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Forcing relation on interval patterns

by

Jozef Bobok (Praha)

Abstract. We consider–without restriction to the piecewise monotone case—a forc-
ing relation on interval (transitive, roof, bottom) patterns. We prove some basic properties
of this type of forcing and explain when it is a partial ordering. Finally, we show how our
approach relates to the results known from the literature.

1. Introduction. A (line) system is a pair 〈T, g〉, where T ⊂ R is
compact and g : T → T is a continuous map. Two systems 〈T1, g1〉, 〈T2, g2〉
are equal if T1 = T2 and g1 = g2. For a nonempty compact set T ⊂ R we
denote by C(T ) the set of all continuous functions that map T into itself. In
particular, if I ⊂ R is a closed interval, any element of C(I) will be called an

interval map. A function f ∈ C(T̃ ) has a system 〈T, g〉 if T ⊂ T̃ and f |T = g.
It is quite easy to see that any continuous interval map has infinitely

many distinct systems. One can ask the following question: if it is known
that a continuous interval map has a given system, what can be said about
other systems of that map? Some interesting results concerning this ques-
tion are known—they are included in the theory of the forcing relation on
interval patterns (a pattern is an equivalence class of systems). For periodic
patterns, the systematic theory was summarized in [1], in [8] the case of
finite patterns (given by finite sets) has been deeply studied, and recently
the case of piecewise monotone minimal patterns (also infinite) has been
examined [5]. The main aim of our paper is to extend the notion of forcing
on minimal (periodic, finite) patterns to more general (not only piecewise
monotone) cases.

In Section 2 we define a natural equivalence of transitive systems. Then
a transitive pattern is a corresponding equivalence class. Using the usual
definition of the forcing relation we characterize when a transitive pattern
forces another one. The main statement of this part is Theorem 2.4.
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In Section 3 we introduce a special type of transitive pattern—we call
it a roof pattern—that arose from maximal ω-limit sets. Defining a non-

fractal structure of a transitive pattern, in Theorem 3.5 we show that the
forcing relation restricted to the set of nonfractal roof patterns is a partial
ordering.

In Section 4 we explain how our results relate to the ones known from the
literature [1], [5]. For this purpose we define a (nonfractal) bottom system

as a system (minimal with respect to inclusion) coding a (nonfractal) roof
system. In particular we show that any minimal (periodic) system is a non-
fractal bottom system. Saying that two bottom systems are equivalent when
they code equivalent roof systems we introduce a bottom pattern. Again us-
ing the usual definition of forcing, in Lemma 4.5 we prove that our forcing
relation on bottom patterns extends the one used on minimal (periodic)
patterns. In Theorem 4.8 we prove that the forcing relation on nonfractal
bottom patterns is a partial ordering. Finally, Theorem 4.9 says that our
result generalizes the ones known from the literature—see Theorem 6.4.

Section 5 is mainly devoted to the technical statements needed to prove
our results.

In Section 6 we present some important notions and results known from
the literature. Mainly we recall Blokh’s classification of maximal ω-limit sets
[4] that plays a central role in our paper.

By R, N, N0 we denote the sets of real, positive integer and nonnegative
integer numbers respectively. For g ∈ C(T ) we define gn inductively by
g0 = id and (for n ≥ 1) gn = g ◦ gn−1. Let g ∈ C(T ). If J is a nonempty
subset (maybe one point) of T , then the orbit of J under g is orb(g, J) =
{gn(J)}∞n=0. We often write orb(g, J) instead of

⋃
orb(g, J). We say that J

is g-periodic, resp. weakly g-periodic of period n ∈ N if J, . . . , gn−1(J) are
pairwise disjoint and gn(J) = J , resp. gn(J) ⊂ J . A fixed point is a periodic
point of period 1 and Per(g), resp. Fix(g) is the set of all periodic, resp.
fixed points of g. The ω-limit set ω(g, x) of x consists of all the limit points
of orb(g, x).

If a function f ∈ C(T̃ ) has a system 〈T, g〉 then we often write 〈T, f〉
instead of 〈T, g = f |T 〉.

2. Transitive patterns

2.1. Classification of transitive systems. A system 〈T, g〉 is said to be
transitive if ω(g, x) = T for some x ∈ T . Such a point will be called transitive

and we denote by Tran〈T, g〉 the set of all transitive points in T . We will use
the known classification of possible types of transitive (line) systems (see
for example [3]): Any transitive system 〈T, g〉 satisfies either (i), (ii) or (iii),
where:
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(i) T is finite, there is a least n ∈ N such that T = {x, g(x), . . . , gn−1(x)}
for any x ∈ T . In this case 〈T, g〉 is called a cycle. The set of all
cycles is denoted by P.

(ii) T is a Cantor set and all points of T have an orbit dense in T . In
this case 〈T, g〉 is called minimal. The set of all minimal systems is
denoted by M.

(iii) T is either a Cantor set (〈T, g〉 ∈ NMC) or a finite union of closed
intervals (〈T, g〉 ∈ NMI) and not all points of T have an orbit dense
in T . The set of all such systems is denoted by NM = NMC ∪
NMI .

We put T = P ∪M∪NM.

2.2. Transitive pattern, forcing relation. Lemma 5.2 shows one can define
an equivalence relation for transitive systems in the following natural manner.

2.1. Definition. Transitive systems 〈T, g〉, 〈S, f〉 are equivalent if there
are points xT ∈ Tran〈T, g〉, yS ∈ Tran〈S, f〉 such that for any i, j ∈ N0,

(2.1) gi(xT ) < gj(xT ) ⇔ f i(yS) < f j(yS).

