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On surface braids of index four with at most two crossings
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Dedicated to Professor Yukio Matsumoto for his sixtieth birthday

Abstract. Let Γ be a 4-chart with at most two crossings. We show that if the clo-
sure of the surface braid obtained from Γ is one 2-sphere, then the sphere is a ribbon
surface.

1. Introduction. Kamada showed that any 3-chart can be modified by
C-moves to a 3-chart without white vertices (see [3]). Nagase and Hirota
showed that any 4-chart with at most one crossing can be modified by
C-moves to a chart without white vertices (see [4]). Kamada showed that
for any ribbon surface, for some positive integer n there exists an n-chart
without white vertices such that the ribbon surface is ambient isotopic to
the closure of the surface braid obtained from it (see [3, Proposition 20]).
Conversely, if a chart can be modified by C-moves to a chart without white
vertices, then the closure of the surface braid obtained from it is ambient
isotopic to a ribbon surface. Hence the closure of the surface braid obtained
from a 4-chart with at most one crossing is ambient isotopic to a ribbon
surface.

Let Γ be a 4-chart with exactly two crossings. Aiba and Nagase showed
that if Γ is a minimal 4-chart with exactly one special house, then each
connected component of Γ is a free edge, a hoop, a 4-chart as shown in
Figure 1, or its reflection. Here, a house means a complementary domain of
the subgraph consisting of even labeled edges and their vertices, a special

house means a house containing crossings, a free edge E means an edge such
that each vertex of E has degree one, and a hoop means an edge without
vertices.
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The 4-chart in Figure 1 has eight black vertices, where a black vertex

means a vertex of degree one. On the other hand, if the closure of the
surface braid obtained from a 4-chart represents a 2-sphere, then the chart
has exactly six black vertices. Therefore if Γ is a connected minimal 4-chart
with exactly two crossings and one special house, then the closure of the
surface braid obtained from Γ is either a ribbon surface, a connected closed
surface of genus g ≥ 1, or a disconnected closed surface.

Fig. 1. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.

The following is the main result of this paper.

Theorem 1.1. Let Γ be a 4-chart with at most two crossings. If the

closure of the surface braid obtained from Γ is one 2-sphere, then Γ can be

modified by C-moves to a 4-chart without white vertices. Hence the sphere

is a ribbon surface.

2. Definitions and preliminaries. In this section, we investigate dis-
tinguished arcs and terminal edges of label 2.

Let n be a positive integer. An n-chart is an oriented labeled graph in
a disk, which may be empty or have closed edges without vertices called
hoops, satisfying the following four conditions:

(i) Every vertex has degree 1, 4, or 6.
(ii) The labels of edges are in {1, 2, . . . , n − 1}.
(iii) In a small neighborhood of each vertex of degree 6, there are six

short arcs, three consecutive arcs are oriented inward and the other
three outward, and those six arcs are labeled i and i+1 alternately
for some i, where the orientation and label of each arc are inherited
from the edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the same label
and are oriented coherently, and the labels i and j of the diagonals
satisfy |i − j| > 1.

A vertex of degree 1, 4, and 6 is called a black vertex, a crossing, and a
white vertex respectively. To make the argument simple, we assume that the

charts lie on the 2-sphere instead of the disk.
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Among the six short arcs in a small neighborhood of a white vertex,
the center arc of any three consecutive arcs oriented inward or outward
is called a middle arc of the white vertex. There are two middle arcs in
a small neighborhood of each white vertex. A middle arc of odd label is
called a distinguished arc. We mark it as in Figure 2. If an edge contains
a distinguished arc containing a white vertex w, then the edge is called a
distinguished edge at w. An edge is called free if it has two black vertices;
terminal if it contains one black vertex and one white vertex; and a loop if
it contains only one vertex.

Fig. 2. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.

Remark 2.1. Around each white vertex, there exists only one distin-
guished arc.

Let Γ be a connected 4-chart, and Γ2 the subgraph of Γ consisting of
edges of label 2 and their vertices. Then a complementary domain of Γ and
Γ2 are called a room and a house, respectively. Note that all rooms are open
disks. In general, a house and a room of each component of a 4-chart are
called a house and a room of the 4-chart, respectively.

Lemma 2.2 ([1]). Let Γ be a connected 4-chart , t(Γ ) the number of

terminal edges of label 2, and w(Γ ) the number of white vertices. For each

natural number i, let ni be the number of houses with exactly i boundary

components each. Then

w(Γ ) − t(Γ ) = 2(n1 − 2) − 2
∑

i≥3

ni(i − 2).

A C-move is a local modification of charts in a disk as shown in Lemma
16 of [3] (cf. Figures 19 and 20 in Chapter 3 of [2]). We show some C-moves in
Figure 3. Two charts are C-move equivalent if there exists a finite sequence
of C-moves which modify one of the charts to the other.

For each chart Γ , let c(Γ ), w(Γ ) and f(Γ ) be the number of crossings,
of white vertices, and of free edges respectively. The triplet (c(Γ ), w(Γ ),
−f(Γ )) is called the complexity of the chart. A chart is called minimal if its
complexity is lexicographically minimal among the charts C-move equivalent
to it.

Remark 2.3. Let Γ be a minimal 4-chart. Then

(i) no edge contains two distinguished arcs,
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(ii) any terminal edge contains a middle arc, in particular, an odd la-
beled terminal edge is a distinguished edge (see the C-III-1 move in
Figure 3).

Fig. 3. In the left figure of a C-III-1 move, the edge containing the black vertex does not
contain a middle arc.

It is easy to prove the following lemma.

Lemma 2.4. Each component of a minimal 4-chart is a minimal 4-chart.

Terminology. If a vertex or an edge is contained in the closure of a
room or a house, then we say that the vertex or the edge belongs to the
room or the house, or that the room or the house possesses the vertex or
the edge.

Let Γ be a connected 4-chart, R a room of Γ , and XR the closure of R.
Let D be a disk, and P 1, . . . , Pn points on the boundary of D, ∂D, situated
in this order. The points split ∂D into n arcs A1, . . . , An where P i and P i+1

are the end points of Ai, with Pn+1 = P 1. Let g : D → XR be a continuous
surjective map which:

(i) maps the interior of D homeomorphically onto R, and hence ∂D
onto ∂R,

(ii) maps the interior of each arc Ai homeomorphically onto the interior
of an edge belonging to the room R.

Then the set {g : D → XR; P 1, . . . , Pn; A1, . . . , An} is called an associated

set of the room R. The set {g : D → XR; A1, . . . , An} is also called an
associated set of R. Similarly, we can define an associated set of a house
with connected boundary.
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Let Γ be a chart, and XR the closure of a room R of Γ . Let A1 and
A2 be different edges in XR. The pair (A1, A2) is said to be admissible with

respect to a disk E in XR if:

(i) E ∩ ∂R consists of two disjoint arcs α1, α2 with αi ⊂ Ai for i = 1, 2.
(ii) For any orientation of E, there exists some i ∈ {1, 2} such that

the orientation induced from the disk does not coincide with the
orientation induced from Ai.

Let A, A′ and A′′ be edges which belong to a room R such that A is a
terminal edge of label 2, and the labels of A′ and A′′ are odd (the case of
A′ = A′′ is not excluded). Let {g : D → XR; P 1, . . . , Pn; A1, . . . , An} be
an associated set of R with A = g(A1). We can assume that A′ = g(Ai),
A′′ = g(Aj), and i < j. The triplet (A′, A, A′′) is said to be semi-reducible

with respect to a disk E if it satisfies condition (1) below, and reducible with

respect to E if it satisfies (1) and (2).

