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Abstract. The present paper gives a quick survey of virtual and classical knot theory
and presents a list of unsolved problems about virtual knots and links. These are all prob-
lems in low-dimensional topology with a special emphasis on virtual knots. In particular,
we touch new approaches to knot invariants such as biquandles and Khovanov homology
theory. Connections to other geometrical and combinatorial aspects are also discussed.

1. INTRODUCTION

The purpose of this paper is to give an introduction to virtual knot
theory and to record a collection of research problems that the authors have
found fascinating. The second section of the paper introduces the theory
and discusses problems in that context. The third section is a list of specific
problems.

We would like to take this opportunity to thank the many people who
have, at the time of this writing, worked on the theory of virtual knots
and links. The ones explicitly mentioned or referenced in this paper are:
R. S. Avdeev, V. G. Bardakov, A. Bartholomew, D. Bar-Natan, S. Budden,
S. Carter, H. Dye, R. Fenn, R. Furmaniak, M. Goussarov, J. Green, D. Hren-
cecin, D. Jelsovsky, M. Jordan, T. Kadokami, N. Kamada, S. Kamada,
L. Kauffman, T. Kishino, G. Kuperberg, S. Lambropoulou, V. O. Man-
turov, S. Nelson, M. Polyak, D. E. Radford, S. Satoh, J. Sawollek, M. Saito,
W. Schellhorn, D. Silver, V. Turaev, V. V. Vershinin, O. Viro, S. Williams,
P. Zinn-Justin and J. B. Zuber. See [1–3, 6–12, 16–20, 22, 25, 27–29, 32,
34–35, 37–42, 49–53, 55, 57, 60, 61, 65, 66, 68–70, 73–77, 79–85, 87–89, 91,
94–107, 110]. We apologize to anyone who was left out of this list of partici-
pant researchers, and we hope that the problems described herein will stim-
ulate people on and off this list to enjoy the beauty of virtual knot theory!
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2. VIRTUAL KNOT THEORY

Knot theory studies the embeddings of curves in three-dimensional space.
Virtual knot theory studies the embeddings of curves in thickened surfaces
of arbitrary genus, up to the addition and removal of empty handles from
the surface. Virtual knots have a special diagrammatic theory that makes
handling them very similar to the handling of classical knot diagrams. In
fact, this diagrammatic theory simply involves adding a new type of crossing
to the knot diagrams, a virtual crossing that is neither under nor over.
From a combinatorial point of view, the virtual crossings are artifacts of
the representation of the virtual knot or link in the plane. The extension
of the Reidemeister moves that takes care of them respects this viewpoint.
A virtual crossing (see Figure 1) is represented by two crossing arcs with a
small circle placed around the crossing point.
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Fig. 1. Generalized Reidemeister moves for virtuals

Moves on virtual diagrams generalize the Reidemeister moves for clas-
sical knot and link diagrams. See Figure 1. One can summarize the moves
on virtual diagrams by saying that the classical crossings interact with one
another according to the usual Reidemeister moves. One adds the detour
moves for consecutive sequences of virtual crossings and this completes the
description of the moves on virtual diagrams. It is a consequence of moves
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(B) and (C) in Figure 1 that an arc going through any consecutive se-
quence of virtual crossings can be moved anywhere in the diagram keeping
the endpoints fixed; the places where the moved arc crosses the diagram
become new virtual crossings. This replacement is the detour move. See
Figure 1.1.

k k k

j j

-�

Fig. 1.1. Detour move

One can generalize many structures in classical knot theory to the vir-
tual domain, and use the virtual knots to test the limits of classical problems
such as the question whether the Jones polynomial detects knots, and the
classical Poincaré conjecture. Counterexamples to these conjectures exist in
the virtual domain, and it is an open problem whether any of these coun-
terexamples are equivalent (by addition and subtraction of empty handles)
to classical knots and links. Virtual knot theory is a significant domain to
be investigated for its own sake and for a deeper understanding of classical
knot theory.

Another way to understand the meaning of virtual diagrams is to regard
them as representatives for oriented Gauss codes (Gauss diagrams) [49, 32].
Such codes do not always have planar realizations and an attempt to em-
bed such a code in the plane leads to the production of virtual crossings.
The detour move makes the particular choice of virtual crossings irrelevant.
Virtual equivalence is the same as the equivalence relation generated on the
collection of oriented Gauss codes modulo an abstract set of Reidemeister
moves on the codes.

One intuition for virtual knot theory is the idea of a particle moving in
three-dimensional space along a trajectory that occasionally disappears, and
then reappears elsewhere. By connecting the disappearance points and the
reappearance points with detour lines in the ambient space we get a picture
of the motion, but the detours, being artificial, must be treated as subject
to replacements.
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2.1. Flat virtual knots and links. Every classical knot or link dia-
gram can be regarded as a 4-regular plane graph with extra structure at
the nodes. This extra structure is usually indicated by the over and un-
der crossing conventions that give instructions for constructing an embed-
ding of the link in three-dimensional space from the diagram. If we take
the diagram without this extra structure, it is the shadow of some link in
three-dimensional space, but the weaving of that link is not specified. It is
well known that if one is allowed to apply the Reidemeister moves to such a
shadow (without regard to the types of crossing since they are not specified)
then the shadow can be reduced to a disjoint union of circles. This reduction
is no longer true for virtual links. More precisely, let a flat virtual diagram

be a diagram with virtual crossings as we have described them and flat

crossings consisting in undecorated nodes of the 4-regular plane graph. Vir-
tual crossings are flat crossings that have been decorated by a small circle.
Two flat virtual diagrams are equivalent if there is a sequence of generalized
flat Reidemeister moves (as illustrated in Figure 1) taking one to the other.
A generalized flat Reidemeister move is any move as shown in Figure 1, but
one can ignore the over or under crossing structure. Note that in studying
flat virtuals the rules for changing virtual crossings among themselves and
the rules for changing flat crossings among themselves are identical. How-
ever, detour moves as in Figure 1C are available for virtual crossings with
respect to flat crossings and not the other way around.

We shall say that a virtual diagram overlies a flat diagram if the virtual
diagram is obtained from the flat diagram by choosing a crossing type for
each flat crossing in the virtual diagram. To each virtual diagram K there
is associated a flat diagram F (K) that is obtained by forgetting the extra
structure at the classical crossings in K. Note that if K is equivalent to
K ′ as virtual diagrams, then F (K) is equivalent to F (K ′) as flat virtual
diagrams. Thus, if we can show that F (K) is not reducible to a disjoint
union of circles, then it will follow that K is a non-trivial virtual link.