In that case we write 〈T, g〉 ∼ 〈S, f〉 and xT ↔ yS .
A transitive pattern is a corresponding equivalence class in T∼. We de-

note by [〈T, g〉]∼ a transitive pattern from T∼ with representative 〈T, g〉. The
cardinality of a transitive pattern A is equal to cardT , where 〈T, g〉 ∈ A (it

does not depend on the choice of a representative). If a map f ∈ C(T̃ ) has a
transitive system 〈T, g〉 then we also say that f exhibits a transitive pattern

[〈T, g〉]∼.
Put C = {f : I → I : I ⊂ R is a compact interval and f is continuous}.

2.2. Definition. A transitive pattern A forces a transitive pattern B
we write A →֒ B if all maps in C exhibiting A also exhibit B.

A cycle 〈T, g〉 (resp. a pattern [〈T, g〉]∼) is a 2-extension of a cycle 〈S, f〉
(resp. of a pattern [〈S, f〉]∼) with S = {s1 < · · · < sk} if there are T -
blocks Bi = {ai, bi} ⊂ T , i ∈ {1, . . . , k}, such that ai < bi < ai+1 for i ∈

{1, . . . , k − 1}, T =
⋃k

i=1 Bi, and g(Bi) = Bj if and only if f(si) = sj .
For a system 〈R, p〉, pR ∈ C(conv R) denotes a map such that pR|R = p

and pR is affine on each component of conv R \R (such a component called
an R-contiguous interval).

2.3. Definition. For a system 〈R, p〉 ∈ T we say that 〈T, g〉 ∈ P is a
reducible system (cycle) of pR if

• T ⊂ conv R and pR|T = g,
• 〈T, g〉 is a 2-extension,
• each T -block is a subset of a closed R-contiguous interval.
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We say that the map pR exhibits a pattern B irreducibly if pR has a system
〈T, g〉 ∈ B which is not a reducible system of pR.

2.4. Theorem. Let A 6= B be transitive patterns. The following condi-

tions are equivalent :

(i) A forces B.

(ii) For every 〈R, p〉 ∈ A, pR exhibits the pattern B irreducibly.

(iii) For some 〈R, p〉 ∈ A, pR exhibits the pattern B irreducibly.

Proof. The implication (ii)⇒(iii) is clear. Thus it is sufficient to prove
(i)⇒(ii) and (iii)⇒(i).

(i)⇒(ii). Assume to the contrary that there is a system 〈R, p〉 ∈ A such
that the map pR has only representatives of B which are reducible systems
of pR. By Definition 2.3 and Lemma 5.16(iv) this means that

• 〈R, p〉 ∈ NM and B is a 2-extension (a periodic pattern),
• whenever pR has a cycle 〈T, g〉 ∈ B with T -blocks Bi ⊂ [ai, bi], where

each [ai, bi] is a closed R-contiguous interval, then 〈T ⋆ =
⋃

i{ai, bi}, p〉
is also a reducible cycle of pR.

The cycle 〈T ⋆, p〉 satisfies T ⋆ ⊂ R; such a system will be called a maximal

reducible cycle of pR. Let {〈T j , p〉}j ⊂ B contain all maximal reducible

cycles of pR with T j-blocks Bj
i = {aj

i , b
j
i}. Define a continuous surjective

nondecreasing map α : conv R → conv R by

α|J is constant ⇔ ∃i, j, k : pk
R(J) ⊂ [aj

i , b
j
i ].

Such a map exists since Tran〈R, p〉 ∩
⋃

[aj
i , b

j
i ] = ∅ and the set

conv R \
⋃

i,j

⋃

k∈N0

p−k
R ((aj

i , b
j
i ))

is perfect. Using α, we can find (see [1, Lemma 4.6]) a map ̺ ∈ C(conv R)
satisfying

α ◦ pR = ̺ ◦ α on conv R.

Clearly, 〈α(R), ̺〉 ∈ NM and since α is increasing on Tran〈R, p〉, we
also have 〈R, p〉 ∼ 〈α(R), ̺〉, i.e., ̺ exhibits the pattern A. At the same
time, since α “kills” all representatives of B, ̺ does not exhibit B, which
contradicts our assumption (i). Summarizing, we have shown that if (i) is
true then the map pR has to exhibit the pattern B irreducibly.

(iii)⇒(i). Assume that for some 〈R, p〉 ∈ A, pR exhibits the pattern B
irreducibly, and fix a map f ∈ C, f : I → I exhibiting A. We need to prove
that f also exhibits B. Let pR have a representative 〈T, pR〉 of B which is
not a reducible system of pR, and assume that S ⊂ I is a closed f -invariant
set satisfying 〈S, f〉 ∈ A. We will distinguish two possibilities.
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Case I: T ⊂ R. In this case Lemma 5.5(i) guarantees the existence of
a closed f -invariant set T ⋆ ⊂ conv S such that 〈T ⋆, f〉 ∼ 〈T, pR〉, hence
〈T ⋆, f〉 ∈ B, i.e., the map f exhibits the pattern B.

Case II: Tran〈T, pR〉 ∩ R = ∅ and T is infinite. Then we can apply
Lemma 5.10 putting 〈A, α〉 = 〈R, p〉, 〈T, r〉 = 〈T, pR〉, 〈S, q〉 = 〈S, f |S〉, q̃ =
f |conv S and B = S. By that lemma there exists a set T ⋆ ⊂ [minS, maxS]
for which 〈T ⋆, f〉 ∼ 〈T, pR〉, i.e., f exhibits the pattern B.