(1) A splits E into two disks, say E1 and E2, so that the pair (A, A′)
is admissible with respect to one of them, and (A, A′′) is admissible
with respect to the other.

(2) If g(Ak ∩ Ak+1) is a crossing for some k with i ≤ k < j, then the
triplet (g(Ak), A, g(Ak+1)) is not semi-reducible.

Lemma 2.5 ([4, Lemma 1]). For any minimal 4-chart , there is no re-

ducible triplet.

A special pair is an admissible pair with a common crossing. A special

house is a house containing a crossing.

Lemma 2.6. Let Γ be a connected minimal 4-chart. If a room R possesses

exactly m special pairs, then it possesses at most m terminal edges of label 2.

Proof. Let {g : D → XR; A1, . . . , An} be an associated set of R. We
prove the lemma by contradiction. Suppose that the room possesses more
than m + 1 terminal edges of label 2. Then there exist two terminal edges
g(Ai) and g(Aj) of label 2 with i < j such that g(Ai+1) and g(Aj−1) are
of odd label, and (g(Ak), g(Ak+1)) is a special pair for any k = i + 1,
i + 2, . . . , j − 2. Now (g(Ai+1), g(Aj−1)) is admissible. For, if not, we can
increase the number of free edges by a C-I-M2 move between the termi-
nal edges g(Ai) and g(Aj). Therefore the triplet (g(Ai+1), g(Ai), g(Aj−1)) is
reducible. This contradicts Lemma 2.5.

The following lemma is a generalization of Proposition 1 in [4].

Lemma 2.7. Let Γ be a connected minimal 4-chart. If a house of Γ
contains exactly n crossings, then the house possesses at most 2n terminal

edges of label 2. In particular , no non-special house possesses a terminal

edge of label 2.
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Proof. If a house is non-special, then it possesses no terminal edge of
label 2 by Proposition 1 in [4]. If a house is special, then it contains crossings.
For each crossing, there are two special pairs, so if the house contains exactly
n crossings, then it contains exactly 2n special pairs. By Lemma 2.6, the
house possesses at most 2n terminal edges of label 2.

Let Γ be a connected 4-chart, and H a house of Γ . Let m1 be the number
of distinguished arcs in the closure of H, and m2 the number of terminal
edges of label 2 in that closure. Then m1 − m2 is denoted by d(H). By
Remark 2.1, the number of white vertices of Γ is equal to the number of
distinguished arcs of Γ . Hence the sum of d(H) for all houses is equal to
w(Γ ) − t(Γ ):

w(Γ ) − t(Γ ) =
∑

H: house

d(H).

Lemma 2.8. Let Γ be a connected minimal 4-chart , and H a non-special

house of Γ . If the boundary of H is connected , then H possesses an even

number of distinguished arcs, at least two. Moreover , d(H) ≥ 2.

Proof. Let H be a non-special house with connected boundary. By Lem-
ma 2.7, H possesses no terminal edge of label 2. Lemma 4 in [4] shows that
H possesses an even number of distinguished arcs. By Proposition 4 in [4],
H possesses at least two distinguished arcs. Since H possesses no terminal
edge of label 2, it follows that d(H) ≥ 2.

In [4], Nagase and Hirota investigate edges near a terminal edge of label 2.

Lemma 2.9 ([4, Lemma 3]). Let Γ be a minimal 4-chart , and B, B′ edges

containing the same white vertex w such that B is terminal of label 2, and

the label of B′ is odd. If B′ is not a distinguished edge at w, then it contains

a crossing or is a distinguished edge at the other white vertex of itself.

Lemma 2.10 ([4, Lemma 6]). In a minimal 4-chart , there exists no room

whose boundary consists of exactly two edges with different parities and with

the odd labeled edge containing no distinguished arc.

Lemma 2.11. Let Γ be a connected minimal 4-chart , and H a special

house of Γ . If the boundary of H is connected , and if H contains exactly

one crossing , then d(H) ≥ 0. Moreover , if H possesses distinguished arcs,
then d(H) ≥ 1.

Proof. Let B1, B2, B3, B4 be the odd labeled edges containing the cross-
ing which belong to H. They separate H into four components, say H1, H2,
H3, H4. Each Hi possesses at most one special pair. By Lemma 2.7, each Hi

possesses at most one terminal edge of label 2. Suppose that Hi possesses one
terminal edge of label 2, say A. Let C1, C2 be the odd labeled edges which
belong to Hi and contain the white vertex of A. Since H contains only one
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crossing, C1 or C2 does not contain a crossing. If neither of them does, then
both contain distinguished arcs by Lemma 2.9. This is impossible. Suppose
that only one of C1 and C2, say C1, contains a crossing. Let R be the compo-
nent of H \C2 with no crossing. Let {g : D → XR; P 1, . . . , Pn; A1, . . . , An}
be an associated set of R such that g(A1) = C2 and C2 is the distin-
guished edge at g(P 1). Then R possesses two distinguished arcs. If not, then
(g(Ak), g(Ak+1)) is not admissible for 2 ≤ k ≤ n − 1, and (g(A2), g(An)) is
not admissible. However, since (C2, g(A2)) is not admissible, and (C2, g(An))
is, it follows that (g(A2), g(An)) is admissible. This is a contradiction. There-
fore R possesses at least two distinguished arcs, and if Hi possesses one ter-
minal edge of label 2, then it contains at least two distinguished arcs. Hence
d(H) ≥ 0. Moreover, if H possesses distinguished arcs, then d(H) ≥ 1.

3. Saturated 4-charts. In this section, we show that if Γ is a minimal
4-chart with at most two crossings, then Γ is a “saturated” 4-chart.

We say that a connected 4-chart Γ with white vertices is saturated if it
satisfies the following two conditions:

(i) A house of Γ possesses distinguished arcs if and only if it is non-
special with connected boundary.

(ii) If a house possesses distinguished arcs, then it possesses exactly two
such arcs.

In general, we say that a 4-chart is saturated if each of its components is a
free edge, a hoop, or a saturated 4-chart.

Nagase and Hirota showed that a minimal 4-chart with at most one
crossing has no white vertices (see [4, Main Theorem]). Such a chart can be
modified to a chart consisting of free edges and hoops by using C-II, C-I-R2
and C-I-R3 moves. This implies the following lemma.

Lemma 3.1. Any minimal 4-chart with at most one crossing is saturated.

Lemma 3.2 ([1, Main Theorem]). Let Γ be a minimal 4-chart with ex-

actly two crossings. If Γ has only one special house, then each component

of Γ is a free edge, a hoop, the 4-chart of Figure 1 or its reflection.

Let Γ be the 4-chart of Figure 1 or its reflection. Then Γ is saturated.
By Lemma 3.2, we have the following lemma.

Lemma 3.3. Let Γ be a minimal 4-chart with exactly two crossings. If

Γ has only one special house, then Γ is saturated.

We wish to show that any minimal 4-chart with at most two crossings
is saturated. To do this, it suffices to consider a connected minimal 4-chart
with two special houses.
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Lemma 3.4. Let Γ be a connected minimal 4-chart with exactly two

crossings and with two special houses. Then

w(Γ ) − t(Γ ) ≥ 2(n1 − 2)

where n1 is the number of houses with connected boundary , w(Γ ) is the

number of white vertices, and t(Γ ) is the number of terminal edges of label 2.
Moreover :

(i) If there exists a non-special house H0 with connected boundary and

with d(H0) ≥ 4, then w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + 2.
(ii) If there exists a non-special house H0 with disconnected boundary

and with d(H0) ≥ 1, then w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + 1.

