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Combinatorics of distance doubling maps
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Abstract. We study the combinatorics of distance doubling maps on the circle R/Z

with prototypes h(β) = 2β mod 1 and h(β) = −2β mod 1, representing the orientation
preserving and orientation reversing case, respectively. In particular, we identify parts of
the circle where the iterates f◦n of a distance doubling map f exhibit “distance doubling
behavior”. The results include well known statements for h related to the structure of the
Mandelbrot set M . For h they suggest some analogies to the structure of the tricorn, the
“antiholomorphic Mandelbrot set”.

1. Introduction. There is a very rich structure in the dynamics of the
angle doubling map h on the unit circle, which was particularly studied
in relation to the iteration of complex quadratic maps pc(z) = z2 + c for
given parameters c ∈ C. Insights into the dynamics of h have been the base
for an almost complete understanding of the combinatorial structure of the
Mandelbrot set

M = {c ∈ C | pc-orbit of c is bounded},

illustrated in Figure 1 (left). In the present paper we study the self-similar
structure of distance doubling maps and give generalizations and extensions
of statements known for the angle doubling map h. Relations to the Man-
delbrot set and the tricorn are discussed.

Distance doubling maps. Let T be the unit circle, which we identify
with R/Z = [0, 1[ via β ↔ e2πβi, β ∈ [0, 1[. We say that a map f on T is
distance doubling if it is of the form

f(β) = ±2β + β0 mod 1 for some β0 ∈ T.(1.1)

If f is such a map, then indeed it doubles the inner distance on T. For com-
pleteness, we show in Section 2 that conversely all maps with this property
are characterized by (1.1). Depending on the sign in (1.1), a distance dou-
bling map is either orientation preserving or orientation reversing. In the
first case it is topologically conjugate to the angle doubling map h defined
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Fig. 1. Small “Mandelbrot sets” in the Mandelbrot set

by h(β) = 2β mod 1, and in the second case to the angle “antidoubling”

map h defined by h(β) = −2β mod 1 (cf. Proposition 2.1). This justifies
concentrating on h and h in our discussion of distance doubling maps. First
we try to shed some light on their relation to complex dynamics.

Quadratic and “antiquadratic” dynamics. In analogy with the quadra-
tic maps pc, consider the antiholomorphic—we say antiquadratic—maps pc

defined on the Riemann sphere C = C ∪ {∞} by pc(z) = z2 + c. Clearly,
their second iterates p̃c(z) := p◦2c (z) = (z2+c)2+c are polynomials of degree

4. For each c ∈ C, the filled-in Julia set Kc (resp. Kc, K̃c) of pc (resp. pc,
p̃c) is the set of all points whose pc-orbit (resp. pc-orbit, p̃c-orbit) remains

bounded. Its boundary, the Julia set Jc (resp. J c, J̃c), contains the points
with the most interesting behavior with respect to pc (resp. pc, p̃c). One

easily sees that Kc = K̃c, hence J c = J̃c, for each c ∈ C. Note that Kc

(resp. Kc), and hence Jc (resp. J c), is connected iff c ∈ Kc (resp. c ∈ Kc).
For the following see Douady and Hubbard [5] in the quadratic case and
Nakane and Schleicher [13, 14] in the antiquadratic case.

Given some c ∈ C, between sufficiently small neighborhoods of ∞ in
the Riemann sphere there exists a unique conformal map fixing ∞, tangent
to the identity there, and conjugating pc and p0(z) = z2 (resp. p̃c and



Combinatorics of distance doubling maps 3

p̃0(z) = z4). This has already been shown by Bötkher [2] in the general
context of polynomials at the beginning of the last century. The map extends
uniquely to a conformal conjugacy Φc (resp. Φc) onto a domain containing

c if Kc (resp. Kc = K̃c) is disconnected and onto the whole complement of

Kc (resp. Kc = K̃c) otherwise. In the latter case Φc (resp. Φc) maps C \ Kc

(resp. C \ Kc) onto C \ D, where D denotes the unit disk. This allows us

to define curves Rβ
c = Φ−1

c ({re2πβi | r ∈ ]1,∞[}) (resp. Rβ
c = Φ−1

c ({re2πβi |
r ∈ ]1,∞[}) called dynamic rays, which have the invariance property

(1.2) pc(R
β
c ) = Rh(β)

c (resp. pc(R
β
c ) = Rh(β)

c ).

This property indicates that the structure of Jc is strongly related to h, and
similarly the structure of J c to h. The “antidoubling” map h plays a similar
role for antiquadratic maps in the complex plane as h for quadratic maps.

A dynamic ray having exactly one accumulation point z in the Julia
set is said to land at z. In case the Julia set is locally connected, each
dynamic ray lands and the Julia set can be considered as the quotient of T

with respect to the equivalence relation that identifies angles β1, β2 iff the
corresponding dynamic rays land at the same point. (For a general discussion
of the structure of polynomial Julia sets see [8].) Here we are only interested
in the landing behavior of rays corresponding to periodic angles β ∈ T

(periodic with respect to h or h). The crucial point is that all dynamic rays
for periodic angles land at a periodic point of the Julia set different from 0
and that only finitely many such rays land at the same periodic point. We
come back to this fact when defining bifurcation chords.

Kneading sequences. In order to describe the dynamics of a distance
doubling map f on T we look at the orbits of angles and how they differ. For
this we use kneading sequences, first introduced by Milnor and Thurston [12]
for interval maps. The idea is to divide T appropriately into two half-circles.
The kneading sequence of an angle indicates in which half-circle each of its
iterates lies.

Definition 1.1. Let f be a distance doubling map on T and for α ∈ T

let β1, β2 be the two angles with f(β1) = f(β2) = α. From the two open half-
circles ]β1, β2[ and ]β2, β1[, taken in counter-clockwise direction, let T0 be
the one containing α and T1 the other one. (In case α = β1 set T0 = ]β1, β2[.)
The kneading sequence of α with respect to f is the sequence s1s2s3 . . . ∈
{0, 1, ∗}N defined by

si =





∗ if f◦i−1(α) ∈ {β1, β2},

0 if f◦i−1(α) ∈ T0,

1 if f◦i−1(α) ∈ T1,
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for i = 1, 2, . . . , where f◦n(β) denotes the nth iterate of β ∈ T with respect
to f .

Note that kneading sequences of periodic angles are periodic and con-
tain ∗. As a function of α the kneading sequence is discontinuous only at
periodic angles. Here the changes of the dynamics take place.

Example 1.2. With respect to h, the kneading sequence of 1/3 is
0 ∗ 0 ∗ 0 ∗ . . . = 0∗. The counter-clockwise limit of the kneading sequence at

1/3, i.e. the limit as the angle α tends to 1/3 in counter-clockwise direction,
is 000 . . . = 0, while the clockwise limit at 1/3 is 010101 . . . = 01. There
is a switch from the kneading sequence 0 (= 00) to the kneading sequence
01 at 1/3 (see Figure 2). Such a switching behavior is typical for periodic
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Fig. 2. Switch of the kneading sequence

angles of h as well as of h, the only exceptions being the fixed points, where
the kneading sequence is ∗ and the clockwise and counter-clockwise limits
coincide. For 0, the fixed point of h, they are 0, and for 0, 1

3 , 2
3 , the fixed

points of h, they are 01.

Here we give the general statement. The rather simple proof is left to
the reader.

Lemma 1.3. Let α ∈ T be periodic with period m > 1. Then for each

N ∈ N and ε > 0 sufficiently small the kneading sequences s±1 s±2 . . . of α±ε
satisfy s+

n 6= s−n whenever n ≤ N is a multiple of m, and s+
n = s−n whenever

n ≤ N is not a multiple of m. If α ∈ T is neither periodic nor a fixed point ,
then for each N ∈ N and ε > 0 sufficiently small , s+

n = s−n for all n ≤ N .

Bifurcation chords. To understand the dynamics it is helpful to look
at pairs of angles, rather than at single periodic angles. We consider pairs
of angles β1, β2 as chords β1β2 between these two angles, i.e. as straight
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lines in the unit disk bounded by T connecting both angles. (In pictures we
draw the chords in a “hyperbolic” way, allowing us to show more chords.)
For some map f on T the mth f -iterate of a chord β1β2 is defined as
f◦m(β1β2) = f◦m(β1)f

◦m(β2). Further, we say that two chords cross each
other if they intersect in exactly one interior point. Consequently, they do
not cross each other if they have no common interior point (but possibly a
common endpoint) or if they coincide.

Let Perf denote the set of periodic angles of a distance doubling map f of
period greater than 1, and f−1(α) the chord connecting the two f -preimages
of α ∈ T.

Definition 1.4. A chord αγ with α, γ ∈ Perf , α 6= γ, is called a bifur-

cation chord if its iterates do not cross each other and do not cross f−1(α)
and f−1(γ).

It will become clear later that for orientation reversing maps f there
exist bifurcation chords with endpoints of different periods. This is one of
the astonishing differences from the classical (orientation preserving) case.
The definition is motivated by the fact that in such a chord the dynamical
properties of the angles in T “bifurcate”. With respect to h, for example,
the chord 1

3
2
3 is a bifurcation chord. The kneading sequence of 2/3 is the

same as that of 1/3, while now the counter-clockwise limit of the kneading
sequence is 01 and its clockwise limit is 0 (cf. Example 1.2). When passing
the chord 1

3
2
3 the kneading sequence switches from 0 to 01 (see Figure 2).

Before we turn to the characterization of bifurcation chords, we try to
give some idea how they are related to the dynamics of pc (resp. pc). Assume
that for two f -periodic angles β1, β2 ∈ T where f = h (resp. f = h) the
corresponding dynamic rays land at the same periodic point z. Call β1, β2

adjacent if one of the open components of C bounded by the rays and z does
not contain a periodic dynamic ray with landing point z. We fix adjacent
β1, β2. By the invariance property (1.2), the dynamic rays corresponding to
the nth iterates of β1, β2 both land at the nth iterate of z. Since all iterates
of z are different from the critical point 0, the map pc (resp. pc) preserves
(resp. reverses) the circular order between dynamic rays landing at such an
iterate of z. Hence all iterates of β1β2 are adjacent and, as a consequence of
disjointness of dynamic rays, they do not cross each other.

Choose a longest chord δ1δ2 among them, i.e. one whose endpoints have
maximal inner distance in T. Further, let δ′1 = δ1 + 1

2 mod 1 and δ′2 =

δ2 + 1
2 mod 1. By symmetry arguments one easily sees that the dynamic

rays corresponding to δ′1 and δ′2 also land at the same point. Let α = f(δ1)
and γ = f(δ2). Since dynamic rays are disjoint, the iterates of αγ (coinciding
with those of δ1δ2) also do not cross δ′1δ

′
2, thus, by the assumption on the

distance of δ1 and δ2, they do not cross f−1(α) = δ1δ
′
1 and f−1(γ) = δ2δ

′
2.
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Hence αγ is a bifurcation chord. Therefore, if two dynamic rays Rβ1
c , Rβ2

c

land at the same point, then β1β2 is not necessarily a bifurcation chord
itself, but there is one associated to the orbit of the point.

