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From double Lie groups to quantum groups

by

Piotr Stachura (Washington, DC, and Warszawa)

Abstract. It is shown, using geometric methods, that there is a C∗-algebraic quan-
tum group related to any double Lie group (also known as a matched pair of Lie groups
or a bicrossproduct Lie group). An algebra underlying this quantum group is the algebra
of a differential groupoid naturally associated with the double Lie group.

0. Introduction. The theory of objects we now call Quantum Groups
is from the very beginning related to group factorizations. First construc-
tions are due to Kac [5]. Then important contributions, algebraic (double
cross product of Hopf algebras) as well as functional-analytic (in the context
of locally compact groups and Kac–von Neumann algebras) were made by
Majid [7, 8]. (See also [9] for Lie group factorization and a detailed expo-
sition of the algebraic structure.) The Kac algebras framework is covered
in [4]. Afterwards, Baaj and Skandalis created their theory of multiplica-
tive unitaries [1] and showed that such a multiplicative unitary is defined
by any factorization of a locally compact group. From this moment on one
could expect that there is a C∗-algebraic quantum group behind any (locally
compact) group factorization. And indeed, before this work was finished, a
very general construction of C∗-algebraic quantum groups related to even
more general situations (cocycle matched pairs of locally compact quantum
groups) had appeared [15].

This paper is devoted to a construction of C∗-quantum groups from
factorizations known as double Lie groups (DLG) [6] and also as matched
pairs of Lie groups. Although this situation is obviously less general than the
one considered in [15], precisely for that reason we are able to use different,
more geometric methods.

Objects used in our constructions are defined on a smooth level and we
try to remain within the smooth category as long as possible. All of these
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objects have a clear geometric interpretation as objects related to differential
groupoids naturally associated with DLGs. Starting from a concrete algebra
of such objects we construct (at this smooth level) various mappings which
appear in the theory of quantum groups. Then by using density arguments
we lift those mappings to the C∗-algebraic level.
An additional advantage of the geometric approach we use in this paper

is that, after recognizing the geometric content of a formula, we can usually
prove it using only the very standard and well known results from calculus:
the Fubini theorem and change of variables for the Riemann integral of
smooth functions.
Although from a theoretical point of view this work adds nothing to

the pure theory of quantum groups, it shows, we believe, interesting links
between the theory of quantum groups and differential geometry. In the
examples constructed this way we have a natural, dense ∗-subalgebra of
“smooth” elements in our C∗-algebra, which, putting aside subtleties with
densities, is an algebra of smooth, compactly supported functions, with a
kind of convolution as product. As a result, we can use various techniques
and estimates from the theory of integral and appeal to geometric intuition
in order to perform our computations.
There are also connections of our work with “quantization” of some

semidirect product Poisson–Lie groups, among them the κ-Poincaré group.
However, in this case the situation is not so good. Namely, the construction
presented in this paper does not directly apply, since the set of decompos-
able elements in G, i.e. {g ∈ G : g = ab = b̃ã, a, ã ∈ A, b, b̃ ∈ B} is
only open and dense in G, instead of being equal to G. Nevertheless, the
methodology we propose can be applied also in this case and may give cor-
rect results.
This paper is full of long integrals and other technical details. Therefore,

in order to improve its readability, we sketch the conceptual framework,
which, we believe, is simple and natural. For any DLG (G;A,B) there is
a naturally defined multiplicative unitary operator (in fact there are four
of them). This operator is manageable in the sense of Woronowicz as was
proved in [12]. Therefore, by the results of Woronowicz from [16], there is a
quantum group (modulo the problem of Haar measure) associated with any
DLG.
Additionally, given a triple (G;A,B), one can define two differential

groupoid structures on G: GA and GB over A and B, respectively. It turns
out that the multiplication of one of the groupoids, say GB , defines a mor-
phism in the sense of Zakrzewski [17] from GA to GA×GA. This morphism
is coassociative. Using a construction presented in [13] we get a coassociative
morphism from C∗(GA) to C

∗(GA×GA). We may suppose that C
∗(GA×GA)

is (some sort of) C∗(GA)⊗C
∗(GA). Therefore, the morphism constructed as
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above begins to resemble a comultiplication, one of the main ingredients of
a quantum group structure. Completion of such construction of comultipli-
cation is complicated by the fact that we are not able to prove the equality
C∗(GA ×GA) = C

∗(GA)⊗ C
∗(GA). Nevertheless, we have a corresponding

morphism of reduced C∗-algebras. It turns out, as one can expect, that this
morphism is implemented by the multiplicative unitary.
Due to great richness of the structure of a DLG, its other components

enable us to find natural objects giving us almost a Hopf algebra structure.
Moreover, they permit constructing an invariant positive functional on it
with a natural modular group. To be more specific, the group inverse im-
plements the unitary part of an antipode; a natural cocycle on the groupoid
implements a scaling group; a distinguished fiber gives a “counit”; and Haar
density on the set of units of the groupoid gives an invariant functional. We
give explicit formulae for all of these mappings.
Let us now briefly describe the content of the paper. In Section 1 we

collect basic facts about differential groupoids, their morphisms and related
algebras, in order to make the paper more self-contained. Section 2 is de-
voted to proofs of some technical results used later on. In the third section
we present groupoids related to DLG. In Section 4 we prove that our con-
structions indeed provide a comultiplication in the sense of the theory of
quantum groups. In Section 5 we show that the algebra of a groupoid GA is
very similar to a Hopf algebra, by identifying other ingredients of its struc-
ture and proving some formulae. The sixth section is devoted to the Haar
measure. We use the results from [13], where it was shown that there is
a natural class of KMS weights on any differential groupoid. Since in the
groupoid GA the set of units is the group A, one can distinguish invariant
half-densities on A. These half-densities give us a Haar measure on a quan-
tum group based on GA. In the last section we collect all the constructions
and results. Finally, there are two appendices, where we give a geometric in-
terpretation of a cocycle implementing a scaling group, and relate an algebra
associated to a multiplicative unitary with a groupoid algebra.
To end this introduction, the author wants to record that the idea of the

construction presented in this paper was born during his collaboration with
Stanisław Zakrzewski. The author also wishes to thank Robert Owczarek
for his useful comments.

1. Differential groupoids, their morphisms and algebras. In this
section we introduce notation and recall basic facts about groupoids, their
morphisms (in the sense of S. Zakrzewski) and action of morphisms on
groupoid algebras. For a detailed exposition of the subject we refer to [17]
(differential groupoids and morphisms) and [13] (constructions related to
groupoid algebras).



198 P. Stachura

The category of differential groupoids. Let us recall that a differential
relation r from a manifold X to a manifold Y is a triple (X,Y ;R) such that
R =: Gr(r) is a submanifold in Y ×X. By a submanifold we always mean an
embedded submanifold. All manifolds considered here are smooth, Hausdorff,
and have countable bases of neighborhoods. A relation r from X to Y will
be denoted by r : X ⊲Y . For a relation r : X ⊲Y , we denote by rT the
transposed relation, i.e. rT : Y ⊲X is given by Gr(rT ) := {(x, y) ∈ X×Y :
(y, x) ∈ Gr(r)}.
A composition of differential relations may fail to be a differential re-

lation. Therefore, in a definition below we assume that there are composi-
tions which give again differential relations. There are also other conditions
which, together with this composition property, are contained in the notion
of transversality [17]. Transversality of differential relations r and s will be
denoted by r ⌢| s. A differential relation r : X ⊲Y is a differential reduc-
tion if r = fiT , where i is the inclusion mapping of a submanifold C ⊂ X
and f : C → Y is a surjective submersion.

Now we recall the definition of a differential groupoid.

Definition 1.1 ([17]). Let Γ be a manifold. A differential groupoid
structure on Γ is a triple (m, s, e), where m : Γ × Γ ⊲Γ is a differential
reduction, e : {1} ⊲Γ is a differential relation, s : Γ → Γ is an involutive
diffeomorphism and the following conditions are satisfied:

1. m(m× id) = m(id×m).
2. m(e× id) = m(id× e) = id.
3. m(s× s)∼ = sm, where ∼ : Γ × Γ ∋ (x, y) 7→ (y, x) ∈ Γ × Γ .
4. For any x ∈ Γ , ∅ 6= m(x, s(x)) ⊂ e({1}).
5. m⌢| (m× id), m ⌢| (id×m), m ⌢| (e× id), m ⌢| (id× e).

It follows that objects defined in this way coincide with standard dif-
ferential groupoids. The set E := e({1}) is a submanifold of Γ called the
set of identities. There are also two projections (surjective submersions): the
source or right projection eR : Γ ∋ x 7→ m(s(x), x) ∈ E, and the target or left
projection eL : Γ ∋ x 7→ m(x, s(x)) ∈ E. The fiber of eL passing through g
(i.e. the set {x ∈ Γ : eL(x) = eL(g)}) will be denoted by Fl(g), and similarly
the fiber of eR by Fr(g).

Now comes the definition of a morphism. It should be stressed that
this definition does not coincide with the standard one. For examples and
motivations see [17, 13].

Definition 1.2 ([17]). Let (Γ,m, s, e) and (Γ ′,m′, s′, e′) be differential
groupoids. A differential relation h : Γ ⊲Γ ′ is a morphism from Γ to Γ ′ iff

1. hm = m′(h× h),
2. hs = s′h,
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3. he = e′,
4. m′ ⌢| (h× h), h ⌢| e.

In the next proposition we collect basic properties of objects associated
with a morphism.

Proposition 1.3 ([17]). Let h : Γ ⊲Γ ′ be a morphism of differential
groupoids.

1. The formula Gr(fh) := (E×E
′)∩Gr(hT ) defines a smooth mapping

fh : E
′ → E.

2. For each b ∈ E′, the relation hT restricted to Fl(b)×Fl(fh(b)) defines
a smooth mapping hLb : Fl(fh(b)) → Fl(b). The same is true for
restriction to right fibers with the resulting map hRb : Fr(fh(b)) →
Fr(b).

3. The set Γ ×h Γ
′ := {(x, y) ∈ Γ × Γ ′ : eR(x) = fh(e

′
L(y))} is a

submanifold of Γ × Γ ′.
4. The set Γ ∗h Γ

′ := {(x, y) ∈ Γ × Γ ′ : eL(x) = fh(e
′
L(y))} is a

submanifold of Γ × Γ ′.
5. The sets Γ ∗h E

′ and Γ ×h E
′ are submanifolds and the mappings

hL : Γ ∗h E
′ ∋ (x, b) 7→ hLb (x) ∈ Γ

′ and hR : Γ ×h E
′ ∋ (x, b) 7→

hRb (x) ∈ Γ
′ are smooth.

6. The mapping mh : Γ ×h Γ
′ ∋ (x, y) 7→ m′(hR(x, e′L(y)), y) ∈ Γ

′ is a

surjective submersion.

7. The mapping th : Γ ×h Γ
′ ∋ (x, y) 7→ (x,mh(x, y)) ∈ Γ ∗h Γ

′ is a

diffeomorphism.

8. The mapping : π2 : Γ ×h Γ
′ ∋ (x, y) 7→ y ∈ Γ ′ is a surjective submer-

sion and π−12 (y) is diffeomorphic to Fr(fh(e
′
L(y))).

9. The mapping π̃2 : Γ ∗h Γ
′ ∋ (x, y) 7→ y ∈ Γ ′ is a surjective submer-

sion and π̃−12 (y) is diffeomorphic to Fl(fh(e
′
L(y))).

10. Items 6–9 remain true if we replace Γ ′ by Fr(y) for any y ∈ Γ
′ and

restrict the corresponding mappings in the obvious way.

Bidensities. Let Γ be a differential groupoid and let Ω1/2(eL) (resp.
Ω1/2(eR)) be the bundle of smooth, complex-valued, half-densities along left
(right) fibers of Γ . We denote by A(Γ ) the linear space of compactly sup-
ported, smooth sections of the bundle Ω1/2(eL)⊗Ω

1/2(eR) (see [2]). Its ele-
ments will be called bidensities and usually denoted by ω. So ω(x) = λ(x)⊗
̺(x) ∈ Ω1/2T lxΓ⊗Ω

1/2T rxΓ , where T
l
xΓ := Tx(Fl(x)) and T

r
xΓ := Tx(Fr(x)).

In the following we also write Ω
1/2
L (x) := Ω

1/2T lxΓ and Ω
1/2
R (x) := Ω

1/2T rxΓ .

We also use the following notation: if M,N are manifolds, F :M → N
and ψ is some geometric object on M which can be pushed forward by F ,
then we denote the push forward of ψ simply by Fψ. What it really means
will be clear from the context. So below we write for example s(v) instead
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of ΛTxs(v) for v ∈ Λ
maxT lxΓ (for a vector space V we denote by Λ

maxV the
maximal non-zero exterior power of V ).
The groupoid inverse induces a star operation on A(Γ ):

ω∗(x)(v ⊗ w) := ω(s(x))(s(w)⊗ s(v)), v ∈ ΛmaxT lxΓ, w ∈ Λ
maxT rxΓ.

Because s is an involutive diffeomorphism which interchanges left and right
fibers, the ∗-operation is a well defined antilinear involution.
One can define a multiplication on the vector space A(Γ ). This multi-

plication introduces a ∗-algebra structure on A(Γ ). The formula for multi-
plication is a special case of a more general construction presented in [13]
and will be given later on. Before giving the formula, we define some special
sections of Ω1/2(eL)⊗Ω

1/2(eR), which are very convenient for computations.
Since left (right) translations are diffeomorphisms of left (right) fibers,

we can define in a natural way left(right)-invariant sections of Ω1/2(eL)
(Ω1/2(eR)). Any left-invariant section of Ω

1/2(eL) is determined by its value
on E and, conversely, any section of Ω1/2(eL)|E can be uniquely extended
to a left-invariant section of Ω1/2(eL).

So let λ̃ be a non-vanishing, real, half-density on E along left fibers
(one constructs such a density by covering E with maps adapted to the
submersion eL and using an appropriate partition of unity to glue them
together). We define

λ0(x)(v) := λ̃(eR(x))(s(x)v), v ∈ ΛmaxT lxΓ.

This λ0 is a left-invariant, real, non-vanishing section of Ω
1/2(eL). Now,

˜̺ := λ̃s is a non-vanishing, real half-density on E along right fibers, and ̺0
defined by

̺0(x)(w) := ˜̺(eL(x))(ws(x)), w ∈ ΛmaxT rxΓ,

is a right-invariant, non-vanishing, real section ofΩ1/2(eR). Let ω0 := λ0⊗̺0;
this is a real, non-vanishing bidensity (of course, it does not belong to A(Γ )
but we will still call it a bidensity). From now on the symbol ω0 will always
mean a bidensity constructed in this way.

When ω0 is chosen any element ω ∈ A(Γ ) can be written uniquely as
ω = fω0 for some smooth, complex-valued function f with compact support.
Note the following simple:

Lemma 1.4. If ω = fω0 then ω
∗ = f∗ω0, where f

∗(x) := f(s(x)).

Action of groupoid morphisms on bidensities. It turns out that groupoid
morphisms act on bidensities, i.e. for a morphism h : Γ ⊲Γ ′ one can con-
struct a linear mapping ĥ : A(Γ ) → Lin(A(Γ ′)) which behaves nicely with
respect to the composition of morphisms and the ∗-operation. This construc-
tion depends in a crucial way on Proposition 1.3. Let us briefly describe the
construction here.
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Let a ∈ E′, (x, y) ∈ Γ ×h Fr(a), th(x, y) =: (x, z) and b := e
′
L(z). Due to

Proposition 1.3 we have the following isomorphisms:

i1 : Ω
1/2
R (x)⊗Ω

1/2
R (y)→ Ω1/2T(x,y)(Γ ×h Fr(a)),

th : Ω
1/2T(x,y)(Γ ×h Fr(a))→ Ω1/2T(x,z)(Γ ∗h Fr(a)),

i2 : Ω
1/2
L (x)⊗Ω

1/2
R (z)→ Ω1/2T(x,z)(Γ ∗h Fr(a)).

Thus (i2)
−1thi1(̺x ⊗ ̺y) =: λx ⊗ ̺z for some λx ⊗ ̺z ∈ Ω

1/2
L (x)⊗ Ω

1/2
R (z).

Moreover, since the mapping Fl(y) ∋ u 7→ hRe′
L
(y)(x)u ∈ Fl(z) is a diffeomor-

phism, it defines an isomorphism between Ω
1/2
L (y) and Ω

1/2
L (z).