To prove Lemma 3.4, we need the following claim.

Claim. Let Γ be a 4-chart as in Lemma 3.4. Let n be the number of

non-special houses with connected boundary. Then D(Γ ) ≥ 2n. Moreover ,

D(Γ ) ≥

{

2n + 2 if Γ is as in Lemma 3.4(i),

2n + 1 if Γ is as in Lemma 3.4(ii).

Here, D(Γ ) is the sum of d(H) for all non-special houses H.

Proof of Claim. Let H ′
1, . . . , H

′
n be all non-special houses with connected

boundary. By Lemma 2.8, d(H ′
i) ≥ 2 for all i. By Lemma 2.7, no non-special

house H possesses a terminal edge of label 2. Hence d(H) ≥ 0. Therefore

D(Γ ) ≥
n

∑

i=1

d(H ′
i) ≥ 2n.

Suppose that Γ is as in Lemma 3.4(i). Then d(H ′
j) ≥ 4 for some j. Hence

D(Γ ) ≥ d(H ′
j) +

∑

1≤i≤n, i6=j

d(H ′
i) ≥ 4 + 2(n − 1) = 2n + 2.

Suppose now that Γ is as in Lemma 3.4(ii). Then there exists a non-
special house H0 such that ∂H0 is disconnected and d(H0) ≥ 1. Hence
D(Γ ) ≥ d(H0)+

∑n
i=1 d(H ′

i) ≥ 1+2n. This completes the proof of Claim.

Let Γ be a 4-chart as in Lemma 3.4. Set

ε =







2 if Γ is as in Lemma 3.4(i),

1 if Γ is as in Lemma 3.4(ii),

0 otherwise.

By the above claim, we have D(Γ ) ≥ 2n + ε.

Proof of Lemma 3.4. Let H1, H2 be the two special houses of Γ . Since Γ
has exactly two crossings, each Hi contains only one crossing. By the above
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claim,

w(Γ ) − t(Γ ) = d(H1) + d(H2) + D(Γ ) ≥ d(H1) + d(H2) + 2n + ε.

There are three possibilities:

(a) The boundaries of H1 and H2 are connected.
(b) One of ∂H1 and ∂H2 is connected, the other is disconnected.
(c) The boundaries of H1 and H2 are disconnected.

In case (a), by Lemma 2.11, d(Hi) ≥ 0 for i = 1, 2. Since the number of
special houses with connected boundary is two, we have n1 = n + 2. Hence
w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + ε.

In case (b), we may assume that ∂H1 is connected and ∂H2 is not. By
Lemma 2.11, d(H1) ≥ 0. Since H2 contains only one crossing, it possesses
at most two terminal edges by Lemma 2.7. Hence d(H2) ≥ −2. Since the
number of special houses with connected boundary is 1, we have n1 = n+1.
Therefore

w(Γ ) − t(Γ ) ≥ 0 − 2 + 2(n1 − 1) + ε = 2(n1 − 2) + ε.

In case (c), we have d(Hi) ≥ −2 for i = 1, 2 in a similar way to the case
above. Since there is no special house with connected boundary, we have
n1 = n. Therefore

w(Γ ) − t(Γ ) ≥ −2 − 2 + 2n1 + ε = 2(n1 − 2) + ε.

This completes the proof of Lemma 3.4.

Lemma 3.5. Let Γ be a connected minimal 4-chart with exactly two

crossings and with two special houses. Then the boundary of each house

is connected or has two components.

Proof. For each natural number i, let ni be the number of houses with
exactly i boundary components each. Suppose that there exists a house H
such that ∂H has more than two components. Then ni ≥ 1 for some i ≥ 3.
By Lemma 2.2,

w(Γ ) − t(Γ ) ≤ 2(n1 − 2) − 2ni(i − 2) ≤ 2(n1 − 2) − 2 = 2(n1 − 3).

This contradicts Lemma 3.4.

Lemma 3.6. Let Γ be a connected minimal 4-chart with exactly two

crossing and with two special houses. If there exists a special house which

possesses distinguished arcs, then

w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + 1

where n1 is the number of houses with connected boundary.

Proof. Let n be the number of non-special houses with connected bound-
ary. Let H1, H2 be the special houses of Γ . Suppose that H1 possesses dis-
tinguished arcs. By the Claim, D(Γ ) ≥ 2n.
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Case 1: ∂H1 is connected. Since H1 possesses at least one distinguished
arc, d(H1) ≥ 1 by Lemma 2.11. Suppose that ∂H2 is connected. Then there
are exactly two special houses with connected boundary, and n1 = n + 2.
By Lemma 2.11, d(H2) ≥ 0 and we have

w(Γ ) − t(Γ ) = d(H1) + d(H2) + D(Γ ) ≥ 1 + 0 + 2n = 2(n1 − 2) + 1.

Suppose now that ∂H2 is disconnected. Then n1 = n + 1. Since H2 con-
tains exactly one crossing, by Lemma 2.7 it possesses at most two terminal
edges of label 2. Hence d(H2) ≥ −2 and we have

w(Γ ) − t(Γ ) = d(H1) + d(H2) + D(Γ ) ≥ 1 − 2 + 2n = 2(n1 − 2) + 1.

Case 2: ∂H1 is disconnected. Since H1 possesses a distinguished arc, we
have d(H1) ≥ −1 in a similar way to the case above. Suppose that ∂H2 is
connected. Then n1 = n + 1. By Lemma 2.11, d(H2) ≥ 0 and we have

w(Γ ) − t(Γ ) = d(H1) + d(H2) + D(Γ ) ≥ −1 + 0 + 2n = 2(n1 − 2) + 1.

Suppose now that ∂H2 is disconnected. Then n1 = n. Similarly to the
above, d(H2) ≥ −2 and we have

w(Γ ) − t(Γ ) = d(H1) + d(H2) + D(Γ ) ≥ −1 − 2 + 2n = 2(n1 − 2) + 1.

Theorem 3.7. Any minimal 4-chart with at most two crossings is sat-

urated.

Proof. Let Γ be a minimal 4-chart with at most two crossings. If each
component of Γ has at most one crossing, then Γ is saturated by Lemmas
2.4 and 3.1. Hence we may assume that Γ is connected and has exactly
two crossings. By Lemma 3.3, we may also assume that Γ has two special
houses. By Lemma 3.5, the boundary of each house is connected or has two
components. Lemma 2.2 yields

w(Γ ) − t(Γ ) = 2(n1 − 2)

where n1 is the number of houses with connected boundary. By Lemma 2.8,
if a non-special house with connected boundary possesses distinguished arcs,
then it possesses at least 2k such arcs (k ≥ 1). Suppose that Γ is not sat-
urated. Then there exists a house H1 satisfying one of the following condi-
tions:

(i) H1 is non-special with connected boundary, and possesses at least
four distinguished arcs.

(ii) H1 is non-special with two boundary components, and possesses
distinguished arcs.

(iii) H1 is special and possesses distinguished arcs.