Our first main result characterizes the set Biff of all bifurcation chords of
a distance doubling map f . In case f is orientation preserving (prototype h),
this set consists of disjoint chords (Figure 3, left). In case f is orientation
reversing (prototype h), the situation is more delicate (Figure 3, right).
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Fig. 3. The two prototypes of Biff : the abstract Mandelbrot set (left) and the abstract
tricorn (right)

A set of disjoint chords is obtained when restricting to bifurcation chords
with endpoints of equal period. But this time there are also bifurcation
chords with one endpoint of odd period and the other of the double period.
For each such chord there is a unique second one such that these two form a
rectangle together with two bifurcation chords with endpoints of equal pe-
riod. Finally, the three bifurcation chords connecting the three fixed points
of f form a triangle, which we regard as a degenerate rectangle. The rect-
angles (indicated in gray in the picture) are disjoint from each other and
disjoint from any other bifurcation chord of f .

Theorem 1 (Bifurcation Theorem). Let f be a distance doubling map

on T.

(i) For each α ∈ Perf there exists a unique θ = Θf (α) of the same pe-

riod such that αθ forms a bifurcation chord. The kneading sequences

of α and θ coincide and are different from those of all β in the

smaller arc between α and θ. Two chords α1Θ
f (α1) and α2Θ

f (α2)
either coincide or are disjoint.

(ii) For f orientation preserving , Biff = {αΘf (α) | α ∈ Perf}.
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(iii) For f orientation reversing and α ∈ Perf of odd period n, there

exists a unique λ = Λf (α) of period 2n such that αλ forms a bifur-

cation chord. Moreover , Θf ◦ Λf = Λf ◦ Θf , and so Θf (α)Θf (λ)
is a bifurcation chord as well. The rectangle with sides αΘf (α),
Θf (α)Θf (λ), λΘf (λ) and αλ is disjoint from any other bifurcation

chord of f . A bifurcation chord βΘf (β) with endpoints of period 2n
is a side of such a rectangle iff n is odd and f◦n(β) = Θf (β).

(iv) For f orientation reversing , Biff is the union of the set {αΘf (α) |
α ∈ Perf}, the set {αΛf (α) | α ∈ Perf of odd period} and the set

of the three chords connecting the three fixed points of f .

An immediate consequence of Theorem 1(i) is that Θf maps the set
Perf onto itself and that Θf ◦Θf is the identity map. We call a bifurcation
chord of f free if it is disjoint from any other bifurcation chord of f . For
orientation preserving maps, assertions (i) and (ii) state that all bifurcation
chords are free. For orientation reversing maps f , a bifurcation chord is
free iff it is not part of a rectangle. Hence, by (iii), a free chord has two
endpoints of equal even period and, in case their period is 2n with n odd,
the last assertion of (iii) implies that they are not interchanged by f◦n. The
remaining bifurcation chords with endpoints of even period determine non-
degenerate rectangles: Each rectangle contains exactly one such chord, which
we call the regular side of the rectangle; the other three sides, which have
at least one endpoint of odd period, are referred to as irregular . Naturally,
the sides of the triangle spanned by the fixed points of f are also considered
to be irregular.

Mandelbrot set and tricorn. The left part of Figure 3 illustrating Bifh

is well known. It reflects the combinatorial structure of the Mandelbrot set
M (cf. Figure 1, left), a fact first described by Lavaurs in [9]. In order to
recall the exact statement, we introduce two more notions.

For a distance doubling map f let D
f be the topological space obtained

from the disk D by contracting to a point each chord in the closure of the
set of free bifurcation chords. (A sequence of chords converges to a (possibly
degenerate) chord if the sequences of endpoints converge to the endpoints of
the chord.) Each free bifurcation chord αγ (i.e. each bifurcation chord if f
is orientation preserving) divides D into two parts. The part of D

f obtained
from the smaller closed part of D is denoted by D

f (αγ).
D

h is Douady’s pinched-disk model [4] based on the following celebrated
results by Douady and Hubbard [5] (cf. also [9, 10, 15, 7]): The map c 7→Φc(c)
provides a conformal isomorphism from C \ M onto C \ D and parameter

rays Rβ defined similarly to the dynamic rays. Two parameter rays Rα, Rγ ,
where α and γ are h-periodic, land at the same point of M if and only
if αγ is a bifurcation chord. (More precisely, those common landing points
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coincide with the roots of hyperbolic components different from the main one
containing 0.) Rα and Rγ and their landing point c(αγ) divide the complex
plane into two open parts. For c ∈ M , the dynamic rays Rα

c and Rγ
c land at

the same point iff c is in the part not containing 0 or c = c(αγ). This yields
the following

Description of the Mandelbrot set. There exists a continuous map Π
from the Mandelbrot set M onto D

h with connected preimages Π−1(a) for

all a ∈ D
h and with the following property for each αγ ∈ Bifh: For c ∈ M ,

the dynamic rays Rα
c , Rγ

c land at the same point iff Π(c) ∈ D
h(αγ).

If M is locally connected, as is conjectured by many researchers in com-
plex dynamics, Π can be chosen as a homeomorphism. (Then the restriction
of Π−1 to the boundary of M is uniquely determined.)

The question arises whether there is an object in the complex plane

related to Bifh in a similar way as the Mandelbrot set to Bifh. With the
above considerations in mind the natural candidate is the tricorn

M = {c ∈ C | pc-orbit of c is bounded}

shown in Figure 4 (left). It is connected like M (see Nakane [13]), but it

HHHHHHH

Fig. 4. Small “Mandelbrot sets” and “tricorns” in the tricorn
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fails to be locally connected (see Nakane and Schleicher [14]). Note that
the interest in the set M goes back to Crowe, Hasson, Rippon and Strain-
Clark [3], who called it the Mandelbar set, Winters [17] and Milnor [11].

The map c 7→ Φc(c) is a well defined homeomorphism from C \ M onto
C \ D, allowing one to define parameter rays as in the quadratic case. But
now the dependence on c is not complex-analytic any more (see Nakane
[13]). This is the reason why the landing behavior of parameter rays is not
well understood, even for periodic angles. Note that in the quadratic case
complex analyticity is substantial in the proof of the landing of “periodic”
parameter rays. Nevertheless we believe that the following is true.

Conjecture (Description of the tricorn). There exists a continuous

map Π from the tricorn onto D
h with connected preimages Π−1(a) for all

a ∈ D
h and with the following property for each free bifurcation chord αγ:

For c ∈ M , the dynamic rays Rα
c , Rγ

c land at the same point iff Π(c) ∈

D
h(αγ).

In the following we call Biff the abstract Mandelbrot set for f = h and
the abstract tricorn for f = h. The reader will see later on why we consider
the set of all bifurcation chords also for f = h, although the relationship to
the tricorn conjectured above relies on the set of free ones.

Tuning for distance doubling maps. One of the main objectives of this
paper is to localize self-similar structures in the system of distance doubling
maps. By self-similarity we mean the existence of subsets of T on which
some iterate f◦n of a distance doubling map f behaves like some distance
doubling map on T. It will turn out that such subsets are always Cantor
sets, i.e. totally disconnected, closed and perfect subsets of T.

The complement T \ C of a Cantor set C consists of countably many
open intervals. We denote the set of chords connecting the endpoints of
these open intervals by BC . Contracting each chord of BC to a point turns
C into a topological circle which we denote by TC . Thus BC can be seen
either as a set of chords as defined above, or as a set of points in TC . Each
Cantor set C we are interested in is closely related to some iterate f◦n of
a distance doubling map f , therefore we call it an f◦n-set. The following
definitions (cf. [1]) make this precise.

Definition 1.5. Finitely many subsets of T are said to be weakly un-

linked if for any two of them there exist angles β1, β2 such that the interval
[β1, β2] contains one of the sets and [β2, β1] the other one. They are called
unlinked if they are weakly unlinked and mutually disjoint.

If sets A and B are weakly unlinked, they have at most two angles in
common, and chords with endpoints in A do not cross chords with endpoints
in B.
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Definition 1.6. Let f be a distance doubling map on T. An f◦n-
invariant Cantor set C ⊂ T is called an f◦n-set if

(i) the sets C, f(C), f◦2(C), . . . , f◦n−1(C) are weakly unlinked,
(ii) f◦n−1(C) is invariant under β 7→ β + 1

2 mod 1.

For each f◦n-set C there is a unique longest chord BC in BC (connecting
the two angles in C with the largest distance from each other). It turns
out that BC is always a bifurcation chord and that it determines the f◦n-
set uniquely. More precisely, there is a one-to-one correspondence between
bifurcation chords of f and f◦n-sets. This characterization of f◦n-sets is
given in the second central theorem below. Moreover, the theorem states
that the f◦n-sets are the “loci of self-similarity”: Each f◦n-set C carries a
small copy of one of the pictures in Figure 3. The properties of its longest
chord BC determine which one. If BC is a free bifurcation chord or an
irregular side of a rectangle, then an abstract Mandelbrot set is included.
If and only if BC is the regular side of a rectangle—which is equivalent to
C being an f◦n-set with f orientation reversing and n odd—an abstract
tricorn occurs.

In the case f = h, all bifurcation chords are free, hence only abstract
Mandelbrot sets are included. The corresponding phenomenon in the com-
plex plane of small copies of M in the Mandelbrot set M , illustrated by
Figure 1, is well known as Douady–Hubbard tuning (cf. [6]). Here the loca-
tion of small copies of M can be understood on the abstract level. In the
abstract tricorn there are copies of the abstract Mandelbrot set and the
abstract tricorn, and equally M contains small copies of M and M (cf. Fig-
ure 4). However, the exact relationship between the copies on the abstract
and the concrete level is not established here.

Theorem 2 (Similarity Theorem). Let f be a distance doubling map on

the circle T.

(i) The assignment C 7→ B = BC = β1β2 provides a one-to-one cor-

respondence between f◦n-sets C with n ∈ N, and bifurcation chords

B ∈ Biff of f .

(ii) A classification of f◦n-sets in terms of B is given as follows:

B is free ⇔ β1, β2 have period n

⇒ f◦n preserves orientation,

B is regular ⇔ β1, β2 have period 2n

⇔ f◦n reverses orientation,

B is irregular ⇔ β1, β2 have minimum period n/2

⇒ f◦n preserves orientation.
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With g =

{
h if B is free or irregular

h if B is regular

}
the following holds:

(iii) There exists a unique orientation preserving map πC : TC → T

mapping the chord B to 0 and conjugating f◦n to g.
(iv) A bifurcation chord S with endpoints different from those of B has

either both endpoints or no endpoint in C, and πC maps the set

BiffC of bifurcation chords of f with endpoints in C bijectively onto

Bifg.

The above pictures and what is known about the Mandelbrot set suggest
that free chords in the abstract tricorn correspond to small Mandelbrot sets
in the tricorn, and rectangles to small tricorns. As chords in the abstract
Mandelbrot set characterize the roots of small Mandelbrot sets, the regular
chord of a rectangle seems to be related to the “root” of the corresponding
small tricorn. Each of the three irregular chords corresponds to the “root”
of one of the small Mandelbrot sets springing forth directly from the main
component of the small tricorn. But now, as shown in [3] for the main
component of the original tricorn, these “roots” do not seem to be single
points any more but curves.