If Tran〈T, pR〉 ∩ R = ∅ and T is finite we will apply Lemma 5.11 for
〈R, p〉, 〈S, q = f |S〉, q̃ = f |conv S and 〈T, pR〉. This is possible since 〈T, pR〉
is not a reducible system of pR. By Lemma 5.11 there exists a set T ⋆ ⊂
[minS, maxS] for which 〈T ⋆, f〉 ∼ 〈T, pR〉, i.e., f exhibits the pattern B.

3. Roof patterns. By Blokh [4], if ω ⊂ I is a maximal ω-limit set of
an interval map f : I → I then 〈ω, f〉 is a transitive system. In this part we
use the equivalence relation ∼ only on a set of transitive systems that arose
from maximal ω-limit sets—we call them roof systems.

3.1. Definition. A transitive system 〈T, g〉 is a roof system if for any
closed set S such that T ⊂ S ⊂ conv T and the system 〈S, gT 〉 is transitive
we necessarily have S = T . The set of all roof systems will be denoted
by RS.

A roof pattern is a corresponding equivalence class in RS∼.

By the definition, if 〈T, g〉 is a roof system then T is a maximal ω-limit
set of a map gT . Thus, to distinguish all possible types of roof systems we
can use the properties of maximal ω-limit sets described in [4] and recalled
in Section 6. Here we recall two definitions used below.

Solenoidal system. Let 〈S, f〉 be a system and let K0 ⊃ K1 ⊃ · · · be
fS-periodic intervals containing S with periods n0, n1, . . . . Obviously ni+1

is a multiple of ni for all i. If ni → ∞ then the intervals {Ki}i∈N0
are said

to be Q-generating, where

S ⊂ Q =
⋂

i∈N0

orb(fS , Ki).

If ω(fS , x) = S for any x ∈ Q, the system 〈S, f〉 is minimal and it is called
a solenoidal system.

Basic system. For a system 〈B, f〉 let K be an fB-periodic interval with
a period n, and L = orb(fB, K). The system 〈B, f〉 is called a basic system

provided that the set B is infinite and if J(x) denotes a neighbourhood of
x ∈ L (in L) then

B = B(L, fB) = {x ∈ L : orb(fB, J(x)) = L for each J(x)}.
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Using the results from Section 6, we show in Lemmas 5.12, 5.13 and 5.15
that for a roof system 〈T, g〉 exactly one of the following three possibilities
holds:

(i) T is finite and either cardT = 1 (a trivial roof system) or 〈T, g〉 is
a 2-extension;

(ii) 〈T, g〉 is a solenoidal system;
(iii) 〈T, g〉 is a basic system.

First, let us emphasize that our definition of a roof pattern is fully com-
patible with the equivalence relation ∼ on T.

3.2. Lemma. If A is a roof pattern and 〈S, q〉 ∈ A then A = [〈S, q〉]∼.

Moreover , if 〈S, q〉 is basic (resp. solenoidal , a 2-extension, a trivial roof

system) then any element of A is basic (resp. solenoidal , a 2-extension,
a trivial roof system).

Proof. This is an immediate consequence of Lemmas 5.18, 5.12, 5.13 and
5.15.

In accordance with the previous lemma we can say about a roof pattern
that it is trivial, a 2-extension, solenoidal or basic. In what follows we intro-
duce another notion useful for our purpose: fractal and nonfractal transitive
systems.

3.3. Definition. A transitive system 〈S, f〉 is said to be fractal if there

is a set S̃ ( S such that 〈S̃, f〉 is transitive and 〈S̃, f〉 ∼ 〈S, f〉. A transitive
system which is not fractal is called nonfractal.

3.4. Lemma. Two equivalent transitive systems 〈T, g〉, 〈R, p〉 are simul-

taneously fractal , resp. nonfractal.

Proof. Let 〈T, g〉 be fractal, i.e., 〈S, f = g|S〉 ∼ 〈T, g〉 for some S ( T .
Then 〈T, g〉 ∈ NM. Fix u ∈ Tran〈S, f〉 and consider v ∈ BT,R({u}) as
in Lemma 5.2. By properties (i), (ii) of that lemma, the orbits orb(g, u),
orb(p, v) have the same order. Putting Ki = pi(v) in Lemma 5.4, we infer

that there is a p-recurrent point r⋆ ∈ R such that pm(n)(v) ց r⋆ and for
R∗ = ω(p, r∗) we have 〈R∗, p〉 ∼ 〈S, f〉 ∼ 〈T, g〉 ∼ 〈R, p〉. Since by Lemma
5.2(iii), v /∈ Tran〈R, p〉, also r⋆ /∈ Tran〈R, p〉, i.e., the system 〈R, p〉 is fractal.
This proves the lemma.

Thus we can also talk about fractal and nonfractal transitive patterns.
The main result of this section follows. We say that a system 〈R, p〉 is piece-

wise monotone if the map pR ∈ C(conv R) is piecewise monotone.

3.5. Theorem. The forcing relation on nonfractal roof patterns is a

partial ordering.
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Proof. In the proof we say briefly “pattern” instead of “nonfractal roof
pattern”.

Clearly, if A is a pattern, then A →֒ A (reflexivity); if A, B, C are pat-
terns such that A →֒ B and B →֒ C, then A →֒ C (transitivity). Thus it
remains to prove the weak antisymmetry of the forcing relation. It holds
trivially when min{card A, cardB} ≤ 2. Therefore we will assume that
min{cardA, card B} > 2.

Suppose that for patterns A, B, A →֒B and B →֒A. Using Lemma 5.16(i)
we see that A is piecewise monotone if and only if B is. We need to show
that A = B. Let us distinguish several possibilities.