In case (i), Lemma 2.7 shows that H1 possesses no terminal edge of
label 2. Hence d(H1) ≥ 4. By Lemma 3.4(i), we then have w(Γ ) − t(Γ ) ≥
2(n1 − 2) + 2. This is a contradiction.
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In case (ii), Lemma 2.7 shows that H1 possesses no terminal edge of
label 2. Hence d(H1) ≥ 1, and then w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + 1 by
Lemma 3.4(ii). This is a contradiction.

In case (iii), w(Γ ) − t(Γ ) ≥ 2(n1 − 2) + 1 by Lemma 3.6. This is a
contradiction.

Lemma 3.8. Let Γ be a saturated connected minimal 4-chart. If a special

house H of Γ contains exactly one crossing , then H possesses no terminal

edges of label 2. Moreover , d(H) = 0.

Proof. Suppose that a terminal edge B of label 2 belongs to H. Let w
be the white vertex of B. Since Γ is saturated, H possesses no distinguished
arcs. Hence no loop with vertex w has odd label. So, there exist two odd
labeled edges B1, B2 such that Bi belongs to H and w ∈ Bi for i = 1, 2. Since
H possesses no distinguished arcs, Bi is a distinguished edge at neither of its
vertices for i = 1, 2. By Lemma 2.9, B1 and B2 contain crossings. However,
these crossings are not different. This contradicts the fact that H contains
exactly one crossing. Therefore H possesses no terminal edges of label 2 and
d(H) = 0.

Lemma 3.9. Let Γ be a connected minimal 4-chart with exactly two

crossings. If a special house H1 of Γ contains exactly one crossing , then

the boundary of H1 is connected.

Proof. By Theorem 3.7, Γ is saturated. Let H1 be a special house con-
taining exactly one crossing. Suppose that ∂H1 is disconnected. By Lemmas
2.2 and 3.5,

w(Γ ) − t(Γ ) = 2(n1 − 2)

where n1 is the number of houses with connected boundary. Let H2 be
another special house of Γ . Since Hi contains exactly one crossing, d(Hi) = 0
for i = 1, 2 by Lemma 3.8. Moreover, since Γ is saturated, d(H) = 2 for any
non-special house H with connected boundary. Let n be the number of such
houses. Since ∂H1 is disconnected, n = n1 − 1 or n = n1. Hence n ≥ n1 − 1,
and

w(Γ ) − t(Γ ) = 2n + d(H1) + d(H2) = 2n ≥ 2(n1 − 1).

This is a contradiction.

4. Rectangular rooms. In this section, we investigate a non-special
house with connected boundary in a saturated minimal 4-chart.

Let Γ be a chart, and w a white vertex of Γ . In a small neighborhood
of w, there are six short arcs. Let α1, α2, α3 be three consecutive arcs in this
neighborhood. For i = 1, 2, 3, let Bi be the edge containing αi. Then B1 and
B3 are called the side edges of B2 at the white vertex w.
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Lemma 4.1. Let Γ be a connected 4-chart , and R a room of Γ . Let

{g : D → XR; A1, . . . , An} be an associated set of R, and Ai = g(Ai) for

each i (1 ≤ i ≤ n). Suppose that A1, A3 are even labeled edges, and A2 is

odd labeled. If the room R satisfies one of the following conditions, then we

can reduce the number of white vertices of Γ by C-moves.

(i) Neither (A1, A2) nor (A2, A3) is admissible.

(ii) A2 does not contain distinguished arcs, and both (A1, A2) and

(A2, A3) are admissible.

Proof. Suppose that Γ satisfies (i). Then A2 is not a loop. For i = 1, 3,
let Bi be the side edge of A2 at the white vertex A2 ∩Ai such that Bi 6= Ai.
Then B1, A2, B3 belong to the same room. Since (Ai, A2) is not admissible
for i = 1, 3, (Bi, A2) is admissible. Hence (B1, B3) is not admissible. The pair
(A1, A3) is not admissible. Apply a C-I-M2 move between A1 and A3, and
a C-I-M2 move between B1 and B3. Then we can cancel the white vertices
of A2 by a C-I-M3 move. See Figure 4.

Fig. 4. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.

Suppose now that Γ satisfies (ii). Since A2 is not a distinguished edge, it
is not a loop. For i = 1, 3, let Bi be the side edge of A2 at the white vertex
A2 ∩Ai such that Bi 6= Ai. Then B1, A2, B3 belong to the same room. Since
A2 is not a distinguished edge and (Ai, A2) is admissible, (Bi, A2) is not
admissible for i = 1, 3. Hence (B1, B3) is not admissible. The pair (A1, A3)
is not admissible. Then we can cancel the white vertices of A2 by C-I-M2
moves and a C-I-M3 move as above.

Lemma 4.2. Let Γ be a connected minimal 4-chart , H a house, and B
an odd labeled edge of H. Suppose that H possesses no terminal edges of

label 2, and B does not contain crossings and distinguished arcs. Let E be a

component of H \B. If ∂E\B is connected , then E possesses a distinguished

arc or contains a crossing.
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Proof. Since B does not contain crossings, it connects the boundary
points of XH . Let {g : D → XE ; A1, . . . , An} be an associated set of E such
that g(A1) = B. Since ∂E contains only one odd labeled edge B, g(Ai) is
an even labeled edge for each i = 2, . . . , n.

Suppose that E possesses neither distinguished arcs nor crossings. Take
an outermost arc B′ in D such that the odd labeled edge g(B′) = B′ belongs
to E. Then one of the components of E \ B′ is a room with connected
boundary, which possesses exactly one even labeled edge and one odd labeled
edge, and which contains no distinguished arc. However, this contradicts
Lemma 2.10.

Let Γ be a connected 4-chart. A room R of Γ is rectangular if there exists
an associated set of R, {g : D → XR; A1, A2, A3, A4}, such that g(A1), g(A3)
are edges of label 2, and g(A2), g(A4) are edges of odd label.

Let Γ be a connected 4-chart, R a room of Γ , and {g : D → XR; P 1, . . . ,
Pn; A1, . . . , An} an associated set of R. If R satisfies one of the following
conditions, then it is called an end room. See Figure 5.

(I) n = 5, g(A1) = g(A5) is a distinguished edge, g(A2), g(A4) are
edges of label 2, and g(A3) is an edge of odd label.

(II) n = 2, g(A1) is an edge of label 2, and g(A2) is a distinguished
edge.

(III) n = 6, g(A1) = g(A6), g(A3) = g(A4) are distinguished edges, and
g(A2), g(A5) are edges of label 2.

Fig. 5. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.
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The rooms satisfying (I), (II) and (III) are called end rooms of type (I), (II)
and (III), respectively. Let H be a house. If H consists only of an end room
of type (I) and an end room of type (II), then H is called a house of type

(IV). The house in Figure 5(IV) is an example. If H consists only of two
end rooms of type (II) and a rectangular room, then it is called a house of

type (V). An example is shown in Figure 5(V).

Lemma 4.3. Let Γ be a saturated connected minimal 4-chart , and H a

non-special house of Γ . If the boundary of H is connected , then H satisfies

one of the following two conditions:

(i) H is an end room of type (III).
(ii) Two rooms in H, say R, R′, are end rooms, and the other rooms, say

R1, . . . , Rn, are rectangular. Moreover , we can renumber the rectan-

gular rooms so that for each i = 0, 1, . . . , n, Ri and Ri+1 possess a

common edge of odd label , where R0 = R and Rn+1 = R′.

Let A, A′ be edges of label 2 which belong to H. If A, A′ belong to the same

rectangular room, then (A, A′) is admissible.