Organization of the paper. In Section 2 we classify distance doubling
maps and their periodic angles. In Sections 3–6 we derive several preliminary
results in preparation for the proof of the main theorems. The behavior
of chords and finite sets under iteration is studied in Section 3, while we
construct and investigate very special chord sets using backward iteration
in Sections 4 and 5. f◦n-sets are examined in Section 6. Finally, in the last
two sections we put all the pieces together to prove Theorems 1 and 2.
Below, f will always denote an arbitrary but fixed distance doubling map.

2. Distance doubling maps. Let d be the distance on T determined
by arc length: according to the identification we have made,

d(β1, β2) = min{(β1 − β2) mod 1, (β2 − β1) mod 1}.(2.1)

To justify the notion of distance doubling map defined in (1.1), we show
that such maps are equally characterized by the property

d(f(β1), f(β2)) = 2d(β1, β2) for d(β1, β2) ≤ 1/4.(2.2)

The implication (1.1)⇒(2.2) is obvious. Clearly, the class of maps defined
by (2.2) remains the same when 1/4 is replaced with any number ε < 1/4.
Moreover, it is easily seen that a map f satisfying (2.2) is continuous and
(locally) orientation preserving or orientation reversing, hence a two-fold
covering map. In order to see that such a map is of the form (1.1), one only
needs to show that it has a fixed point.
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If β ∈ T is not a fixed point, then for some δ with sufficiently small
absolute value we have

d(β + δ, f(β + δ)) = d(β + δ, f(β) + 2δ) < d(β, f(β)) or

d(β + δ, f(β + δ)) = d(β + δ, f(β) − 2δ) < d(β, f(β)),

for f orientation preserving or orientation reversing, respectively. (All an-
gles are to be considered modulo 1.) Since T is compact, there exists an
angle whose distance to its image is minimal. By the above inequalities this
distance is 0, providing an angle β0 fixed by f .

Remark. Obviously, h has the unique fixed point 0, and h has the three
fixed points 0, 1/3 and 2/3. A conjugacy maps fixed points to fixed points.
So on the one hand h and h cannot be conjugate, and on the other hand an
orientation preserving conjugacy between h and h must be the identity, and
between h and h the identity, rotation by 1/3, or rotation by 2/3. Finally,
note that both h and h commute with the map β 7→ 1−β, implying that the
corresponding kneading sequences are invariant with respect to this map.

This remark and the above considerations provide the following

Proposition 2.1 (Two prototypes of distance doubling maps). A map

f on the circle satisfies (2.2) iff it is of the form (1.1). In this case, f is

topologically conjugate either to the angle doubling map h or to the angle

“antidoubling” map h. There is a unique orientation preserving conjugacy to

h if f is orientation preserving , and an orientation preserving conjugacy to

h which is unique up to rotation by 1/3 or 2/3 if f is orientation reversing.

All conjugacies are isometries.

Note that h was comprehensively studied in [7]. However, it does not
require much additional effort to include h into our discussion. We state two
obvious but useful equalities for β ∈ T:

h◦m(β) = h◦m(β) for m even,(2.3)

h◦m(β) = 1 − h◦m(β) for m odd.(2.4)

As mentioned before, the dynamical properties of distance doubling maps
change at periodic angles. Therefore, we now characterize those angles for
the two prototypes of distance doubling maps, h and h:

Proposition 2.2 (Characterization of periodic angles). An angle β ∈ T

is periodic for h (and h) iff it is of the form p/q with q odd. Moreover , the

following statements are valid for β ∈ T:

(i) h◦m(β) = β ⇔ β = p/(2m − 1) for some p ∈ N.

(ii) h◦m(β) = β with m even ⇔ β = p/(2m − 1) for some p ∈ N.

(iii) h◦m(β) = β with m odd ⇔ β = p/(2m + 1) for some p ∈ N.
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Proof. Each h-iterate of a β = p/q with q odd can be represented by a
fraction with denominator q. So the orbit of β is finite, hence there is an n
such that h◦n(β) is periodic of some period m.

If n > 0, then either h◦n−1(β) = h◦n+m−1(β) = r/q is periodic, or

h◦n−1(β) =
r

q
+

1

2
mod 1 =

2r + q

2q
mod 1

for some r. In the latter case h◦n−1(β) cannot be represented by a fraction
with denominator q, since 2r+q is odd. So h◦n−1(β) is periodic. By induction
one shows h-periodicity of β itself. Then (2.3) and (2.4) imply h-periodicity.
(i)–(iii) can be obtained by straightforward computations (for (ii) and (iii)
see (2.3) and (2.4)).

Finally, note that even if the sets of periodic angles of h and h are
the same, the periods of angles can differ. For example, the angle 1/3 has
period 2 under h but period 1 under h.

3. Chords under iteration. By the length d(S) of a chord S = β1β2

we understand the distance d(β1, β2) of its endpoints as given by (2.1).
A subset of the unit disk is said to be between two disjoint chords if it has at
least one point in the open component bounded by both chords, but none
in the other two open parts of the disk. It is said to lie behind a chord of
length less than 1/2 if at least one of its points lies in the smaller component
determined by the chord and none in the other component. For β ∈ T let
β′ = β + 1

2 mod 1, and for a chord S = β1β2 let S′ = β′
1β

′
2. Note that

f(β′) = f(β) for all β ∈ T.

Chord length under iteration. For each chord S we have

d(f(S)) =

{
2d(S) for d(S) ≤ 1/4,

1 − 2d(S) for d(S) > 1/4,
(3.1)

and

d(S) ∈

{
d(f(S))

2
,
1 − d(f(S))

2

}
,(3.2)

which yields the following statement:

Lemma 3.1. For a chord S and n ∈ N assume that none of the chords

f(S), f◦2(S), . . . , f◦n−1(S) is longer than S. If f◦n(S) lies between S and S′,
then d(f◦n(S)) > d(S).

Proof. For d(S) < 1/3 the statement is obvious, so assume that d(S) ≥
1/3. If f◦n(S) lies between S and S′, then either d(f◦n(S)) > d(S) or
d(f◦n(S)) ≤ 1/2 − d(S). In the second case there would exist a least in-
dex i ≤ n with d(f◦i(S)) < 1 − 2d(S). Now apply formula (3.1). Since
d(f◦i(S)) = 2d(f◦i−1(S)) would imply d(f◦i−1(S)) < 1−2d(S), a contradic-
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tion to i being the least such index, we have d(f◦i(S)) = 1 − 2d(f◦i−1(S)).
But then f◦i−1(S) would be longer than S, contrary to our assumptions.

Sets of angles with similar dynamics. For angles β1, . . . , βn ∈ T we
write β1 y · · · y βn (resp. β1 x · · · x βn) if they lie in clockwise (counter-
clockwise) orientation, and we make the following simple but important
observation: Provided β1, . . . , βn lie in an open half-circle, then

β1 y · · · y βn (resp. β1 x · · · x βn)

implies

f(β1) y · · · y f(βn) (resp. f(β1) x · · · x f(βn))

if f is orientation preserving, and

f(β1) x · · · x f(βn) (resp. f(β1) y · · · y f(βn))

if f is orientation reversing. This has far-reaching consequences for chords as
well as for finite sets of periodic angles, which we now present in a sequence
of statements.

Lemma 3.2. If the iterates of a chord S do not cross each other , then

they do not cross S′.

Proof. If f◦i(S) crossed S′ but not S for some i, then the endpoints of
f◦i(S) and S′ would lie in an open half-circle, hence f◦i+1(S) would cross
f(S) = f(S′), contradicting the assumption.

The two preceding lemmata lead to the following observation for bifur-
cation chords, where, for α ∈ Perf of period m, we denote by α̇ = f◦m−1(α)
the periodic preimage of α and by α̈ = α̇′ the preperiodic one.

Lemma 3.3. The iterates of a bifurcation chord αγ do not meet the open

part between α̇γ̇ and α̈γ̈, and α̇γ̇ is the longest iterate of αγ. Moreover , α̇γ̇
is not shorter than 1/3, and αγ is not longer than 1/3.

Proof. If S is the longest iterate of αγ, then by Lemmata 3.1 and 3.2
no iterate of α or γ lies between S and S′. On the other hand, since f−1(α)
and f−1(γ) do not cross S, S′, the endpoints of S and S′ are α̇, γ̇, α̈, γ̈. For
the chord lengths compare (3.1).

Now we turn our attention to finite f◦m-invariant sets lying in an open
half-circle and discuss a statement which will play a key role in the proof
of Theorem 1. Note that the “orientation preserving” part of the following
proposition is due to Thurston [16].

Proposition 3.4. Let B = {β1, . . . , βn} ⊂ Perf with n ≥ 3 and f◦m(B)
= B. Assume that the sets B, f(B), f◦2(B), . . . , f◦m−1(B) are weakly un-

linked and mutually disjoint , and each of them is contained in an open

half-circle. Then exactly one of the following statements is valid :
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(i) f◦m is orientation preserving and B lies in a periodic orbit of period

nm.

(ii) f◦m is orientation reversing and B consists of three angles, one of

period m and two of period 2m interchanged by f◦m.

Proof. We can assume β1 y · · · y βn. Let C = {β1β2, β2β3, . . . ,
βn−1βn, βnβ1}. The conditions on the iterates of B imply that the chord
sets C, f(C), f◦2(C), . . . , f◦m−1(C) define mutually disjoined “polygons” and
that f◦m permutes not only B but also C. Let S be a longest chord in
Z = C ∪ f(C) ∪ f◦2(C) ∪ · · · ∪ f◦m−1(C). We can assume that S belongs

to C. Then besides S there is at most one chord S in C which is not shorter
than 1/3.

For each chord S ∈ Z there exists a k with d(f◦k(S)) ≥ 1/3. If f◦k(S)

itself does not coincide with S or S, then let l > k be the least index with
f◦l(S) ∈ C. By changing k if necessary, we can assume that none of the
chords f◦k+1(S), f◦k+2(S), . . . , f◦l−1(S) is longer than f◦k(S). Observe that
S (and thus the whole chord set C) lies between f◦k(S) and f◦k(S)′ (see

Lemma 3.2), and by Lemma 3.1, f◦l(S) = S or f◦l(S) = S. Thus the chords
in Z belong to at most two different orbits.

If S exists, then again by Lemma 3.1 either f◦m(S) = S or f◦m(S) = S.

In the first case (as well as in the case when S does not exist) all chords in
Z belong to the same orbit, since S is an iterate of each of them, whereas in

the latter case S lies in an orbit of period m so that Z splits into one orbit
of period m and one of period (n − 1)m.

In the orientation preserving case the latter is impossible. Otherwise,
there would exist two chords in C with a common endpoint but different
periods m and (n− 1)m. One easily sees that f◦m must fix the endpoints of
the two chords, a contradiction.