Case I: A, B not piecewise monotone, A solenoidal. Fix 〈R, p〉 ∈ A.
From Lemma 3.2 we know that 〈R, p〉 ∈ M; by our assumption the map
pR exhibits B, i.e., 〈S, pR〉 ∈ B for some S ⊂ conv R. Since 〈S, pR〉 is not
piecewise monotone, S ∩ J is nonempty for infinitely many R-contiguous
intervals J , hence from minimality of 〈R, p〉 we get R ⊂ S. But 〈R, p〉 is a
roof system. Then Definition 3.1 gives R = S, hence also A = B.

Case II: A, B basic, not piecewise monotone. Using Theorem 6.2 we can
fix 〈R, p〉 ∈ A ∩ NMI . As before the map pR exhibits B, i.e., 〈S, pR〉 ∈ B
for some S ⊂ conv R. We assume that 〈S, pR〉 is not piecewise monotone
and A 6= B. Using the fact that the set R has finitely many R-contiguous
intervals we get S ( R. Similarly we can take a system 〈S′, q〉 ∈ B ∩ NMI

to show that 〈R′, q〉 ∈ A for some R′ ( S′. Since 〈R′, q〉 is not a reducible
system of qS′ , Lemma 5.5(i) gives a set R′′ ⊂ S ( R such that 〈R′′, p〉 ∈ A
and 〈R′′, p〉 ∼ 〈R, p〉. This contradicts our assumption that A is nonfractal.
Thus, A = B.

Case III: A, B piecewise monotone, A solenoidal or a 2-extension. Sup-
pose A 6= B and 〈T, g〉 ∈ A (with cardT > 2). Since A forces B, the map
gT exhibits the pattern B. Fix 〈S, f = gT |S〉 ∈ B. If T ∩ S 6= ∅ then since
〈T, g〉 ∈ P∪M we would have T ( S, which is impossible for the roof system
〈T, g〉. Thus, T ∩ S = ∅. In particular, minT < minS and maxS < maxT .
Define the map h ∈ C(conv T ) by

h(x) =





gT (minS), x ∈ [minT, minS],

gT (x) for x ∈ [minS, maxS],

gT (maxS), x ∈ [maxS, maxT ].

Then since B forces A and the map h exhibits B it has to exhibit also A,

i.e., we can consider some T̂ ⊂ conv S such that 〈T̂ , h〉 = 〈T̂ , gT 〉 ∈ A. Since

T 6= T̂ , this is impossible by Lemma 5.16(ii). This implies A = B.

Case IV: A, B basic, piecewise monotone. Using Theorem 6.2 we can
fix 〈T = [a1, b1]∪· · ·∪ [ak, bk], g〉 ∈ A∩NMI that has a block structure over
a cycle 〈S = {s1 < · · · < sk}, f〉 where si ∈ [ai, bi] for each i ∈ {1, . . . , k}
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and f = g|S. The map gT exhibits B, i.e., 〈R, gT 〉 ∈ B for some R ⊂
conv T . Without loss of generality we can assume that Tran〈R, gT 〉 ∩ T = ∅
(otherwise we could start from B and use the fact that both patterns A, B
are nonfractal).

Now we define a continuous nondecreasing map τ : conv T → conv S
such that

τ([ai, bi]) = si, (τ |J is constant ⇔ ∃n ∈ N0 : gn
T (J) ⊂ T ).

Such a map exists since Tran〈R, gT 〉 ∩ T = ∅ and conv T \
⋃

k∈N0
g−k
T (T ◦)

is perfect. Using τ , we can find (see [1, Lemma 4.6]) a map ̺ ∈ C(conv S)
satisfying

τ ◦ gT = ̺ ◦ τ on conv T.

Clearly, 〈τ(T ) = S, ̺|τ(T ) = f〉 ∈ P and ̺ ∈ C〈S, f〉. Since R ⊂
conv T\

⋃
k∈N0

g−k
T (T ◦) and τ |R is strictly monotone, by Lemma 5.4 there is a

set R⋆ ⊂ conv S for which 〈R, gT 〉 ∼ 〈R⋆, ρ〉 ∈ B. Then since S∩Tran〈R⋆, ρ〉
= ∅, from Lemma 5.10 we deduce that fS exhibits B irreducibly. By Theo-
rem 2.4, our assumption A →֒ B, B →֒ A, and Lemma 5.16(iii), this implies
that [〈S, f〉]∼ →֒ C and C →֒ [〈S, f〉]∼ for C ∈ {A, B}.

Now, from Theorem 2.4 we know that fS exhibits the patterns A, B;
let 〈U, u = fS |U〉, 〈V, v = fS |V 〉 be representatives of A, B respectively. If
minS = minU = minV then since fS = uU = vV , Lemma 5.17 implies
A = B. Without loss of generality assume that minS < minV . Then by the
above, vV exhibits thepattern [〈S, f〉]∼ andbyLemma5.6we can consider a set
S⋆ ⊂ conv V such that 〈S⋆, fS〉 ∼ 〈S, f〉, which contradicts Lemma 5.16(ii).

Thus, A = B.

4. Bottom patterns. In this section we explain how the forcing rela-
tion on roof patterns relates to the results on the forcing relation on periodic
and minimal patterns known from the literature [1], [5].

For a system 〈S, f〉 we can consider the set

(4.1) T =
⋃

{T̃ : S ⊂ T̃ ⊂ conv S and 〈T̃ , fS〉 is a transitive system}.