Now let ω = λ⊗ ̺ ∈ A(Γ ), ω′ = λ′⊗ ̺′ ∈ A(Γ ′). Then (i2)
−1thi1(̺(x)⊗

̺′(y)) =: λ̃x ⊗ ˜̺z, and hRe′
L
(y)(x)λ

′(y) =: λ̃′z, so the expression [λ(x)λ̃x] ⊗

λ̃′z ⊗ ˜̺z defines a 1-density on Fl(fh(b)) with values in the one-dimensional
vector space Ω

1/2
L (z) ⊗ Ω

1/2
R (z). In this way we can define the mapping ĥ

mentioned above:

(ĥ(ω)ω′)(z) :=
\

Fl(fh(b))

[λλ̃]⊗ λ̃′z ⊗ ˜̺z.

Choose ω0 = λ0 ⊗ ̺0 and ω
′
0 = λ′0 ⊗ ̺

′
0. Then (i2)

−1thi1(̺0(x) ⊗ ̺
′
0(y)) =

th(x, y)λ0(x)⊗ ̺
′
0(z) for some smooth, non-vanishing function th : Γ ×h Γ

′

→ R and hRe′
L
(y)(x)λ

′
0(y) = λ′0(z). For ω = f1 ω0 and ω

′ = f2 ω
′
0 we get the

explicit expression

(ĥ(ω)ω′)(z) =
[ \
Fl(fh(b))

λ20(x)f1(x)th(x, y)f2(y)
]
ω′0(z)(1)

=: (f1 ∗h f2)(z)ω
′
0(z),

where y is defined by th(x, y) = (x, z), i.e. y = s
′(hLb (x))z.

Now taking h = id : Γ ⊲Γ we get an algebra structure on A(Γ ): the
formula for the product is ω1ω2 =: (f1 ∗ f2)ω0 where

(f1 ∗ f2)(x) :=
\

Fl(x)

λ20(y)f1(y)f2(s(y)x) =
\

Fr(x)

̺20(y)f1(xs(y))f2(y).(2)

It seems that there is no natural, geometric, norm on A(Γ ), but one can
introduce a family of useful norms “indexed” by ω0’s [11, 13]. A chosen λ0
defines ω0 and any bidensity can be written as ω = fω0. Define

(3)

‖ω‖l := sup
a∈Γ 0

\
Fl(a)

λ20 |f |, ‖ω‖r := sup
a∈Γ 0

\
Fr(a)

̺20 |f |,

‖ω‖0 := max{‖ω‖l, ‖ω‖r}.
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It can be shown that ‖ω‖l, ‖ω‖r, ‖ω‖0 are norms, and (A(Γ ), ∗, ‖ · ‖0) is a
normed ∗-algebra.

Representation of the algebra of a groupoid associated with a morphism.

Let Ψ be a smooth half-density on Γ ′ with compact support and ω ∈ A(Γ ),
ω = λ ⊗ ̺. Let (x, y) ∈ Γ ×h Γ

′ and th(x, y) =: (x, z). As in the definition

of ĥ, ̺(x) ⊗ Ψ(y) can be viewed as a half-density on T(x,y)(Γ ×h Γ
′) and

th(̺(x)⊗Ψ(y)) is a half-density on T(x,z)(Γ∗hΓ
′). SinceΩ

1/2
L (x)⊗Ω

1/2TzΓ
′ ≃

Ω1/2T(x,z)(Γ ∗h Γ
′) this half-density can be written as λ̃x ⊗ Ψx(z), where

λ̃x is a half-density on T
l
x(Γ ) and Ψx(z) a half-density on Tz(Γ

′). Then

λ(x)λ̃x⊗Ψx(z) is a 1-density on T
l
xΓ with values in half-densities on Tz(Γ

′).

Integrating λ(x)λ̃x ⊗ Ψx(z) we get a half-density on Tz(Γ
′). In this way we

get an operator πh(ω) for ω ∈ A(Γ ) defined on a dense linear subspace of
L2(Γ ′),

(πh(ω)Ψ)(z) :=
\

Fl(fh(b))

[λ(x)λ̃(x)]⊗ Ψx(z).

Choose ω0 and write ω = fω0. Since e
′
R is a surjective submersion, there

is a natural isomorphism Ω1/2TwΓ
′ ≃ Ω

1/2
R (w) ⊗ Ω1/2Te′

R
(w)E

′ for any

w ∈ Γ ′. Therefore, if we choose ̺′0 and a non-vanishing, real half-density
ν0 on E

′, then ̺′0 ⊗ ν0 defines a non-vanishing, real half-density on Γ
′. So

any other smooth half-density Ψ with compact support can be written as
Ψ = ψ ̺′0⊗ν0 =: ψ Ψ0 for some smooth, complex-valued function ψ with com-
pact support. It is easy to see that th(̺0(x)⊗̺

′
0(y)⊗ν0(a)) = th(x, y)(λ0(x)⊗

̺′0(z)⊗ν0(a)), where th is as in the definition of ĥ. So the explicit formula is

(πh(ω)Ψ)(z) =
[ \
Fl(fh(b))

λ20(x)f(x)th(x, y)ψ(y)
]
Ψ0(z),(4)

where b := e′L(z) and th(x, y) = (x, z). In the next proposition we collect

the essential properties of the mappings ĥ and πh.

Proposition 1.5 ([13]). Let Γ, Γ ′, Γ ′′ be differential groupoids, and let
h : Γ ⊲Γ ′ and k : Γ ′ ⊲Γ ′′ be differential groupoid morphisms. For any
ω ∈ A(Γ ), ω′, ω′1 ∈ A(Γ

′) and ω′′ ∈ A(Γ ′′):

(a) k̂((ĥ(ω)ω′))ω′′ = k̂h(ω)(k̂(ω′)ω′′).

(b) πk(ĥ(ω)ω
′) = πkh(ω)πk(ω

′).

(c) (ω′)∗(ĥ(ω)ω′1) = (ĥ(ω
∗)ω′)∗ω′1.

(d) πh is a ∗-representation of A(Γ ) by bounded operators on L
2(Γ ′),

and for any ω0 we have the estimate ‖πh(ω)‖ ≤ ‖ω‖0 (the norm on
the right hand side is defined in (3)).
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(e) Choose some ∗-invariant ω′0 and let ‖·‖
′
0 denote the associated norm.

For any ω′ ∈ A(Γ ′) there exists a sequence ωn ∈ A(Γ ) such that

limn→∞ ‖ĥ(ωn)ω
′ − ω′‖′0 = 0.

Due to these properties one can define a C∗-norm onA(Γ ), then complete
A(Γ ) in this norm and get a kind of universal C∗-algebra of the differential

groupoid. For any morphism h, the mapping ĥ can be uniquely extended
to a morphism between the corresponding C∗-algebras, and πh to a non-
degenerate representation [13].
It is also easy to see that the representation πid is faithful on A(Γ ), so

the function ω 7→ ‖πid(ω)‖ defines a C
∗-norm on A(Γ ). The completion of

A(Γ ) in this norm is called the reduced C∗-algebra of Γ and will be denoted
by C∗r (Γ ).

Bisections and their action on groupoid algebras. Recall that a subman-
ifold B ⊂ Γ is a bisection iff eL|B and eR|B are diffeomorphisms. The set
of bisections of a groupoid Γ is a group under the natural multiplication of
subsets of Γ and inverse given by B−1 := s(B). Bisections act (from the left)
on Γ by diffeomorphisms: for g ∈ Γ , Bg = g′g, where g′ is the unique point
in B composable with g. One can immediately verify that BFr(g) = Fr(g)
and BFl(g) = Fl(Bg). These facts enable us to define an action of bisections
on A(Γ ) according to the formula

(Bω)(Bg)(Bv ⊗Bw) := ω(g)(v ⊗ w), where v ∈ ΛmaxT lgΓ, w ∈ Λ
maxT rg Γ.

It is easy to see that for ω0 = λ0 ⊗ ̺0 and Bω0 =: fω0, the function f is
given by

f(Bg)̺0(Bg)(Bw) = ̺0(g)(w), w ∈ ΛmaxT rg Γ.(5)

It turns out that if B is a bisection of Γ and h : Γ ⊲Γ ′ is a morphism,
then the set h(B) is a bisection of Γ ′. In the next lemma we collect the
basic properties of the action of morphisms on bisections which allow us to
interpret bisections as multipliers on C∗(Γ ) and C∗r (Γ ).

Proposition 1.6 ([13]). Let Γ, Γ ′ be differential groupoids, B a bisec-
tion of Γ and h : Γ ⊲Γ ′ a morphism. For any ω, ω1 ∈ A(Γ ) and ω

′ ∈
A(Γ ′):

1. ω∗(Bω1) = (s(B)ω)
∗ω1.

2. (ĥ(Bω))ω′ = h(B)(ĥ(ω)ω′).
3. πh(Bω) = h(B)πh(ω).

2. C∗-algebra of the Cartesian product of differential groupoids.
In this section we collect some technical results about the C∗-algebra of the
Cartesian product of differential groupoids. We are not able to prove that
C∗(Γ1 × Γ2) is equal to (some kind of) C

∗(Γ1)⊗C
∗(Γ2). However, we have

the following (expected) result.
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Proposition 2.1. Let Γ1, Γ2 be differential groupoids. Then C
∗
r (Γ1 ×

Γ2) = C
∗
r (Γ1)⊗σ C

∗
r (Γ2), where ⊗σ denotes the minimal tensor product.

Proof. We adopt the following notation: Ai := A(Γi), Hi := L2(Γi),
πi : Ai → B(Hi) the identity representation of Ai, ‖ · ‖i the operator norm

on B(Hi), Ai := C
∗
r (Γi) = πi(Ai)

‖·‖i
, i = 1, 2, and the corresponding objects

for Γ1×Γ2: A := A(Γ1×Γ2), H := L
2(Γ1×Γ2) = H1⊗H2, π : A → B(H),

‖ · ‖ the operator norm on B(H) and A := C∗r (Γ1×Γ2) = π(A)
‖·‖
. It is clear

that A1 ⊗A2 ⊂ A and π|A1⊗A2 = π1 ⊗ π2.

Choose non-vanishing, real, left-invariant half-densities λ0 and λ̃0 along
left fibers on Γ1 and Γ2 respectively. Then λ0 ⊗ λ̃0 is a non-vanishing,
real, left-invariant half-density along left fibers on Γ1 × Γ2, and we have
the corresponding right-invariant half-densities and ∗-invariant bidensities:

ω10 = λ0⊗̺0, ω
2
0 = λ̃0⊗ ˜̺0 and ω0 = ω10⊗ω20 . Let ‖ ·‖0 be the corresponding

norm on A. We begin with the following

Lemma 2.2. A1 ⊗A2 is dense in A in the topology defined by ‖ · ‖0.

Proof. Let D(·) denote the compactly supported, smooth functions. The
following result is standard: for any f ∈ D(Γ1×Γ2) there exist compact sets
K1 ⊂ Γ1 and K2 ⊂ Γ2 such that

∀ε > 0 ∃g ∈ D(Γ1)⊗D(Γ2) : supp(g) ⊂ K1 ×K2 and sup |f − g| < ε.

Let ω ∈ A(Γ1 × Γ2). Then ω = fω0 for some f ∈ D(Γ1 × Γ2). Let K1,K2
be subsets as above, choose some h ∈ D(Γ1 ×Γ2) such that h(x) ≥ 0, h = 1
on K1 × K2, and let M := ‖hω0‖0. Take ε > 0 and let g =

∑
fi ⊗ ki ∈

D(Γ1) ⊗ D(Γ2) be such that sup |f − g| < ε/M . Define ω1i := fiω
1
0 and

ω2i := kiω
2
0. Then simple computations show that ‖ω −

∑
ω1i ⊗ ω

2
i ‖0 ≤ ε.

Since ‖ω‖ ≤ ‖ω‖0, for ω ∈ A the closure of π(A1 ⊗ A2) contains the
closure of π(A), i.e.

A ⊂ π(A1 ⊗A2)
‖·‖
= π1(A1)⊗ π2(A2)

‖·‖
.

This means that A ⊂ A1 ⊗σ A2. On the other hand, for A1 ∋ a1 = limωn
with ωn ∈ A1 and A2 ∋ a2 = limω

′
n with ω

′
n ∈ A2 we immediately verify

that π1(a1) ⊗ π2(a2) = limπ1(a1) ⊗ π2(ω
′
n) = limπ(ωn ⊗ ω

′
n). In this way

π1(A1)⊗ π2(A2) ⊂ π(A) = C
∗
r (Γ1 × Γ2) and

A1 ⊗σ A2 = π1(A1)⊗ π2(A2) ⊂ C
∗
r (Γ1 × Γ2).

From now on, if A and B are C∗-algebras, a tensor product A⊗B means
the minimal tensor product.

In the next lemma ω(ω1⊗I) and ω(I⊗ω1) mean products inM(C
∗
r (Γ×Γ ))

(i.e. the multiplier algebra).
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Lemma 2.3. Let ω = F (ω0 ⊗ ω0) ∈ A(Γ × Γ ) and ω1 = fω0 ∈ A(Γ ).
Then ω(ω1 ⊗ I) and ω(I ⊗ ω1) are elements of A(Γ × Γ ) given by

ω(ω1 ⊗ I) =: (F ∗ (f ⊗ I))(ω0 ⊗ ω0), ω(I ⊗ ω1) =: (F ∗ (I ⊗ f))(ω0 ⊗ ω0),

where

(F ∗ (f ⊗ I))(g1, g2) :=
\

Fl(g1)

λ20(g)F (g, g2)f(s(g)g1),

(F ∗ (I ⊗ f))(g1, g2) :=
\

Fl(g2)

λ20(g)F (g1, g)f(s(g)g2).

Proof. It is enough to show that

(F ∗ (f ⊗ I)) ∗ (f1 ⊗ f2) = F ∗ (f ∗ f1 ⊗ f2),

(F ∗ (I ⊗ f)) ∗ (f1 ⊗ f2) = F ∗ (f1 ⊗ f ∗ f2).

Let us compute the LHS of the first equality:

(F ∗ (f ⊗ I)) ∗ (f1 ⊗ f2)(g1, g2)

=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))(F ∗ (f ⊗ I))(g, h)f1(s(g)g1)f2(s(h)g2)

=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))f1(s(g)g1)f2(s(h)g2)

\
Fl(g)

λ20(k)F (k, h)f(s(k)g).

Since Fl(g) = Fl(g1) the above integral is equal to\
Fl(g1)×Fl(g1)×Fl(g2)

(λ20(g)⊗λ
2
0(k)⊗λ

2
0(h))f1(s(g)g1)f2(s(h)g2)F (k, h)f(s(k)g).

And the RHS:

F ∗ (f ∗ f1 ⊗ f2)(g1, g2)

=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))F (g, h)(f ∗ f1)(s(g)g1)f2(s(h)g2)

=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))F (g, h)f2(s(h)g2)

\
Fr(g1)

̺20(k)f(s(g)g1s(k))f1(k)

=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))F (g, h)f2(s(h)g2)

×
\

Fl(eR(g1))

λ20(k)f(s(g)g1k)f1(s(k))
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=
\

Fl(g1)×Fl(g2)

(λ20(g)⊗ λ
2
0(h))F (g, h)f2(s(h)g2)

\
Fl(g1)

λ20(k)f(s(g)k))f1(s(k)g1)

=
\

Fl(g1)×Fl(g1)×Fl(g2)

(λ20(k)⊗λ
2
0(g)⊗λ

2
0(h))f1(s(k)g1)f2(s(h)g2)F (g, h)f(s(g)k);

the passage from the second to the third line follows from the fact that s
restricted to Fr(g1) is a diffeomorphism onto Fl(eR(g1)), and s(̺0) = λ0; the
equality of the third and fourth lines is a consequence of the diffeomorphism
Fl(eR(g1)) ∋ k 7→ g1k ∈ Fl(g1).

The equality (F ∗ (I ⊗ f)) ∗ (f1 ⊗ f2) = F ∗ (f1 ⊗ f ∗ f2) can be proved
in the same way.

Later on we will need the following technical result:

Lemma 2.4. Let Φ : Γ ×Γ → Γ ×Γ be a diffeomorphism, and ψ : Γ × Γ
→ R be a smooth, non-vanishing function. Let λ0 be a left-invariant , real ,
non-vanishing half-density and ω0 the corresponding ∗-invariant bidensity.
Then λ0 ⊗ λ0 is a left-invariant , real , non-vanishing half-density on Γ × Γ
and ω0⊗ω0 is the corresponding ∗-invariant bidensity. Let ‖ · ‖l, ‖ · ‖r, ‖ · ‖0
be the norms on A(Γ × Γ ) associated with λ0 ⊗ λ0 as defined in (3). Define
S : A(Γ )⊗A(Γ )→ A(Γ × Γ ) by

S
(∑

ωi ⊗ ω
′
i

)
:= ψ Φ

(∑
fi ⊗ f

′
i

)
(ω0 ⊗ ω0),

where ωi =: fiω0, ω
′
i =: f

′
iω0 and (Φg)(x) := g(Φ

−1(x)) is the push-forward
of the function g. Then S(A(Γ )⊗A(Γ )) is dense in A(Γ×Γ ) in the topology
defined by ‖ · ‖0.