Figure 2 illustrates an example of a flat virtual link H. This link cannot
be undone in the flat category because it has an odd number of virtual cross-
ings between its two components and each generalized Reidemeister move
preserves the parity of the number of virtual crossings between components.
Also illustrated in Figure 2 is a flat diagram D and a virtual knot K that
overlies it. This example is given in [49]. The knot shown is undetectable
by many invariants (fundamental group, Jones polynomial) but it is knot-
ted and this can be seen either by using a generalization of the Alexander
polynomial that we describe below, or by showing that the underlying di-
agram D is a non-trivial flat virtual knot using the filamentation invariant
that is introduced in [34]. The filamentation invariant is a combinatorial
method that is sometimes successful in identifying irreducible flat virtuals.
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Fig. 2. Flats H and D, and the knot K

At this writing we know very few invariants of flat virtuals. The flat virtual
diagrams present a strong challenge for the construction of new invariants.
It is important to understand the structure of flat virtual knots and links.
This structure lies at the heart of the comparison of classical and virtual
links. We wish to be able to determine when a given virtual link is equiv-
alent to a classcal link. The reducibility or irreducibility of the underlying
flat diagram is the first obstruction to such an equivalence.

2.2. Interpretation of virtuals as stable classes of links in thick-

ened surfaces. There is a useful topological interpretation for this virtual
theory in terms of embeddings of links in thickened surfaces. See [49, 51, 71].
Regard each virtual crossing as a shorthand for a detour of one of the arcs
in the crossing through a 1-handle that has been attached to the 2-sphere
of the original diagram. By interpreting each virtual crossing in this way,
we obtain an embedding of a collection of circles into a thickened surface
Sg × R where g is the number of virtual crossings in the original diagram
L, Sg is a compact oriented surface of genus g and R denotes the real line.
We say that two such surface embeddings are stably equivalent if one can
be obtained from the other by isotopy in the thickened surfaces, homeomor-
phisms of the surfaces and addition or subtraction of empty handles. Then
we have

Theorem ([49, 54, 71]). Two virtual link diagrams are equivalent if and

only if the corresponding surface embeddings are stably equivalent.

Virtual knots and links give rise to a host of problems. As we saw in the
previous section, there are non-trivial virtual knots with unit Jones polyno-
mial. Moreover, there are non-trivial virtual knots with integer fundamental
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group and trivial Jones polynomial. (Fundamental group is defined com-
binatorially by generalizing the Wirtinger presentation.) These phenomena
underline the question of how planarity is involved in the way the Jones
polynomial appears to detect classical knots, and that the relationship of
the fundamental group (and peripheral system) is a much deeper one than
the surface combinatorics for classical knots. It is possible to take the con-
nected sum of two trivial virtual diagrams and obtain a non-trivial virtual
knot (the Kishino knot).

Here long knots (or equivalently 1− 1 tangles) come into play. Having a
knot, we can break it at some point and take its ends to infinity (say, in such a
way that they coincide with the horizontal axis in the plane). One can study
isotopy classes of such knots. A well known theorem says that in the classical
case, knot theory coincides with long knot theory. However, this is not the
case for virtual knots. By breaking the same virtual knot at different points,
one can obtain non-isotopic long knots [25]. Furthermore, even if the initial
knot is trivial, the resulting long knot may not be trivial. The “connected
sum” of two trivial virtual diagrams may not be trivial in the compact case.
The phenomenon occurs because these two knot diagrams may be non-trivial
in the long category. It is sometimes more convenient to consider long virtual
knots rather than compact virtual knots, since connected sum is well defined
for long knots. It is important to construct long virtual knot invariants to see
whether long knots are trivial and whether they are classical. One approach
is to regard long knots as 1 − 1 tangles and use extensions of standard
invariants (fundamental group, quandle, biquandle, etc). Another approach
is to distinguish two types of crossings: those having early undercrossing and
those having later undercrossing with respect to the orientation of the long
knot. The latter technique is described in [73].

Unlike classical knots, the connected sum of long knots is not commu-
tative [91, 86]. Thus, if we show that two long knots K1 and K2 do not
commute, then we see that they are different and both non-classical.

A typical example of such knots is the two parts of the Kishino knot, see
Figure 2.1.

We have a natural map

〈Long virtual knots〉 → 〈Oriented compact virtual knots〉,
obtained by taking two infinite ends of the long knots together to make a
compact knot. This map is obviously well defined.

This map allows one to construct (weak) long virtual knot invariants
from classical invariants, i.e., just to regard compact knot invariants as long
knot invariants. There is no well defined inverse for this map. But, if we were
able to construct the map from compact virtual knots to long virtual knots,
we could apply the long techniques for the compact case. This map does have
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Fig. 2.1. Kishino and parts

an inverse for classical knots. Thus, the long techniques are applicable to
classical (long) knots. It would be interesting to obtain new classical invari-
ants from the representation of classical knots as closures of long knots using
the approach described above. The long category can also be applied for the
case of flat virtuals, where all problems formulated above occur as well.

There are examples of virtual knots that are very difficult to prove knot-
ted, and there are infinitely many flat virtual diagrams that appear to be
irreducible, but we have no techniques to prove it. How can one tell whether
a virtual knot is classical? One can ask: Are there non-trivial virtual knots
whose connected sum is trivial? The latter question cannot be handled by
classical techniques, but it can be analyzed by using the surface interpreta-
tion for virtuals. See [90].

With respect to virtual knots, we are in the same position as the compil-
ers of the original knot tables. We are, in fact, in the process of developing
tables. At Sussex, tables of virtual knots are being constructed, and tables
will appear in a book being written by Kauffman and Manturov. See also the
website “Knotilus” [70] where there is a tabulation of virtual knots initiated
by Ralph Furmaniak and Louis Kauffman, and the “Knot Atlas” of Dror
Bar-Natan, containing a subatlas of virtual knots worked out in collabora-
tion of Dror and Jeremy Green [6]. The theory of invariants of virtual knots
needs more development. Flat virtuals (whose study is a generalization of
the classification of immersions) are a nearly unknown territory (but see
[34, 106]). The flat virtuals provide the deepest challenge since we have very
few invariants to detect them. Curiously, there are many invariants of long
flat virtual knots, due to the fact that the virtual (long) knot class of the
descending virtual diagram associated with a long flat is an invariant of the
long flat. (This observation is due to Turaev.)
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3. JONES POLYNOMIAL OF VIRTUAL KNOTS

We use a generalization of the bracket state summation model for the
Jones polynomial to extend it to virtual knots and links. We call a diagram
in the plane purely virtual if the only crossings in the diagram are virtual
crossings. Each purely virtual diagram is equivalent by the virtual moves to
a disjoint collection of circles in the plane.