For example, if 〈S, f〉 itself is transitive then T 6= ∅. We will say that 〈S, f〉
is supporting if the set T defined in (4.1) is nonempty. Then 〈T, fS〉 is a roof
system (see Lemma 5.17) and we will denote it by ↑〈S, f〉 (we put ↑〈S, f〉 = ∅
if 〈S, f〉 is not supporting). As usual, a proper subsystem of a system 〈S, f〉
is a system 〈S1, f1〉 such that S1 ( S and f1 = f |S1. We start with the
following definition.

4.1. Definition. A supporting system 〈S, f〉 is a bottom system if there
is no proper subsystem 〈S1, f1〉 of 〈S, f〉 such that ↑〈S1, f1〉 ∼ ↑〈S, f〉. The
set of all bottom systems will be denoted by BS.
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Bottom systems 〈S1, f1〉, 〈S2, f2〉 are equivalent (we write 〈S1, f1〉 ⊲⊳
〈S2, f2〉) if ↑〈S1, f1〉 ∼ ↑〈S2, f2〉.

A bottom pattern is a corresponding equivalence class in BS⊲⊳. We denote
by [〈S, f〉]⊲⊳ a bottom pattern from BS⊲⊳ with representative 〈S, f〉. If a

map f ∈ C(S̃) has a bottom system 〈S, f〉 then we also say that f exhibits
a bottom pattern [〈S, f〉]⊲⊳.

The set BS of bottom systems seems to be of independent interest. In
the next lemma we state some of its basic properties.

4.2. Lemma.

(i) P ∪M ⊂ BS.

(ii) BS ∩ NM 6= ∅, NM\ BS 6= ∅.
(iii) BS \ (P ∪M∪NM) 6= ∅.

Proof. (i) follows directly from Definition 4.1.
(ii) To see BS ∩ NM 6= ∅, one can consider a transitive interval map

f : [0, 1] → [0, 1] such that for some c ∈ (0, 1), f(c) = 1, f |[0, c], resp. f |[c, 1]
is increasing, resp. decreasing (f is unimodal), and 0 is a transitive point.
Then 〈S = [0, 1], f〉 is a supporting (transitive) system and any proper
subsystem 〈S1, f1〉 of 〈S, f〉 has to satisfy 0 < minS1 ≤ maxS1 < 1, hence
↑〈S1, f1〉 ≁ ↑〈S, f〉 (see [7]). The set NM\BS is nonempty since it contains
the system 〈S = [0, 1], f = 1 − |1 − 2 id|〉 (the transitive full tent map on
the unit interval). Indeed, the system 〈S1, f1〉 defined by S1 = {0, 1/2, 1},
f1(0) = 0, f1(1/2) = 1, f1(1) = 0 is a proper subsystem and ↑〈S1, f1〉 =
〈S, f〉 = ↑〈S, f〉.

In order to prove (iii), consider the systems 〈S, f〉, 〈S1, f1〉 as above. Then
↑〈S1, f1〉 = 〈S, f〉, hence the system 〈S1, f1〉 is supporting. Since there is only
one proper supporting subsystem 〈{0}, f |{0}〉 of 〈S1, f1〉 and ↑〈S1, f1〉 ≁

↑〈{0}, f |{0}〉 = 〈{0}, f |{0}〉, we conclude that 〈S1, f1〉 /∈ P ∪M∪NM is a
bottom system according to Definition 4.1.

By the previous lemma any periodic or minimal system is a bottom
system. Now we show that our approach preserves “classical” periodic and
minimal patterns corresponding to the relation ∼ (see [1], [5]).

4.3. Lemma. If 〈S, q〉 ∈ P ∪M then [〈S, q〉]⊲⊳ = [〈S, q〉]∼.

Proof. Let 〈S, q〉 be a roof system, i.e., 〈S, q〉 = ↑〈S, q〉. Fix any 〈R, p〉 ∈
[〈S, q〉]⊲⊳. Then 〈S, q〉 ∼ ↑〈R, p〉, hence the roof system ↑〈R, p〉 is in P ∪M.
But then 〈R, p〉 = ↑〈R, p〉 and 〈R, p〉 ∈ [〈S, q〉]∼.

If 〈R, p〉 ∈ [〈S, q〉]∼ then Lemma 5.3 implies that 〈R, p〉 ∈ P ∪M. More-
over, our assumption 〈S, q〉 = ↑〈S, q〉 and Lemmas 5.12, 5.13 and 5.18 give
〈R, p〉 ∼ ↑〈R, p〉, hence 〈R, p〉 ∈ [〈S, q〉]⊲⊳. Thus, [〈S, q〉]∼ = [〈S, q〉]⊲⊳ in this
case.
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Suppose 〈S, q〉 is not a roof system, i.e., 〈S, q〉 6= ↑〈S, q〉. If 〈R, p〉 ∈
[〈S, q〉]∼ then by Lemma 5.3, 〈R, p〉 ∈ P ∪M and from Lemma 3.2 we know
that also 〈R, p〉 6= ↑〈R, p〉. Using Lemma 5.15 we deduce that ↑〈R, p〉 =
〈T, pR〉 ∈ NM is a basic system. Since R ( T , by Lemma 5.10 there is a set
T ⋆ ⊂ conv S such that 〈T, pR〉 ∼ 〈T ⋆, qS〉. Note that by Lemma 5.2(iv)–(vi)
the point t = minT ⋆ is a strongly qS-recurrent point and 〈ω(qS, t⋆), qS〉 ∼
〈R, p〉 ∼ 〈S, q〉.