Proof. Let ω =: F (ω0 ⊗ ω0) ∈ A(Γ × Γ ) and K := suppF . Define

F̃ := F/ψ and F1 := Φ−1F̃ . Then suppF1 = Φ−1(K) is a compact set.
There exist compact sets K1,K2 such that Φ

−1(K) ⊂ K1 ×K2 and

∀ε ∃fi, gi : supp fi ⊂ K1, supp gi ⊂ K2, sup
∣∣∣F1 −

∑
fi ⊗ gi

∣∣∣ ≤ ε.

Then suppΦ(
∑
fi ⊗ gi) ⊂ Φ(K1 × K2). Choose a smooth function h ∈

D(Γ ×Γ ) such that 0 ≤ h ≤ 1 and h = 1 on K∪Φ(K1×K2). LetM := ‖h‖0
and N := sup{|ψ(g1, g2)| : (g1, g2) ∈ K ∪ Φ(K1 ×K2)}. Let ε > 0 be given
and let fi, gi be as above, and sup |F1 −

∑
fi ⊗ gi| ≤ ε/MN . Now for

ω̃ :=
∑
fiω0 ⊗ giω0 we have

‖ω − S(ω̃)‖l

= sup
(e1,e2)∈E×E

\
Fl(e1,e2)

λ20(g1)⊗λ
2
0(g2)

∣∣∣F (g1, g2)−ψ(g1, g2)Φ
(∑

fi⊗gi
)
(g1, g2)

∣∣∣.
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We can estimate the integral as follows:\
Fl(e1,e2)

λ20(g1)⊗ λ
2
0(g2)

∣∣∣F (g1, g2)− ψ(g1, g2)Φ
(∑

fi ⊗ gi
)
(g1, g2)

∣∣∣

=
\

Fl(e1,e2)

λ20(g1)⊗ λ
2
0(g2)|h(g1, g2)|

×
∣∣∣F (g1, g2)− ψ(g1, g2)Φ

(∑
fi ⊗ gi

)
(g1, g2)

∣∣∣

=
\

Fl(e1,e2)

λ20(g1)⊗ λ
2
0(g2)|h(g1, g2)|

× |ψ(g1, g2)|
∣∣∣F̃ (g1, g2)− Φ

(∑
fi ⊗ gi

)
(g1, g2)

∣∣∣

≤ N sup
∣∣∣F̃ − Φ

(∑
fi ⊗ gi

)∣∣∣
\

Fl(e1,e2)

λ20(g1)⊗ λ
2
0(g2)|h(g1, g2)|.

Since

sup
∣∣∣F̃ − Φ

(∑
fi ⊗ gi

)∣∣∣ = sup
∣∣∣(ΦF1)− Φ

(∑
fi ⊗ gi

)∣∣∣

= sup
∣∣∣F1 −

∑
fi ⊗ gi

∣∣∣ ≤ ε/MN.

we get ‖ω − S(ω̃)‖l ≤ ε. In the same way we can estimate ‖ω − S(ω̃)‖r.

3. Double Lie groups and related objects. In this section we intro-
duce basic objects of our investigations: groupoids related to a double Lie
group (DLG). We begin by recalling the definition of a DLG (also known as
a matched pair of Lie groups or a bicrossproduct Lie group).

Definition 3.1 ([6]). A double Lie group is a triple (G;A,B) of Lie
groups such that A,B are closed subgroups of G, A∩B = {e} and G = AB.

The structure of a DLG defines four projections:

aL, aR : G→ A, bL, bR : G→ B by g = aL(g)bR(g) = bL(g)aR(g).

We also define a relation mA : G×G ⊲G by

Gr(mA) := {(b1ab2; b1a, ab2) : a ∈ A, b1, b2 ∈ B},

and a diffeomorphism

sA : G ∋ g 7→ aR(g)bR(g)
−1 = bL(g)

−1aL(g) ∈ G.

It turns out [17] that GA := (G,mA, A, sA) is a differential groupoid. The
same is true for GB := (G,mB, B, sB), where mB, sB are defined similarly
to mA, sA. Moreover δ := mT

B : GA ⊲GA × GA and sB : GA ⊲GA are
morphisms of differential groupoids. In the “extreme case” A = {e}, B = G

we have GA = G (the groupoid GA is a group) and GB = (G, diag
T , G, id),
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where diag : G ∋ g 7→ (g, g) ∈ G × G is the diagonal mapping. The basic
example of a DLG the reader may think of is an Iwasawa decomposition of
a semisimple Lie group G = K(AN).

In the next lemma we explicitly describe the mappings and sets related
to the morphism δ. We use the same notation as in Proposition 1.3. The
proof is straightforward.

Lemma 3.2. Let (G;A,B) be a double Lie group and let δ := mT
B.

1. Gr(δ) = {(a2b2, b2a3; a2b2a3) : a2, a3 ∈ A, b2 ∈ B}.
2. fδ : A×A ∋ (a1, a2) 7→ a1a2 ∈ A.

3. GA×δ (GA×GA) = {(̃b1a2a3; a2b2, a3b3) : b̃1, b2, b3 ∈ B, a2, a3 ∈ A}.

4. GA×δFr(ã2, ã3) = {(̃b1aL(̃b2ã2)aL(̃b3ã3); b̃2ã2, b̃2ã2) : b̃1, b̃2, b̃3 ∈ B}.
5. GA ∗δ (GA ×GA) = {(a2a3b1; a2b2, a3b3) : b1, b2, b3 ∈ B, a2, a3 ∈ A};

6. GA ∗δ Fr(ã2, ã3) = {(aL(̃b2ã2)aL(̃b3ã3)b1; b̃2ã2, b̃2ã2) : b1, b̃2, b̃3 ∈ B}.
7. δL(g1; a2, a3) = (a2bL(a3bR(g1)), a3bR(g1)), aL(g1) = a2a3.
8. δR(g1; a2, a3) = (bL(g1)a2, bR(bL(g1)a2)a3), aR(g1) = a2a3.
9. mδ(g1; g2, g3) = (bL(g1)g2, bR(bL(g1)aL(g2))g3).
10. tδ(g1; g2, g3) = (g1; bL(g1)g2, bR(bL(g1)aL(g2))g3).

For any DLG one can define the pentagonal diffeomorphism

W : G×G ∋ (s, t) 7→W (s, t) := (saL(t)
−1, bR(saL(t)

−1)t) ∈ G×G.(6)

Then W−1(s, t) = (saL(bR(s)
−1t), bR(s)

−1t). By push-forward of half-
densities, W defines a multiplicative unitary operator on L2(G) ⊗ L2(G),
which will also be denoted by W . Then W ∗ is the push-forward by W−1.

Now we give an interpretation of W in terms of the groupoids GA and
GB. We need this to prove easily that W ∈ M(CB(L2(G)) ⊗ C∗r (GA))
(CB(H) stands for compact operators). However, this interpretation can
also be used to show that W is a unitary bicharacter on quantum groups
with some universal properties and to construct a quantum double. For a
groupoid Γ = (Γ,m,E, s) we denote by Γ op the groupoid with the reverse
multiplication, i.e. (Γ,mop, E, s). As shown in [18], the pentagonal diffeo-
morphism W is equal to (id × mA)(m

T
B × id) and the pentagon equation

follows from the fact that mT
B is a morphism GA ⊲GA × GA. (Now it

is clear that there are four multiplicative operators, since one can inter-
change A and B; one can also consider GopA and G

op
B .) But W is not only

a diffeomorphism but a diffeomorphism of a very special kind, namely, it is
implemented by a bisection. Consider the set U := {(g, sB(g)) : g ∈ G}.
This is clearly a submanifold in G ×G. The following lemma is a result of
direct computations.

Lemma 3.3. U is a bisection of GopB ×GA, and U ·(s, t) =W (s, t) (the left
hand side is understood as the action of a bisection on a groupoid element).
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Because a bisection of a differential groupoid Γ is an element ofM(C∗r (Γ))
we conclude thatW ∈M(C∗r (G

op
B ×GA)) =M(C

∗
r (G

op
B )⊗C

∗
r (GA)). The al-

gebra C∗r (G
op
B ) acts on L

2(GopB ) = L
2(G) in a non-degenerate way, therefore

W ∈M(CB(L2(G))⊗ C∗r (GA)).
In what follows we will also need various modular functions related to

DLG, so now we fix notation:

ψA(a) = det(PAAd(a)|a), ψB(a) = det(PB Ad(a)|b), a ∈ A,(7)

ϕA(b) = det(PAAd(b)|a), ϕB(b) = det(PB Ad(b)|b), b ∈ B,(8)

where PB and PA denote the projections in g corresponding to the decom-
position g = a⊕ b.
The last object we define is a smooth function Q : G→ R \ {0}. Let

Ad(g) =:

(
g1 g2

g3 g4

)

be the decomposition of the adjoint representation with respect to the direct
sum structure g = a ⊕ b, i.e. g1 : a → a, g2 : b → a, etc. Then Q is defined
by

G ∋ g 7→ Q(g) :=
det(Ad(g))

det(g1) det(g4)
∈ R \ {0}.(9)

For b ∈ B and a ∈ A we have

Ad(a) =:

(
α1 α2

0 α4

)
, Ad(b) =:

(
β1 0

β3 β4

)
,

and

Q(ba) =
det(β4α4)

det(β3α2 + β4α4)
.

The function Q is related to the modular functions by the equalities

Q(g) =
ψA(aL(g))ϕA(bR(g))

ψA(aR(g))ϕA(bL(g))
=
ψB(aR(g))ϕB(bL(g))

ψB(aL(g))ϕB(bR(g))
.(10)

The relationship between Q and the groupoids GA and GB is described in
the following lemma, the proof of which is straightforward.

Lemma 3.4. Q is a 1-cocycle on GA and GB, i.e. Q(ab)Q(ba
′) = Q(aba′),

Q(ba)Q(ab′) = Q(bab′) for any a, a′ ∈ A, b, b′ ∈ B. Moreover , Q is invariant
with respect to the group inverse, i.e. Q(g) = Q(g−1).

The function Q is exactly the one which appears in the definition of
manageability of W [16, 12]. For the geometric meaning of Q see Appendix.

Multiplication in A(GA). Choose a real half-density µ0 6= 0 on TeB and
define

λ0(g)(v) := µ0(g
−1v), v ∈ ΛmaxT lgGA.(11)
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It is easy to see that this is a left-invariant, non-vanishing half-density on
GA and the corresponding right-invariant half-density is given by

̺0(g)(w) = |ψB(aL(g))|
−1/2µ0(wg

−1), w ∈ ΛmaxT rgGA.(12)

We put ω0 = λ0⊗̺0, and from (2) we obtain the expression for multiplication
in A(GA):

((f1ω0)(f2ω0))(g) =: (f1 ∗ f2)(g)ω0(g)

where

(13) (f1 ∗ f2)(g) =
\
B

µ2L(b) f1(aL(g)b) f2(bL(aL(g)b)
−1g)

=
\
B

µ2R(b) |ψB(aL(baR(g)))|
−1 f1(gbR(baR(g))

−1) f2(baR(g)),

and µL and µR are the left- and right-invariant half-densities on B defined
by µ0 (we use the fact that left and right fibers are diffeomorphic to B).
We finish this section with a simple observation, which will be used

later on.

Lemma 3.5. For g0 ∈ G the sets {g ∈ G : (g0, g) ∈ δ(G)} = bR(g0)A
and {g ∈ G : (g, g0) ∈ δ(G)} = AbL(g0) are bisections of GA.

4. Comultiplication. This section is entirely devoted to the proof that
indeed δ̂ can be used to obtain a comultiplication in the sense of the theory
of quantum groups.

Theorem 4.1. Let (G;A,B) be a double Lie group, GA= (G,mA, sA, A)
and GB = (G,mB, sB , B) the corresponding differential groupoids, and let
δ := mT

B.

(a) The mapping δ̂ extends uniquely to ∆ ∈ Mor(C∗r (GA), C
∗
r (GA) ⊗

C∗r (GA)).
(b) ∆ is coassociative, i.e. (∆⊗ id)∆ = (id⊗∆)∆.
(c) For any a, b ∈ C∗r (GA), the elements ∆(a)(b⊗ I), ∆(a)(I⊗ b) belong
to C∗r (GA)⊗C

∗
r (GA). Moreover , the linear spaces span{∆(a)(b⊗I) :

a, b ∈ C∗r (GA)} and span{∆(a)(I ⊗ b) : a, b ∈ C
∗
r (GA)} are dense in

C∗r (GA)⊗ C
∗
r (GA).

In general we know [13] that δ̂ extends to a morphism from C∗(GA) to
C∗(GA × GA) and it is not a priori clear that it also defines a morphism

of reduced algebras. However, it is easy to see that, for ω ∈ A(GA), δ̂(ω)
defines a multiplier on C∗r (GA ×GA).
Indeed, let πid denote the identity representation of A(GA × GA) on

L2(GA × GA). Proposition 1.5 yields ‖πid(δ̂(ω)ω1)‖ = ‖πδ(ω)πid(ω1)‖ ≤

‖πδ(ω)‖‖πid(ω1)‖. From this inequality we infer that δ̂(ω) is a bounded, lin-
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ear mapping, defined on a dense, linear subspace of C∗r (GA×GA). Therefore,
it can be extended in a unique way to the whole C∗r (GA ×GA). Moreover,

since ω∗2(δ̂(ω)ω1) = (δ̂(ω
∗)ω2)

∗ω1, we see that δ̂(ω) is adjointable. Thanks

to this property, δ̂(ω) defines a multiplier.

Choose ω′0 ∈ A(GA ×GA) and let ω ∈ A(GA ×GA). Take ωn ∈ A(GA)

as in Proposition 1.5(e). We have ‖πid(δ̂(ωn)ω)− πid(ω)‖ ≤ ‖δ̂(ωn)ω − ω‖
′
0;

since this tends to 0, we see that any element of A(GA×GA) can be approx-
imated in the norm defined by the identity representation by elements from
δ̂(A(GA))A(GA ×GA). So the same is true for the whole C

∗
r (GA ×GA).

In this way to prove statement (a) of the theorem we need continuity of

δ̂ as a mapping defined on a dense subspace A(GA) ⊂ C∗r (GA). This will
follow immediately from

Proposition 4.2. Let W be the pentagonal diffeomorphism defined

in (6). The representation πδ is implemented by W , i.e.

πδ(ω) =W (πid(ω)⊗ I)W
∗.

Proof. Clearly this result should be expected, taking into account the
close relationship between the algebra defined by W in a “standard way”
and C∗r (GA) (see Appendix B). We start by giving a formula for δ̂. For
ω =: fω0 ∈ A(GA) and ω1 =: F (ω0 ⊗ ω0) ∈ A(GA × GA), by (1) and

Lemma 3.2 we have δ̂(ω)ω1 = (f ∗δ F )(ω0 ⊗ ω0), and

(f ∗δ F )(a1b1, a2b2)

=
\

Fl(a1a2)

λ20(a1a2b)f(a1a2b) tδ(a1a2b; b
−1
L (a1a2b)a1b1, aR(a2b)b

−1b2)

× F (b−1L (a1a2b)a1b1, aR(a2b)b
−1b2).

As proved in [13], for any morphism h of differential groupoids, the function
th is right-invariant with respect to multiplication in the second groupoid,
i.e. th(x, y) = th(x, eL(y)). In the next lemma we prove a formula for this
function.

Lemma 4.3. tδ(b1a2a3; a2, a3) = |ϕB(bR(b1a2))|
−1/2.

Proof. We use the notation and results of Proposition 1.3 and Lemma
3.2. Let x := b1a2a3, y := (a2, a3) and z := mδ(x, y) = (b1a2, bR(b1a2)a3).
Let W := T(x,y)(GA ×δ Fr(y)) and U := kerπ2 ⊂ W . Vectors from U are
represented by curves u(t) := (b1(t)a2a3; a2, a3) with b1(0) = b1. It is easy
to see that the subspace V ⊂W of vectors represented by the curves

v(t) := (b1aL(b2(t)a2)aL(b3(t)a3); b2(t)a2, b3(t)a3), b2(0) = b3(0) = e,

is complementary to U . So an isomorphism i1 : Ω
1/2
R (x)⊗Ω

1/2
R (y)→ Ω1/2W
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is given by

i1(̺0(x)⊗ ̺
′
0(y))(u ∧ v) := ̺0(x)(π1u)̺

′
0(y)(π2v),(14)

where u ∈ ΛmaxU, v ∈ ΛmaxV.

