after putting q = exp(h/2) define
an analytic function of h. Therefore

h 7→ 〈βviβ |̺(p)(α
giα

jα
)|γviγ 〉exp(h/2)

defines a unique power series in h. In particular it follows that if b is a braid
then each term of the sum Sb(exp(h/2), p) defines uniquely a power series
in h, which converges to the term for h small enough.

Lemma 22. For any x ∈ Pol(SUq(2)), the order of

h 7→ 〈βviβ |̺(p)(x)|γviγ 〉exp(h/2),

as a power series in h, is greater than or equal to |β − γ|.

Proof. Notice that
1

2
gi

j sends
γ

V to
γ−1

V ⊕
γ

V ⊕
γ+1

V in such a way that for

q = 1 the projection v of
1

2
gi

j

γ
viγ in

γ+1

V ⊕
γ−1

V is zero. We can see this from
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Lemma 17. In particular v has order at least one. This lemma is thus a

trivial consequence of the fact that the elements {
1

2
gi

j : −1/2 ≤ i, j ≤ 1/2}
generate Pol(SUq(2)) as an algebra.

Proposition 23. For any braid b whose closure is a knot the infinite

sum Sb(exp(h/2), p) converges in the h-adic topology.

Proof. Let b be a braid with n crossings and m + 1 strands. Recall

equation (9) and comments after it. Due to the way the
αk

X i
j as well as G

act in V (p), the previous lemma guarantees that the order of the scalar

product 〈0
v0,
∏2n+m

l=1 T (α, i, j, l)
0
v0〉 as a power series in h is at least αk, for

k = 1, . . . , n; and the result follows.

3.2.4. The series define a C[[h]]-valued knot invariant. Since we have
proved the h-adic convergence of the sums Sb(exp(h/2), p) to a formal power
series, we could now use Markov’s theorem and prove that the assignment
b 7→ Sb(exp(h/2), p) defines a knot invariant. However, the best way to prove
this is to reduce it to the finite-dimensional case, since we already know that
it defines a knot invariant and the exact form of it (see Proposition 21).
Consider a coefficient ΛBC

AD(p)q at q = exp(h/2); it is a power series in
h convergent for h small enough. From equation (1), we can see that the
dependence of each term on p is polynomial. In particular, we have:

Lemma 24. Let b be a braid ; consider the power series Sb(exp(h/2), p)
as a function of p, the parameter defining a balanced representation of the

Quantum LorentzGroup. Then each term in the expansion of Sb(exp(h/2), p)
as a power series in h is a polynomial in p.

Proof. Suppose A(p) =
∑

n∈N0
An(p)hn and B(p) =

∑
n∈N0

Bn(p)hn are
power series whose coefficients depend polynomially on p, for example power
series such as exp(mph/2). Then also the coefficients of their product de-
pend polynomially on p. This immediately proves this lemma. Note that the
Clebsch–Gordan coefficients as well as the actions of G and of the elements
α
X iα

jα
do not depend on p.

Theorem 25. Let p ∈ C and b be a braid whose closure is a knot. Let

K be the closure of b. Then

Sb(exp(h/2), p) =
X(0, p,K)(2α+ 1)2

[2α+ 1]2
,

where α = (p− 1)/2.

Recall that by Theorem 10 the knot invariant X(0, p) is unframed.

Proof. By Lemma 24, we only need to prove this theorem for p ∈ N.
In this case, if q = (0, 1) then Sb(q, p) reduces to a finite sum which from
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Proposition 21 equals X(0, p,K)(2α+1)2[2α+1]−2 at q = exp(h/2). Recall
that this power series is convergent if p is an integer. Each term of the finite
sum Sb(exp(h/2), p) is a power series in h convergent for h small enough
and coinciding with Sb(q, p) for q ∈ (0, 1) and close enough to 1; thus the
result follows.
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Instituto Superior Técnico
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