If f◦m is orientation reversing, there must be an angle β ∈ B which
is fixed by f◦m. We can assume that β = β1. Then f◦m(β2) = βn and
f◦m(βn) = β2, hence f◦m(β1β2) = β1βn and f◦m(β1βn) = β1β2. Therefore
β1β2 and β1βn are on an orbit of period 2m < nm, implying the existence
of a second orbit of period m, and n = 3. Clearly, β2β3 ∈ C.

We will use Proposition 3.4 in the following version:

Corollary 3.5. Let δ ∈ T be nonperiodic and D = {β1, . . . , βk} ⊂ Perf

with k ≥ 3 such that for each i = 0, 1, 2, . . . , the set f◦i(D) is contained in

]δ, δ + 1/2[ or in ]δ + 1/2, δ[. Then exactly one of the following statements

is valid :

(i) The angles of D lie in a periodic orbit of some period l with f◦l

orientation preserving.
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(ii) k = 3, one of the angles of D has some odd period l with f◦l orienta-

tion reversing , and the other two have period 2l and are interchanged

by f◦l.

Proof. Let B = {β1, . . . , βk, . . . , βn} be the largest possible set contain-
ing D and further iterates of angles of D such that still for each i = 0, 1, 2, . . .
the set f◦i(B) is contained in ]δ, δ + 1/2[ or in ]δ + 1/2, δ[. Then nm is the
number of all iterates of angles of D. Proposition 3.4 can be applied to B
if we show that the iterates of B are weakly unlinked, i.e. that chords S1

and S2 with ends in f◦k1(B) and f◦k2(B), respectively, do not cross for
0 ≤ k1 < k2 < m. Assuming the contrary, f◦i(S1) and f◦i(S2) would cross
each other for all i. Hence f◦k1+i(B) and f◦k2+i(B) would be contained in

the same part ]δ, δ+1/2[ or ]δ+1/2, δ[ for each i, contradicting the assumed
maximality of B.

4. Backward iteration of the critical chord. For the following two
sections we fix α to be a periodic angle with respect to f and m > 1 to be its
period. Recall from the previous section that α̇ denotes the periodic preim-
age of α and α̈ the preperiodic one. The diameter α̇α̈ = f−1(α) is critical in
the sense that its image under f is not another chord but the single angle α.
In this section we define a set S of backward iterates of α̇α̈, investigate its
properties and consider the important subset Scenter of S, which will be the
base for constructing Θf (α) as well as the f◦n-set corresponding to αΘf (α).

Recall that T \ {α̇, α̈} consists of the two open half-circles T0, the one
containing α, and T1. Clearly, the map f is invertible on both T0 and T1,
with inverse maps called l0 and l1, defined on T \ {α}. More generally, for
each finite 0-1-word w = w1 . . . wn, there is a map lw = lw1 ◦ · · · ◦ lwn whose
domain includes the set T \ {α, f(α), . . . f◦n−1(α)}. For w being the empty
word, let lw be the identity.

Each of the maps ls, s = 0, 1, has two injective extensions lts, t = 0, 1, to
the whole circle defined by

lts(β) =





ls(β) for β 6= α,

α̇ for β = α and s = t,

α̈ for β = α and s 6= t.

Now we define the set S of backward iterates of α̇α̈ as follows:

S = {lt1s1
◦ lt2s2

◦ · · · ◦ ltnsn
(α̇α̈) | s1, . . . , sn, t1, . . . , tn ∈ {0, 1}, n ∈ N}.

Note that, by definition, no backward iterate can cross α̇α̈. But the chords
of S even satisfy a stronger property:

Lemma 4.1. The chords of S do not cross each other.
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Proof. Assume that S = lt1s1
◦ · · · ◦ l

tj
sj (α̇α̈) and S̃ = lv1

u1
◦ · · · ◦ lvk

uk
(α̇α̈)

cross each other for some s1, . . . , sj , t1, . . . , tj, u1, . . . , uk, v1, . . . , vk ∈ {0, 1}

and j, k ≥ 0. Then s1 = u1, since otherwise S and S̃ would lie in different

half-circles. This implies that lt2s2
◦ · · · ◦ l

tj
sj (α̇α̈) and lv2

u2
◦ · · · ◦ lvk

uk
(α̇α̈) cross

each other (cf. before Lemma 3.2). So by induction one easily shows that

j 6= k and that the jth iterate of S̃ or the kth iterate of S crosses α̇α̈, which
is obviously false.

A special system of chords. For the following we only need backward
iterates of α̇α̈ which “jump” between the two components T0 and T1 ac-
cording to the kneading sequence of α. We denote the latter by v∗, where
v = v1 . . . vm−1 is a word in {0, 1}m−1. Looking at such backward iterates
seems quite natural for finding Θf (α), since Θf (α) is supposed to exhibit the
same dynamical behavior as α, i.e. to have the same kneading sequence and
the same “jumps”. Following the kneading sequence, we can trace the way
of α̇α̈ back. Whenever a ∗ occurs, we include both possibilities of iterating
back further. This construction yields the subset Scenter of S.

We define

Scenter = {St
s1... sn

| t, s1, . . . , sn ∈ {0, 1}},

where the chords St
s1... sn

are specified as follows.

f◦m is orientation preserving : In this case let

St
s1... sn

= lts1
◦ lv ◦ lts2

◦ lv ◦ · · · ◦ ltsn−1
◦ lv ◦ ltsn

◦ lv(α̇α̈).

f◦m is orientation reversing : If n is even, let

St
s1... sn

= l1−t
s1

◦ lv ◦ lts2
◦ lv ◦ l1−t

s3
◦ lv ◦ · · · ◦ l1−t

sn−1
◦ lv ◦ ltsn

◦ lv(α̇α̈),

and if n is odd, let

St
s1... sn

= lts1
◦ lv ◦ l1−t

s2
◦ lv ◦ lts3

◦ lv ◦ · · · ◦ l1−t
sn−1

◦ lv ◦ ltsn
◦ lv(α̇α̈).

The set Scenter is f◦m-invariant by construction. Since lss ◦ lv(α̇) = α̇ and
l1−s
s ◦ lv(α̇) = α̈ for s ∈ {0, 1}, each chord St

s1... sn
of Scenter has a common

endpoint with either St
s1... sn−1

or S1−t
s1... sn−1

, which, by induction, implies that
any two endpoints of chords in Scenter are connected by a finite sequence of
chords in Scenter. Hence the union of all chords in Scenter is a connected set
in the unit disk. The same is true for the iterates f◦n(Scenter) of Scenter. We
deduce from this that the corresponding sets of endpoints are unlinked.

Proposition 4.2. The sets of endpoints of f◦n(Scenter), n = 0, . . . , m−1,
are unlinked. Consequently , their closures in T are weakly unlinked.

Proof. We show that any two chords S ∈ f◦n1(Scenter) and T ∈
f◦n2(Scenter) with 0 ≤ n1 < n2 < m are disjoint. This together with the
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above mentioned connectedness implies that the sets of endpoints are un-
linked as stated. By Lemma 4.1, S and T do not cross. If they were not
disjoint, they would have a common endpoint. Hence their f -iterates would
have a common endpoint. After sufficiently long iteration some iterate of
each of the two chords would be the critical chord α̇α̈ and the further it-
erates would be orbit points of α. The assumed common endpoint would
imply α = f◦k(α) for some 0 < k < m, a contradiction.

Remark. For a moment assume f = h or h and α = 0. The case of α
being a fixed point was excluded above, however, with v being the empty
word, α̇ = 0 and α̈ = 1/2, the definitions of S and Scenter easily carry
over and provide some insights for the non-fixed point case. For f = h as
well as for f = h, the sets S and Scenter coincide and consist of the chords
01

4 , 1
4

1
2 , 1

2
3
4 , 3

40, 01
8 , 1

8
1
4 , . . . (cf. Figure 5). (For f = h the “symbolization” of

0

1/16

1/8

3/16
1/4

5/16

3/8

7/16

1/2

9/16

5/8

11/16
3/4

13/16

7/8

15/16

Fig. 5. S = Scenter in the fixed point case α = 0

these chords is strongly related to the binary expansion of points in [0, 1[.)
For the non-fixed point case, the incidence structure of Scenter, which is
studied below, is the same as for α = 0. The only difference is that the
endpoints of chords of Scenter are not dense in T any longer. Keeping this in
mind might be useful for the comprehension of the next section.

5. Some important angles

Special triangle systems. Each chord of Scenter is a common side of two
triangles with sides in Scenter. This can be used for describing the mutual
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position of the chords in Scenter and their endpoints. We are especially in-
terested in systems of triangles ∆t

k, k = 0, 1, 2, . . . , for t = 0, 1 defined as
follows:

f◦m is orientation preserving : ∆t
k has angles α̇, l(tv)k(α̈), l(tv)k+1(α̈) and

sides St
tk

= α̇l(tv)k(α̈), S1−t
tk+1 = l(tv)k(α̈)l(tv)k+1(α̈), St

tk+1 = l(tv)k+1(α̈)α̇.

f◦m is orientation reversing : ∆t
k has angles l(tv)k−1(α̈), l(tv)k(α̈), l(tv)k+1(α̈)

and sides S1−t
tk

= l(tv)k−1(α̈)l(tv)k(α̈), S1−t
tk+1 = l(tv)k(α̈)l(tv)k+1(α̈), St

tk+1 =

l(tv)k+1(α̈)l(tv)k−1(α̈) if k > 0, and ∆t
0 has sides α̇α̈, S1−t

t , St
t .

Considering the incidence structure of the triangle system ∆t
k, k =

1, 2, . . . , one easily sees that

α̈ y ltv(α̈) y l(tv)2(α̈) y l(tv)3(α̈) y l(tv)4(α̈) y · · · y α̇ or(5.1)

α̈ x ltv(α̈) x l(tv)2(α̈) x l(tv)3(α̈) x l(tv)4(α̈) x · · · x α̇

if f◦m is orientation preserving, and that

α̈ y l(tv)2(α̈) y l(tv)4(α̈) y · · ·(5.2)

y l(tv)5(α̈) y l(tv)3(α̈) y ltv(α̈) y α̇ or

α̈ x l(tv)2(α̈) x l(tv)4(α̈) x · · ·

x l(tv)5(α̈) x l(tv)3(α̈) x ltv(α̈) x α̇

if f◦m is orientation reversing.

Length of chords in S. There is a symbol e = ef,α ∈ {0, 1} such that
Se

0 (and Se
1) are shorter than S1−e

0 (and S1−e
1 ). Otherwise, both S0

0 and S1
0

would have length 1/4, hence would be mapped to α̇α̈, implying f(α̇) = α̇.
This is impossible since the period of α was assumed to be greater than 1.
Obviously,

S1−e
0 and S1−e

1 are the two longest chords in S.(5.3)

Se
0 and Se

1 are not longer than 1/8: Assume that (1/4 >)d(Se
0) > 1/8.