Let W̃ := T(x,z)(GA ∗δ Fr(y)). Then Ũ := ker π̃2 ⊂ W̃ is the subspace
of vectors represented by the curves ũ(t) := (b1a2a3b1(t); b1a2, bR(b1a2)a3)

with b1(0) = e. Choosing some Ṽ ⊂ W̃ complementary to Ũ we can write

an isomorphism i2 : Ω
1/2
L (x)⊗Ω

1/2
R (z)→ Ω1/2W̃ as

i2(λ0(x)⊗ ̺
′
0(z))(ũ ∧ ṽ) := λ0(x)(π̃1ũ)̺

′
0(z)(π̃2ṽ)(15)

for ũ ∈ ΛmaxŨ and ṽ ∈ ΛmaxṼ .

The function tδ is defined by tδi1(̺0(x) ⊗ ̺
′
0(y)) =: tδ(x, y)i2(λ0(x) ⊗

̺′0(z)), i.e.

i1(̺0(x)⊗ ̺
′
0(y))(u ∧ v) = tδ(x, y)i2(λ0(x)⊗ ̺

′
0(z))(tδ(u) ∧ tδ(v)).(16)

Since the subspace tδ(V ) is represented by the curves

t 7→ (b1aL(b2(t)a2)aL(b3(t)a3); b1b2(t)a2, bR(b1aL(b2(t)a2))b3(t)a3),

one immediately sees that it is complementary to Ũ . So to compute tδ we
need a decomposition of tδ(u) with respect to the direct sum W̃ = Ũ⊕tδ(V ).
This is given by curves ũ(t), v(t) such that tδu(t) = (tdv(t))(x

−1, z−1)ũ(t)
(group multiplication in G×G×G). Using our parametrization we see that

for a given curve b1(t) with b1(0) = b1 we have to find curves b̃1(t) with

b̃1(0) = e and b2(t), b3(t) with b2(0) = b3(0) = e such that

(b1(t)a2a3; b1(t)a2, bR(b1(t)a2)a3)

= (b1aL(b2(t)a2)aL(b3(t)a3); b1b2(t)a2, bR(b1aL(b2(t)a2))b3(t)a3)

· (b1a2a3; b1a2, bR(b1a2)a3)
−1 (b1a2a3b̃1(t); b1a2, bR(b1a2)a3).

The solution of this equation is given by

(17) b̃1(t) = bR(b
−1
1 b1(t)a2a3), b2(t) = b

−1
1 b1(t), b3(t) = bR(b

−1
1 b1(t)a2).

Now we know enough to perform computations for the function tδ. Let
(X1, . . . , Xn) be a basis in TeB such that µ0(X1 ∧ · · · ∧ Xn) = 1. Then
(X1x, . . . , Xnx) is a basis in T

r
xGA and ui := (Xix; 0a2 , 0a3), i = 1, . . . , n,

form a basis in U . We also have the corresponding bases in T ra2GA and
T ra3GA, and (v1, . . . , vn, v

′
1, . . . , v

′
n), where vi := (b1aL(Xia2)a3;Xia2, 0a3)

and v′i := (b1a2aL(Xia3); 0a2, Xia3), is a basis in V . For ̺
′
0 = ̺0 ⊗ ̺0, ̺0 as

in (12), equation (14) gives

i1(̺0(x)⊗ ̺
′
0(y))(u1 ∧ · · · ∧ v

′
n) = |ψB(aL(x))ψB(a2)ψB(a3)|

−1/2.

Let P be the projection onto Ũ corresponding to the decomposition W̃ =
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Ũ ⊕ tδ(V ). Using (15) we can now rewrite (16) as

|ψB(aL(x))ψB(a2)ψB(a3)|
−1/2

= tδ(x; a2, a3)i2(λ0(x)⊗ ̺
′
0(z))(tδ(u1) ∧ · · · ∧ tδ(un) ∧ · · · ∧ tδ(v

′
n))

= tδ(x; a2, a3)λ0(x)(π̃1P tδu1 ∧ · · · ∧ π̃1P tdu1)̺
′
0(z)(π̃2tδv1 ∧ · · · ∧ π̃2tδv

′
n).

From (17) we get

π̃1Pui = xbR(x
−1Xix), π̃2tδvi = (b1Xia2, bR(b1aL(Xia2))a3),

π̃2tδv
′
i = (0b1a2 , bR(b1a2)Xia3),

therefore

λ0(x)(π̃1P tδu1 ∧ · · · ∧ π̃1P tdu1) ̺
′
0(z)(π̃2tδv1 ∧ · · · ∧ π̃2tδv

′
n)

= |ψB(aL(b1a2))ψB(aL(bR(b1a2)ã3))|
−1/2

× |det(PB Ad(x
−1)|b)|

1/2|det(PB Ad(b1)|b)|
1/2

× |det(PB Ad(bR(b1a2))|b)|
1/2.

But since we have ψB(a1a2) = ψB(a1)ψB(a2) and aL(b1a2)aL(bR(b1a2)a3) =
aL(b1a2a3) = aL(x), our equation for tδ reduces to

|ψB(a2a3)|
−1/2

= tδ(x; a2, a3)|det(PB Ad(x
−1)PB Ad(b1)PB Ad(bR(b1a2))|b)|

1/2.

Since x = b1a2a3 we have

PB Ad(x
−1)PB Ad(b1)PB Ad(bR(b1a2))|b

= PB Ad(a
−1
3 a−12 )PB Ad(bR(b1a2))|b,

and finally we get tδ(b1a2a3; a2, a3) = |ϕB(bR(b1a2))|
−1/2.

In this way we arrive at a formula for δ̂ (we recall that f ∗δ F is defined

by δ̂(fω0)(F (ω0 ⊗ ω0)) =: (f ∗δ F )(ω0 ⊗ ω0)):

(18) (f ∗δ F )(a1b1, a2b2)

=
\

Fl(a1a2)

λ20(a1a2b)|ϕB(bL(a2b))|
−1/2f(a1a2b)

× F (b−1L (a1a2b)a1b1, aR(a2b)b
−1b2)

=
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2f(a1a2b)F (b

−1
L (a1a2b)a1b1, aR(a2b)b

−1b2).

Now we can prove the main formula of Proposition 4.2. Let ̺0 be the
right-invariant half-density defined in (12). Choose a real half-density ν0 on
TeA and let νl be the corresponding left-invariant half-density on A. Then
ψ0 := ̺0 ⊗ νl is a non-vanishing half-density on G. Define Ψ0 := ψ0 ⊗ ψ0;
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this is a non-vanishing half-density on G×G. An explicit formula for Ψ0 is

Ψ0(s, t)(Y s ∧ sX ∧ Y1t ∧ tX1)

= ̺0(s)(Y s)̺0(t)(Y1t)νl(aR(s))(aR(s)X)νl(aR(t))(aR(t)X1)

= |ψB(aL(s)aL(t))|
−1/2µ0(Y )µ0(Y1)ν0(X)ν0(X1),

Y, Y1 ∈ Λ
maxTeB, X,X1 ∈ Λ

maxTeA.

In the next lemma we compute the action of W on Ψ0.

Lemma 4.4. Let (s, t) ∈ G × G, (s̃, t̃) := W−1(s, t), X,X1 ∈ Λ
maxTeA

and Y, Y1 ∈ Λ
maxTeB . Then

ϕB(bR(s))ψA(aL(t̃))W
−1(Y s ∧ sX ∧ Y1t ∧ tX1) = Y s̃ ∧ s̃X ∧ Y1t̃ ∧ t̃X1.

Proof. For (s, t) ∈ G × G let ist : b ⊕ a ⊕ b ⊕ a → T(s,t)(G × G) be the
isomorphism given by the decomposition T(s,t)(G×G) = bs⊕ sa⊕ bt⊕ ta.
Then

W−1(Y s ∧ sX ∧ Y1t ∧ tX1) = det(i
−1
s̃t̃
T(s,t)(W

−1)ist)(Y s̃ ∧ s̃X ∧ Y1t̃ ∧ t̃X1).

Set F := i−1
s̃t̃
T(s,t)(W

−1)ist and write F in a block form corresponding to

the decomposition T(e,e)(G×G) = b⊕ a⊕ b⊕ a:

F =




F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44



.

From the formula for W−1 given in (6) we easily obtain

F11 = I = F44 and F12 = F13 = F14 = F41 = F42 = F43 = 0,

so detF = det
( F22 F23
F32 F33

)
, and the mappings F22, F23, F32, F33 are given by:

F22 : a ∋ X 7→ Ad(aL(z)
−1)X − PAAd(bR(z)aL(t)

−1)PB Ad(bR(s)
−1)X,

F23 : b ∋ Y 7→ PAAd(bR(z)aL(t)
−1)Y,

F32 : a ∋ X 7→ −Ad(bR(s)
−1)PB Ad(bR(s)

−1)X,

F33 : b ∋ Y 7→ Ad(bR(s)
−1)Y,

where z := bR(s)
−1aL(t). Now it remains to compute the determinant and

compare it with the definitions of ϕB and ψA.

Having these results we are ready to prove Proposition 4.2. Let w :
G×G→ R be defined by WΨ0 =: wΨ0 and W (F ) by W (FΨ0) =:W (F )Ψ0.
Then W (F )(s, t) = F (W−1(s, t))w(s, t). From the preceding lemma we get

w(s, t) = |ϕB(bR(s))ψA(aL(t̃))ψB(aL(t̃))|
−1/2 where t̃ = bR(s)

−1t.
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Now let us compute πδ(ω)W . For ω =: fω0 and Ψ =: FΨ0 using (18) we get

(f ∗δ W (F ))(a1b1, a2b2)

=
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2 f(a1a2b)W (F )(b

−1
L (a1a2b)a1b1, aR(a2b)b

−1b2)

=
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2 f(a1a2b)w(b

−1
L (a1a2b)a1b1, aR(a2b)b

−1b2)

× F (b−1L (a1a2b)a1a2bL(a
−1
2 b1), b

−1
1 a2b2)

= |ψA(aL(b
−1
1 a2))ψB(aL(b

−1
1 a2))|

−1/2

×
\
B

µ2L(b)|ϕB(bL(a2b))ϕB(b
−1
L (a2b)b1)|

−1/2f(a1a2b)

× F (b−1L (a1a2b)a1a2bL(a
−1
2 b1), b

−1
1 a2b2)

= |ψA(aL(b
−1
1 a2))ψB(aL(b

−1
1 a2))ϕB(b1)|

−1/2

×
\
B

µ2L(b)f(a1a2b)F (b
−1
L (a1a2b)a1a2bL(a

−1
2 b1), b

−1
1 a2b2).

On the other hand, using the formula (13) for multiplication and Lemma 2.3
we can write

W ((f⊗I)∗F )(a1b1, a2b2) = w(a1b1, a2b2)((f⊗I)∗F )(a1b1aL(b
−1
1 a2), b

−1
1 a2b2)

= |ψA(aL(b
−1
1 a2))ψB(aL(b

−1
1 a2))ϕB(b1)|

−1/2

×
\
B

µ2L(b)f(a1a2b)F (b
−1
L (a1a2b)a1a2bL(a

−1
2 b1), b

−1
1 a2b2).

Comparing both expressions we see that πδ(ω)W = W (πid(ω)⊗ I). Propo-
sition 4.2 is proved.

In this way the proof of statement (a) of Theorem 4.1 has been com-

pleted, i.e. δ̂ can be extended to a morphism ∆ from C∗r (GA) to C
∗
r (GA)⊗

C∗r (GA).

(b) Proposition 4.2 immediately yields coassociativity of∆ by a standard
proof based on the pentagonal equation.

(c) Density conditions. Our proof of the density conditions will be the
following. First, note that, by using standard density arguments, one easily
shows that if δ̂(ω)(ω1⊗ I) ∈ A(GA×GA) then also ∆(a)(b⊗ I) ∈ C

∗
r (GA)⊗

C∗r (GA) for any a, b ∈ C
∗
r (GA), and the same holds for the second inclusion.

We begin by giving explicit formulae for δ̂(ω)(I⊗ω2) and δ̂(ω)(ω1⊗I) for
ω, ω1, ω2 ∈ A(GA) based on some geometric considerations. These objects
will be elements of A(GA ×GA). Next, we verify that our guess is correct.
Finally, we check the density conditions.
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Let us first give some heuristic arguments for our formulae. Let us write
δ̂(ω) =

∑
ω′k ⊗ ω

′′
k and formally compute

δ̂(ω)(I ⊗ ω1)(g1, g2) =
∑

ω′k(g1)(ω
′′
kω1)(g2)

=
[(∑

ω′k ⊗ ω
′′
k

)
(g1, ·)ω1

]
(g2) = [δ̂(ω)(g1, ·)ω1](g2).

What kind of object is δ̂(ω)(g1, ·)? Since δ = mT
B, we can expect that

δ̂(ω)(g1, ·) = ω(mB(g1, ·)). Now using Lemma 3.5, we can interpret
ω(mB(g1, ·)) as a function on the bisection bR(g1)A, and this can be iden-
tified with a multiplier on A(GA). Therefore, the natural candidate for

δ̂(ω)(I ⊗ ω1) is ω(mB(g1, ·))ω1. It follows that (almost) the same is true
in the differential case. Let δR and δL be the mappings associated to the
morphism δ described in Lemma 3.2:

δL(g1; a2, a3) = (a2bL(a3bR(g1)), a3bR(g1)), aL(g1) = a2a3,

δR(g1; a2, a3) = (bL(g1)a2, bR(bL(g1)a2)a3), aR(g1) = a2a3.

In the following lemma we denote the tangents to these mappings by the
same letters.

Lemma 4.5. For any (g1, g2; g) ∈ δ the mappings

δL : T lgGA → T l(g1,g2)(GA ×GA) = T
l
g1GA ⊕ T

l
g2GA

and

δR : T rgGA → T r(g1,g2)(GA ×GA) = T
r
g1GA ⊕ T

r
g2GA

are injective. Moreover , the mappings π1δ
L : T lgGA→ T lg1GA, π1δ

R : T rgGA→

T rg1GA, π2δ
L : T lgGA → T lg2GA, π2δ

R : T rgGA → T rg2GA, where π1, π2 are the
projections from GA ×GA to GA, are isomorphisms.

Proof. Let g1 := a1b1 = b̃1ã1, g2 := b1ã2 = a2b2, g := δT (g1, g2) =

a1b1ã2 = b̃1ã1ã2 = a1a2b2. Let X ∈ T
l
gGA and Y ∈ T

r
gGA be represented

by curves a1a2b2(t) with b2(0) = b2 and b̃1(t)ã1ã2 with b̃1(0) = b̃1 respec-
tively. Then δL(X) and δR(Y ) are represented by (a1bL(a2b2(t)), a2b2(t)) and

(̃b1(t)ã1, bR(̃b1(t)ã1)ã2) and the first statement is clear. Direct computations
also prove that (π1δ

L)−1, (π2δ
L)−1, (π1δ

R)−1 and (π2δ
R)−1 are given by:

(π1δ
L)−1 : a1b1(t) 7→ a1a2bL(a

−1
2 b1(t)), b1(0) = b1;

(π2δ
L)−1 : a2b2(t) 7→ a1a2b2(t), b2(0) = b2;

(π1δ
R)−1 : b̃1(t)ã1 7→ b̃1(t)ã1ã2, b̃1(0) = b̃1;

(π2δ
R)−1 : b̃2(t)ã2 7→ bR(b̃2(t)ã1

−1)ã1ã2, b̃2(0) = b1.

Now suppose we are given ω ∈ A(GA), g1 ∈ GA and u1 := v1 ⊗ w1 ∈
ΛmaxT lg1GA ⊗ Λ

maxT rg1GA. For each g2 such that (g1, g2) ∈ δ(GA) we can
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define the number

δ1(ω; g1, u1)(g2) := ω(δ
T (g1, g2))((π1δ

L)−1v1 ⊗ (π1δ
R)−1w1).

Since the set of possible g2 is the bisection bR(g1)A, in this way we get a
function on this bisection. In the same way for each g2 ∈ GA and u2 :=
v2 ⊗ w2 ∈ ΛmaxT lg2GA ⊗ ΛmaxT rg2GA we get a function on the bisection
AbL(g2) given by

δ2(ω; g2, u2)(g1) := ω(δ
T (g1, g2))((π2δ

L)−1v2 ⊗ (π2δ
R)−1w2).

Having a bisection U and a function f on it, we can define a natural action of
this pair on bidensities by the formula ((fU)ω)(g) := f(g′)(Uω)(g), where g′

is the unique point in U such that aL(g
′) = aL(g). Now for ω, ω1, ω2 ∈ A(GA)

we define K1(ω, ω1) ∈ A(GA ×GA) and K2(ω, ω2) ∈ A(GA ×GA) by

K1(ω, ω1)(g1, g2)(u1 ⊗ u2) := [δ1(ω; g1, u1)(bR(g1)A)ω1](g2)(u2),(19)

K2(ω, ω2)(g1, g2)(u1 ⊗ u2) := [δ2(ω; g2, u2)(AbL(g2))ω2](g1)(u1).(20)

It is clear that these formulae are bilinear, so in fact K1,K2 : A(GA) ⊗

A(GA)→ A(GA×GA). These mappings are our candidates for δ̂(ω)(I⊗ω1)

and δ̂(ω)(ω1 ⊗ I). In the next lemma we compute the functions δ1 and δ2.