Proof. Let {g : D → XH ; P 1, . . . , Pn; A1, . . . , An} be an associated set
of H. Since Γ is saturated, H possesses exactly two distinguished edges, say
B, B′. Since Γ is minimal, B 6= B′ by Remark 2.3(i). Since H is non-special,
it possesses no terminal edges of label 2 by Lemma 2.7. If H does not possess
other edges of odd label, then it is of type (III), (IV) or (V). Therefore we
may assume that there exist other edges of odd label belonging to H, say
B1, . . . , Bk. Let Bi, B, B′ be the arcs in D with g(B) = B, g(B′) = B′ and
g(Bi) = Bi for all i (1 ≤ i ≤ k). Since Bi is not a distinguished edge, it is
not terminal by Remark 2.3(ii). Hence it connects boundary points of H.

Suppose that B or B′ is terminal, say B is a terminal edge contain-
ing the white vertex g(P 1). Let P ′ be the point in ∂D such that B′ is a
distinguished edge at the vertex g(P ′). Let C1, C2 be the components of
∂D \ {P 1, P

′}. By Lemma 4.2, each arc Bi (1 ≤ i ≤ k) connects a point in
C1 and a point in C2. If not, then there exists a component E of H \Bi pos-
sessing no distinguished arc and containing no crossing, and with ∂E \ Bi

connected. This contradicts Lemma 4.2. We may assume that the arc Bi

connects P i+1 and Pn−i−1 for i = 1, . . . , k. If B′ is a terminal edge, then
n = 2k + 6, and B′ has the white vertex g(P k+2). See Figure 6(1). If B′

is not terminal, then n = 2k + 5, and B′ connects P k+2 and P k+3. See
Figure 6(2).

Suppose that neither B nor B′ is terminal. We may assume that B
connects P 1 and P 2. As above, we may assume that Bi connects P i+2 and
Pn−i+1 for i = 1, . . . , k. Since B′ is not a terminal edge, it follows that
n = 2k + 4, and B′ connects P k+3 and P k+4. See Figure 6(3).
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Fig. 6. The figures are preimages of associated sets. Hence two even labeled edges may
be identified by the map g.

Let P , P ′ be the points of ∂D such that B, B′ are the distinguished edges
at g(P ), g(P ′), respectively. Let C1, C2 be the components of ∂D \ {P , P ′}.
Since no odd labeled edges except B, B′ contain distinguished arcs, even
labeled edges are oriented as shown in Figure 6. That is, either both C1 and
C2 are oriented from P to P ′, or both from P ′ to P , where the orientations
of C1 and C2 are induced from Γ . Hence we have the last statement in
Lemma 4.3.

Lemma 4.4. Let Γ be a saturated connected minimal 4-chart. Then any

rectangular room of Γ satisfies one of the following two conditions:

(i) There exists only one edge of label 2 of the room.

(ii) There exist two edges of label 2 of the room such that this pair of

edges is admissible.

Proof. Let R be a rectangular room of Γ . Let {g : D → XR; A1, A2,
A3, A4} be an associated set of R such that g(A1) is an edge of label 2.
For i = 1, 2, 3, 4, set Ai = g(Ai). If A1 = A3, then R satisfies (i). Hence
we may assume A1 6= A3. Suppose that R possesses a distinguished arc.
Since Γ is saturated, R is contained in a non-special house with connected
boundary, say H. Since the two even labeled edges A1 and A3 belong to the
rectangular room R, (A1, A3) is admissible by Lemma 4.3. We may assume
that R possesses no distinguished arcs.

Suppose that (A1, A3) is not admissible. Then there are two possibilities:

(i) (A1, A2) or (A1, A4) is not admissible.
(ii) (A1, A2) and (A1, A4) are admissible, and A2 and A4 do not contain

distinguished arcs.

In case (i), if (A1, A2) is not admissible, then neither is (A2, A3). By
Lemma 4.1(i), we can reduce the number of white vertices of Γ by C-moves.
This contradicts the minimality of Γ . Similarly, if (A1, A4) is not admissible,
then we also have a contradiction.

In case (ii), by Lemma 4.1(ii) we can reduce the number of white vertices
of Γ by C-moves. This contradicts the minimality of Γ .
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Lemma 4.5. Let Γ be a saturated connected minimal 4-chart , and H a

non-special house. If the boundary of H consists of two components, then

H consists of rectangular rooms R1, . . . , Rn such that Ri and Ri+1 possess

a common edge of odd label for each i = 1, . . . , n, where Rn+1 = R1.

Proof. Let C1, C2 be the components of ∂H. Since Γ is saturated, no odd
labeled edge in H is a distinguished edge. Since H is a non-special house, it
does not contain crossings. By Lemma 2.7, H possesses no terminal edges
of label 2. By using Lemma 4.2, we can show that any odd labeled edge in
H connects a point in C1 and a point in C2. Let H ′ be the complementary
domain of Ck with H ⊂ H ′ (k = 1, 2). Let {g : D → XH′ ; A1, . . . , An} be an
associated set of H ′. Since H possesses no terminal edge of label 2, g(Ai) 6=
g(Ai+1) for any i. Then the even labeled edges g(Ai), g(Ai+1) have a common
white vertex. Since H possesses no distinguished arc, (g(Ai), g(Ai+1)) is not
admissible. Hence (g(Ai), g(Aj)) is not admissible for all i, j (1 ≤ i 6= j ≤ n),
and g(Ai) 6= g(Aj). Therefore each Ck is a simple closed curve (k = 1, 2),
each room in H is rectangular, and the closures of any two rooms have a
common odd labeled edge or do not intersect.

Lemma 4.6. Let Γ be a connected minimal 4-chart with exactly two

crossings and with two special houses. Then each room in a non-special

house is an end room or a rectangular room.

Proof. By Theorem 3.7, Γ is saturated. By Lemma 3.5, the boundary
of any non-special house is connected or has two components. Applying
Lemmas 4.3 and 4.5, we complete the proof.

5. Towns. Let Γ be a connected 4-chart, T a union of houses and rooms
of Γ , and XT the closure of T . Let w be a white vertex in XT . There are six
short arcs in a small neighborhood of w, say α1, α2, α3, α4, α5, α6. The white
vertex w is good if it satisfies the following condition: If N ∩ Γ contains at
most three arcs of αi (i = 1, . . . , 6), then no arc of N ∩ Γ is a distinguished
arc. Here, N is a small neighborhood of w in XT . We denote the number of
arcs αi lying in N ∩ Γ by n(w, T ).

We call T a town if:

(i) The closure XT of T is a disjoint union of disks.
(ii) Either all even labeled edges in ∂XT are oriented clockwise, or all

are oriented anticlockwise.
(iii) Any white vertex in XT is good.

A town T is good if the following holds: Let H be a house of type (IV) in
XT . Let B be the even labeled edge such that B belongs to H and both odd
labeled edges in H are distinguished edges at the vertices of B. If all even
labeled edges in ∂XT are oriented clockwise (resp. anticlockwise), then B
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is oriented anticlockwise in ∂XH (resp. clockwise), where XH is the closure
of H.

Let Γ be a connected 4-chart, T a town, XT the closure of T , B an even
labeled edge in ∂XT , and B1, B2 two odd labeled edges with Bi 6⊂ XT for
i = 1, 2. The triplet (B1, B, B2) is a semi-repeat triplet with respect to T if
it satisfies the following three conditions:

(i) The three edges belong to the same room R.
(ii) There exists an associated set {g : D → XR; A1, . . . , An} of R such

that g(A1) = B1, g(A2) = B, and g(A3) = B2.
(iii) The label of B1 is different from that of B2.