Given a link diagram K, a state S of this diagram is obtained by choosing
a smoothing for each crossing in the diagram and labelling that smoothing
with either A or A−1 according to the convention that a counterclockwise
rotation of the overcrossing line sweeps two regions labelled A, and that a
smoothing that connects the A regions is labelled by the letter A. Then,
given a state S, one has the evaluation 〈K|S〉 equal to the product of the
labels at the smoothings, and one has the evaluation ‖S‖ equal to the num-
ber of loops in the state (the smoothings produce purely virtual diagrams).
One then has the formula

〈K〉 =
∑

S

〈K|S〉d‖S‖−1

where the summation runs over the states S of the diagram K, and d =
−A2 − A−2. This state summation is invariant under all classical and vir-
tual moves except the first Reidemeister move. The bracket polynomial is
normalized to an invariant fK(A) of all the moves by the formula fK(A) =
(−A3)−w(K)〈K〉 where w(K) is the writhe of the (now) oriented diagram K.
The writhe is the sum of the orientation signs (±1) of the crossings of the
diagram. The Jones polynomial, VK(t), is given in terms of this model by
the formula

VK(t) = fK(t−1/4).

The reader should note that this definition is a direct generalization to the
virtual category of the state sum model for the original Jones polynomial.
It is straightforward to verify the invariances stated above. In this way one
has the Jones polynomial for virtual knots and links.

In terms of the interpretation of virtual knots as stabilized classes of
embeddings of circles into thickened surfaces, our definition coincides with
the simplest version of the Jones polynomial for links in thickened surfaces.
In that version one counts all the loops in a state the same way, with no
regard for their isotopy class in the surface. It is this equal treatment that
makes the invariance under handle stabilization work. With this general-
ized version of the Jones polynomial, one has again the problem of finding
a geometric/topological interpretation of this invariant. There is no fully
satisfactory topological interpretation of the original Jones polynomial and
the problem is inherited by this generalization.
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In [51] we have

Theorem. To each non-trivial classical knot diagram K of one compo-

nent there corresponds a non-trivial virtual knot diagram Virt(K) with unit

Jones polynomial.

This theorem is a key ingredient in the problems involving virtual knots.
Here is a sketch of its proof. The proof uses two invariants of classical knots
and links that generalize to arbitrary virtual knots and links. These invari-
ants are the Jones polynomial and the involutory quandle denoted by IQ(K)
for a knot or link K.

Given a crossing i in a link diagram, we define s(i) to be the result of
switching that crossing so that the undercrossing arc becomes an overcross-
ing arc and vice versa. We also define the virtualization v(i) of the crossing
by the local replacement indicated in Figure 3. In this figure we illustrate

s(i)

v(i)

i

k k

Fig. 3. Switching and virtualizing a crossing

how in the virtualization of the crossing the original crossing is replaced by
a crossing that is flanked by two virtual crossings.

Suppose that K is a (virtual or classical) diagram with a classical crossing
labelled i. Let Kv(i) be the diagram obtained from K by virtualizing the
crossing i while leaving the rest of the diagram just as before. Let Ks(i) be
the diagram obtained from K by switching the crossing i while leaving the
rest of the diagram just as before. Then it follows directly from the definition
of the Jones polynomial that

VKs(i)(t) = VKv(i)(t).

As far as the Jones polynomial is concerned, switching a crossing and vir-
tualizing a crossing look the same.

The involutory quandle [45] is an algebraic invariant equivalent to the
fundamental group of the double branched cover of a knot or link in the
classical case. In this algebraic system one associates a generator of the
algebra IQ(K) to each arc of the diagram K and there is a relation of the
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b

c =c = ab

bb

a

ab

b

a

k k

Fig. 4. IQ(Virt(K)) = IQ(K)

form c = ab at each crossing, where ab denotes the (non-associative) algebra
product of a and b in IQ(K). See Figure 4. In this figure we have illustrated
through the local relations the fact that

IQ(Kv(i)) = IQ(K).

As far as the involutory quandle is concerned, the original crossing and the
virtualized crossing look the same.

If a classical knot is actually knotted, then its involutory quandle is
non-trivial [108]. Hence if we start with a non-trivial classical knot, we can
virtualize any subset of its crossings to obtain a virtual knot that is still
non-trivial. There is a subset A of the crossings of a classical knot K such
that the knot SK obtained by switching these crossings is an unknot. Let
Virt(K) denote the virtual diagram obtained from A by virtualizing the
crossings in the subset A. By the above discussion the Jones polynomial
of Virt(K) is the same as the Jones polynomial of SK, and this is 1 since
SK is unknotted. On the other hand, the IQ of Virt(K) is the same as the
IQ of K, and hence if K is knotted, then so is Virt(K). We have shown
that Virt(K) is a non-trivial virtual knot with unit Jones polynomial. This
completes the proof of the theorem.

If there exists a classical knot with unit Jones polynomial, then one of
the knots Virt(K) produced by this theorem may be equivalent to a classical
knot. It is an intricate task to verify that specific examples of Virt(K) are
not classical. This has led to an investigation of new invariants for virtual
knots. In this investigation a number of issues appear. One can examine
the combinatorial generalization of the fundamental group (or quandle) of
the virtual knot and sometimes one can prove by pure algebra that the re-
sulting group is not classical. This is related to observations by Silver and
Williams [100], Manturov [80, 81] and by Satoh [96] showing that the funda-
mental group of a virtual knot can be interpreted as the fundamental group
of the complement of a torus embedded in four-dimensional Euclidean space.
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A very fruitful line of new invariants comes about by examining a general-
ization of the fundamental group or quandle that we call the biquandle of
the virtual knot. The biquandle is discussed in the next section. Invariants
of flat knots (when one has them) are useful in this regard. If we can verify
that the flat knot F (Virt(K)) is non-trivial, then Virt(K) is non-classical. In
this way the search for classical knots with unit Jones polynomial expands
to the exploration of the structure of the infinite collection of virtual knots
with unit Jones polynomial.

Another way of putting this theorem is as follows: In the arena of knots
in thickened surfaces there are many examples of knots with unit Jones
polynomial. Might one of these be equivalent via handle stabilization to a
classical knot? In [71] Kuperberg shows the uniqueness of the embedding
of minimal genus in the stable class for a given virtual link. The minimal
embedding genus can be strictly less than the number of virtual crossings
in a diagram for the link. There are many problems associated with this
phenomenon.

There is a generalization of the Jones polynomial that involves surface
representation of virtual knots. See [16, 19, 82, 76]. These invariants essen-
tially use the fact that the Jones polynomial can be extended to knots in
thickened surfaces by keeping track of the isotopy classes of the loops in the
state summation for this polynomial. In the approach of Dye and Kauffman,
one uses this generalized polynomial directly. In the approach of Manturov,
a polynomial invariant is defined using the stabilization description of the
virtual knots.

3.1. Atoms. An atom is a pair (M2, Γ ) where M2 is a closed 2-manifold
and Γ is a 4-valent graph in M2 dividing M2 into cells which admit a
checkerboard colouring (the colouring is also fixed). Γ is called the frame of
the atom. See [91], [78].