Lemma 4.6. Let (g1, g2) ∈ δ(GA) and let u1, u2 be as above. Then

δ1(fω0; g1, u1)(g2) = f(δ
T (g1, g2))|ψB(aL(g2))|

−1/2|ψB(aR(g2))|
−1/2ω0(g1)(u1),

δ2(fω0; g2, u2)(g1) = f(δ
T (g1, g2))ω0(g2)(u2).

Proof. Let g1 = a1b1, g2 = b1ã2, g := δT (g1, g2) = a1b1ã2 and u1 =
v1 ⊗ w1. Using the definitions of ω0 and δ1 we compute

δ1(ω; g1, u1)(g2)

= ω(g)((π1δ
L)−1v1 ⊗ (π1δ

R)−1w1)

= f(g)ω0((π1δ
L)−1v1 ⊗ (π1δ

R)−1w1)

= f(g)µ0(g
−1(π1δ

L)−1v1)|ψB(aL(g))|
−1/2µ0((π1δ

R)−1w1g
−1).

Let us represent elements from T lg1GA by g1X for X ∈ TeB and elements
from T rg1GA by Xg1 for X ∈ TeB. Then from Lemma 4.5 we see that the

mapping TeB ∋ X 7→ g−1(π1δ
L)−1g1X ∈ TeB is equal to PB Ad(ã

−1
2 ),

and TeB ∋ X 7→ (π1δ
R)−1Xg1g

−1 ∈ TeB is the identity mapping. Since
aL(g) = aL(g1)aL(g2) the first formula is proved. In the same way one can
prove the second.

To find explicit expressions for K1 and K2 we also need formulae for the
actions of the bisections bA and Ab on A(GA).
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Lemma 4.7. For b0 ∈ B the actions of the bisections b0A and Ab0 on ω0
are given by

((b0A)ω0)(g) = |ϕB(b0)|
−1/2

∣∣∣∣
ψB(aL(b

−1
0 g))

ψB(aL(g))

∣∣∣∣
−1/2

ω0(g),

((Ab0)ω0)(g) = |ϕB(b0)|
−1/2ω0(g).

Proof. Let (b0A)ω0 =: fω0 and h := (b0A) ·g = b0g. Using (5) we get

f(h) =

∣∣∣∣
ψB(aL(g))

ψB(aL(h))

∣∣∣∣
−1/2 µ0(w)

µ0(((b0A) · (wg))h−1)
for w ∈ ΛmaxTeB.

Let X ∈ TeB be represented by a curve b(t); then ((b0A) · (Xg))h
−1 is

represented by b0b(t)b
−1
0 and this gives us the first formula.

To prove the second one, again put h := (Ab0)·g and (Ab0)ω0 =: fω0, but

now h = bL(aL(g)b
−1
0 )
−1g = aR(aL(g)b

−1
0 )b0bR(g) and g = bL(aL(h)b0)

−1h

= aR(aL(h)b0)b
−1
0 bR(h). ForX represented by a curve b(t), the vector ((Ab0)·

(Xg))h−1 is represented by

b̃(t) := bL(aL(b(t)g)b
−1
0 )
−1b(t)bL(aL(g)b

−1
0 ).

To simplify expressions write g =: ab. Now we observe that b̃(t) =: b1(t)b2(t)
for b1(t) := bL(aL(b(t)a)b

−1
0 )
−1bL(ab

−1
0 ) with b1(0) = e and b2(t) :=

bL(ab
−1
0 )
−1b(t)bL(ab

−1
0 ) with b2(0) = e. One easily verifies that

b1(t) = bR[bR(b0a
−1)aaR(a

−1b(t)−1a)a−1bR(b0a
−1)−1].

From this decomposition it follows that the tangent mapping is given by

TeB ∋ X 7→ Ad(bR(b0a
−1))X − PB Ad(bR(b0a

−1)a)PAAd(a
−1)X.

Let

Ad(a) =:

(
α1 α2

0 α4

)
and Ad(bR(b0a

−1)) =:

(
β1 0

β3 β4

)

be the decompositions as in (9). With this notation, our mapping is equal
to β4 + β3α2α

−1
4 . Substituting it into the expression for f and using the

formula for h one gets

f(h) =

∣∣∣∣
ψB(aL(g))

ψB(aR(ab
−1
0 ))

∣∣∣∣
−1/2

|det(β4 + β3α2α
−1
4 )|

−1/2

=

∣∣∣∣
det(β4α4 + β3α2)

ψB(aR(ab
−1
0 ))

∣∣∣∣
−1/2

.

But since bR(b0a
−1)a = aR(ab

−1
0 )b0, we get f(h) = |ϕB(b0)|

−1/2.
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Now, using Lemmas 4.7 and 4.6, we easily derive the formulae for the
mappings K1 and K2 (we write Ki(fω0, fiω0) =: Ki(f, fi)(ω0 ⊗ ω0)):

K1(f, f1)(a1b1, a2b2)(21)

= |ψB(aL(b
−1
1 a2))|

−1|ϕB(b1)|
−1/2f(a1b1aL(b

−1
1 a2))f1(b

−1
1 a2b2),

K2(f, f2)(a1b1, a2b2)(22)

= |ϕB(bL(g2))|
−1/2f(a1a2b2)f2(b

−1
L (a1bL(g2))a1b1).

Lemma 4.8. K1(ω, ω1)(ω2 ⊗ I) = δ̂(ω)(ω2 ⊗ ω1) = K2(ω, ω2)(I ⊗ ω1).

Proof. Using (21) and Lemma 2.3 we compute

K1(f, f1) ∗ (f2 ⊗ I)(a1b1, a2b2)

=
\
B

µ2L(b)|ϕB(b)|
−1/2|ψB(aL(b

−1a2))|
−1

× f(a1baL(b
−1a2))f2(b

−1
L (a1b)a1b1)f1(b

−1a2b2).

The mapping B ∋ b 7→ bL(a
−1
2 b) ∈ B is a diffeomorphism. Applying it to the

integrated density one gets exactly (18). The second equality is immediate
from Lemma 2.3.

Now we know enough to get rid of K1 and K2, i.e. identify them with
δ̂(ω)(I ⊗ ω1) and δ̂(ω)(ω1 ⊗ I).

Proposition 4.9. Let ω = fω0, ω1 = f1ω0 ∈A(GA). Then δ̂(ω)(I ⊗ ω1),

δ̂(ω)(ω1 ⊗ I) ∈ A(GA × GA). Moreover , for f ∗δ (I ⊗ f1) and f ∗δ (f1 ⊗ I)

given by δ̂(fω0)(I⊗f1ω0) =: (f ∗δ (I⊗f1))(ω0⊗ω0) and δ̂(fω0)(f1ω0⊗I) =:
(f ∗δ (f1 ⊗ I))(ω0 ⊗ ω0) we have the following expressions:

(f ∗δ (I ⊗ f1))(g1, g2) = |ψB(aL(bR(g1)
−1g2))|

−1|ϕB(bR(g1))|
−1/2

× f(g1aL(bR(g1)
−1g2))f1(bR(g1)

−1g2),

(f ∗δ (f1 ⊗ I))(g1, g2) = |ϕB(bL(g2))|
−1/2f(aL(g1)g2)f1(bL(aL(g1)g2)

−1g1).

Proof. This proposition simply states that δ̂(ω)(I ⊗ ω1) = K1(ω, ω1)

and δ̂(ω)(ω1 ⊗ I) = K2(ω, ω1). Let us verify the first equality. We know

that K1(ω, ω1), K2(ω, ω1) and δ̂(ω) are multipliers on C
∗
r (GA ×GA). Using

Lemma 4.8 we have the following sequence of equalities for any ω, ω1, ω2, ω3
in A(GA):

K1(ω, ω1)(ω2 ⊗ ω3)

= K1(ω, ω1)(ω2 ⊗ I)(I ⊗ ω3) = δ̂(ω)(ω2 ⊗ ω1)(I ⊗ ω3)

= δ̂(ω)(I ⊗ ω1)(ω2 ⊗ I)(I ⊗ ω3) = δ̂(ω)(I ⊗ ω1)(ω2 ⊗ ω3).

Therefore, the multipliers K1(ω, ω1) and δ̂(ω)(I ⊗ω1) agree on a dense sub-
space A(GA) ⊗ A(GA) ⊂ C∗r (GA) ⊗ C

∗
r (GA), so they must be equal. The

second equality can be proved in the same way.
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In this way the first part of statement (c) of Theorem 4.1 is proved.

Now we will prove the density conditions. Comparing the formula for
K1(f, f1) with the expression for W given in (6) we see that

K1(f, f1)(s, t) = k1(s, t)(f ⊗ f1)(W
−1(s, t)),

where

k1(s, t) := |ψB(aL(bR(s)
−1t))|−1|ϕB(bR(s))|

−1/2.

Because k1(s, t) 6= 0, we can apply Lemma 2.4 to conclude that elements
in A(GA × GA) can be approximated by elements of the form K1(ω, ω1)
in the norm given by ω0 ⊗ ω0. Then from Proposition 1.5(d) they can
be approximated also in C∗r (GA × GA) = C∗r (GA) ⊗ C∗r (GA), and since
A(GA × GA) is dense in C

∗
r (GA × GA) we arrive at the conclusion that

span{∆(a)(I ⊗ b) : a, b ∈ C∗r (GA)} is dense in C
∗
r (GA)⊗ C

∗
r (GA).

The same argument can be applied to K2(f, f1) since one easily checks
that the mapping

G×G ∋ (s, t) 7→ (aL(s)t, bL(aL(s)t)
−1s) ∈ G×G

is a diffeomorphism of G×G with the inverse

(s, t) 7→ (bL(s)t, aL(bL(s)t)
−1)s).

This completes the proof of the theorem.

In this way we have the main component of a quantum group structure
on C∗r (GA) and in the next section we will look for the other ones.

5. Hopf-like structure of A(GA). In this section we identify other
mappings which appear in the theory of quantum groups and show that the
structure of the algebra A(GA) is very similar to the structure of a Hopf

algebra. Of course, because δ̂ is not a mapping from A(GA) to A(GA) ⊗
A(GA) and even not to multipliers of A(GA)⊗A(GA) (in the sense of van

Daele [3]), the pair (A(GA), δ̂) is not a true Hopf algebra.

“Coinverse”. Let Q be the function described in (9) of Section 3. For
z ∈ C we define a mapping τz by

τz : A(GA) ∋ ω 7→ |Q|
izω ∈ A(GA).(23)

Let us also define a mapping R : A(GA)→ A(GA) by

R(ω)(g)(v ⊗ w) := ω(g−1)(w−1 ⊗ v−1),(24)

where v ∈ ΛmaxT lgGA, w ∈ Λ
maxT rgGA and v

−1, w−1 denote the images of

v, w under the mapping g 7→ g−1.

Defining Rf by (Rf)ω0 := R(fω0) we easily get

(Rf)(g) = |ψB(aL(g)aR(g))|
1/2f(g−1).
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Finally, if we define κ : A(GA)→ A(GA) by

κ := R · τi/2 then (κf)(g) = |Q(g)|
−1/2|ψB(aL(g)aR(g))|

1/2f(g−1).(25)

It is clear that all these mappings are linear.

Proposition 5.1.

1. τz is a one-parameter (complex ) group of automorphisms of A(GA).
2. τz · ∗ = ∗ · τz.
3. R is an involutive ∗-antiautomorphism of A(GA).
4. R · τz = τz ·R.
5. κ(ω1ω2) = κ(ω2)κ(ω1).
6. κ · ∗ · κ · ∗ = id.

Proof. Items 1 and 2 are immediate consequences of Lemma 3.4. They
are true for any cocycle Q on a differential groupoid [13].

3. Since R is implemented by a group inverse, it is clear that R is in-
volutive. From the formula for Rf it follows immediately that R commutes
with the *-operation on A(GA). To prove that R is an antiautomorphism
we compute:

R(f1 ∗ f2)(g) = |ψB(aL(g)aR(g))|
1/2(f1 ∗ f2)(g

−1)

= |ψB(aã)|
1/2
\
B

µ2L(b
′)f1(ã

−1b′)f2(bL(ã
−1b′)−1g−1),

where g =: ab = b̃ã. On the other hand,

((Rf2) ∗ (Rf1))(g) =
\
B

µ2L(b
′)(Rf2)(ab

′)(Rf1)(bL(ab
′)−1g)

=
\
B

µ2L(b
′)f1(g

−1bL(ab
′))f2(b

′−1a−1)|ψB(aaR(ab
′))ψB(aR(ab

′)ã)|1/2

= |ψB(aã)|
1/2
\
B

µ2L(b
′)|ψB(aR(ab

′))|f1(g
−1bL(ab

′))f2(b
′−1a−1).

Now apply the diffeomorphism B ∋ b′ 7→ bL(ãb
−1b′) ∈ B to this integral to

get the previous one.

4. This follows directly from the definitions of R and τ .

Items 5 and 6 are direct consequences of the definitions and the previous
statements.

“Counit”. Since Fl(e) = Fr(e) = B (e is the neutral element in G), for

any b ∈ B there is a mapping Ω
1/2
L (b)⊗Ω

1/2
R (b) ∋ λ⊗̺ 7→ λ̺ ∈ Ω1(TbB). In

this way restriction of ω ∈ A(GA) toB defines a smooth 1-density onB (with
compact support). Integration of this density defines a linear functional ε
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on A(GA),A(GA) ∋ ω 7→
T
B ω|B ∈ C. It is easy to see that

ε(fω0) =
\
B

µ2L(b)|ϕB(b)|
1/2f(b).(26)

In the next proposition we denote by κ⊗ id, id⊗κ, ε⊗ id, id⊗ε the natural
extensions of these mappings to A(GA × GA), and by m : A(GA × GA) →
A(GA) the natural extension of the multiplication map of A(GA).

Proposition 5.2.

1. ε is a character on A(GA).

2. (ε⊗ id)δ̂(ω)(I ⊗ ω1) = ωω1 and (id⊗ ε)(ω1 ⊗ I)δ̂(ω) = ω1ω.

3. m(κ⊗ id)δ̂(ω)(I⊗ω1) = ε(ω)ω1 and m(id⊗κ)(ω⊗ I)δ̂(ω1) = ε(ω1)ω.

Proof. 1. The definition of ε is a special case of the following one. Let Γ
be a differential groupoid and let a ∈ E be such that Fl(a) = Fr(a). Then
we can define a linear functional εa on A(Γ ) by εa(ω) :=

T
Fl(a)

ω|Fl(a). We

will prove that εa is a character on A(Γ ). Let ω1 = f1ω0 and ω2 = f2ω0.
Then

εa(ω1ω2) =
\

Fl(a)

λ0(x)̺0(x)
\

Fl(a)

λ20(y)f1(y)f2(s(y)x)

=
\

Fl(a)×Fl(a)

µ(x, y)f1(y)f2(s(y)x),

where µ is a 1-density on Fl(a)× Fl(a) defined by

µ(x, y)(v⊗w) := λ0(x)(v)̺0(x)(v)λ
2
0(y)(w), v ∈ ΛmaxT lxΓ, w ∈ Λ

maxT lyΓ.

Now consider a diffeomorphism Φ of Fl(a)×Fl(a) given by (x, y) 7→ (s(y)x, y).
A short computation shows that (Φµ)(z, t) = ν(z, t) for ν(z, t)(v ⊗ w) :=
λ0(x)(v)̺0(x)(v)λ0(y)(w)̺0(y)(w). In this way our integral is equal to\

Fl(a)×Fl(a)

ν(x, y)f1(x)f2(y)

=
( \
Fl(a)

λ0(x)̺0(x)f1(x)
)( \

Fl(a)

λ0(y)̺0(y)f2(y)
)
= εa(ω1)εa(ω2).

To prove the second property, notice that the density ̺0(x)λ0(x) is real and
invariant with respect to s : Fl(a)→ Fl(a). So we get

εa(ω
∗) =

\
Fl(a)

f∗(x)λ0(x)̺0(x) =
\

Fl(a)

f(s(x))λ0(x)̺0(x)

=
\

Fl(a)

f(x)λ0(x)̺0(x) = εa(ω).
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2. For ω = F (ω0 ⊗ ω0) we have

(ε⊗ id)(F (ω0 ⊗ ω0))(g) =
( \
B

µ2L(b)|ϕB(b)|
1/2F (b, g)

)
ω0(g).