Then d(S1−e
0 ) < 3/8 and d(f(Se

0)) > 1/4. On the other hand, f◦m(Se
0) = α̇α̈

implies d(f◦m−1(Se
0)) = 1/4. Let i > 1 be minimal with d(f◦i(Se

0)) ≤ 1/4.
By (3.2), d(f◦i−1(Se

0)) ≥ 3/8, contradicting (5.3).
Again by (3.2) the preimage of a chord not longer than d(Se

0) = d(Se
1)

has either half its length or is longer than d(S1−e
0 ) = d(S1−e

1 ), implying the
following:

If f◦n(S) ∈ {Se
0, S

e
1} for some S ∈ S, then d(S) ≤ 2−(n+3).(5.4)

Important angles. In preparation for the definitions of Θf (α) and Λf (α)
we define some important angles as limits in Scenter.
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Proposition 5.1 (Important angles). The angle

ξf (α) := lim
k→∞

l((1−e)v)k(α̈)

is well defined with period dividing m, and d(α̇, ξf (α)) ≥ 1/3. Moreover

(cf. Figure 6):

α̇

ξf (α)

α̈

l((1−e)v)2(α̈)��
l(1−e)v(α̈)��...

∆1−e
1

∆1−e
2

α̇

ξf (α)

α̈

ξf
even(α)

ξf
odd(α)

lev(α̈)

l(ev)3 (α̈) ��

l(ev)2(α̈)

l((1−e)v)2(α̈)

��

l((1−e)v)3(α̈)AA
l(1−e)v(α̈)

��

∆e
1 ∆e

2

∆1−e
1

∆1−e
2

Fig. 6. Important angles: the orientation preserving case (left) and the orientation revers-
ing case (right)

(i) If f◦m is orientation preserving (resp. orientation reversing), then

the angle limk→∞ l(ev)k(α̈) (resp. limk→∞ l((1−e)vev)k(α̈)) exists and

equals α̇.

(ii) If f◦m is orientation reversing , then

ξf
odd(α) := lim

k→∞, k odd
l(ev)k(α̈)

and

ξf
even(α) := lim

k→∞, k even
l(ev)k(α̈)

are well defined , and separated from ξf (α) by α̇α̈. They satisfy the

inequalities

d(ξf
odd(α), ξf

even(α)) ≥ 1/3,

d(α̈, ξf
even(α)), d(α̈, ξf (α)) < d(α̇, ξf

odd(α)) < 1/6,

have period 2m and are interchanged by f◦m.

(iii) If f is orientation reversing and m/2 is odd , then f◦m/2(α̇) 6=
ξf (α).

Proof. For f◦m orientation reversing, limk→∞ l((1−e)v)k(α̈) exists since,

by (5.4), d(l((1−e)v)k(α̈), l((1−e)v)k+1(α̈)) = d(Se
(1−e)k) exponentially conver-
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ges to 0 for k → ∞ (cf. (5.2) for t = 1− e). The limit limk→∞ l((1−e)vev)k(α̈)

is considered below when proving (i). The existence of all other limits is
obvious (cf. (5.1) and (5.2)). So let us show that d(α̇, ξ) ≥ 1/3 for ξ = ξf (α).

If f◦m is orientation preserving, then α̈, l(1−e)v(α̈), l((1−e)v)2(α̈), . . . ,
l((1−e)v)k(α̈), . . . are successively connected by the chords Se

1−e, S
e
(1−e)2 , . . . ,

Se
(1−e)k , . . . no longer than 1/8, 1/32, . . . , 1/22k+1, . . . (cf. (5.1) for t = 1 − e,

and (5.4)). Summing up these numbers provides d(α̈, ξ) ≤ 1/6, hence
d(α̇, ξ)≥ 1/2−1/6 = 1/3. In the orientation reversing case Se

1−e = α̈l(1−e)v(α̈)
is not longer than 1/8. For t = 1 − e, (5.2) shows d(α̈, ξ) ≤ 1/8, and thus
d(α̇, ξ) ≥ 1/3.

Now let f be orientation reversing and m/2 odd. Then f◦m is orien-
tation preserving, and, by the above, the sequence of chords S1−e

(1−e)n with

endpoints α̇ and l((1−e)v)n(α̈) converges to α̇ξ. The orientation of the conver-

gence of (l((1−e)v)n(α̈))∞n=1 to ξ and of (f◦m/2(l((1−e)v)n(α̈)))∞n=1 to f◦m/2(ξ)

is different, and, by definition, no chord f◦m/2(S1−e
(1−e)n) has endpoints in

both ]α̇, α̈[ and ]α̈, α̇[. Thus f◦m/2(α̇) = ξ is impossible, proving (iii).
(i) If f◦m is orientation preserving, consider (5.1) for t = e. By (5.4), we

obtain limk→∞ d(l(ev)k(α̈), α̇)=limk→∞ d(Se
ek)=0, implying limk→∞ l(ev)k(α̈)

= α̇.
In the orientation reversing case, we have

α̇l((1−e)vev)k(α̈) = S1−e
((1−e)e)k = (l1−e

(1−e)v ◦ leev))◦k−1(l1−e
(1−e)v ◦ leev(α̇α̈))

= (l1−e
(1−e)v ◦ leev))◦k−1 ◦ l1−e

(1−e)v(Se
e)

for k = 1, 2, . . . , hence limk→∞ d(α̇, l((1−e)vev)k(α̈)) = 0 by (5.4).

(ii) Now set t = e in (5.2). The angles α̇, lev(α̈) are connected by Se
e , and

the angles l(ev)k−2(α̈), l(ev)k(α̈) by Se
ek for all k = 2, 3, . . . . By (5.4), we have

d(Se
ek) ≤

1

22k+1
=

1

2

(
1

4

)k

, d(Se
ek) > d(Se

ek+1), k = 1, 2, . . . .

The first inequality shows
∑

∞

k=1 d(Se
ek) ≤ 1/6 and the second

∑
k odd d(Se

ek)
>

∑
k even d(Se

ek). This implies d(ξodd, ξeven) = 1/2−(d(α̇, ξodd)+d(α̈, ξeven))

≥ 1/2−1/6 = 1/3 and d(α̇, ξodd) > d(α̈, ξeven) for ξeven = ξf
even(α) and ξodd =

ξf
odd(α). By looking at the incidence structure of the system of triangles (cf.

Figure 6, right), one easily sees that ξ lies between ξ′evenξ
′

odd and α̇α̈, hence
d(α̇, ξodd(α)) > d(α̈, ξ). The angles ξeven and ξodd are interchanged by f◦m

since f◦m(l(ev)k+1(α̈)) = l(ev)k(α̈) for k = 1, 2, . . . (cf. (5.2)), completing the
proof.

Remark. For the case α = 0, described in the remark at the end of the
previous section, the limit ξf (α) coincides with α. This corresponds to the



22 K. Keller and S. Winter

fact that for fixed points Scenter is dense in T, in contrast to the non-fixed
point case, where α and ξf (α) do not coincide any longer.

6. f◦n-sets

The morphology of f◦n-sets. The complement T \ C of a Cantor set C
consists of countably many open intervals. All chords connecting the two
endpoints of such an open interval form a set denoted by BC . We associate
to C a topological circle TC by contracting each chord of BC to a point and
letting the points in C not connected by a chord in BC be points in TC . The
elements of BC can be considered both as chords with endpoints in C and
as points of TC .

In case C is an f◦n-set, the construction of TC is compatible with the
dynamics of f◦n. This is what we want to discuss now. From the technical

viewpoint it is also helpful to consider the ′-symmetric iterate C̃ = f◦n−1(C)
of C and the corresponding chord set B

C̃
. First we collect some properties

of f◦n-sets.

Lemma 6.1. Let C be an f◦n-set.

(i) In BC there is a unique longest chord BC = β1β2. It is a bifurcation

chord and satisfies f◦n(BC) = BC . Moreover , one of the following

cases holds:

(a) f◦n is orientation preserving , and β1, β2 have period n.

(b) f is orientation reversing , n is odd , β1, β2 have period 2n, and

f◦n(β1) = β2.

(c) f is orientation reversing and β1, β2 have odd period n/2.
(d) f is orientation reversing and β1, β2 have periods n and odd

n/2.

(ii) B
C̃

:= f◦n−1(BC) and B′

C̃
are the longest chords of B

C̃
, and for

i = 0, 1, . . . , n − 2 the set f◦i(C) is behind B
C̃

or B′

C̃
.

(iii) For each chord T ∈ BC , there exists some k ≥ 0 with f◦kn(T ) = BC .

(iv) f◦n maps BC onto BC in a two-to-one way.

Proof. For 0 ≤ i ≤ n write Ci := f◦i(C) and Bi := Bf◦i(C). Observe

that by Definition 1.6(ii) for each chord S ∈ Bn−1 the chord S′ is also
in Bn−1 and has the same length. Since f(α) = f(α′), we only need to
consider a semi-open half-circle to obtain the full image of Cn−1 under f ,
i.e. f(Cn−1 ∩ ]δ, δ′[) = f(Cn−1) ⊆ C for δ in the complement of Cn−1.

Since the sets C0, C1, . . . , Cn−2, Cn−1 are weakly unlinked, each of the
sets C0, C1, . . . , Cn−2 sits behind some chord of Bn−1, hence is contained in
an open half-circle. This ensures that for each T ∈ Bi, 0 ≤ i < n, the chord
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f(T ) is in Bi+1, i.e. f(Bi) ⊆ Bi+1. The converse is also true, hence

f(Bi) = Bi+1.(6.1)

From (6.1) we also have f◦i(B0) = Bi, and the f◦n-invariance of C0 now
implies the f◦n-invariance of B0. (iv) is now easy to see. Another immediate
consequence is the existence of a unique longest chord BC of B0, separating
C0 and Cn−1.

Let S be a longest chord in Bn−1. From formula (3.1) and the invariance
of B0 ∪ B1 ∪ · · · ∪ Bn−1 under f , one sees that d(S) ≥ 1/3. Moreover, S, S′

is the unique pair of longest chords in Bn−1 since the sum of lengths of all
chords in Bn−1 does not exceed 1. Clearly, S and S′ are also the longest
chords in B0 ∪ B1 ∪ · · · ∪ Bn−1.

Now observe that d(f(R)) = 2d(R) < 2(1/2 − d(S)) = 1 − 2d(S) =
d(f(S)) for R ∈ Bn−1 \ {S, S′}. Thus f(S) = f(S′) = BC . The nth iter-
ate f◦n(S) of S is in Bn−1 and thus it is either equal to S or S′, or lies
between these two chords. The latter is impossible since by Lemma 3.1,
f◦n(S) would be longer than S, a contradiction to S being a longest chord.
Thus f◦n(S) = S = B

C̃
or f◦n(S′) = S′ = B

C̃
and f◦n(BC) = BC . Clearly,

since C0, C1, . . . , Cn−1 are weakly unlinked, BC is a bifurcation chord.
Let γ, β be the endpoints of BC , and let (γi)

∞
i=1 be a sequence in C0

converging to γ. It is important to note that, besides C0, γ is in at most
one further set Ck since the sets C0, C1, . . . , Cn−1 are weakly unlinked. If γ
lies in C0 and Ck and f◦k(γ) = γ, then (f◦k(γi))

∞
i=1 ⊂ Ck and (γi)

∞
i=1 ⊂ C0

converge in different orientations to γ. This is the striking argument behind
the following.