Atoms are considered up to natural equivalence, that is, up to homeo-
morphisms of the underlying manifold M2 mapping the frame to the frame
and black cells to black cells. From this point of view, an atom can be re-
covered from the frame together with the following combinatorial structure:

1. A-structure: This indicates which edges for each vertex are opposite

edges. That is, it indicates the cyclic structure at the vertex.
2. B-structure: This indicates pairs of “black angles”. That is, one divides

the four edges emanating from each vertex into two sets of adjacent
(not opposite) edges such that the black cells are locally attached
along these pairs of adjacent edges.

Given a virtual knot diagram, one can construct the corresponding atom
as follows. Classical crossings correspond to the vertices of the atom, and
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generate both the A-structure and the B-structure at these vertices (the B-
structure comes from over/under information). Thus, an atom is uniquely
determined by a virtual knot diagram. It is easy to see that the inverse oper-
ation is well defined modulo virtualization. Thus the atom knows everything
about the bracket polynomial (Jones polynomial) of the virtual link.

The crucial notions here are the minimal genus of the atom and the
orientability of the atom. For instance, for each link diagram with a corre-
sponding orientable atom (all classical link diagrams are in this class), all
degrees of the bracket are congruent modulo 4 while in the non-orientable
case they are congruent only modulo 2.

The orientability condition is crucial in the construction of the Khovanov
homology theory for virtual links as in [91, 78].

3.2. Biquandles. In this section we give a sketch of some recent ap-
proaches to invariants of virtual knots and links.

A biquandle [12, 51, 25, 65, 7, 8] is an algebra with four binary operations

written ab, ab, a
b, ab together with some relations which we will indicate be-

low. The fundamental biquandle is associated with a link diagram and is
invariant under the generalized Reidemeister moves for virtual knots and
links. The operations in this algebra are motivated by the formation of la-
bels for the edges of the diagram. View Figure 5. In this figure we have

ab = a b

ba = b a b

a

ab = a b

ba = b a

b

a

6

6

�

6

6
-

Fig. 5. Biquandle relations at a crossing

shown the format for the operations in a biquandle. The overcrossing arc
has two labels, one on each side of the crossing. There is an algebra element
labelling each edge of the diagram. An edge of the diagram corresponds to
an edge of the underlying plane graph of that diagram.

Let the edges oriented toward a crossing in a diagram be called the
input edges for the crossing, and the edges oriented away from the crossing
be called the output edges for the crossing. Let a and b be the input edges
for a positive crossing, with a the label of the undercrossing input and b the
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label on the overcrossing input. In the biquandle, we label the undercrossing
output by

c = ab,

while the overcrossing output is labelled

d = ba.

The labelling for the negative crossing is similar using the other two
operations.

To form the fundamental biquandle, BQ(K), we take one generator for
each edge of the diagram and two relations at each crossing (as described
above).

Another way to write this formalism for the biquandle is as follows:

ab = a b , ab = a b , ab = a b , ab = a b .

We call this the operator formalism for the biquandle.
These considerations lead to the following definition.

Definition. A biquandle B is a set with four binary operations in-

dicated above: ab , ab , ab , ab. We shall refer to the operations with barred
variables as the left operations and the operations without barred variables
as the right operations. The biquandle is closed under these operations and
the following axioms are satisfied:

1. Given an element a in B, there exists an x in the biquandle such that
x = ax and a = xa. There also exists a y in the biquandle such that
y = ay and a = ya.

2. For any elements a and b in B we have

a = abba , b = b
aab

, a = aba , b = b
aab .

3. Given elements a and b in B, there exist elements x, y, z, t such that
xb = a, ya = b, bx = y, ay = x and ta = b, at = z, zb = a, bz = t. The
biquandle is called strong if x, y, z, t are uniquely defined and we then

write x = ab−1 , y = ba−1
, t = ba−1

, z = ab−1 , reflecting the invertive
nature of the elements.

4. For any a, b, c in B the following equations hold and the same equa-
tions hold when all right operations are replaced in these equations
by left operations:

abc = acbbc

, cba = cabba
, (ba)

c
ab = (bc)acb .

These axioms are transcriptions of the Reidemeister moves. The first ax-
iom transcribes the first Reidemeister move. The second axiom transcribes
the directly oriented second Reidemeister move. The third axiom transcribes
the reverse oriented Reidemeister move. The fourth axiom transcribes the
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third Reidemeister move. Much more work is needed in exploring these al-
gebras and their applications to knot theory.

We may simplify the appearance of these conditions by defining

S(a, b) = (ba, a
b), S(a, b) = (ba, ab)

and in the case of a strong biquandle,

S+
−(a, b) = (ba

b−1 , ab−1), S−
+(a, b) = (ba−1

, a
ba−1 )

and

S+
−(a, b) = (b

ab−1 , a
b−1

) = (b
a

b
a−1

, ab
a−1 ),

S−
+(a, b) = (ba−1 , ab

a−1) = (b
ab−1 , a

b
ab−1 ),

which we call the sideways operators. The conditions then reduce to

SS = SS = 1,

(S × 1)(1 × S)(S × 1) = (1 × S)(S × 1)(1 × S),

S−
+S+

− = S−
+S+

− = 1,

and finally all the sideways operators leave the diagonal ∆ = {(a, a) | a ∈ X}
invariant.

3.3. The Alexander biquandle. It is not hard to see that the follow-
ing equations in a module over Z[s, s−1, t, t−1] give a biquandle structure:

ab = a b = ta + (1 − st)b, ab = a b = sa,

ab = a b = t−1a + (1 − s−1t−1)b, ab = a b = s−1a.

We shall refer to this structure, with the equations given above, as the
Alexander biquandle.

Just as one can define the Alexander module of a classical knot, we have
the Alexander biquandle of a virtual knot or link, obtained by taking one
generator for each edge of the projected graph of the knot diagram and
taking the module relations in the above linear form. Let ABQ(K) denote
this module structure for an oriented link K. That is, ABQ(K) is the module
generated by the edges of the diagram, factored by the submodule generated
by the relations. This module then has a biquandle structure specified by
the operations defined above for an Alexander biquandle.

The determinant of the matrix of relations obtained from the crossings
of a diagram gives a polynomial invariant (up to multiplication by ±sitj

for integers i and j) of knots and links that we denote by GK(s, t) and call
the generalized Alexander polynomial . This polynomial vanishes on classical

knots, but is remarkably successful at detecting virtual knots and links. In fact
GK(s, t) is the same as the polynomial invariant of virtuals of Sawollek [97]
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and defined by an alternative method by Silver and Williams [100] and by
yet another method by Manturov [81]. It is a reformulation of the invariant
for knots in surfaces due to Kauffman, Jaeger and Saleur [36, 66].