Using Proposition 4.9 we compute

(ε⊗ id)δ̂(fω0)(I ⊗ f1ω0)(g) =
( \
B

µ2L(b)|ϕB(b)|
1/2(f ∗δ (I ⊗ f1))(b, g)

)
ω0(g)

=
( \
B

µ2L(b)|ψB(aL(b
−1g))|−1f(baL(b

−1g))f1(b
−1g)

)
ω0(g).

Now apply the diffeomorphism B ∋ b 7→ bL(aL(g)
−1b) ∈ B to get the

formula (13) for ωω1.

Since (ω1 ⊗ I)δ̂(ω) = (δ̂(ω
∗)(ω∗1 ⊗ I))

∗, Proposition 4.9 easily yields

(f1ω0 ⊗ I)δ̂(fω0)(g1, g2)

= |ϕB(bL(g2))|
1/2f(aR(aR(g1)bL(g2)

−1)g2)f1(g1bL(g2)
−1)(ω0 ⊗ ω0)(g1, g2)

and we compute

(id⊗ ε)(f1ω0 ⊗ I)δ̂(fω0)(g) =
( \
B

µ2L(b)|ϕB(b)|
1/2((f1 ⊗ I) ∗δ f)(g, b)

)
ω0(g)

=
( \
B

µ2L(b)|ϕB(b)|f1(gb
−1)f(aR(aR(g)b

−1)b)
)
ω0(g).

Again, applying the diffeomorphism B ∋ b 7→ bR(g)b
−1 ∈ B we arrive at the

formula (13) for ω1ω.

3. For F (ω0 ⊗ ω0) ∈ A(GA ×GA) the mapping m is given by (cf. (13))

m(F (ω0⊗ω0)) = (mF )ω0, (mF )(g) :=
\
B

µ2L(b)F (aL(g)b, bL(aL(g)b)
−1g).

From the formula (25) for κ and Proposition 4.9 we get

(κ⊗id)δ̂(fω0)(I⊗f1ω0)(g1, g2) = (κ⊗id)(f∗δ(I⊗f1))(g1, g2)(ω0⊗ω0)(g1, g2),

(κ⊗ id)(f ∗δ (I ⊗ f1))(g1, g2)

= |Q(g1)|
−1/2|ψB(aL(g1)aR(g1))|

1/2(f ∗δ (I ⊗ f1))(g
−1
1 , g2).

Let g = ab. We need a value of this last function for g1 = ab̃ and g2 =

bL(ab̃)
−1ab. For these points we have bR(g

−1
1 ) = bL(ab̃)

−1 and

(κ⊗ id)(f ∗δ (I ⊗ f1))(ab̃, bL(ab̃)
−1ab)

= |Q(ab̃)|−1/2|ψB(aaR(ab̃))|
1/2(f ∗δ (I ⊗ f1))(̃b

−1a−1, bL(ab̃)
−1ab)

= |Q(ab̃)|−1/2|ψB(aaR(ab̃))|
1/2|ψB(a)|

−1|ϕB(bL(ab̃))|
1/2f (̃b−1)f1(ab)

= |ϕB (̃b)|
1/2f (̃b−1)f1(ab),
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where the last equality follows from (10). In this way

m(κ⊗ id)(f ∗δ (I ⊗ f1))(g) = f1(g)
\
B

µ2L(b)|ϕB(b)|
1/2f(b−1) = ε(fω0)f1(g).

The second equality can be proved by similar computations.

Remark 5.3. The first two statements of the above proposition can also
be proved by the following observation. If in a differential groupoid Γ there
is a ∈ E such that Fl(a) = Fr(a), then the relation ha : Γ ⊲ {1} defined by
Gr(ha) := {(1, g) : g ∈ Fl(a)} is a morphism of differential groupoids. Since

A({1}) = C the associated mapping ĥa takes values in C and the functional

εa is just ĥa. For the functional ε, a = e (the neutral element) and the
relation is eTB (eB being the identity of GB). So the second statement is a
consequence of (eTB×id)δ = (id×e

T
B)δ = id, and this is just the transposition

of the equality mB(eB × id) = mB(id× eB) = id.

The statements in the last proposition are just axioms for a Hopf algebra
rewritten in a way that makes sense in our situation. Whether this need be
formalized is a question of finding other interesting examples.

Now we describe how δ̂ commutes with R and τz. Define a mapping
∼ : A(GA ×GA)→ A(GA ×GA) by (∼ω)(g1, g2) := ω(g2, g1).

Proposition 5.4. For any z ∈ C and ω, ω1, ω2 ∈ A(GA),

δ̂(Rω)(Rω1 ⊗Rω2) = ∼(R⊗R)((ω2 ⊗ ω1)δ̂(ω)),(27)

δ̂(τzω)(ω1 ⊗ ω2) = (τz ⊗ τz)(δ̂(ω)(τ−zω1 ⊗ τ−zω2)).(28)

Proof. Let ω =: fω0, ω1 =: f1ω0 and ω2 =: f2ω0. Using the same nota-
tion as before, and the formulae for δ̂ (see 18)) and R, we compute the left
hand side of the first equality:

(Rf) ∗δ (Rf1 ⊗Rf2)(a1b1, a2b2) =
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2

× (Rf)(a1a2b)(Rf1)(b
−1
L (a1a2b)a1b1)(Rf2)(aR(a2b)b

−1b2)

=
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2|ψB(a1a2aR(a1a2b))|

1/2f(b−1a−12 a−11 )

× |ψB(aR(a1a2b)aL(b
−1a−12 )aR(a1b1))|

1/2f1(b
−1
1 a−11 bL(a1a2b))

× |ψB(aR(a2b)aR(a2b2))|
1/2f2(b

−1
2 baR(a2b)

−1)

=
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2|ψB(a1a2aR(a1a2b)

2aR(a1b1)aR(a2b2))|
1/2

× f(b−1a−12 a−11 )f1(b
−1
1 a−11 bL(a1a2b))f2(b

−1
2 baR(a2b)

−1)
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= |ψB(a1a2aR(a1b1)aR(a2b2))|
1/2

×
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2|ψB(aR(a1a2b))|

× f(b−1a−12 a−11 )f1(b
−1
1 a−11 bL(a1a2b))f2(b

−1
2 baR(a2b)

−1).

And the right hand side is

∼(R⊗R)((f2 ⊗ f1) ∗δ f)(a1b1, a2b2) = (R⊗R)((f2 ⊗ f1) ∗δ f)(a2b2, a1b1)

= |ψB(a2a1aR(a2b2)aR(a1b1))|
1/2(f2 ⊗ f1) ∗δ f)(b

−1
2 a−12 , b−11 a−11 )

= |ψB(a2a1aR(a2b2)aR(a1b1))|
1/2 (f∗ ∗δ (f∗2 ⊗ f

∗
1 ))(sB(a2b2), sB(a1b1))

= |ψB(a2a1aR(a2b2)aR(a1b1))|
1/2 (f∗ ∗δ (f

∗
2 ⊗f

∗
1 ))(a

−1
2 bL(a2b2), a

−1
1 bL(a1b1))

= |ψB(a1a2aR(a1b1)aR(a2b2))|
1/2
\
B

µ2L(b)|ϕB(bL(a
−1
1 b))|−1/2

× f∗(a−12 a−11 b)f∗2 (b
−1
L (a

−1
2 a−11 b)a−12 bL(a2b2))f

∗
1 (aR(a

−1
1 b)b−1bL(a1b1))

= |ψB(a1a2aR(a1b1)aR(a2b2))|
1/2

×
\
B

µ2L(b)|ϕB(bL(a
−1
1 b))|−1/2f(bL(a

−1
2 a−11 b)−1a−12 a−11 )

× f1(b
−1
1 a−11 b)f2(b

−1
2 a−12 bR(b

−1a1)
−1).

Now use the diffeomorphism b 7→ bL(a
−1
2 a−11 b) to get equality of the two

integrals.

To prove the second equality one immediately verifies that it is enough
to prove that

Q(a1a2b) =
Q(a1b1)Q(a2b2)

Q(bL(a1a2b)−1a1b1)Q(aR(a2b)b−1b2)
.

But since Q is a cocycle on GA and GB, we have the equalities Q(a1a2b) =
Q(a1bL(a2b))Q(a2b), Q(bL(a1a2b)

−1a1b1) = Q(bL(a1a2b)
−1a1)Q(a1b1) and

Q(a1bL(a2b)) = Q(bL(a1a2b)
−1a1)

−1. Using them we easily arrive at the
desired result.

6. Haar measure. This section is devoted to the construction of a Haar
weight on C∗r (GA). We refer to [14] and [10] for a detailed explanation what
a Haar weight is on a locally compact quantum group. Let us also note
that, in contrast to the theory of locally compact groups, the existence of a
Haar weight is (up to now) contained in the definition of a (locally compact)
quantum group. (It can be proved only for the compact case.)
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Let us begin by recalling some results from [13]. Let (Γ,m, s, E) be
a differential groupoid. Choose a real, non-vanishing, right-invariant half-
density ˜̺0. Let ω̃0 = λ̃0 ⊗ ˜̺0 be the corresponding bidensity. Also choose a
real, non-vanishing half-density ν on E. For such data we define:

• A smooth function σ : Γ → R \ {0} by σ(g)(˜̺0 ⊗ ν)(g) = (λ̃0 ⊗ ν)(g).
We call σ the modular function associated with the pair (˜̺0, ν). This
function is a 1-cocycle on Γ (i.e. σ(g1g2) = σ(g1)σ(g2) for any com-
posable g1, g2 ∈ Γ ). Therefore, it defines a one-parameter (complex)
group of algebra automorphisms (though not ∗-automorphisms!) of
A(Γ ): σz(ω)(g) := |σ(g)|

2izω(g).
• A positive linear functional h on A(Γ ) by h(fω̃0) :=

T
E ν
2f .

• A linear mapping ĥ : A(Γ ) ∋ fω̃0 7→ f ˜̺0 ⊗ ν ∈ L2(Γ ).
The next proposition describes the basic properties of these objects.

Proposition 6.1 ([13]). For any ω, ω1 ∈ A(Γ ):

• h(ω∗ω) = (ĥ(ω) | ĥ(ω)) (scalar product in L2(Γ )).
• h(σz(ω)ω1) = h(ω1σz−i(ω)).

• ĥ(ωω1) = πid(ω)ĥ(ω1).

Now we specify the choice of ˜̺0 and ν for our groupoid GA. Let µ0 6= 0
be a real half-density on TeB and define a right-invariant half-density ˜̺0 on
GA by the formula

˜̺0(g)(w) := µ0(wg−1), w ∈ ΛmaxT rgGA.

Let λ̃0 be the corresponding left-invariant half-density and ω̃0 = λ̃0 ⊗ ˜̺0.
A short computation shows that ω̃0(g) = |ψB(aL(g)aR(g))|

1/2ω0 (where ω0
denotes our standard bidensity constructed from µ0 as in (11), (12)). Also
choose a real half-density ν0 6= 0 on TeA and let νr be the corresponding
right-invariant half-density on A. In our standard representation of bidensi-
ties we get

h(fω0) =
\
A

ν2r (a)|ψB(a)|
−1f(a).

From the definitions of h, σ and τ it is clear that hτz = h and σzτw = τwσz.
In the next lemma we give a formula for the associated modular function.

Lemma 6.2. Let ˜̺0 and νr be as above. Then the modular function σ is
given by

σ(g) =

∣∣∣∣
ψA(aL(g))ϕA(bR(g))

ϕB(bL(g))ψA(aR(g))

∣∣∣∣
1/2

.

Proof. From the definition of λ̃0 one can easily see that

λ̃0(g)(gv) = |ψB(aR(g))|
1/2µ0(v), v ∈ ΛmaxTeB.
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The subspace gTeA ⊂ TgG is complementary to T
r
gGA and T

l
gGA, i.e. TgG =

gTeA ⊕ T
r
gGA = gTeA ⊕ T

l
gGA. Therefore, for u ∈ Λ

maxTeA, v ∈ Λ
maxTeB

we have the equalities

(˜̺0⊗νr)(g)(vg∧gu) = µ0(v)νr(aR(g))(aR(gu)) = |ψA(aR(g))|1/2µ0(v)ν0(u),
(λ̃0 ⊗ νr)(g)(gv ∧ gu) = |ψB(aR(g))|

1/2µ0(v)νr(aL(g))(aL(gu))

= |ψB(aR(g))|
1/2|ϕA(bR(g))|

1/2|ψA(aL(g))|
1/2µ0(v)ν0(u).

Now, since vg ∧ gu = g(g−1vg) ∧ gu = det(PB Ad(g
−1)|b)(gv ∧ gu), we get

the expression for σ(g):

σ(g) = |ψB(aR(g))|
1/2|ϕA(bR(g))|

1/2|ψA(aL(g))|
1/2

× |det(PB Ad(g
−1)|b)|

1/2|ψA(aR(g))|
−1/2,

and the equality det(PB Ad(g
−1)|b) = ψB(aR(g))

−1ϕB(bL(g))
−1 implies the

result.

Let h⊗ id : A(GA ×GA)→ A(GA) be the natural extension of h⊗ id :
A(GA)⊗A(GA)→ A(GA), i.e.

((h⊗ id)(F (ω0 ⊗ ω0)))(g) :=
(\
A

|ψB(a)|
−1ν2r (a)F (a, g)

)
ω0(g).

The next proposition states that the functional h is “right-invariant”, relates
h to κ, and describes the commutation of δ̂ with the modular group σz.
Recall that a functional ϕ on a Hopf algebra (A, ∆) is right-invariant iff
(ϕ⊗ id)∆(a) = ϕ(a)I.

Proposition 6.3. For any ω, ω1, ω2 ∈ A(GA):

(h⊗ id)(δ̂(ω1)(I ⊗ ω2)) = h(ω1)ω2,(29)

(h⊗ id)(δ̂(ω∗1)(ω2 ⊗ I)) = κ((h⊗ id)((ω
∗
1 ⊗ I)δ̂(ω2))),(30)

δ̂(σz(ω))(ω1 ⊗ ω2) = (σz ⊗ τz)(δ̂(ω)(σ−zω1 ⊗ τ−zω2)).(31)

Proof. Using Proposition 4.9 and right-invariance of νr we get

(h⊗ id)(δ̂(f1ω0)(I ⊗ f2ω0))(g)

=
(\
A

ν2r (a)|ψB(a)|
−1|ψB(aL(g))|

−1f1(aaL(g))f2(g)
)
ω0(g)

=
(\
A

ν2r (a)|ψB(aaL(g))|
−1f1(aaL(g))

)
ω2(g) = h(ω1)ω2(g).

To prove the second formula, we again use Proposition 4.9, right-invariance

of νr, and the formula for (ω
∗
1⊗I)δ̂(ω2) given in the proof of Proposition 5.2

to obtain the left hand side of (30):
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(h⊗ id)[δ̂((f1ω0)
∗)(f2ω0 ⊗ I)](g)

=
(\
A

ν2r (a)|ψB(a)|
−1(f∗1 ∗δ (f2 ⊗ I))(a, g)

)
ω0(g)

=
(
|ϕB(bL(g))|

−1/2
\
A

ν2r (a)|ψB(a)|
−1f1(sA(ag))f2(bL(ag)

−1a)
)
ω0(g).

And the right hand side of this equality is

κ((h⊗ id)(((f1ω0)
∗ ⊗ I)δ̂(f2ω0)))(g) =

(
|Q(g)|−1/2|ψB(aL(g)aR(g))|

1/2

×
\
A

ν2r (a)|ψB(a)|
−1((f∗1 ⊗ I) ∗δ f2)(a, g

−1)
)
ω0(g)

=
(
|Q(g)|−1/2|ψB(aL(g)aR(g))|

1/2|ϕB(g
−1)|1/2

×
\
A

ν2r (a)|ψB(a)|
−1 f1(sA(abR(g))) f2(aR(abR(g))g

−1)
)
ω0(g).

Now we use the relationship between Q and modular functions (10) to
convert this expression into
(
|ψB(aL(g))|

1/2|ϕB(bL(g))|
−1/2

×
\
A

ν2r (a)|ψB(a)|
−1 f1(sA(abR(g))) f2(aR(abR(g))g

−1)
)
ω0(g).

Since abR(g) = aaL(g)
−1g, aR(abR(g))g

−1 = bL(aaL(g)
−1g)−1aaL(g)

−1 and
νr is right-invariant, this expression is equal to the left hand side.