First of all, if f◦n(γ) = β and f◦n(β) = γ, then γ and β have period 2n.
Moreover, (f◦n(γi))

∞
i=1 lies in C and limi→∞ f◦n(γi) = β, implying that f◦n

is orientation reversing. This is case (b) in (i). If f◦n(γ) = γ and f◦n(β) = β,
denote the period of β by r. Here either r = n and f◦n is orientation
preserving, or r = n/2 and f◦n/2 is orientation reversing. Since the same is
obtained for the period r of β, one of cases (a), (c) or (d) is valid.

It remains to show (ii) and (iii). By Lemma 3.1, the iterates of B
C̃
, hence

of BC , cannot lie between B
C̃

and B′

C̃
, which implies (ii). Let B ∈ BC . Since

the number of chords in B0 ∪ B1 ∪ · · · ∪ Bn−1 not shorter than 1/3 is finite
and at least one iterate of B has length not less than 1/3, there exists a

longest iterate T of B not shorter than 1/3. Let T̃ be the first iterate of T

belonging to Bn−1. Then T = B
C̃

or T = B′

C̃
or, by Lemma 3.1, T̃ is longer

than T . Since the latter contradicts our assumption, some iterate of B is
equal to BC , showing (iii).

πC mapping C to the circle. Now we are going to define the map πC

of Theorem 2(iii). We start by constructing a map on T
C̃

:= f◦n−1(TC),
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the “preimage” of TC . BC has two preimages in T
C̃
, the periodic chord

B
C̃

= γδ and the preperiodic one B′

C̃
= γ′δ′; these are the longest chords

of B
C̃

(cf. Lemma 6.1(ii)). We can assume that 0 < γ < δ′ < γ′ < δ or
0 < γ′ < δ < γ < δ′. This is possible since the fixed point 0 lies behind
B

C̃
or behind B′

C̃
. (The intervals between B

C̃
and B′

C̃
with endpoints in

{γ, δ′, γ′, δ} are mapped to intervals behind B
C̃

or B′

C̃
.)

For B ∈ B
C̃
\ {B

C̃
, B′

C̃
}, let L0(B) and L1(B) be the unique chords in

B
C̃

with nth f -iterate equal to B and with endpoints in ]γ, δ′[ and ]γ′, δ[,
respectively. Similarly, if f◦n is orientation preserving (resp. orientation re-
versing), let l0s(β), β 6= 0, be the h-preimage (resp. h-preimage) of β ∈ T in
]0, 1/2[ if s = 0 and in ]1/2, 0[ if s = 1, respectively.

Now define π
C̃
(B

C̃
) := 0, π

C̃
(B′

C̃
) := 1/2, and

π
C̃
(Ls1 ◦ · · · ◦ Lsk

(B′

C̃
)) := l0s1

◦ · · · ◦ l0sk
(1/2)

for s1, . . . , sk, k ∈ N. By Lemma 6.1(iii), this provides an injective map
from B

C̃
onto the set of all angles in T of the form a/2i with a, i ∈ N∪ {0},

satisfying

π
C̃
◦ f◦n = h ◦ π

C̃
(resp. π

C̃
◦ f◦n = h ◦ π

C̃
)(6.2)

in the orientation preserving (resp. orientation reversing) case. We show that

π
C̃

is orientation preserving on B
C̃
.(6.3)

For k ∈ N, let Bk = {B
C̃
, B′

C̃
} ∪ {Ls1 ◦ · · · ◦ Lsi

(B′

C̃
) | s1, . . . , si ∈ {0, 1},

i ≤ k}. Clearly, π
C̃

is orientation preserving on B1. Assuming that (6.3)
is false, fix a minimal k such that π

C̃
fails to be orientation preserving on

Bk. Then orientation preservation is violated on the set Bk
0 ⊂ Bk of chords

with endpoints in ]γ, δ′[ or the set Bk
1 ⊂ Bk of chords with endpoints in

]γ′, δ[, mapped into ]0, 1/2[ and ]1/2, 0[, respectively. Therefore, by (6.2),
orientation preservation must be violated on f◦n(Bk

0) ⊂ Bk−1 or f◦n(Bk
1) ⊂

Bk−1, contradicting minimality of k.
It is clear from the definition that B

C̃
is dense in T

C̃
. Equally, π

C̃
(B

C̃
)

is dense in T. Thus the continuous extension of π
C̃
—also called π

C̃
—is well

defined and is a homeomorphism satisfying (6.2). Finally, let πC = π
C̃
◦

f◦n−1. Then the following is easily seen:

Lemma 6.2. πC (resp. π
C̃
) conjugates f◦n restricted to TC (resp. T

C̃
)

to h if f is orientation preserving or n is even, and to h otherwise.

As a consequence of Lemmata 6.2 and 6.1 we have the following

Corollary 6.3. In each f◦n-set C there are exactly two angles α, γ of

period not greater than n. Their periods belong to {n, n/2}, and αγ is a

bifurcation chord. If f is orientation reversing and n is odd , C contains
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exactly two angles ξ1, ξ2 of period 2n, which are the ends of BC , and α, γ
have period n. Otherwise, BC = αγ.

Proof. The main point to notice is that, according to the conjugacy πC ,
points in TC of period dividing n correspond to fixed points of h (or h) in T.
Moreover, by Lemma 6.1(iii),(iv) (cf. also construction of πC) all chords in
BC \ {BC} are preperiodic, and by Lemma 6.1(ii) the period of periodic
angles in C not being an endpoint of BC is a multiple of n.

If f◦n is orientation preserving, 0 is the unique fixed point of h and by
definition π−1

C (0) = BC . So according to Lemma 6.1(i) (see (a), (c), (d)),
the endpoints α, γ of BC are the only two angles of period dividing n in C,
and αγ is a bifurcation chord.

In the orientation reversing case πC conjugates f◦n to h, which has the
three fixed points 0, 1/3, 2/3 and no angles of period 2. Here by Lemma 6.1(i)
(see (b)), π−1

C (0) = BC has endpoints of period 2n. On the other hand,
according to the considerations at the beginning of the proof, 1/3 and 2/3
are πC-images of single angles α and γ in C of period n. Thus we have
exactly two angles of period n and two of period 2n in C. To complete the
proof, observe that αγ is a bifurcation chord (since the sets C, C1, . . . , Cn−1

are weakly unlinked).

Up to this point we have collected some properties of f◦n-sets, in par-
ticular in the above corollary we proved that for each f◦n-set C there is
a unique corresponding bifurcation chord with endpoints of period n in C,
but so far we have not asked if f◦n-sets exist. This is now answered in the
affirmative by constructing a class of f◦n-sets starting from periodic angles.

The f◦n-set Cf (α). For α ∈ Perf define the set C̃f (α) to consist of the
accumulation points of sequences of endpoints of chords in Scenter described

in Section 4. Let Cf (α) := f(C̃f (α)).

Lemma 6.4. For α ∈ Perf of period n, Cf (α) is an f◦n-set. C̃f (α) is

the closure of the set of endpoints of chords in Scenter.

Proof. Recall that f◦n(Scenter\{α̇α̈}) = Scenter, which implies f◦n(C̃f (α))

= C̃f (α). Moreover, the invariance of Scenter under β 7→ β + 1
2 mod 1 car-

ries over to C̃f (α). This shows that C̃f (α) is f◦n-invariant and that (ii) of
Definition 1.6 is satisfied. Moreover, by Proposition 4.2, also condition (i) of
Definition 1.6 is satisfied.

We show that Cf (α) is a Cantor set, i.e. that it is closed, totally discon-
nected and perfect. Obviously Cf (α) is closed. Assume Cf (α) is not totally
disconnected. Then it would contain some interval I of T. The iteration of
I would produce larger and larger intervals that would finally cover T. By

the f◦n-invariance of Cf (α) this would impliy C̃f (α) = T in contradiction



26 K. Keller and S. Winter

to its definition as the limit set of endpoints of chords in Scenter. Thus Cf (α)

is totally disconnected. Finally, by Proposition 5.1(i), α̇ belongs to C̃f (α).
By backward iteration of α̇ one sees that all endpoints of chords in Scenter

belong to C̃f (α), implying that C̃f (α) is perfect. Hence Cf (α) is perfect,
which completes the proof that Cf (α) is an f◦n-set.

For f = h the periodic angles 1/3 and 2/3 are those of minimal period
greater than 1. In some sense, they provide the simplest h◦n-set (with n = 2).
It is interesting that this set is also an h◦2-set, as shown below. Moreover,
it will serve as a kind of prototype for the construction of more f◦n-sets in
Section 8.

Lemma 6.5. The sets Ch(1/3) and Ch(2/3) coincide. They are both h◦2-

sets and h◦2-sets, and are invariant with respect to β 7→ 1 − β mod 1.

Proof. By Lemma 6.4, C1 = Ch(1/3) and C2 = Ch(2/3) are h◦2-sets, and
by Lemma 6.1(i) (see (a)), BC1 = BC2 = 1

3
2
3 . Moreover, Lemma 6.1 implies

B
C̃1

= B
C̃2

= 1
3

2
3 and B′

C̃1
= B′

C̃2
= 1

6
5
6 . Note that for T ∈ B

C̃1
∩ B

C̃2
there

exist exactly two chords between the chords 1
3

2
3 and 1

6
5
6 not separating them

and with second iterate equal to T . So induction and Lemma 6.1(iii),(iv)

provide B
C̃1

= B
C̃2

, hence C̃1 = C̃2 and C1 = C2. One easily shows that

C̃2 = {1 − β mod 1 | β ∈ C̃1}, implying that C̃1 and C1 are invariant under
β 7→ 1 − β mod 1. Now the rest is obvious.

7. Proof of the Bifurcation Theorem. This section is devoted to the
proof of Theorem 1. We call a bifurcation chord symmetric if both endpoints
have the same period, and otherwise nonsymmetric. It will turn out later
that one of the endpoints of a nonsymmetric bifurcation chord always has
odd period, while the other has the double period.

The angles Θf (α) and Λf (α). For f a distance doubling map let α ∈
Perf be an angle of period m (i.e., in particular, m > 1). First note that

according to Proposition 5.1 each of the angles ξ = ξf (α), ξeven = ξf
even(α)

and ξodd = ξf
odd(α), if defined for α, belongs to C̃f (α), and that the period

of ξ divides m. According to Corollary 6.3, α and f(ξ) are the only periodic
angles in the set Cf (α) of period less than or equal to m and

αf(ξ) is a bifurcation chord.(7.1)

By Lemma 6.1(i), the period of ξ is m or m/2, and period m/2 is only
possible if f is orientation reversing and m/2 is odd. Similarly Corollary 6.3

implies that ξeven and ξodd are the only angles of period 2m in C̃f (α) and
that

f(ξeven)f(ξodd) forms a symmetric bifurcation chord.(7.2)



Combinatorics of distance doubling maps 27

Moreover,

αf(ξeven) and f(ξ)f(ξodd) are nonsymmetric bifurcation chords(7.3)

since on the one hand Cf (α) and its first m−1 iterates are weakly unlinked
and any two iterates of αf(ξeven) (f(ξ)f(ξodd), respectively), being in the
same iterate of Cf (α), have one endpoint in common. On the other hand,
the diameters α̇α̈ and ξevenξ

′
even (ξξ′ and ξoddξ

′

odd) do not cross any iterate
since, by the second inequality in Proposition 5.1(ii), f◦m(α̇ξeven) = α̇ξodd

is behind α̇ξeven (and f◦m(ξξodd) = ξξeven is behind ξξodd). Also compare
Figure 6. These observations justify the following definition.