Moreover, if both B1 and B2 are distinguished edges at the vertices of B,
then (B1, B, B2) is called a repeat triplet with respect to T .

Definition 5.1. Let Γ be a connected 4-chart, T a town, and (B1, B, B2)
a semi-repeat triplet with respect to T . The triplet (B1, B, B2) is good if it
satisfies one of the following two conditions:

(a) For i = 1, 2, if (Bi, B) is not admissible, then Bi is not a distinguished
edge.

(b) If neither B1 nor B2 is a distinguished edge at a vertex of B, then
B1, B2, B belong to the same rectangular room, and (Bi, B) is ad-
missible for i = 1, 2.

Lemma 5.2. Let Γ be a saturated connected minimal 4-chart , T a town,
and (B1, B, B2) a repeat triplet with respect to T . Let H be the house which

possesses B1 and B2. Then T ∪ H is a town, and XT ∩ XH = B, where

XT , XH are the closures of T, H respectively. Moreover , if T is good , then

so is T ∪ H.

Proof. Since B1 and B2 each contain distinguished arcs, H possesses
distinguished arcs. Since Γ is saturated, H is a non-special house with con-
nected boundary. By Lemma 4.3,

(i) if B1, B2 are terminal edges, then H is of type (III),
(ii) if only one of B1, B2 is terminal, then H is of type (IV), and
(iii) if neither B1 nor B2 is terminal, then H is of type (V).

See Figure 5(III), (IV) and (V). Let B′ be an edge of label 2 in ∂XH dif-
ferent from B. Since T is a town, B′ is not contained in XT . Let w be a
white vertex of XH , and N a small neighborhood of w in the closure of
T ∪ X. We prove that N is a disk. There are two cases: (a) w ∈ B, (b)
w 6∈ B.

In case (a), n(w, H) = 3 and n(w, T ∪ H) ≥ 4. If N is not a disk, then
N is a cone over a disjoint union of two arcs, and then a neighborhood of w
in XT is a cone over a disjoint union of two arcs. This contradicts XT being
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a disjoint union of disks. Hence N is a disk, and w is a good vertex with
respect to T ∪ H.

In case (b), if w 6∈ ∂XT , then N is a disk. Suppose that w ∈ ∂XT and
N is not a disk. Since n(w, H) = 3, we have n(w, T ) ≤ 3. Since a small
neighborhood of w in XT does not contain distinguished arcs, n(w, T ) = 2.
We see that there exists an even labeled edge C containing the white vertex w
and contained in ∂XT such that C is oriented clockwise (resp. anticlockwise)
if the edge B in ∂XT is oriented anticlockwise (resp. clockwise). However,
this contradicts T being a town. Thus w 6∈ ∂XT . We have n(w, T ∪ H) = 3
and w is a good white vertex with respect to T ∪ H, and N is a disk.
Moreover, XT ∩ XH = B, and the closure of T ∪ H is a disjoint union of
disks. Therefore T ∪ H is a town.

Suppose that H is a house of type (IV). Let B be the even labeled edge
such that B belongs to H and both odd labeled edges in H are distinguished
edges at the vertices of B. If all even labeled edges in ∂XT are oriented
clockwise (resp. anticlockwise), then all even labeled edges in the boundary
of the closure of T ∪H are oriented clockwise (resp. anticlockwise), and then
B is oriented anticlockwise (resp. clockwise) in ∂XH . If T is good, then the
other house of type (IV) satisfies the same condition. Therefore if T is good,
then so is T ∪ H.

Lemma 5.3. Let Γ be a saturated connected minimal 4-chart , T a town,
and (B1, B, B2) a good semi-repeat triplet with respect to T such that B1 is

a distinguished edge at a vertex of B, but B2 is not. Let R be the union of

all rooms which possess B1. Then T ∪R is a town, and XT ∩XR = B, where

XT , XR are the closures of T, R respectively. Moreover , if T is good , then

so is T ∪ R.

Proof. Since Γ is minimal, B2 is not a terminal edge. Since B1 contains a
distinguished arc, R possesses a distinguished arc. Since Γ is saturated, R is
contained in a non-special house with connected boundary. By Lemma 4.3,

(i) if B1 is a terminal edge, then R is an end room of type (I),
(ii) if neither B1 nor B2 is terminal, then there exist an end room R1 of

type (II) and a rectangular room R2 with R = R1 ∪ R2.

In case (i), let B′ be another even labeled edge in R. In case (ii), let B′

be another even labeled edge in R2. If (B, B2) is admissible, then (B′, B2)
is not by Lemma 4.3. Hence the arcs in a small neighborhood of B2 are
oriented as shown in Figure 7(a). If (B, B2) is not admissible, then B2 is not
a distinguished edge, because (B1, B, B2) is good. Hence the arcs in a small
neighborhood of B2 are oriented as shown in Figure 7(b).

Let B′′ be an edge of label 2 in ∂XR different from B. Since T is a town,
B′′ is not contained in XT . Let w be a white vertex in XR, and N a small
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Fig. 7. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.

neighborhood of w in the closure of T ∪ R. We prove that N is a disk. For
n(w, R) = 3 or w ∈ B, this can be shown in a similar way to Lemma 5.2.
Hence we may assume that n(w, R) = 2, w 6∈ B, and N is not a disk. If
w /∈ ∂XT , then N is a disk, so assume w ∈ ∂XT .

If n(w, T ) = 4, then there exists an even labeled edge C containing the
white vertex w and contained in ∂XT such that C is oriented clockwise
(resp. anticlockwise) if the edge B in ∂XT is oriented anticlockwise (resp.
clockwise). However, this contradicts T being town.

If n(w, T ) = 2 or 3, then N contains no distinguished arcs, because w
is a good vertex with respect to T . We see that there exists an even la-
beled edge C containing the white vertex w and contained in ∂XT such
that C is oriented clockwise (resp. anticlockwise) if the edge B in ∂XT is
oriented anticlockwise (resp. clockwise). However, this contradicts T being
town.

Hence w 6∈ ∂XT , n(w, T ∪ R) = n(w, R) = 2, N is a disk, and w is
a good white vertex with respect to T ∪ R. Moreover, XT ∩ XR = B,
and the closure of T ∪ R is a disjoint union of disks. Therefore T ∪ R is
a town.

Lemma 5.4. Let Γ be a saturated connected minimal 4-chart , T a town,
and (B1, B, B2) a good semi-repeat triplet with respect to T such that neither

B1 nor B2 is a distinguished edge at a vertex of B. Let R be the rectangular

room which possesses B1 and B2. Then T ∪ R is a town, XT ∩ XR = B,
where XT , XR are the closures of T, R respectively , and there exists a repeat

triple with respect to T ∪ R. Moreover , if T is good , then so is T ∪ R.

Proof. Let B′ be another labeled edge which belongs to R. Then (B, B′)
is admissible by Lemma 4.4. The proof is now similar to that of Lemma 5.3.
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Lemma 5.5 ([3, Remarks 8(2)]). Let Γ be an n-chart , m the number of

black vertices of Γ , and F the closure of the surface braid obtained from Γ .

Then χ(F ) = 2n − m.