From the formula (18) for δ̂ and the definitions of σ and τ it easily follows
that to prove the third statement it is sufficient to show the equality

ψA(a1a2)ϕA(b)

ψA(aR(a1a2b))ϕB(bL(a1a2b))

=
ψA(a1)ϕA(b1)Q(a2b2)ϕB(bL(b

−1
L (a1a2b)a1b1))

ϕB(bL(a1b1))ψA(aR(a1b1))ψA(aL(b
−1
L (a1a2b)a1b1))

×
ψA(aR(b

−1
L (a1a2b)a1b1))

ϕA(bR(b
−1
L (a1a2b)a1b1))Q(aR(a2b)b

−1b2)
,

and this is straightforward because of the equalities

bL(b
−1
L (a1a2b)a1b1) = b

−1
L (a1a2b)bL(a1b1), aR(b

−1
L (a1a2b)a1b1) = aR(a1b1),

aL(b
−1
L (a1a2b)a1b1) = aR(a1a2b)a

−1
R (a2b), bR(b

−1
L (a1a2b)a1b1) = b

−1
L (a2b)b1,

Q(a2b2) = Q(aR(a2b)b
−1b2)Q(a2b),

and equation (10).
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The relationships among h, ĥ and σt given in Proposition 6.1 suggest that
ĥ can be extended to a GNS mapping and h to a KMS weight on C∗r (GA).
This is indeed the case, and was proved in [13] for a general differential
groupoid.

Proposition 6.4 ([13]). The mapping ĥ is closable and defines a GNS
mapping from C∗r (GA) to L

2(G). Consequently , the linear functional h can
be extended to a densely defined , lower semicontinuous weight on C∗r (GA),
which is a KMS weight with the modular group σt.

In the remaining part of this section we show that this weight is right-
invariant. The crucial (although not difficult) step is Lemma 6.5, and then
we use results from [14] and [10].

Let H be a Hilbert space. For two vectors x, y ∈ H, we define a linear
functional ηxy on B(H) by ηxy(a) := (x | ay). Then for a ∈ B(H ⊗ H)
we define operators (id ⊗ ηxy)a and (ηxy ⊗ id)a by (z | ((id ⊗ ηxy)a)t) :=
(z ⊗ x | a(t⊗ y)) and (z | ((ηxy ⊗ id)a)t) := (x⊗ z | a(y ⊗ t)).

Lemma 6.5. Let ĥ : C∗r (GA) → L2(G) be the GNS mapping associated
with the weight h and W the multiplicative unitary defined in (6). For x, y ∈

L2(G) and a ∈ D(ĥ) the element ĥ((id⊗ ηxy)πδ(a)) belongs to D(ĥ) and

ĥ((id⊗ ηxy)πδ(a)) = ((id⊗ ηxy)W )ĥ(a).

Proof. First, notice that since ĥ is a closed mapping and A(GA) is its
core, it is enough to prove the formula for x, y ∈ D(G) and a ∈ A(GA).

Indeed, let a ∈ D(ĥ) and x = ĥ(a). This means that a = limωn for some

ωn ∈ A(GA) and x = lim ĥ(ωn). It is shown below that (id⊗ ηxy)πδ(ωn) is
a sequence in A(GA) and it converges to (id⊗ ηxy)πδ(a). So

ĥ((id⊗ ηxy)πδ(ωn)) = ((id⊗ ηxy)W )ĥ(ωn).

But since lim ĥ(ωn) = x, the sequence on the right hand side is convergent to

((id⊗ηxy)W )x. Therefore (id⊗ηxy)πδ(a) is in D(ĥ) and ĥ((id⊗ηxy)πδ(a)) =

((id ⊗ ηxy)W )ĥ(a). Since D(G) is dense in L2(G), similar arguments show
that it is enough to check the equality for x, y ∈ D(G).

Now we compute (id ⊗ ηxy)πδ(ω) for x, y ∈ D(G) and ω ∈ A(GA). Let
ψ0 := ̺0 ⊗ νr, where ̺0 is our standard right-invariant half-density defined
in (12) and νr is as in the definition of h. We write x =: fxψ0, y =: fyψ0
and ω =: fω0. With this notation we get (id⊗ ηxy)πδ(ω) = fxyω0, where

(32) fxy(ab)

:= |ϕB(b)|
−1/2

\
G

ψ20(g2) fx(g2) |ψB(aR(a
−1
2 b))|f(aa2bL(a

−1
2 b))fy(b

−1g2).
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To prove this formula it is enough to show that

(z |πid(fxyω0)t) = (z ⊗ x |πδ(ω)(t⊗ y)) for any z, t ∈ D(G).

Let z =: fzψ0 and t =: ftψ0. From the formula (18) for δ̂ we get

(z ⊗ x |πδ(ω)(t⊗ y)) =
\

G×G

(ψ0 ⊗ ψ0)
2(g1, g2) fz(g1)fx(g2)

×
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2f(a1a2b)ft(bL(a1a2b)

−1a1b1)fy(aR(a2b)b
−1b2)

=
\
G

ψ20(g1) fz(g1)
\
G

ψ20(g2) fx(g2)

×
\
B

µ2L(b)|ϕB(bL(a2b))|
−1/2f(a1a2b)ft(bL(a1a2b)

−1a1b1)fy(aR(a2b)b
−1b2),

where g1 = a1b1, g2 = a2b2. Applying the diffeomorphism B ∋ b 7→ bL(a2b)
∈ B, we can rewrite the integral over B as\

B

µ2L(b)|ϕB(b)|
−1/2|ψB(aR(a

−1
1 b))|

× f(a1a2bL(a
−1
2 b))fy(b

−1a2b2)ft(bL(a1b)
−1a1b1),

and interchanging the order of integration we get

(z ⊗ x |πδ(ω)(t⊗ y)) =
\
G

ψ20(g1) fz(g1)
\
B

µ2L(b)|ϕB(b)|
−1/2

×
[\
G

ψ20(g2) fx(g2) |ψB(aR(a
−1
1 b))|f(a1a2bL(a

−1
2 b))fy(b

−1g2)
]
ft(bL(a1b)

−1g1).

Comparing this with the formula (13) for multiplication in GA and the
definition of fxy we obtain the result.
To prove the lemma it remains to show that

(z | ĥ(fxyω0)) = (z ⊗ x |W (ĥ(ω)⊗ y)).

Using the definition of ĥ we get ĥ(fω0)= f̂ψ0 for f̂(g) :=f(g)|ψB(aR(g))|
−1/2.

Let us compute the right hand side of our equality:

(z⊗x |W (ĥ(ω)⊗y)) =
\

G×G

(ψ0 ⊗ ψ0)
2(g1, g2) fz(g1)fx(g2) [W (f̂ ⊗fy)](g1, g2)

=
\
G

ψ20(g1) fz(g1)
\
G

ψ20(g2) fx(g2) [W (f̂ ⊗ fy)](g1, g2).

Thus we have to prove the equality

(∗∗) fxy(g)|ψB(aR(g))|
−1/2 =

\
G

ψ20(g2) fx(g2) [W (f̂ ⊗ fy)](g, g2),

where W (fψ0 ⊗ kψ0) =:W (f ⊗ k)(ψ0 ⊗ ψ0).
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The formula for the action of W was given after Lemma 4.4. Notice that
now ψ0 is not the same as ψ0 defined before that lemma, so the expressions
for W (f̂ ⊗ fy) are different. But since both ψ0’s can be easily compared, we
immediately deduce the needed formula from the one in Lemma 4.4:

[W (f̂ ⊗ fy)](g, g2)

= |ϕB(bR(g))ψB(aL(bR(g)
−1g2))|

−1/2f̂(gaL(bR(g)
−1g2))fy(bR(g)

−1g2).

To verify the equality (∗∗) use this expression and the expressions for fxy
(see (32)) and f̂ . This completes the proof of the lemma.

Now we can prove right-invariance of h with respect to positive vector
functionals in a GNS space for h. It follows immediately from

Proposition 6.6. For any a ∈ D(ĥ) and x ∈ L2(G),

h((id⊗ ηxx)πδ(a
∗a)) = ‖x‖2h(a∗a).

Proof. Let ei be an orthonormal basis in L
2(G). For x ∈ L2(G) let

Bn :=

n∑

i=1

[(id⊗ ηeix)πδ(a)]
∗[(id⊗ ηeix)πδ(a)].

Then Bn ∈ C∗r (GA) and Bn converges strictly to (id ⊗ ηxx)πδ(a
∗a) (see

Lemma 9.5 of [14]). On the other hand,

h(Bn) =

n∑

i=1

(ĥ[(id⊗ ηeix)πδ(a)] | ĥ[(id⊗ ηeix)πδ(a)])

=

n∑

i=1

([(id⊗ ηeix)W ]ĥ(a) | [(id⊗ ηeix)W ]ĥ(a))

=
(
ĥ(a)

∣∣∣
n∑

i=1

[(id⊗ ηeix)W ]
∗[(id⊗ ηeix)W ]ĥ(a)

)
.

BecauseW ∈M(CB(L2(G))⊗C∗r (GA)) (see remarks after Lemma 3.3), it fol-
lows that the sequence

∑n
i=1[(id⊗ηeix)W ]

∗[(id⊗ηeix)W ] converges strongly
to (id ⊗ ηxx)(W

∗W ) = ‖x‖2I. Therefore h(Bn) converges to ‖x‖
2h(a∗a).

Since the weight h is strictly lower semicontinuous, we get the result.

The last step is to prove that this is enough for full right-invariance. To
this end we use the following

Theorem 6.7 ([10]). Let h be a densely defined , lower semicontinuous
weight on a separable C∗-algebra A and (H, ηh, πh) be a GNS triple. There
exists a sequence of vectors Ωn ∈ H such that :

1. πh(A)Ωn and πh(A)Ωm are orthogonal for m 6= n.
2. a ∈ D(ηh)⇔

∑
‖πh(a)Ωn‖

2 <∞.
3. ηh(a) =

∑
πh(a)Ωn.

4. H =
⊕
Hn, Hn := πh(A)Ωn.
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To simplify notation we put ηi := ηΩiΩi and, for a, b ∈ D(ĥ), ηia :=
ηΩiĥ(a), ηab := ηĥ(a)ĥ(b). From Lemma 6.5 and the theorem above we easily

obtain three useful formulae:

(ηi ⊗ id)∆(a) = (ηia ⊗ id)W, a ∈ D(ĥ),

∆(a)(Ωn ⊗ x) = (pn ⊗ I)W (ĥ(a)⊗ x), a ∈ D(ĥ),

(ηi(a∗a) ⊗ id)W = (ηa ⊗ id)(W
∗(pi ⊗ I)W ),

where pi denotes projection onto the closure of C
∗
r (GA)Ωi. Indeed, let x, y, z

∈ L2(G). Then

(x | (ηia ⊗ id)Wy) = (Ωi ⊗ x |W (ĥ(a)⊗ y)) = (Ωi | (id⊗ ηxy)Wĥ(a))

= (Ωi | ĥ((id⊗ ηxy)∆(a))) = (Ωi | (id⊗ ηxy)∆(a)Ωi) = (x | (ηi ⊗ id)∆(a)y),

and this proves the first formula. To prove the second, compute

(x⊗ z |W (ĥ(a)⊗ y)) = (x | (id⊗ ηzy)Wĥ(a)) = (x | ĥ((id⊗ ηzy)∆(a)))

=
∑

n

(x | (id⊗ ηzy)∆(a)Ωn),

so
(x⊗ z | (pn ⊗ I)W (ĥ(a)⊗ y)) = (x | (id⊗ ηzy)∆(a)Ωn)

= (x⊗ z |∆(a)(Ωn ⊗ y)).

And the third formula

(z | (ηi(a∗a)⊗id)Wy) = (Ωi⊗z |W (ĥ(a
∗a)⊗y)) = (Ωi⊗z |W (a

∗⊗I)(ĥ(a)⊗y))

= (Ωi ⊗ z |∆(a
∗)W (ĥ(a)⊗ t)) = (∆(a)(Ωi ⊗ z) |W (ĥ(a)⊗ y))

= (ĥ(a)⊗ z |W ∗(pi ⊗ I)Wĥ(a)⊗ y) = (z | ((ηa ⊗ id)W
∗(pi ⊗ I)W )y).

Now, let ϕ be a positive linear functional on C∗r (GA) and (K,πϕ, Ωϕ)
the associated GNS triple. We compute

ηi((id⊗ ϕ)∆(a
∗a)) = ϕ((ηi ⊗ id)∆(a

∗a)) = ϕ((ηi(a∗a) ⊗ id)W )

= ϕ((ηa ⊗ id)(W
∗(pi ⊗ I)W )).

But since W ∈ M(CB(L2(G)) ⊗ C∗r (GA)) and
∑n

i=1 pi converges strictly
(in B(H) = M(CB(H))) to I, we conclude that

∑
i ηi((id ⊗ ϕ)∆(a

∗a)) =
h(a∗a)ϕ(I). This shows that h((id ⊗ ϕ)∆(a∗a)) is finite and equal to
h(a∗a)ϕ(I). This way we have proved:

Proposition 6.8. Let a ∈ D(ĥ) and ϕ be a positive linear functional
on C∗r (GA). Then

h((id⊗ ϕ)∆(a∗a)) = h(a∗a)ϕ(I).

Therefore, the weight h is right-invariant.
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7. Putting all together. In this section we lift some objects from
Section 5 to the C∗-algebraic level and review the structure we got. Let us
start by showing that R defines a ∗-antiautomorphism of C∗r (GA). To this
end it is enough to prove its continuity. This will follow immediately from

Lemma 7.1. There exists an antiunitary operator Ĵ on L2(GA) such that

πid(Rω) = Ĵπid(ω
∗)Ĵ , ω ∈ A(GA).

Proof. Since sB (inverse of the groupoid GB) is a diffeomorphism of GA,
it defines a unitary operator on L2(GA) (by push-forward of half-densities),
which we also denote by sB . On L

2(GA) there is a canonical antiunitary

involution, namely complex conjugation: ¯. We define Ĵ :=¯◦ sB and check
that this is the right choice. We choose a non-vanishing, real half-density
ψ0 = ̺0 ⊗ ν on GA as before Lemma 4.4. Then a short computation shows
that

(33) sB(Y g ∧ gX) = ψB(aL(g))
−1ψA(aR(g))(−1)

dimA(Y sB(g) ∧ sB(g)X)

for X ∈ ΛmaxTeA, Y ∈ Λ
maxTeB.

From this formula we deduce that

(sBψ0)(g) = |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2ψ0(g).

Defining sBψ for any smooth, compactly supported function ψ on GA by
sB(ψψ0) =: (sBψ)ψ0 we get

(sBψ)(g) = |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2ψ(sB(g)).

As usual, writing ω = fω0, we have to show (Rf) ∗ ψ = sB(f∗ ∗ sBψ). We
compute the left hand side using the formulae (24) for R and the multipli-
cation (13):

((Rf) ∗ ψ)(g) =
\
B

µ2L(b)(Rf)(aL(g)b)ψ(bL(aL(g)b)
−1g)

= |ψB(aL(g))|
1/2
\
B

µ2L(b)|ψB(aR(aL(g)b))|
1/2f(b−1aL(g)

−1)ψ(bL(aL(g)b)
−1g).

And the right hand side equals

sB(f∗ ∗ sBψ)(g) = |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2 (f∗ ∗ sBψ)(sB(g))

= |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2

×
\
B

µ2L(b) f
∗ (aL(sB(g))b)(sBψ)(bL(aL(sB(g))b)

−1sB(g))

= |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2

×
\
B

µ2L(b)f(sA(aL(g)
−1b))(sBψ)(bL(aL(g)

−1b)−1sB(g))
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= |ψB(aL(g))|
1/2|ψA(aR(g))|

1/2

×
\
B

µ2L(b)f(bL(aL(g)
−1b)−1aL(g)

−1)(sBψ)(bL(aL(g)
−1b)−1sB(g)).

Now apply the diffeomorphism B ∋ b 7→ bL(aL(g)
−1b) ∈ B to the integral

over B to convert it into

|ψB(aL(g))|
1/2|ψA(aR(g))|

1/2

×
\
B

µ2L(b)|ψB(aR(aL(g)b))|f(b
−1aL(g)

−1)(sBψ)(b
−1sB(g))

and use the definition of sBψ to conclude that this is equal to the left hand
side.

Now we pass to the group τt. The following proposition was proved
in [13]:

Proposition 7.2. Let Γ be a differential groupoid and σ : Γ → ]0,∞[ a
smooth cocycle. The mapping A(Γ ) ∋ ω 7→ σt(ω) := σ

itω ∈ A(Γ ) extends to
a strongly continuous one-parameter group on C∗r (Γ ). Let σi/2 be its analytic

generator. Then A(Γ ) is a core for σi/2 and σi/2(ω) = σ−1/2ω for ω ∈
A(Γ ).

From this proposition we infer that τt defined by (23) extends to a
strongly continuous one-parameter group on C∗r (GA). Moreover, from Pro-
position 5.1 this group commutes with R. Since now we know that Rτt and σt
are continuous, using Lemma 5.4 and Proposition 6.3, we easily obtain the
following equalities on C∗r (GA):

∆τt = (τt ⊗ τt)∆, ∆R = ∼(R⊗R)∆, ∆σt = (σt ⊗ τt)∆.