We end this discussion of the Alexander biquandle with two examples
that show clearly its limitations. View Figure 6. In this figure we illustrate
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Fig. 6. The knot K and the Kishino diagram KI

two diagrams labelled K and KI. It is not hard to calculate that both
GK(s, t) and GKI(s, t) are equal to zero. However, the Alexander biquandle
of K is non-trivial—it is isomorphic to the free module over Z[s, s−1, t, t−1]
generated by elements a and b subject to the relation (s−1−t−1)(a−b) = 0.
Thus K represents a non-trivial virtual knot. This shows that it is possible
for a non-trivial virtual diagram to be a connected sum of two trivial vir-
tual diagrams. However, the diagram KI has a trivial Alexander biquandle.
In fact the diagram KI, discovered by Kishino [13], is now known to be
knotted and its general biquandle is non-trivial. The Kishino diagram has
been shown non-trivial by a calculation of the three-strand Jones polyno-
mial [69], by the surface bracket polynomial of Dye and Kauffman [16, 19],
by the Ξ-polynomial (the surface generalization of the Jones polynomial
of Manturov [82], and its biquandle has been shown to be non-trivial by a
quaternionic biquandle representation [7] of Fenn and Bartholomew which
we will now briefly describe.

The quaternionic biquandle is defined by the following operations where
i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j in the
associative, non-commutative algebra of the quaternions. The elements a, b
are in a module over the ring of integer quaternions.

a b = j · a + (1 + i) · b, a b = j · a + (1 − i) · b,
a b = −j · a + (1 + i) · b, a b = −j · a + (1 − i) · b.

Amazingly, one can verify that these operations satisfy the axioms for the
biquandle.
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Equivalently, referring back to the previous section, define the linear
biquandle by

S =

(
1 + i jt

−jt−1 1 + i

)
,

where i, j have their usual meanings as quaternions and t is a central vari-
able. Let R denote the ring which they determine. Then as in the Alexander
case considered above, for each diagram there is a square presentation of an
R-module. We can take the (Study) determinant of the presentation matrix.
In the case of the Kishino knot this is zero. However, the greatest common
divisor of the codimension 1 determinants is 2+5t2 +2t4, showing that this
knot is not classical.

3.3.1. Virtual quandles. There is another generalization of quandle [75]
by means of which one can obtain the same polynomial as in [100, 97] from
the other point of view [80, 81]. Namely, the formalism is the same as in the
case of quandles at classical crossings but one adds a special structure at
virtual crossings. The fact that these approaches give the same result in the
linear case was proved recently by Roger Fenn and Andrew Bartholomew.

Virtual quandles (as well as biquandles) yield generalizations of the fun-
damental group and some other invariants. Also, virtual biquandles admit a
generalization for multi-variable polynomials for the case of multicomponent
links (see [80]). One can extend these definitions by bringing together the
virtual quandle (at virtual crossings) and the biquandle (at classical cross-
ings) to obtain what is called a virtual biquandle; this work is now in the
process, [61].

3.4. A quantum model for GK(s, t), oriented and bi-oriented

quantum algebras. We can understand the structure of the invariant
GK(s, t) by rewriting it as a quantum invariant and then analysing its state
summation. The quantum model for this invariant is obtained in a fash-
ion analogous to the construction of a quantum model of the Alexander
polynomial in [66, 36]. The strategy in those papers was to take the ba-
sic two-dimensional matrix of the Burau representation, view it as a linear
transformation T : V → V on a two-dimensional module V , and then take

the induced linear transformation T̂ : Λ∗V → Λ∗V on the exterior algebra
of V . This gives a transformation on a four-dimensional module that is a
solution to the Yang–Baxter equation. This solution of the Yang–Baxter
equation then becomes the building block for the corresponding quantum
invariant. In the present instance, we have a generalization of the Burau
representation, and this same procedure can be applied to it.

The normalized state summation Z(K) obtained by the above process
satisfies a skein relation that is just like that of the Conway polynomial:
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Z(K+) − Z(K−) = zZ(K0). The basic result behind the correspondence of
GK(s, t) and Z(K) is

Theorem ([65]). For a (virtual) link K, the invariants Z(K) (σ =
√

s,
τ = 1/

√
t) and GK(s, t) are equal up to a multiple of ±sntm for integers n

and m (this being the well definedness criterion for G).

It is the purpose of this section to place our work with the generalized
Alexander polynomial in a context of bi-oriented quantum algebras and to
introduce the concept of an oriented quantum algebra. In [63, 64] Kauffman
and Radford introduce the concept and show that oriented quantum algebras

encapsulate the notion of an oriented quantum link invariant.

An oriented quantum algebra (A, ̺, D, U) is an abstract model for an
oriented quantum invariant of classical links [63, 64]. For the reader thinking
about diagrams, the ̺ is an algebraic version of the Yang–Baxter equation
and so corresponds to a classical crossing. The D and U are relatives of cups
and caps in the diagrams. The definition of an oriented quantum algebra
is as follows: We are given an algebra A over a base ring k, an invertible
solution ̺ in A⊗A of the Yang–Baxter equation (in the algebraic formulation
of this equation—differing from a braiding operator by a transposition), and
commuting automorphisms U, D : A → A of the algebra, such that

(U ⊗ U)̺ = ̺, (D ⊗ D)̺ = ̺,

[(1A ⊗ U)̺][(D ⊗ 1Aop)̺−1] = 1A⊗Aop ,

[(D ⊗ 1Aop)̺−1][(1A ⊗ U)̺] = 1A⊗Aop .

The last two equations say that [(1A⊗U)̺)] and [(D⊗1Aop)̺−1] are inverses
in the algebra A ⊗ Aop where Aop denotes the opposite algebra.

If U = D = T , then A is said to be balanced . In the case where D is the
identity mapping, we call the oriented quantum algebra standard . In [64]
we show that the invariants defined by Reshetikhin and Turaev (associated
with a quasi-triangular Hopf algebra) arise from standard oriented quantum

algebras. It is an interesting structural feature of algebras that we have
elsewhere [44] called quantum algebras (generalizations of quasi-triangular
Hopf algebras) that they give rise to standard oriented quantum algebras. It
would be of interest to see invariants such as the Links–Gould invariant [56]
in this light.

We now extend the concept of oriented quantum algebra by adding a
second solution to the Yang–Baxter equation γ that will take the role of the
virtual crossing.

Definition. A bi-oriented quantum algebra is a quintuple (A, ̺, γ, D, U)
such that (A, ̺, D, U) and (A, γ, D, U) are oriented quantum algebras and
γ has the following properties:
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1. γ12γ21 = 1A⊗A. (This is the equivalent to the statement that the
braiding operator corresponding to γ is its own inverse.)

2. Mixed identities involving ̺ and γ are satisfied. These correspond to
the braiding versions of the virtual detour move of type three that
involves two virtual crossings and one real crossing. See [65] for the
details.