Let us show that 〈ω(qS , t⋆), qS〉 = 〈S, q〉. If 〈S, q〉 is piecewise monotone
then this fact follows directly from Lemma 5.16(ii). If 〈S, q〉 is not piece-
wise monotone then 〈T, pR〉, 〈T

⋆, qS〉 are not piecewise monotone either. In
particular, T ⋆ is contained in infinitely many S-contiguous intervals. This
means that the distance between the compact sets S and T ⋆ is zero and
S ⊂ T ⋆. Since by Lemma 3.2, the system 〈T ⋆, qS〉 is a roof system, we
obtain ↑〈R, p〉 = 〈T, pR〉 ∼ 〈T ⋆, qS〉 = ↑〈S, q〉, i.e., 〈R, p〉 ∈ [〈S, q〉]⊲⊳.

Assume 〈R, p〉 ∈ [〈S, q〉]⊲⊳; we will show that 〈R, p〉 ∈ [〈S, q〉]∼. From
Lemma 5.2(iv)–(vi) we get 〈ω(pR, minR), pR〉 ∼ 〈S, q〉. We have proved
above that then also 〈ω(pR, minR), pR〉 ⊲⊳ 〈S, q〉. Since ω(pR, minR) ⊂ R
and 〈R, p〉 is a bottom system, we have ω(pR, minR) = R and 〈R, p〉 ∼ 〈S, q〉.

This proves the lemma.

In order to define the forcing relation on bottom patterns we use an
analogous definition to that for transitive patterns.

4.4. Definition. A bottom pattern A forces a bottom pattern B (we
write A ⇁ B) if all maps in C exhibiting A also exhibit B.

As a consequence of Lemma 4.3 we obtain

4.5. Lemma. Let 〈R, p〉, 〈S, q〉 ∈ P ∪ M. The following statements are

equivalent.

(i) [〈R, p〉]⊲⊳ ⇁ [〈S, q〉]⊲⊳.
(ii) [〈R, p〉]∼ →֒ [〈S, q〉]∼.

Proof. By Lemma 4.3, [〈R, p〉]⊲⊳ = [〈R, p〉]∼ and [〈S, q〉]⊲⊳ = [〈S, q〉]∼.
Since Definitions 2.2 and 4.4 coincide, the equivalence (i)⇔(ii) follows.

4.6. Lemma. Let 〈A, α〉 be a bottom system and f ∈ C. If f exhibits

[〈A, α〉]⊲⊳ then it also exhibits [↑〈A, α〉]∼.

Proof. Suppose f has a system 〈B, q〉 ∈ [〈A, α〉]⊲⊳, and set 〈S, qB〉 =
↑〈B, q〉. We know that B ⊂ S and 〈S, qB〉 ∈ [↑〈A, α〉]∼. The conclusion is
clear when B = S. Assume that B ( S. Since BS,S(B) = B, Lemma 5.10 for
q̃ = f |[minB, maxB] yields a set T ⋆ ⊂ [minB, maxB] such that 〈T ⋆, f〉 ∼
〈S, qB〉. Then from Lemma 3.2 we get 〈T ⋆, f〉 ∈ [↑〈A, α〉]∼, i.e., f exhibits
[↑〈A, α〉]∼.
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4.7. Definition. A bottom system 〈S, f〉 is said to be fractal, resp.
nonfractal if the system ↑〈S, f〉 is fractal, resp. nonfractal.

It follows from Lemma 3.4 that we can also talk about fractal, resp.
nonfractal bottom patterns. If A is a bottom pattern then using Lemma 3.2
we put

↑A = {↑〈S, q〉 : 〈S, q〉 ∈ A}.

As a consequence of Theorem 3.5 and Lemma 4.6 one can prove

4.8. Theorem. The forcing relation on nonfractal bottom patterns is a

partial ordering.

Proof. In this proof we say briefly “pattern” instead of “nonfractal bot-
tom pattern”.

Clearly, if A is a pattern, then A ⇁ A (reflexivity); if A, B, C are patterns
such that A ⇁ B and B ⇁ C, then A ⇁ C (transitivity). Thus it remains
to prove the weak antisymmetry of the forcing relation.

Suppose that A ⇁ B and B ⇁ A. We will show that also ↑A →֒ ↑B and
↑B →֒ ↑A. Then Theorem 3.5 yields ↑A = ↑B, hence also A = B.

By our assumption on forcing of A, B and by Lemma 4.6, for any repre-
sentative 〈T, g〉 ∈ A, the map gT exhibits B (in addition to A, of course) and
the roof patterns ↑A, ↑B. Moreover, from Definition 4.1 and Lemma 5.17
it follows that there exists a set T ⋆ with T ⊂ T ⋆ ⊂ conv T such that
〈T ⋆, r = gT |T

⋆〉 ∈ ↑A. Since gT = rT ⋆ , we can use Theorem 2.4(iii). It
states that if rT ⋆ exhibits the pattern ↑B irreducibly (for example, when B
is not a 2-extension) then ↑A →֒ ↑B. We will use this argument to show
that ↑A →֒ ↑B, resp. ↑B →֒ ↑A. To simplify the writing define the set of
periodic patterns EX2 = {A : A is a 2-extension} (see Lemma 4.3).

Case I: A /∈ EX2, B /∈ EX2. By the above, the assumption A ⇁ B and
B ⇁ A gives ↑A →֒ ↑B and ↑B →֒ ↑A. Then Theorem 3.5 implies ↑A = ↑B
and hence also A = B.

Case II: A, B ∈ EX2. The conclusion follows directly from Lemmas
5.12, 4.5 and Theorem 6.4.