We finish this work with a short résumé. Let (G;A,B) be a double Lie
group.

• There are naturally defined differential groupoids GA, GB over A and
B respectively. Let C := C∗r (GA) be the reduced C

∗-algebra of GA.
• The relation δ := mT

B defines ∆ ∈ Mor(C,C ⊗ C) which is a comulti-
plication in the sense of the theory of quantum groups.
• The inverse of the group G defines an involutive ∗-antiautomorphism
R of C.
• There is a strongly continuous one-parameter group of ∗-automor-
phisms τt on C, which commutes with R.
• There exists a right-invariant, densely defined, lower semicontionuous
weight h on C which is a KMS weight with a modular group σt. More-
over the weight h is τ -invariant.
• The groups σt and τt commute.
• ∆τt = (τt ⊗ τt)∆, ∆R = ∼(R⊗R)∆, ∆σt = (σt ⊗ τt)∆.
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Because the positions of the groups A and B in a DLG (G;A,B) are com-
pletely symmetric, in fact, there are two quantum groups based on C∗r (GA)
and C∗r (GB) respectively. One can think of them as duals, but the precise
sense of this duality is to be understood. If these algebras coincide with the
algebras defined by the multiplicative operator W in the “standard way”
(see Appendix B), then one can say that this is the meaning of duality.
However, here we have more, namely, there is a natural duality (in fact two
of them) between A(GA) and A(GB) (see Appendix A). This duality enables
us to think about these algebras as “dual Hopf algebras”. There is also a
class of representations of (say) C∗r (GB), the ones coming from morphisms
of differential groupoids GB ⊲Γ , which define, via W , representations of
the quantum group based on C∗r (GA).

8. Appendices

A. Geometric interpretation of the function Q. Let V be a finite-
dimensional vector space (over C or R). Suppose we are given four subspaces
L1, L2, R1, R2 ⊂ V such that dimL1 = dimR1, dimL2 = dimR2 and V =
L1 ⊕ R2 = R1 ⊕ L2 = L1 ⊕ L2 = R1 ⊕ R2. Moreover let λi, ̺i, i = 1, 2,
be half-densities on Li and Ri respectively. The quadruple (λ1, ̺1, λ2, ̺2)
defines two densities d1, d2 on V as follows: d1 := (λ1 ⊗ ̺2)(λ2 ⊗ ̺1) and
d2 := (λ1 ⊗ λ2)(̺1 ⊗ ̺2). One can check that d1, d2 depend only on λ1 ⊗ ̺1
and λ2 ⊗ ̺2 and the dependence is bilinear. Therefore, d1, d2 are actually
bilinear mappings d1, d2 : (Ω

1/2(L1)⊗Ω
1/2(R1))×(Ω

1/2(L2)⊗Ω
1/2(R2))→

Ω1(V ). Since the space Ω1(V ) is one-dimensional we infer that d1 = cd2 for
some c ∈ C. To find the constant c it is sufficient to compare d1 and d2
on some basis in V . Let us recall that a p-density d on V is a mapping
d : V n := V × · · · × V → C, n = dimV , which satisfies the condition

d(vi1Ai11, . . . , vinAinn) = |detA|
pd(v1, . . . , vn) (summation),

for any A ∈ Mn×n(R) (or A ∈ Mn×n(C)) and any v1, . . . , vn ∈ V . If
(v1, . . . , vn) =: v is a basis in V then we write the above condition as
d(vA) = |detA|pd(v).

Choose bases l := (l1, . . . , ln), r := (r1, . . . , rn), l̃ := (l̃1, . . . , l̃m), r̃ :=
(r̃1, . . . , r̃m) in L1, R1, L2, R2, respectively. Let I denote the identity ma-
trix (of appropriate dimension) and let matrices A,B,C,D, J,K,G,H,M,
M1,M2 be defined by

(l, l̃) =: (r, r̃)

(
A C

B D

)
=: (r, r̃)M,

(l, l̃) =: (r, l̃)

(
J 0

K I

)
= (r, l̃)M1, (l, l̃) =: (l, r̃)

(
I G

0 H

)
= (l, r̃)M2.
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Now we can compare d1 and d2:

d1(l, l̃) := (λ1⊗̺2)(l, l̃)(λ2⊗̺1)(l, l̃)=(λ1⊗̺2)((l, r̃)M2)(λ2⊗̺1)((r, l̃)M1)

= |detH|1/2|detJ |1/2λ1(l)̺2(r̃)λ2(̃l)̺1(r),

d2(l, l̃) := (λ1 ⊗ λ2)(l, l̃)(̺1 ⊗ ̺2)(l, l̃) = λ1(l)λ2(̃l)(̺1 ⊗ ̺2)((r, r̃)M)

= |detM |1/2λ1(l)λ2(̃l)̺1(r)̺2(r̃).

Hence

d2 =
|detM |1/2

|detH|1/2|detJ |1/2
d1.

But from the equalities

l = rA+ r̃B, l̃ = rC + r̃D, l = rJ + l̃K, l̃ = lG+ r̃H,

we infer that C = AG, B = DK, J = A(I − GK), D = (I −KG) and we
can write

d2 =

∣∣∣∣
detAdetD

detM

∣∣∣∣
1/2

d1.

Now for a DLG (G;A,B), fix a point g ∈ G and define

L1 := T
l
gGB, L2 = T

l
gGA, R1 := T

r
gGB, R2 := T

r
gGA, V := TgG.

Let X := (X1, . . . , Xn), Y = (Y1, . . . , Ym) be bases in TeA and TeB, re-
spectively. Then gX, gY, Xg,Yg are bases in L1, L2, R1, R2, respectively.
Moreover, if M =

(
A C
B D

)
is the matrix of the adjoint representation of g in

(X,Y), then (gX, gY) = (Xg,Yg)M . Comparing this with the definition
of Q we conclude that d1 = |Q(g)|

1/2d2.
In this way we see that the function Q relates two natural dualities

between A(GA) and A(GB) given, for ωA = λA ⊗ ̺A ∈ A(GA) and ωB =
λB ⊗ ̺B ∈ A(GB), by

〈ωA, ωB〉1 :=
\
G

(λA ⊗ ̺B)(λB ⊗ ̺A), 〈ωA, ωB〉2 :=
\
G

(λA ⊗ λB)(̺A ⊗ ̺B).

B. Comparison with the standard approach. Let W ∈ B(H ⊗H)
be a multiplicative unitary operator. As shown by Baaj and Skandalis [1]
the set

C := {(η ⊗ id)W : η ∈ B(H)∗} = span{(ηxy ⊗ id)W : x, y ∈ H}

(bar denotes norm closure) is a C∗-algebra with a comultiplication. This is
the “standard procedure”.
In this appendix we consider the following problem. For a DLG (G;A,B)

there is a multiplicative unitary (manageable) W ∈ B(L2(G)⊗ L2(G)) and
we have the C∗-algebra C defined as above. It is easy to see that in the
definition of C, it is enough to consider vectors x, y from a dense subspace
of H. So a “typical” element of C is obtained from two vectors x, y by
axy := (ηxy ⊗ id)W , in particular it is defined by two smooth half-densities
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on G with compact support. On the other hand, we have the groupoid
GA and its reduced C

∗-algebra defined in a different way, and its “typical”
elements are bidensities on GA. We can suppose that those algebras are in
fact the same. We will not prove this equality here, but we will show that
C ⊂ C∗r (GA). From the remark above, it follows that we have to interpret
elements (ηxy ⊗ id)W as elements of A(GA) for x, y smooth with compact
support. The question is: how from two smooth half-densities on G and W
can we get an element of A(GA)?
Suppose we are given two half-densities ϕ, ψ with compact support on G.

Let U be the bisection implementing W and let g ∈ G be given. Consider
the set U(g,A) ∈ G × G. It is easy to see that U(g,A) = δ(g) (recall that
δ = mT

B). Let (g1, g2) ∈ δ(g). There are the following natural isomorphisms:

Ω1/2(Tg1G) ≃ Ω
1/2(TbL(g)B)⊗Ω

1/2(T lg1GB),

Ω1/2(Tg2G) ≃ Ω
1/2(TbR(g)B)⊗Ω

1/2(T rg2GB),

Ω1/2(TbL(g)B) ≃ Ω
1/2(T rgGA),

Ω1/2(TbR(g)B) ≃ Ω
1/2(T lgGA),

Ω1/2(T(g1,g2)δ(g)) ≃ Ω
1/2(T lg1GB),

Ω1/2(T(g1,g2)δ(g)) ≃ Ω
1/2(T rg2GB).

The first two isomorphisms follow from the fact that bL and bR are surjective
submersions; the third and fourth are given, respectively, by TbL(g)B ∋ X 7→

XaR(g) ∈ T
r
gGA and TbR(g)B ∋ Y 7→ aL(g)Y ∈ T

l
gGA; the last two are due

to the fact that π1 : δ(g) ∋ (g1, g2) 7→ g1 ∈ F
l
B(g) and π2 : δ(g) ∋ (g1, g2) 7→

g2 ∈ F
r
B(g) are diffeomorphisms. Consequently,

Ω1/2(Tg1G) ≃ Ω
1/2(T rgGA)⊗Ω

1/2(T(g1,g2)δ(g)),

Ω1/2(Tg2G) ≃ Ω
1/2(T lgGA)⊗Ω

1/2(T(g1,g2)δ(g)).

In this way, having ϕ(g1), ψ(g2), we can define a 1-density on T(g1,g2)δ(g)

with values in the one-dimensional vector space Ω1/2(T lgGA)⊗Ω
1/2(T rgGA).

Denote the resulting mapping by Φg. The explicit formula for Φg(ϕ, ψ) is

[Φg(ϕ, ψ)(u)](v ∧ w) = ϕ(g1)(wa ∧ π1(u))ψ(g2)(ãv ∧ π2(u)),

where u ∈ ΛmaxT(g1,g2)δ(g), v ∈ Λ
maxT lgGA, w ∈ Λ

maxT rgGA, a := g−1g1,

ã := g2g
−1 and π1, π2 are defined above. Integrating Φg(ϕ, ψ) we get a

bidensity on GA, which will be denoted by Φ(ϕ, ψ). Finally, we define a
mapping

Φ̂ : (ϕ, ψ) 7→|Q|1/2Φ(sB(ϕ), ψ), i.e. Φ̂(ϕ, ψ)(g) = |Q|
1/2(g)

\
δ(g)

Φg(sB(ϕ), ψ),

and prove the following
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Proposition 8.1. Let ϕ, ψ be smooth, compactly supported half-densities

on G. Then Φ̂(ϕ, ψ) ∈ A(GA), κ(Φ̂(ϕ, ψ)) = (Φ̂(ψ,ϕ))
∗ and (ηϕψ ⊗ id)W =

πid(Φ̂(ϕ, ψ)).

Proof. We begin by computing the mapping Φ̂. Choose real, non-zero
half-densities µ0, ν0 on TeB and TeA, respectively, and let µl, νr denote
the corresponding left- and right-invariant half-densities on B and A. Then
νr⊗µl is a real, non-vanishing half-density on A×B and, since the mapping
A × B ∋ (a, b) 7→ ab ∈ G is a diffeomorphism, this half-density defines a
half-density on G which will be denoted by ε. Explicitly,

ε(g)(Xg ∧ gY ) = ν0(X)µ0(Y ) for X ∈ ΛmaxTeA , Y ∈ Λ
maxTeB .

Now we can write ϕ =: fϕε, ψ =: fψε and Φ̂(ϕ, ψ) =: fϕψω0. Define

α : A ∋ a 7→ α(a) := (mB(g, sB(ag)), ag) = (gaR(ag)
−1, ag) ∈ δ(g).

This is clearly a diffeomorphism. Set v := gY, w := Ỹ g, Y, Ỹ ∈ ΛmaxTeB,
ũ := Xa, X ∈ ΛmaxTeA. Then

π1α(ũ) = (−1)
dim AϕA(bL(abL(g))

−1sB(abL(g))X, π2α(ũ) = Xag.

Inserting this into the formula for Φg and using (33) we get

(Φg(sB(ϕ), ψ)(α(Xa))(gY ∧ Ỹ g)

= |ϕA(bL(abL(g)))|
−1/2 sB(ϕ) (Ỹ sB(abL(g)) ∧ sB(abL(g))X)ψ(agY ∧Xag)

=

∣∣∣∣
ψB(a)

ψA(aR(abL(g)))ϕA(bL(abL(g)))

∣∣∣∣
1/2

ϕ(Ỹ abL(g)∧abL(g)X)ψ(agY ∧Xag),

and since

gX ∧ Y g =
ψA(aR(g))ϕA(bL(g))

ψB(aL(g))ϕB(bR(g))
(Xg ∧ gY ),

we obtain

Φg(sB(ϕ), ψ)(α(Xa))(gY ∧ Ỹ g)

= |ϕB(bL(g))|
−1/2ϕ(abL(g)Ỹ ∧XabL(g))ψ(agY ∧Xag).

Finally (we also use (10)),

fϕψ(g) =

∣∣∣∣
ψB(aR(g))

ϕB(bR(g))

∣∣∣∣
1/2 \

A

ν2r (a) fϕ(abL(g)) fψ(ag).(34)

From this equation it is clear that fϕψω0 ∈ A(GA). Having the above ex-

pression and using (25) one easily proves that κ(Φ̂(ϕ, ψ)) = Φ̂(ψ,ϕ)∗.
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Now we are going to prove the last equality of the proposition. Clearly,
it is enough to prove that

(ϕ⊗ z |W (ψ ⊗ t)) = (z |πid(Φ̂(ϕ, ψ))t)

for compactly supported, smooth half-densities z, t on G. Let ψ0 =: ̺0 ⊗ νl,
where νl is the left-invariant half-density on A defined by ν0 (the ψ0 is
as defined before the proof of Lemma 4.4). We can write t =: ftψ0 and
z =: fzψ0.
Using (13) we have πid(Φ̂(ϕ, ψ))t = (fϕψ ∗ ft)ψ0 and

(fϕψ ∗ ft)(g) =
\
B

µ2l (b)fϕψ(aL(g)b)ft(bL(aL(g)b)
−1g)

=
\
B

µ2l (b)|ψB(aR(aL(g)
−1b))|fϕψ(aL(g)bL(aL(g)

−1b))ft(b
−1g)

=
\
B

µ2l (b)|ψB(aR(aL(g)
−1b))|ft(b

−1g)

∣∣∣∣
ψB(aR(aL(g)bL(aL(g)

−1b)))

ϕB(bL(aL(g)−1b))

∣∣∣∣
1/2

×
\
A

ν2r (a) fϕ(ab) fψ(aaL(g)bL(aL(g)
−1b))

=
\
G

ε2(g̃)

∣∣∣∣
ψB(aR(aL(g)

−1bR(g̃)))

ϕB(bL(aL(g)−1bR(g̃)))

∣∣∣∣
1/2

fϕ(g̃) fψ(g̃aL(bR(g̃)
−1g))ft(bR(g̃)

−1g)

=
\
G

ε2(g̃)

∣∣∣∣
ψB(aR(aL(g)

−1bR(g̃)))

ϕB(bL(aL(g)−1bR(g̃)))

∣∣∣∣
1/2

fϕ(g̃) (fψ ⊗ ft)(W
−1(g̃, g)).

In the second equality we use the diffeomorphism B ∋ b 7→ bL(aL(g)b) ∈ B,
then the expression for fϕψ, and finally the definition of ε (g̃ := ab), and the
formula (6) for W−1.
On the other hand, computations similar to the ones in the proof of

Lemma 6.5 yield (ϕ⊗ z |W (ψ ⊗ t)) = (z | y) for y =: fyψ0 and fy given by

fy(g) =
\
G

ε2(g̃) fϕ(g̃) [W (fψ ⊗ ft)](g̃, g),

where W (fψ ⊗ ft) is defined by W (fψε⊗ ftψ0) =:W (fψ ⊗ ft)(ε⊗ ψ0).
Since we can easily compare ε⊗ ψ0 with ψ0 ⊗ ψ0, the expression for the

function W (ft ⊗ fψ) follows from the action of W on ψ0 ⊗ ψ0 given in the
proof of Lemma 4.4. In this way we obtain

W (fψ ⊗ ft)(g̃, g) = (fψ ⊗ ft)(W
−1(g̃, g))

∣∣∣∣
ψB(aR(aL(g)

−1bR(g̃)))

ϕB(bL(aL(g)−1bR(g̃)))

∣∣∣∣
1/2

.

Now insert this into the formula for fy and compare with the expression for
fϕψ ∗ ft. This completes the proof of the proposition.
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