By extending the methods of [64], it is not hard to see that a bi-oriented

quantum algebra will always give rise to invariants of virtual links up to the

type one moves (framing and virtual framing).
In the case of the generalized Alexander polynomial, the state model

Z(K) translates directly into a specific example of a bi-oriented balanced
quantum algebra (A, ̺, γ, T ). The main point about this bi-oriented quan-
tum algebra is that the operator γ for the virtual crossing is not the identity
operator; this non-triviality is crucial to the structure of the invariant. We
will investigate bi-oriented quantum algebras and other examples of virtual
invariants derived from them.

We have taken a path to explain not only the evolution of a theory of in-
variants of virtual knots and links, but also (in this subsection) a description
of our oriented quantum algebra formulation of the whole class of quantum
link invariants. Returning to the case of the original Jones polynomial, we
want to understand its capabilities in terms of the oriented quantum algebra
that generates the invariant.

4. INVARIANTS OF 3-MANIFOLDS

As is well known, invariants of 3-manifolds can be formulated in terms of
Hopf algebras and quantum algebras and spin recoupling networks. In for-
mulating such invariants it is useful to represent the 3-manifold via surgery
on a framed link. Two framed links that are equivalent in the Kirby calculus
of links represent the same 3-manifold and conversely. To obtain invariants of
3-manifolds one constructs invariants of framed links that are also invariant
under the Kirby moves (handle sliding, blowing up and blowing down).

A classical 3-manifold is mathematically the same as a Kirby equivalence
class of a framed link. The fundamental group of the 3-manifold associated
with a link is equal to the fundamental group of the complement of the link
modulo the subgroup generated by the framing longitudes for the link. We
refer to the fundamental group of the 3-manifold as the 3-manifold group.
If there is a counterexample to the classical Poincaré conjecture, then the
counterexample would be represented by surgery on some link L whose 3-
manifold group is trivial, but L is not trivial in Kirby calculus (i.e. it cannot
be reduced to nothing).
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Kirby calculus can be generalized to the class of virtual knots and links.
We define a virtual 3-manifold to be a Kirby equivalence class of framed
virtual links. The 3-manifold group generalizes via the combinatorial funda-
mental group associated to the virtual link (the framing longitudes still exist
for virtual links). The Virtual Poincaré Conjecture for virtuals would say
that a virtual 3-manifold with trivial fundamental group is trivial in Kirby
calculus. However, the virtual Poincaré conjecture is false [20]. There
exist virtual links whose 3-manifold group is trivial that are nevertheless
not Kirby equivalent to nothing. The simplest example is the virtual knot
in Figure 7. We detect the non-triviality of the Kirby class of this knot by

�

��

Fig. 7. A counterexample to the Poincaré conjecture for virtual 3-manifolds

computing that it has an SU(2) Witten invariant that is different from the
standard 3-sphere.

This counterexample to the Poincaré conjecture in the virtual domain
shows how a classical counterexample might behave in the context of Kirby
calculus. Virtual knot theory can be used to search for a counterexample
to the classical Poincaré conjecture by searching for virtual counterexam-
ples that are equivalent in Kirby calculus to classical knots and links. This
is a new and exciting approach to the dark side of the classical Poincaré
conjecture.

5. GAUSS DIAGRAMS AND VASSILIEV INVARIANTS

The reader should recall the notion of a Gauss diagram for a knot. If
K is a knot diagram, then G(K), its Gauss diagram, is a circle comprising
the Gauss code of the knot by arranging the traverse of the diagram from
crossing to crossing along the circle and putting an arrow (in the form of
a chord of the circle) between the two appearances of the crossing. The
arrow points from the overcrossing segment to the undercrossing segment
in the order of the traverse of the diagram. (Note: Turaev uses another
convention, [106].) Each chord is endowed with a sign that is equal to the
sign of the corresponding crossing in the knot diagram. At the level of the
Gauss diagrams, a virtual crossing is simply the absence of a chord. That is,
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if we wish to transcribe a virtual knot diagram to a Gauss diagram, we ignore
the virtual crossings. Reidemeister moves on Gauss diagrams are defined by
translation from the corresponding diagrams from planar representation.
Virtual knot theory is precisely the theory of arbitrary Gauss diagrams, up
to the Gauss diagram Reidemeister moves. Note that an arbitrary Gauss
diagram is any pattern of directed, signed chords on an oriented circle.
When transcribed back into a planar knot diagram, such a Gauss diagram
may require virtual crossings for its depiction.

In [32] Goussarov, Polyak and Viro initiate a very important program for
producing Vassiliev invariants of finite type of virtual and classical knots.
The gist of their program is as follows. They define the notion of a semi-
virtual crossing, conceived as a dotted, oriented, signed chord in a Gauss
diagram for a knot. An arrow diagram is a Gauss diagram all of whose
chords are dotted. Let A denote the collection of all linear combinations of
arrow diagrams with integer coefficients. Let G denote the collection of all
arbitrary Gauss diagrams (hence all representatives of virtual knots). Define
a mapping

i : G → A

by expanding at each chord of a Gauss diagram G into the sum of replacing
the chord by a dotted chord and the removal of that chord. Thus

i(G) =
∑

r∈R(G)

Gr

where R(G) denotes all ways of replacing each chord in G either by a dotted
chord, or by nothing; and Gr denotes that particular replacement applied
to G.

Now let P denote the quotient of A by the subalgebra generated by the
relations in A corresponding to the Reidemeister moves. Each Reidemeister
move is of the form X = Y for certain diagrams, and this translates to the
relation i(X)− i(Y ) = 0 in P, where i(X) and i(Y ) are individually certain
linear combinations in P. Let

I : G → P

be the map induced by i. Then it is a formal fact that I(G) is invariant under
each of the Reidemeister moves, and hence that I(G) is an invariant of the
corresponding Gauss diagram (virtual knot) G. The algebra of relations
that generate the image of the Reidemeister moves in P is called the Polyak

algebra.

So far, we have only desribed a tautological and not a computable in-
variant. The key to obtaining computable invariants is to truncate. Let
Pn denote P modulo all arrow diagrams with more than n dotted arrows.
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Now Pn is a finitely generated module over the integers, and the compos-
ite map

In : G → Pn

is also an invariant of virtual knots. Since we can choose a specific basis
for Pn, the invariant In is in principle computable, and it yields a large
collection of Vassiliev invariants of virtual knots that are of finite type.
The paper by Goussarov, Polyak and Viro investigates specific methods for
finding and representing these invariants. They show that every Vassiliev
invariant of finite type for classical knots can be written as a combinatorial
state sum for long knots. They use the virtual knots as an intermediate stage
in the construction.

By directly constructing Vassiliev invariants of virtual knots from known
invariants of virtuals, we can construct invariants that are not of finite type
in the above sense (see [49]). These invariants also deserve further investi-
gation.