To show Theorem 1.1, it suffices to prove that any saturated minimal
4-chart with exactly two crossings has at least eight black vertices. Let T
be a town. Denote by b(T ) the number of black vertices in XT , where XT

is the closure of T . If a black vertex w is contained in a house of type (IV),
then the weight of w is defined to be 1. Otherwise it is 1/2. Denote by b′(T )
the sum of the weights of all black vertices in XT .

Lemma 5.6. Let T1, T2 be good towns such that all even labeled edges

in ∂XT1
(resp. ∂XT2

) are oriented clockwise (resp. anticlockwise). Then

b(T1 ∪ T2) ≥ b′(T1) + b′(T2).

Proof. Let H be a house of type (IV) with H ⊂ T1∪T2. Let B be an even
labeled edge in H such that both odd labeled edges in H are distinguished
edges at the vertices of B. Since T1 and T2 are good towns, if B is oriented
clockwise (resp. anticlockwise) in ∂H, then H is contained in T2 (resp. T1).
Hence no house of type (IV) in Ti intersects Tj , {i, j} = {1, 2}. Thus no black
vertex of weight 1 in Ti belongs to Tj . Therefore b(T1∪T2) ≥ b′(T1)+b′(T2).

Lemma 5.7. Let Γ be a saturated connected minimal 4-chart , T a town,
and (B1, B, B2) a repeat triplet with respect to T . Then there exists a town

T ′ such that b(T ′) ≥ b(T ) + 1, b′(T ′) = b′(T ) + 1, T ′ ⊃ T , and XT ∩X = B,
where XT , X are the closures of T, T ′ \ T respectively. Moreover , if T is

good , then so is T ′.

Proof. Let H1 be the house which possesses B1 and B2, and XH1
its

closure. Then we have the three possibilities (i), (ii) and (iii) as in the proof
of Lemma 5.2. By Lemma 5.2, T ∪H1 is a town, and XT ∩XH1

= B. In cases
(i) and (ii), T∪H1 has more black vertices than T , and b′(T∪H1) = b′(T )+1.
In case (iii), the orientations of all edges in a neighborhood of XH1

are as
in Figure 5(V). Hence there exists a repeat triplet with respect to T ∪ H1.
Let T0 = T , T1 = T ∪H1, and (B1,1, A1, B1,2) = (B1, B, B2). To repeat this
argument, there exists a repeat triplet (Bi,1, Ai, Bi,2) with respect to Ti−1

(i = 2, . . . , n) and there exists a town Ti (i = 2, . . . , n) such that

(a) Ti is the union of Ti−1 and a house Hi which possesses Bi,1 and Bi,2

for i = 1, . . . , n,
(b) Bn,1 or Bn,2 is a terminal edge,
(c) XTi−1

∩ XHi
= Ai for i = 1, . . . , n,

where XTi
and XHi

are the closures of Ti and Hi respectively. See Figure 8.
By Lemma 5.2, Tn is the desired town.
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Fig. 8. The thick lines are edges of label 2. The other lines are edges of label 1 or 3.

The set H1∪· · ·∪Hn is called the tower with respect to (B1, B, B2), and
the house Hn is called the top house of this tower.

Lemma 5.8. Let Γ be a saturated connected minimal 4-chart , and T a

town. Let (B1, B, B2) be a good semi-repeat triplet with respect to T such

that neither B1 nor B2 is a distinguished edge at a vertex of B. Then there

exists a town T ′ such that b(T ′) ≥ b(T ) + 1, b′(T ′) = b′(T ) + 1, T ′ ⊃ T ,
and XT ∩ X = B, where XT , X are the closures of T, T ′ \ T respectively.

Moreover , if T is good , then so is T ′.

Proof. By Definition 5.1(b), (B1, B) and (B2, B) are admissible. Let R
be the rectangular room which possesses B1 and B2, B′ the even labeled
edge in R with B 6= B′, and Ci the side edge of B′ with Ci 6= Bi for i = 1, 2.
By Lemma 4.4, (B, B′) is admissible. The pair (Ci, B

′) is not admissible,
and Ci is a distinguished edge at the vertex of B′ for i = 1, 2. By Lemma 5.4,
T ∪ R is a town. The triplet (C1, B

′, C2) is a repeat triplet with respect to
the town T ∪ R. Hence we have the desired town by Lemma 5.7.

6. A special house with connected boundary. In this section, we
investigate a special house with connected boundary.

Lemma 6.1. Let Γ be a saturated connected minimal 4-chart , and H a

special house with connected boundary. If H contains exactly one crossing ,
then there exist only four even labeled edges A1, A2, A3, A4 and only four odd

labeled edges B1, B2, B3, B4 such that

(i) Bi ∩ Bj is a crossing for i 6= j,
(ii) Ai ∩ Ai+1 is a white vertex wi for i = 1, 2, 3, 4,
(iii) Ai ∩ Bi = {wi} for i = 1, 2, 3, 4,

where A5 = A1. That is, H is as illustrated in Figure 9.

Proof. Let B be an edge containing a crossing which belongs to H. Since
H contains exactly one crossing, the other vertex of B is white. There exist
four such edges of odd label. By Lemma 3.8, H possesses no terminal edges
of label 2.
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Fig. 9

Suppose that an odd labeled edge B′ belongs to H and contains no
crossings. Since Γ is saturated, H possesses no distinguished edges and B′ is
not a distinguished edge. By Lemma 4.2, each component of H\B′ contains a
crossing. However, this contradicts the assumption that H contains exactly
one crossing. Hence no such odd labeled edge B′ exists. Therefore there
exist only four edges of label 2 and only four edges of odd label satisfying
the conditions in Lemma 6.1.

Let Γ, H, Ai, Bi, wi be as above (i = 1, 2, 3, 4). We may assume that
(B1, B2), (A1, B1) are admissible, For i = 1, 2, 3, 4, let Ci, C

′
i be the odd

labeled edges containing the white vertex wi such that Ci is a distinguished
edge at wi and C ′

i 6= Bi. Then C1, A2, C
′
2 belong to the same room, and so

do C2, A3, C3 and C ′
3, A4, C4 and C ′

1, A1, C
′
4.

Lemma 6.2. Let Γ, H, Ai, Bi, Ci, C
′
i, wi be as above (i = 1, 2, 3, 4). Then:

(i) H is a good town.

(ii) (C2, A3, C3) is a repeat triplet with respect to H.

(iii) (C1, A2, C
′
2) and (C ′

3, A4, C4) are good semi-repeat triplets with re-

spect to H.

(iv) If Γ has exactly two crossings, then (C ′
1, A1, C

′
4) is a good semi-

repeat triplet with respect to H.

(v) C1 or C4 is not a terminal edge.

Proof. We first show (iv). Suppose that Γ has exactly two crossings.
Since H contains only one crossing, Γ has two special houses. If C ′

1 and
C ′

4 belong to a non-special house, then C ′
1, A1, C

′
4 belong to a rectangular

room by Lemma 4.6. The pairs (C ′
1, A1) and (C ′

4, A1) are admissible. Hence
(C ′

1, A1, C
′
4) is a good semi-repeat triplet with respect to H. If C ′

1 and C ′
4

belong to a special house, say H ′, then H ′ contains exactly one crossing,
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and then ∂H ′ is connected by Lemma 3.9. By Lemma 6.1, H and H ′ are
houses as shown in Figure 10.