Case III: A = [〈T, g〉]⊲⊳ ∈ EX2, B = [〈U, h〉]⊲⊳ /∈ EX2. By the above,
↑A →֒ ↑B. We will show that also ↑B →֒ ↑A. Let 〈T = {t1 < · · · < t2k}, g〉 be
a 2-extension over a cycle 〈R, p〉. As explained above, the map gT exhibits,
resp. irreducibly exhibits, the pattern B, resp. the roof pattern ↑B, and
↑A →֒ ↑B. Let 〈S, q = gT |S〉 ∈ ↑B for some infinite S ⊂ conv T , and let
U⋆ ⊂ conv U be such that U ⊂ U⋆ ⊂ conv U and 〈U⋆, i = hU |U

⋆〉 ∈ ↑B.
As above, if iU⋆ exhibits ↑A irreducibly, then by Theorem 2.4, ↑B →֒ ↑A
and we are done. So assume that 〈V, iU⋆〉 ∈ ↑A is a reducible system of iU⋆ .
Using Lemma 5.16(iv) we can assume that V ⊂ U⋆. Then by Lemma 5.5(ii)
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there is a set S0 ⊂ S such that exactly one of the following two possibilities
holds: either 〈S0, q〉 ∼ 〈T, g〉 or 〈S0, q〉 ∼ 〈R, p〉. Since

(4.2) S ∩
k⋃

i=1

[t2i−1, t2i] = S0 ∩
k⋃

i=1

[t2i−1, t2i] = ∅,

the first possibility contradicts Lemma 5.16(ii). Again by (4.2), the second
one is impossible because of Lemma 5.16(v).

Thus, also in this case from A ⇁ B and B ⇁ A we get ↑A →֒ ↑B and
↑B →֒ ↑A. By Theorem 3.5, ↑A = ↑B, which implies A = B.

In order to show that our Theorem 4.8 generalizes Theorem 6.4 we need
to prove

4.9. Theorem. For any system 〈S, f〉∈P∪M, the roof pattern [↑〈S, f〉]∼
is nonfractal.

Proof. By Lemma 3.4 it is sufficient to show that the roof system ↑〈S, f〉
is nonfractal. This holds trivially when ↑〈S, f〉 = 〈S, f〉.

Suppose ↑〈S, f〉 = 〈T, g〉 6= 〈S, f〉. Then 〈T, g〉 ∈ NM is a basic roof

system (see Theorem 6.1). Let T̃ ( T be such that 〈T̃ , g〉 is transitive and

〈T̃ , g〉 ∼ 〈T, g〉. By Lemmas 5.18 and 5.15, 〈T̃ , g〉 is also a basic roof system.

We show that T̃ ∩S = ∅. Indeed, otherwise fS = gT = g
T̃

and by Lemma

5.17, T = T̃ , a contradiction. Notice that by Lemma 5.2(iv)–(vi), the point

t = min T̃ is strongly gT -recurrent and

(4.3) 〈R = ω(gT , t), gT 〉 ∼ 〈S, f〉, S ∩ R = ∅.

The last property (4.3) is impossible for piecewise monotone 〈S, f〉 by
Lemma 5.16(ii). If 〈S, f〉 is not piecewise monotone, then 〈R, gT 〉 is not
piecewise monotone either and the set R has to be contained in infinitely
many S-contiguous intervals. Then the distance of the closed sets S, R is
zero, which contradicts S ∩ R = ∅ again.

Thus, the system ↑〈S, f〉 = 〈T, g〉 is nonfractal.

4.10. Remark. It would be of interest to describe in detail the prop-
erties of bottom systems. We conjecture that any bottom system according
to our Definition 4.1 is in fact nonfractal.

5. Technical results. For two closed sets K, L ⊂ R we write

(5.1) K < L ⇔ maxK < minL

(and analogously K ≤ L iff maxK ≤ minL).
We will need a generalized version of (2.1). Recall that C(T ) denotes

the set of all continuous functions that map a nonempty compact set T into
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itself. If T has empty interior then any closed subinterval of T consists of a
single point.

5.1. Definition. Let fj ∈ C(Tj), j ∈ {1, 2}. Assume there are closed

(maybe one-point) intervals Kj ⊂ Tj such that if we set Kj
i = f i

j(K
j),

i ∈ N0, then

(i) Kj
i is a point or a closed interval,

(ii) for i(1) 6= i(2) either Kj
i(1) ∩ Kj

i(2) = ∅ or Kj
i(1) = Kj

i(2).

We say that the orbits orb(f1, K
1), orb(f2, K

2) have the same order if for
any i(1), i(2) ∈ N0,

K1
i(1) < K1

i(2) ⇔ K2
i(1) < K2

i(2).

We denote by ExpX the set of all subsets of a set X. For two equivalent
systems 〈T, g〉, 〈S, f〉 ∈ T with Tran〈T, g〉 ∋ xT ↔ yS ∈ Tran〈S, f〉 we define
a set operator BT,S : ExpT → ExpS by (we write un  u if limn un = u
and {un}n is monotone)

BT,S(R) = {fm(n)(yS) : gm(n)(xT ) x ∈ R}, R ∈ ExpT.

For a map f ∈ C(T ), a point x ∈ T is called f -recurrent, resp. strongly

f -recurrent if x ∈ ω(f, x), resp. x is f -recurrent and 〈ω(f, x), f〉 is minimal.
The set of all strongly f -recurrent points will be denoted by Min(f). The
following lemma can be left to the reader as an exercise.