6. KHOVANOV AND OTHER INVARIANTS

The Khovanov categorification of the Jones polynomial [4] is important.
This invariant is constructed by promoting the states in the bracket sum-
mation to tensor powers of a vector space V , where a single power of V
corresponds to a single loop in the state. In this way a graded complex is
constructed, whose graded Euler characteristic is equal to the original Jones
polynomial, and the ranks of whose graded homology groups are themselves
invariants of knots. It is now known that the information in the Khovanov
construction exceeds that in the original Jones polynomial. It is an open
problem whether a Khovanov type construction can generalize to virtual
knots in the general case. The construction for the Khovanov polynomial
for virtuals over Z2 was proposed in [77]. Khovanov homology (with arbi-
trary coefficient ring) can be defined for any link diagram for which the
corresponding atom is orientable. This leads to two explicit geometric con-
structions of the virtual link Khovanov homology as in [78]. The main point
here is that there is a well formulated theory of Khovanov invariants for
virtual knots, and it needs more development.

Recent work by other authors related to knots in thickened surfaces [1]
promises to shed light on this issue. More generally, the subject of uplevelling
known polynomial-type invariants of knots and links to homology theories
appears to be very fruitful, and new ways to accomplish this in the virtual
category should shed light on the nature of these invariants.

One of the more promising directions for relating Vassiliev invariants to
our present concerns is the theory of gropes [14], where one considers surfaces



314 R. Fenn et al.

spanning a given knot, and then recursively the surfaces spanning curves
embedded in the given surface. This hierarchical structure of curves and
surfaces is likely to be a key to understanding the geometric underpinning
of the original Jones polynomial. The same techniques in a new guise could
elucidate invariants of virtual knots and links.

7. A LIST OF PROBLEMS

Below, we present a list of actual problems closely connected with virtual
knot theory.

1. Recognising the Kishino knot. There have been invented at least
five ways to recognize the Kishino virtual knot (from the unknot): The
3-strand Jones polynomial, i.e. the Jones polynomial of the 3-strand cabling
of the knot) [69], the Ξ-polynomial [82], the quaternionic biquandle [7], and
the surface bracket polynomial (Dye and Kauffman [19]). In [37] Kadokami
proves the knot is non-trivial by examining the immersion class of a shadow
curve in genus two.

Are we done with this knot? Perhaps not. Other proofs of its non-
triviality may be illuminating. The fact that the Kishino diagram is non-
trivial and yet a connected sum of trivial virtual knots suggests the question:
Classify when a non-trivial virtual knot can be the connected sum of two triv-

ial virtual knots. A key point here is that the connected sum of closed virtual
knots is not well defined and hence the different choices give some interest-
ing effects. With long virtual knots, the connected sum is ordered but well
defined, and the last question is closely related to the question of classifying
the different long virtual knots whose closures are equivalent to the unknot.

2. Flat virtuals. See Section 2.1. Flat virtual knots, also known as
virtual strings [34, 106], are difficult to classify. Find new combinatorial
invariants of flat virtuals.

We would like to know more about the flat biquandle algebra. This al-
gebra is isomorphic to the Weyl algebra [8] and has no (non-trivial) finite-
dimensional representations. One can make small examples of the flat bi-
quandle algebra, that detect some flat linking beyond mod 2 linking num-
bers, but the absence of other finite-dimensional representations presents a
problem.

3. The flat hierarchy. The flat hierarchy is constructed for any ordi-
nal α. We label flat crossings with members of this ordinal. In a flat third
Reidemeister move, a line with two a labels can slide across a crossing la-
belled b only if a is greater than b. This generalizes the usual theory of
flat virtual diagrams to a system with arbitrarily many different types of
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flat crossings. Classify the diagrams in this hierarchy. This concept is due to
L. H. Kauffman (unpublished). A first step in working with the flat hierarchy
can be found in [89].

4. Virtuals and the theory of doodles. Compare flat theories of
virtuals with theories of doodles. A doodle link has only one type of crossing,
and that cannot slide over itself. See [31, 23, 67].

5. Virtual 3-manifolds. There is a theory of virtual 3-manifolds con-
structed as formal equivalence classes of virtual diagrams modulo general-
ized Kirby moves (see [20]). From this point of view, there are two equiv-
alences for ordinary 3-manifolds: homeomorphisms and virtual equivalence.
Do these equivalences coincide? That is, given two ordinary 3-manifolds,
presented by surgery on framed links K and L, suppose that K and L are
equivalent through the virtual Kirby calculus. Does this imply that they are
equivalent through the classical Kirby calculus?

What is a virtual 3-manifold? That is, give an interpretation of these
equivalence classes in the domain of geometric topology.

Construct another theory of virtual 3-manifolds by performing surgery
on links in thickened surfaces Sg × R considered up to stabilization. Will
this theory coincide with that proposed by Kauffman and Dye [20]?

6. Welded knots. We would like to understand welded knots [96]. It
is well known [94, 42] that if we admit forbidden moves to the virtual link
diagrams, each virtual knot can be transformed to the unknot. If we al-
low only one forbidden move (e.g. the upper one), then there are lots of
different equivalence classes of knots. In fact the fundamental group and
the quandle of the virtual diagram are invariant under the upper forbidden
move. The resulting equivalence classes are called welded knots. Similarly,
welded braids were studied in [26], and every welded knot is the closure of a
welded braid. The question is to construct good invariants of welded knots
and, if possible, to classify them. In [96] a mapping is constructed from
welded knots to ambient isotopy classes of embeddings of tori (ribbon tori
to be exact) in four-dimensional space, and it is proved that this mapping
is an isomorphism from the combinatorial fundamental group (in fact the
quandle) of the welded knot to the fundamental group of the complement
of the corresponding torus embedding in four-space. Is this Satoh mapping
faithful from equivalence classes of welded knots (links) to ambient isotopy
classes of ribbon torus embeddings in four-space?

7. Long knots and long flat knots. Enlarge the long knot invariant
structure proposed in [73]. Can one get new classical knot invariants from the
approach in this paper? Bring together the ideas from [73] with the biquandle
construction from [65] to obtain more powerful invariants of long knots. Long
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flat virtuals can be studied via a powerful remark due to V. Turaev (in
conversation) to the effect that one can associate to a given long flat virtual
knot diagram F a descending diagram D(F ) (by always going over before
going under in resolving the flat (non-virtual) crossings in the diagram).
The long virtual knot type of D(F ) is an invariant of the long flat knot F .
This means that one can apply any other invariant I of virtual knots that
one likes to D(F ), and I[D(F )] will be an invariant of the long flat F . It is
quite interesting to do sample calculations of such invariants [55] and this
situation underlines the deeper problem of finding a full classification of long
flat knots.

8. Virtual biquandle. Construct presentations of the virtual biquan-
dle with a linear (non-commutative) representation at classical crossings and
some interesting structure at virtual crossings.

9. Virtual braids. Is there a birack such that its action on virtual
braids is faithful? Is the invariant of virtual braids in [87] (see also [74, 3, 57])
faithful?