Definition 7.1 (Angles Θf (α) and Λf (α)). If f is orientation reversing,

m/2 is odd, and ξ has period m/2, then let Θf (α) := f(ξf
odd(f(ξ))) and

Λf (α) := f(ξ). Otherwise, let Θf (α) := f(ξ). For f orientation reversing
and m odd, define Λf (α) := f(ξeven).

It is clear from (7.1)–(7.3) that αΘf (α) is a symmetric bifurcation chord,
while αΛf (α), if defined, is a nonsymmetric bifurcation chord. The follow-
ing lemma shows that apart from αΘf (α) and αΛf (α) there are no other
bifurcation chords with endpoint α.

Lemma 7.2.

(i) For each α ∈ Perf , the chord αΘf (α) is the only symmetric bifurca-

tion chord with endpoint α, and Θf (Θf (α)) = α.

(ii) Whenever Λf (α) is defined for α ∈ Perf , the chord αΛf (α) is the

only nonsymmetric bifurcation chord with endpoint α, and Λf (Λf (α))
= α. Otherwise there is no nonsymmetric bifurcation chord with end-

point α.

Proof. Assume that αγ is a bifurcation chord with γ 6= Θf (α). Let
θ = Θf (α). For the periodic preimage γ̇ of γ there are two possibilities.

Either (I) γ̇ and θ̇ are separated by α̇α̈, or (II) γ̇ and θ̇ are not separated
by α̇α̈.

(I) Suppose γ̇ and θ̇ are separated by α̇α̈. First we assume that f◦m

is orientation preserving and prove that in this case γ does not exist. By
Lemma 3.3, α̇γ̇ and α̇θ̇ are not shorter than 1/3, hence γ̇ must lie behind

α̈θ̈. Since θα and γα are bifurcation chords, for i not a multiple of m the
angles of f◦i({α̈, θ̈, γ̇}) are not separated by α̇α̈, implying that f does not

change the orientation on f◦i({α̈, θ̈, γ̇}). So γ̇ behind α̈θ̈ implies that f◦m(γ̇)

lies behind α̇θ̇ because f is also orientation preserving on {α̈, θ̈, γ̇}. More

generally, induction shows that f◦km(γ̇) lies behind α̇θ̇ for k = 1, 2, . . . . For

some k we have f◦km(γ̇) = γ̇, which contradicts γ̇ lying behind α̈θ̈. Hence
such a γ cannot exist.
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Now assume that f◦m is orientation reversing, i.e. f is orientation re-
versing and m is odd. Then, according to Definition 7.1, θ̇ = ξf (α). More-

over, ξeven = ξf
even(α) and ξodd = ξodd(α) are well defined and separated

from ξf (α) by α̇α̈. Hence γ̇, ξeven and ξodd lie on the same side of α̇α̈. Let
D = {α̇, γ̇, ξodd, ξeven}. For some nonperiodic δ sufficiently near to α̇ and
n = 0, 1, . . . , we have f◦n(D) ⊂ ]δ, δ +1/2[ or f◦n(D) ⊂ ]δ +1/2, δ[. The an-
gles in D do not have the same period, hence Corollary 3.5 implies γ̇ = ξodd

or γ̇ = ξeven. Since ξoddξ
′

odd separates ξeven and α̇ (compare (5.2)) and since,
by Proposition 5.1, ξevenα̇ is the mth iterate of the chord ξoddα̇, the chord
f(ξodd)α is not a bifurcation chord. So γ̇ = ξeven and, by Definition 7.1,

γ = Λf (α).

(II) Now suppose that γ̇ and θ̇ are not separated by f−1(α) = α̇α̈. In
this case let η 6= α, θ be a (possibly second) angle with the property that

αη forms a bifurcation chord and that η̇ and θ̇ are not separated by f−1(α).

Let D = {α̇, γ̇, η̇, θ̇}. Then for some δ sufficiently near to α̇ and n = 0, 1, . . . ,
we have f◦n(D) ⊂ ]δ, δ + 1/2[ or f◦n(D) ⊂ ]δ + 1/2, δ[ since αγ and αη

were assumed to be bifurcation chords. By Lemma 3.3, γ̇ lies between α̇θ̇
and α̈θ̈ or θ̇ between α̇γ̇ and α̈γ̈ and therefore the set D cannot be con-
tained in a periodic orbit. Hence (ii) of Corollary 3.5 applies. f must be
orientation reversing, γ and η must coincide, and, since α and θ have period
m, γ is an angle of period m/2 with m/2 odd. Moreover, θ = f◦m/2(α).

By Proposition 5.1(iii), this implies that θ 6= f(ξf (α)), in contrast to the

case above. Therefore we are in the situation where Λf (α) = f(ξf (α)) and

θ = f(ξf
odd(ξ

f (α))). Since γ is unique with the above properties, we have

γ = Λf (α).
We summarize that all bifurcation chords are either of the form αΘf (α)

or αΛf (α). For each α, the chord αΘf (α) is the unique symmetric bifurca-
tion chord with endpoint α, which also implies Θf (Θf (α)) = α. Similarly,
the uniqueness of the nonsymmetric bifurcation chord, if defined, yields
Λf (Λf (α)) = α. Finally, nonsymmetric bifurcation chords with endpoint α
do not exist, if Λf (α) is not defined, completing the proof.

Remark. Note that, for f orientation reversing, Λf (α) exists for all α
of odd period, while for α of even period m, Λf (α) exists if and only if m/2

is odd and Θf (α) = f◦m/2(α).

Lemma 7.2 states that all bifurcation chords described in Theorem 1
exist—the existence of the three bifurcation chords connecting the fixed
points of an orientation reversing map f is trivial—and that the described
sets Biff are complete, i.e. there are no other bifurcation chords. In particu-
lar, this shows (ii) and (iv). To complete the proof of Theorem 1 it remains
to show the following three things: firstly, the relation between the kneading
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sequences of the endpoints of symmetric bifurcation chords as stated in (i),
secondly, the disjointness of symmetric bifurcation chords and finally, the
existence and disjointness of the rectangles described in (iii).

Bifurcation chords and kneading sequences. Recall that an angle β is
said to be behind a chord αγ if d(α, γ) < 1/2 and β lies in the smaller open
arc with endpoints α and γ.

Lemma 7.3. Let αγ be a symmetric bifurcation chord. Then the kneading

sequences of α and γ coincide and are different from the kneading sequence

of any (periodic) β behind αγ.

Proof. Equality of the kneading sequences of α and γ can easily be seen
from Lemma 3.3. So assume that some β behind αγ has the same kneading
sequence as α (and γ). Let D = {α̇, γ̇, β̇}. Applying Lemma 3.3 to α and γ,
one easily sees that for some nonperiodic δ sufficiently close to α̇ and all
n = 0, 1, 2, . . . we have f◦n(D) ⊂ ]δ, δ + 1/2[ or f◦n(D) ⊂ ]δ + 1/2, δ[. By

Corollary 3.5, β̇ would lie on the orbit of α but between the chords α̇γ̇
and α̈γ̈. This is impossible by Lemma 3.3.

Lemma 7.3 and the existence and uniqueness of a symmetric bifurcation
chord for each periodic α ∈ Perf (compare Lemma 7.2) provide the following
obvious but important statement: The number of periodic angles of period
m > 1 with a given kneading sequence is even.

Up to the end of this section it is convenient to assume that f = h or

f = h. Conjugacy of f to h or h guarantees that all statements presented
below remain true in the general case (Lemma 7.4 only with the obvious
change in the order of the αi with respect to a fixed point of f).

For f = h or f = h the angle 0 does not lie behind a bifurcation chord.
Otherwise, the chord would cross f−1(δ) where δ denotes its nearest end-
point to 0. Therefore, for general f we have:

Behind a bifurcation chord there is no fixed point.(7.4)

Moreover, the following is valid:

Lemma 7.4. For f = h or f = h, let {α1, . . . , αk} ⊂ Perf be the set of

angles of period greater than 1 with a given kneading sequence. Then k is

even, and if α1 < · · · < αk then Θf (αl) = αl+1 for all odd l < k.

We will make use of the following fact.

Lemma 7.5. For a bifurcation chord α1α2 and n ∈ N, if β1 and β2 are

angles and α1α2 and sufficiently close to α1 and α2, respectively , then the

nth symbols of their kneading sequences coincide.

Proof. We assume that n is a multiple of (at least) one of the periods
mi of αi. Otherwise the statement is obvious. For i = 1, 2 choose βi close
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enough to αi to ensure d(f◦l(βi), f
◦l(αi)) < 1

2d(β1, β2) for l = 1, . . . , n, and

let β̃i be the endpoint of f−1(βi) closer to α̇i, and ˜̃βi be the other one.
Assume m1 ≥ m2. If n is a multiple of both periods, i.e. n = km for some

k ∈ N and either m = m1 = m2 or m = m1 = 2m2, we have f◦km(α̇i) = α̇i

for i = 1, 2. Then d(f◦km(β̃i), α̇i) > d(β̃i, α̇i). So depending on the orienta-

tion of f◦km, the chord f◦km−1(β1β2) = f◦km(β̃1β̃2) is either between β̃1β̃2

and ˜̃β1
˜̃β2 or behind α̇1α̇2, implying that the nth symbols of the kneading

sequences of β1 and β2 coincide. In the remaining case, n is a multiple of
only one period, i.e. n = km for some odd k and m = m2 = 1

2m1.

Here f is orientation reversing, m is odd, and α1 = Λf (α2) = f(ξf
even(α2))

(see Definition 7.1). Moreover, f◦n(α̇2) = α̇2 while f◦n(α̇1) = f◦m(α̇1) =

f◦m(ξf
even(α2)) = ξf

odd(α2) 6= α̇1. By Proposition 5.1(ii) (cf. Figure 6, right),

the angle ξf
odd(α2)—and thus f◦n−1(β1) for β1 sufficiently near to α2—is

behind the chord α̇1α̇2 = ξf
odd(α2)α̇2. Also f◦n−1(β2) is behind α̇1α̇2, since

f◦n is orientation reversing, implying again coincidence of the nth symbols
of the kneading sequences.

On the base of (7.4) and Lemma 7.5, we get the following statement:

Corollary 7.6. Behind each bifurcation chord the number of periodic

angles of a given period is even.

Proof. According to Lemma 1.3, the nth symbol of the kneading se-
quence switches from 0 to 1 exactly in nonfixed periodic angles for which
n is a multiple of their period. If there existed a bifurcation chord B with
an odd number of periodic angles of some period n behind B, one could
assume n to be minimal with this property. Then the number of periodic
angles behind B of period properly dividing n would be even. This and (7.4)
would imply that the number of switches of the nth symbol of the kneading
sequence is odd, contradicting Lemma 7.5.