Fig. 10

Let A be the even labeled edge containing the white vertex w4 differ-
ent from A1 and A4, and w the white vertex of A with w 6= w4. Let B
be the odd labeled edge containing w such that B is not a distinguished
edge at w, and H ′ ∩ B = ∅. Since Γ is saturated, B, C4, C

′
3 belong to the

same non-special house with connected boundary. By Lemma 4.3, C4 is a
terminal edge or C4 = B or C4 = C ′

3. Since the label of C4 is different
from those of C ′

3 and B, C4 is a terminal edge and B = C ′
3. However, B is

oriented from w to the other white vertex, and C ′
3 is oriented from w3 to

the other white vertex. This is a contradiction. Therefore C ′
1 and C ′

4 belong
to a non-special house, and (C ′

1, A1, C
′
4) is a good semi-repeat triplet with

respect to H.

We now show (v) by means of Figure 11. Let W be the tower with respect
to (C2, A3, C3), and H ′ the top house of W . Suppose that C1 and C4 are
both terminal edges. In general, for any two charts, if there exists a disk E
such that ∂E intersects both charts transversally or intersects neither, and
if the charts do not have black vertices on E and coincide in the complement
of E, then one chart is C-move equivalent to the other (see [3, Lemma 16]).
Let E be a neighborhood of the closure of (H ∪W ) \H ′. The second figure
in Figure 11 can be obtained from the first by applying this move to the
disk E. The third figure can be obtained from the second by C-II moves.
The fourth figure can be obtained from third by a C-III-1 move. The final
figure can be obtained from the fourth by a C-II move. Hence one white
vertex can be cancelled and the number of crossings does not change. This
contradicts the minimality of Γ .
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Lemma 6.3. Let Γ, H, Ai, Bi, Ci, C
′
i, wi be as above (i = 1, 2, 3, 4), and

T a town such that XT ∩ XH = ∅ and T ∪ H is a good town. Suppose that

Γ has exactly two crossings. If neither C1 nor C4 is a terminal edge, then

there exists a good town T ′ with H ⊂ T ′, XT ∩ XT ′ = ∅, b(T ′) ≥ 4, and

b′(T ′) = 4. Here, XT , XH , XT ′ are the closures of T, H, T ′.

Proof. By Lemma 6.2(ii), (C2, A3, C3) is a repeat triplet with respect
to H. Let Ri be the union of all rooms which possess Ci for i = 1, 4. By
Lemma 6.2(iii), (C1, A2, C

′
2) and (C ′

3, A4, C4) are good semi-repeat triplets
with respect to H. By Lemma 5.3, H ∪ R1 ∪ R4 is a good town as shown
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Fig. 12

in Figure 12. Let A′
1, A

′
4 be the even labeled edges such that Ci, A

′
i belong

to the same rectangular room for i = 1, 4, A′
1 6= A2 and A′

4 6= A4. For
i = 1, 4, let vi, v

′
i be the white vertices of A′

i, and Ei, E
′
i the distinguished

edges at vi, v
′
i respectively. Then (Ei, A

′
i, E

′
i) is a repeat triplet with respect

to H ∪ R1 ∪ R4 for i = 1, 4. Hence there are three repeat triplets with
respect to H ∪ R1 ∪ R4. Let W1, W2, W3 be the towers with respect to
(C2, A3, C3), (E1, A

′
1, E

′
1), (E4, A

′
4, E

′
4) respectively. Let

T1 = H ∪ R1 ∪ R4 ∪ W1 ∪ W2 ∪ W3.

By Lemma 5.7, T1 is a good town, b(T1) ≥ 3, b′(T1) = 3, XT ∩XT1
= ∅, and

T ∪ T1 is a good town, where XT1
is the closure of T1. Since Γ has exactly

two crossings, by Lemma 6.2(iv), (C ′
1, A1, C

′
4) is a good semi-repeat triplet

for H. We see that (C ′
1, A1, C

′
4) is a good semi-repeat triplet for T1. By

Lemma 5.8, there exists a good town T2 such that H ⊂ T1 ⊂ T2, b(T2) ≥ 4,
b′(T2) = 4, XT ∩ XT2

= ∅ and T ∪ T2 is a good town, where XT2
is the

closure of T2.

Lemma 6.4. Let Γ, H, Ai, Bi, Ci, C
′
i, wi be as above (i = 1, 2, 3, 4), and T

a good town such that XT ∩XH = ∅ and T ∪H is a good town. Suppose that

Γ has exactly two crossings. If C1 or C4 is a terminal edge, then there exists

a good town T ′ with H ⊂ T ′, XT ∩XT ′ = ∅, b(T ′) ≥ 4, and b′(T ′) = 3+1/2.
Here, XT , XH , XT ′ are the closures of T, H, T ′.

Proof. By Lemma 6.2(v), we may assume that only one of C1 and C4,
say C4, is a terminal edge. Since Γ is saturated, C4 belongs to a non-special
house with connected boundary. By Lemma 4.3, C4 belongs to an end room
of type (I), and the weight of the black vertex of C4 is 1/2. For i = 1, 4 let
Ri be the union of all rooms which possess Ci. By Lemma 5.3, H ∪R1 ∪R4

is a good town as shown in Figure 13 and there are two repeat triplets
with respect to H ∪R1 ∪R4. Since Γ has exactly two crossings, (C ′

1, A1, C
′
4)

is a good semi-repeat triplet for H by Lemma 6.2(iv). We conclude that



192 T. Nagase and A. Shima

Fig. 13

(C ′
1, A1, C

′
4) is a good semi-repeat triplet for H ∪ R1 ∪ R4. In a similar way

to Lemma 6.3, there exists a good town T1 such that H ∪ R1 ∪ R4 ⊂ T1,
b(T1) ≥ 4, b′(T1) = 3+1/2, XT ∩XT1

= ∅ and T ∪T1 is a good town, where
XT1

is the closure of T1.

7. Proof of the main theorem

Theorem 7.1. Let Γ be a connected minimal 4-chart with exactly two

crossings and two special houses H1, H2. Then Γ contains at least eight black

vertices.

Proof. By Theorem 3.7, Γ is saturated. Suppose that ∂H1 and ∂H2

are both oriented clockwise or both anticlockwise. Then H1 ∪ H2, H1, H2

are good towns. By Lemma 6.2, each Hi satisfies one of the conditions in
Lemmas 6.3 and 6.4. Hence for each i there exists a good town Ti with
Hi ⊂ Ti and b(Ti) ≥ 4. Moreover T1 ∩ T2 = ∅. Hence b(T1 ∪ T2) ≥ 8.

Suppose that the orientation of one of H1 and H2 is clockwise, and of
the other anticlockwise. By Lemmas 6.3 and 6.4, for each i = 1, 2 there
exists a good town Ti with Hi ⊂ Ti and b′(Ti) = 3 + 1/2. Lemma 5.6 yields
b(T1∪T2) ≥ b′(T1)+b′(T2) = 7, which completes the proof since the number
of black vertices of Γ is even.

Proof of Theorem 1.1. We may assume that Γ is a connected minimal
saturated 4-chart with exactly two crossings by the Main Theorem in [4].
Suppose that the closure of the surface braid obtained from Γ is one 2-
sphere. Since Γ is a 4-chart, it has exactly six black vertices by Lemma 5.5.
If Γ has only one special house, then it contains at least eight black vertices
by Lemma 3.2. If Γ has two special houses, then it contains at least eight
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black vertices by Theorem 7.1. This contradicts Γ having exactly six black
vertices.

Finally, in Figure 14 we exhibit a saturated 4-chart with eight black
vertices.

Fig. 14
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