The action defined by linear biquandles is not faithful. This almost cer-
tainly means that the corresponding linear invariants of virtual knots and
links are not faithful [24].

10. The fundamental biquandle. Does the fundamental biquandle
(see [65]) classify virtual links up to mirror images? (We know that the
biquandle has the same value on the orientation reversed mirror image where
the mirror stands perpendicular to the plane (see [34, 35]).

Are there good examples of weak biquandles which are not strong?
We would like to know more about the algebra with two generators A, B

and one relation [B, (A−1)(A, B)] = 0 (see [8]). It is associated to the linear
case.

11. Virtualization and unit Jones polynomial. Suppose the knot

K is classical and not trivial. Suppose that K̃ (obtained from K by virtualiz-
ing a subset of its crossings) is not trivial and has a unit Jones polynomial,

V (K̃) = 1. Is it possible that K̃ is classical (i.e. isotopic through virtual
equivalence to a classical knot)?

Suppose K is a virtual knot diagram with unit Jones polynomial. Is
K equivalent to a classical diagram via virtual equvalence plus crossing
virtualization? (Recall that by crossing virtualization, we mean flanking a
classical crossing by two virtual crossings. This operation does not affect the
value of the Jones polynomial.)

Given two classical knots K and K ′, if K can be obtained from K ′ by
a combination of crossing virtualization and virtual Reidemeister moves, is
then K classically equivalent to K ′?
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If the above two questions have affirmative answers, then the only clas-
sical knot with unit Jones polynomial is the unknot.

12. Virtual quandle homology. Study virtual quandle homology in
analogy to quandle homology [10, 33].

13. Khovanov homology. Construct a generalization of the Khovanov
complex for the case of virtual knots that will work for arbitrary virtual
diagrams. Investigate the Khovanov homology constructed in [91, 78]. The
main construction in this approach uses an orientable atom condition to give
a Khovanov homology over the integers for large classes of virtual links. The
import of our question is to investigate this structure and to possibly find a
way to do Khovanov homology for all virtual knots over the ring of integers.
Similar questions can be raised for the presently evolving new classes of
Khovanov homology theories related to other quantum invariants.

By a K-full virtual knot we mean a knot for which there exists a diagram
such that the leading (the lowest, or both) term comes from the B-state.
Analogously, one defines the Kho-full knot relative to the Khovanov invari-
ant. Call such diagrams optimal diagrams. (It is easy to find knots which
are neither K-full nor Kho-full.)

Classify all K-full (Kho-full) knots.
Are optimal diagrams always minimal with respect to the number of

classical crossings?
Classify all diagram moves that preserve optimality.
Is it true that if a classical knot K has minimal classical diagram with n

crossings then any virtual diagram of K has at least n classical crossings?
Can any virtual knot have torsion in the B-state of the Khovanov ho-

mology (the genuine leading term of some diagram)? Here we use the for-
mulation of Khovanov homology given in [91], [78].

The behaviour of the lowest and leading terms of the Kauffman bracket
for virtual knots was studied in [91], [2] and [38].

14. Brauer algebra. The appropriate domain for the virtual recou-
pling theory is to place the Jones–Wenzl projectors in the Brauer algebra.
That is, when we add virtual crossings to the Temperley–Lieb algebra to
obtain a “virtual Temperley–Lieb algebra” the result is the Brauer alge-
bra of all connections from n points to n points. What is the structure of
the projectors in this context? Can a useful algebraic generalization of the
classical recoupling theory be formulated?

15. Virtual alternating knots. Define and classify alternating virtual
knots.

Find an analogue of the Tait flyping conjecture and prove it. Com-
pare [110].

Classify all alternating weaves on surfaces (without stabilization).
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16. Crossing number problems. For each virtual link L, there are
three crossing numbers: the minimal number C of classical crossings, the
minimal number V of virtual crossings, and the minimal total number T of
crossings for representatives of L. There are also a number of unknotting
numbers: The classical unknotting number is the number of crossing switches
needed to unknot the knot (using any diagram for the knot). The virtual

unknotting number is the number of crossings one needs to convert from
classical to virtual (by direct flattening) in order to unknot the knot (using
any virtual diagram for the knot). Very little is known. Find out more about
the virtual unknotting number.

What is the relationship between the least number of virtual crossings
and the least genus in a surface representation of the virtual knot?

Is it true that T = V + L?
Is there any algorithm for finding V for some class of virtual knots?

For T , this is partially done for two classes of links: quasialternating and
some other, see [79]. For classical links and alternating diagrams see [93, 92].

Are there (non-trivial) upper and lower bounds for T, V, L coming from
virtual knot polynomials?

17. Wild virtuals. Create the category of “wild virtual knots” and
establish its axiomatics. In particular, one needs a theorem that states when
a wild equivalence of tame virtual links implies a tame equivalence of these
links.

18. Vassiliev invariants. Understand the connection between virtual
knot polynomials and the Vassiliev knot invariants of virtual knots (in Kauff-
man’s sense). Some of that was done in [49, 32, 98, 83].

The key question about this collection of invariants is this: Does every

Vassiliev invariant of finite type for classical knots extend to an invariant

of finite type for long virtual knots? Here we mean the problem in the sense
of the formulation given in [32]. In [49] it was pointed out that there is a
natural notion of Vassiliev invariants for virtual knots that has a different
notion of finite type from that given in [32]. This alternative formulation
needs further investigation.

19. Embeddings of surfaces. Given a non-trivial virtual knot K,
prove that there exists a minimal realization of K in N = Sg × I and
an unknotted embedding of N ⊂ R

3 such that the resulting classical knot in
R

3 is not trivial. (This problem is partially solved by Heather Dye in [17].)

20. Non-commutativity and long knots. It is known that any clas-
sical long knot commutes with any long knot. Is it true that it is the only
case of commutativity for virtual long knots? In other words, is it true that
if K and K ′ are long knots and K # K ′ is isotopic to K ′ # K then there
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exists a virtual long knot L, classical long knots Q, Q′, and non-negative
integer numbers m, n such that

K = Lm # Q, K ′ = Ln # Q′,

where by Lm we mean the connected sum of m copies of the same knot?

21. The rack space. The rack space was invented by Fenn, Rourke
and Sanderson [22, 28, 29, 30]. The homology of the rack space has been
considered by the above authors and Carter, Kamada and Saito [10]. For
low dimensions, the homology has the following interesting interpretations.
Two-dimensional cycles are represented by virtual link diagrams consistently
coloured by the rack, and 3-dimensional cycles by the same but with the re-
gions also coloured. See the thesis of Michale Greene [33]. So virtual links can
give, in this way, information about classical knots! For the second homol-
ogy of the dihedral rack, the results are given in Greene’s thesis. Computer
calculations suggest that for a prime p the third homology has a factor Zp.
Is this true in general?

Another line of enquiry is to look at properties of the birack space [29]
and associated homology.
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