Disjointness of symmetric bifurcation chords. In order to show the dis-
jointness of all symmetric bifurcation chords for given f , we construct a
system of mutually disjoint chords and show that this system coincides with
the system of all chords βΘf (β) with β ∈ Perf . This generalizes an idea of
Lavaurs (see [9]).

Call an angle α1 ∈ Perf combinatorially smaller than α2 ∈ Perf if
the period of α1 is less than the period of α2 or the periods coincide and
α1 < α2 (in ]0, 1[). Construct chords B1, B2, . . . with endpoints in Perf as
follows:

Start with an empty set of chords and with n = 0. If B1, . . . , Bn are
already constructed, let γ be the combinatorially smallest angle in Perf

different from the endpoints of B1, . . . , Bn, and let δ be the combinatorially
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smallest angle different from γ and the endpoints of B1, . . . , Bn and such
that γδ does not cross any of the chords B1, . . . , Bn. Set Bn+1 = γδ.

It remains to prove that each Bi is of the form βΘf (β). So we assume

that this is true for i = 1, . . . , n. Let Bn+1 = γδ be given as above and let p

(> 1) be the period of γ. Since by Corollary 7.6 behind each Bi (i = 1, . . . , n)
the number of periodic angles of period p is even, at least one of them is
different from γ and not separated from γ by one of the chords B1, . . . , Bn.
This implies that δ has period p.

By Lemma 7.4, δ = Θf (γ) if for all η ∈ Perf of period p with γ < η < δ

the kneading sequence is different from that of γ. Indeed, such η is separated
from γ by a chord B ∈ {B1, . . . , Bn}. Assume that B has minimal possible
period, say q. Then by the construction of the Bi this period is less than p
and B is unique. (Two such chords would be separated by one of a smaller
period.) Consequently, the number of angles in Perf with period dividing
q lying in the interval ]γ, η[ is odd. Since the qth symbol of the kneading
sequence changes exactly at such angles, the kneading sequences of γ and η
have different qth symbols.

We have shown that all symmetric bifurcation chords are mutually dis-
joint. This completes the proof of Theorem 1 for the orientation preserv-
ing case. For f orientation reversing, note that, by (7.4), the three chords
connecting the fixed points of f do not cross any other bifurcation chord.
Moreover, we have to discuss the nonsymmetric bifurcation chords in this
case.

Existence and disjointness of rectangles. Let α ∈ Perf be of odd pe-

riod, λ = Λf (α) = f(ξf
even(α)), Θf (λ) = f(ξf

odd(α)) and Θf (α) = f(ξf (α)).

Since, by (7.3), Θf (α)Θf (λ) is a bifurcation chord, the four angles form
a rectangle with all sides being bifurcation chords as described in Theo-
rem 1. To show the disjointness of this rectangle from any other bifurcation
chord it remains to prove that there is no symmetric chord separating the
chords αΘf (α) and λΘf (λ). All other possibilities of chords crossing the
rectangle would either violate the disjointness of symmetric chords or con-
tradict the fact that λΘf (λ) is always the longest chord of a rectangle (cf.
Lemma 6.1(ii)).

Assuming that there exist symmetric chords separating αΘf (α) and
λΘf (λ), let k be the minimal possible period of the endpoints of such a
separating chord. Since each angle in Perf is the endpoint of a unique sym-
metric bifurcation chord, and symmetric bifurcation chords do not cross
each other, Corollary 7.6 implies that αΘf (α) and λΘf (λ) are separated
by at least two symmetric bifurcation chords with endpoints of period k.
The latter can be chosen so that no symmetric chord of period not greater
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than k separates them. Then their endpoints must have the same knead-
ing sequences, which immediately follows from Lemmata 1.3 and 7.5. This
contradicts Lemma 7.3.

So the two symmetric bounding chords of a rectangle are not separated
by a symmetric bifurcation chord. Therefore, rectangles are mutually dis-
joint. Since each nonsymmetric bifurcation chord belongs to some rectangle,
this completes the proof of Theorem 1.

8. Proof of the Similarity Theorem. According to Lemma 6.1, there
is a unique longest chord BC in each f◦n-set C, which is a bifurcation
chord and satisfies one of statements (a)–(d) in assertion (i) of that lemma.
In view of Theorem 1 and the paragraph following it, it is clear that BC

satisfies (a) if and only if it is a free bifurcation chord. Similarly, (b) cor-
responds to BC being regular, and irregular chords BC satisfy either ‘(c)
or (d), implying the classification of bifurcation chords BC stated in Theo-
rem 2(ii).

To show the one-to-one correspondence between f◦n-sets and bifurcation
chords via the map C 7→ B = BC , we first prove this assertion for f◦n-
sets with free and regular longest chords BC . If B is a free bifurcation
chord with endpoints of period n, denote these endpoints by α and γ. If
B = β1β2 is a regular bifurcation chord with endpoints of period 2n (n odd),
let α = Λf (β1) and γ = Λf (β2) be the other two vertices of the corresponding
rectangle. In both cases αγ is a bifurcation chord with endpoints of period n.
Moreover, by Lemma 6.4, Cf (α) (as well as Cf (γ)) is an f◦n-set and, by
Corollary 6.3, its longest chord is BCf (α) = B. Thus there is at least one f◦n-
set with longest chord B for each free or regular B, i.e. the map C 7→ B = BC

is surjective. We show injectivity by proving that given B all f◦n-sets C with
longest chord B coincide.

Proposition 8.1. Let C be an f◦n-set with free or regular BC and let

α and γ = Θf (α) be its unique angles of period n. Then C = Cf (α) =
Cf (γ).

Proof. We show that C̃f (α) ⊆ C̃. For α let Scenter be as in Section 4.

Since α ∈ C, we have α̇ = f◦n−1(α) ∈ C̃ and thus α̈ ∈ C̃ because of the
′-symmetry of C̃. Moreover, since for i = 1, . . . , n − 1 the set f◦i(C̃) lies
behind B

C̃
or B′

C̃
(see Lemma 6.1(ii)), and α̇α̈ between B

C̃
and B′

C̃
, one

shows by induction that the endpoints of chords in Scenter are contained

in C̃. This yields C̃f (α) ⊆ C̃, implying Cf (α) ⊆ C. Now it is an immediate
consequence of Corollary 6.3 that BC and BCf (α) coincide. So the endpoints

of BC are elements of Cf (α). Using Lemma 6.1(iii),(iv), one shows induc-
tively that all endpoints of chords in BC belong to Cf (α). Since Cf (α) is
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closed, it also contains all accumulation points of such endpoints, hence C.
Therefore, C = Cf (α). In the proof we can replace α by γ and show in the
same way that C = Cf (γ).

According to Proposition 8.1, we have bijectivity of the map C 7→ B =
BC if the chord αγ (and thus the set Cf (α) = Cf (γ)) is uniquely deter-
mined for each free or regular bifurcation chord B. For free chords B this is
obviously true, since B = αγ. For regular chords B, note that for sets Cf (α)
with longest chord B, by (7.3), αβ is a (nonsymmetric) bifurcation chord,
where β is one of the endpoints of B. So, by Lemma 7.2, αγ is uniquely
determined. Summarizing the above we arrive at the following:

Corollary 8.2. C 7→ BC bijectively maps the family of all f◦n-sets with

BC free or regular onto the set of all free or regular bifurcation chords.

Note that assertion (iii) of Theorem 2 is a direct consequence of Lem-
ma 6.2. For uniqueness of the map πC with the required properties see its
construction.

We complete the proof of bijectivity of the map C 7→ BC by treating
the case of irregular bifurcation chords BC . First recall that, according to
Lemma 6.5, C0 = Ch(1/3) is an h◦2-set with BC0 = 1

3
2
3 . So C1 and C2,

obtained by rotating C0 by 1/3 and 2/3, respectively, are h◦2-sets as well.
Their longest chords are BC1 = 2

30 and BC2 = 01
3 , respectively.

For f orientation reversing and α ∈ Perf of odd period n, consider the
three irregular sides αΘf (α), αΛf (α) and Θf (α)Λf (Θf (α)) of the corre-
sponding rectangle. Their endpoints belong to the f◦n-set C = Cf (α). Now
πC : TC → T conjugates f◦n to h and maps the chord αΘf (α) to the chord
1
3

2
3 and the chord Λf (α)Λf (Θf (α)) to 0. Therefore π−1

C (C0), π−1
C (C1) and

π−1
C (C2) define three f◦2n-sets, the longest chords of which are the three

irregular chords. Thus for each irregular bifurcation chord B there is an
f◦n-set with longest chord B, implying surjectivity.

For injectivity of the map C 7→ BC for f◦n-sets with irregular BC we can
argue as at the end of the proof of Proposition 8.1 (also cf. Lemma 6.1): The
forward orbit of BC determines whether f◦i(C) for i = 0, 1, . . . is behind the
chord B

C̃
= f◦n−1(BC), behind B′

C̃
, or between these two chords. From this

one shows that BC , hence C, is determined by BC .
In order to show (iv) of Theorem 2, let C be an f◦n-set and g be h or h

as in Theorem 2. By Lemma 6.1(i), BC has period dividing n and all other

chords in BC are preperiodic. Therefore, Perf
C is contained in the set TC \BC

(here regard BC as a set of points in TC). Clearly, πC maps Perf
C bijectively

onto Perg, where angles mapped to angles of period k have period kn.

Let γ ∈ Perf
C be of period kn and γ = π−1

C (Θg(πC(γ))). We show that
γγ is a symmetric bifurcation chord. Clearly, γ has the same period as γ,
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and by definition of Θg, the iterates of πC(γ)Θg(πC(γ)) do not cross each
other and do not cross the diameters g−1({πC(γ)}) and g−1({Θg(πC(γ))}).
Therefore, the f◦n-iterates of γγ (with endpoints in C) do not cross each
other, and thus the same holds for the f◦n-iterates of f◦i(γγ) (with endpoints
in f◦i(C)) for i = 1, . . . , n − 1. Since, moreover, the f -iterates of C are
weakly unlinked, we conclude that the f -iterates of γγ do not cross each
other. Furthermore, since πC̃ conjugates f◦n restricted to TC̃ to g, the f◦n-

iterates of the chord f◦n−1(γγ) (with endpoints in C̃) do not cross the chords
f−1({γ}) and f−1({γ}). Here note that π

C̃
maps g−1({πC(γ)}) to f−1({γ})

and g−1({πC(γ)}) to f−1({γ}). Hence γγ is indeed a symmetric bifurcation
chord, and, by Lemma 7.2, γ = Θf (γ).

In a similar way one can show that the images of nonsymmetric bifur-
cation chords under π−1

C are again nonsymmetric bifurcation chords, i.e.

for f orientation reversing and γ ∈ Perf
C of odd period, the chord γγ̂ is a

nonsymmetric bifurcation chord, where γ̂ = π−1
C (Λh(πC(γ))). Now (iv) of

Theorem 2 can easily be seen, and so the proof of Theorem 2 is complete.
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