5.2. Lemma. Let 〈T, g〉 ∼ 〈S, f〉, u ∈ T and v ∈ BT,S({u}).

(i) card{gn(u) : n ∈ N0} = ∞ iff card{fn(v) : n ∈ N0} = ∞.

(ii) If card{gn(u) : n ∈ N0} = ∞ then the orbits orb(g, u), orb(f, v)
have the same order.

(iii) u ∈ Tran〈T, g〉 iff v ∈ Tran〈S, f〉.
(iv) u = minT iff v = minS.

(v) If u = minT ∈ Per(g) then v ∈ Per(f) and

〈orb(g, u), g〉 ∼ 〈orb(f, v), f〉.

(vi) If u = minT ∈ Min(g) then v ∈ Min(f) and

〈ω(g, u), g〉 ∼ 〈ω(f, v), f〉.

From Lemma 5.2 we obtain

5.3. Lemma. Let 〈T, g〉 ∼ 〈S, f〉. Then 〈T, g〉, 〈S, f〉 belong to the same

element of {P,M,NM}.

In order to study transitive systems we need a method to recognize that
a fixed map f ∈ C(I) has such a system of prescribed order. The following
lemmas will be helpful.
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5.4. Lemma. Let f ∈ C(T̃ ) and 〈T, g〉 ∈ T. Assume there is a K0 ⊂ T̃

such that (i) K0 ⊂ T̃ is a closed interval (maybe degenerate), (ii) Ki =
f i(K0) for each i ∈ N0 and for some t ∈ Tran〈T, g〉 the orbits orb(f, K0),

orb(g, t) have the same order. Then there is an f -recurrent point t⋆ ∈ T̃
such that for T ∗ = ω(f, t∗) we have 〈T ∗, f〉 ∼ 〈T, g〉. Moreover , if orb(g, t)
is infinite and a sequence gm(n)(t) decreases to t then we can put t⋆ =
inf

⋃
n Km(n), hence maxK0 ≤ t⋆.

Proof. The conclusion is well known when 〈T, g〉 ∈ P (see [1]). The case

when T̃ is an interval and 〈T, g〉 ∈ M was proven in [5, Lemma 2.2]. All
other possibilities can be handled in the same manner.

We write un  u, un ր u, un ց u if limn un = u and {un}n is monotone,
increasing, decreasing respectively.

5.5. Lemma. Let 〈T, g〉 ∼ 〈S, f〉.

(i) For any set T0 ⊂ T such that 〈T0, g〉 ∈ T is not a reducible system

of gT there is a set S0 ⊂ conv S for which 〈S0, fS〉 ∈ T and 〈T0, g〉 ∼
〈S0, fS〉.

(ii) Let T0 ⊂ T satisfy

— 〈T0, g〉 is a 2-extension of a cycle 〈R, p〉,
— 〈T0, g〉 is a reducible system of gT .

There is a set S0 ⊂ S for which either 〈S0, f〉 ∼ 〈T0, g〉 or 〈S0, f〉 ∼
〈R, p〉.

Proof. (i) Fix u ∈ Tran〈T0, g〉 and v ∈ BT,S({u}).
Let 〈T0, g〉 ∈ M ∪ NM. By Lemma 5.2(ii) the orbits orb(g, u) and

orb(f, v) have the same order. Now the conclusion follows from Lemma 5.4.
Assume that 〈T0, g〉 ∈ P and T0 ( T (the case when T0 = T is trivial).

Then 〈T, g〉 ∈ NM and u ∈ T0 is a periodic point of period k ∈ N. Obviously
u is a limit point of T . Let Tran〈T, g〉 ∋ xT ↔ yS ∈ Tran〈S, f〉. Without
loss of generality we can assume that for an increasing sequence {m(n)}n,

gm(n)(xT ) ր u, gm(n)+k(xT ) u and fm(n)(yS) ր v ∈ S.
Put vi = limn fm(n)+i(yS), i ∈ {1, . . . , k − 1}. Suppose that i0 ∈ {1, . . . ,

k − 1} is the least for which v = vi0 . Then the cycle 〈T0, g〉 has a block
structure with the block T0 ∩ conv{u, ui0}, and any T0-block is a subset of
a T -contiguous interval. By Lemma 5.16(iv), the cycle 〈T0, g〉 is a reducible

system of gT , a contradiction. Thus, v 6= vi = limn fm(n)+i(yS) for any
i ∈ {1, . . . , k − 1}.

If limn fm(n)+k(yS) = v then v is a periodic point of period k and

〈S0 = orb(f, v), f), f〉 ∼ 〈T0, g〉.

In the case when limn fm(n)+k(yS) = w 6= v, from fm(n)(yS) ր v it fol-
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lows that v < w, the interval [v, w] is an S-contiguous interval and the
orbits orb(g, u) and orb(fS , [v, w]) have the same order. Now the existence
of 〈S0, fS〉 ∈ T satisfying 〈S0, fS〉 ∼ 〈T0, g〉 follows from Lemma 5.4.

(ii) Let cardT0 = 2k and let {t0 < t1} be the leftmost block of 〈T0, g〉.
By our assumption, [t0, t1] is a T -contiguous interval and BT,S({t0}) = {s0},
BT,S({t1}) = {s1}. If s0 < s1 then [s0, s1] is an S-contiguous interval and

〈
S0 =

k−1⋃

i=0

f i({s0, s1}), f
〉
∼ 〈T0, g〉.

If s0 = s1, we get 〈S0 =
⋃k−1

i=0 f i({s0}), f〉 ∼ 〈R, p〉.

5.6. Lemma. Let f ∈ C(I), S ⊂ I be closed such that f(S) ⊂ S, and

put q = f |S. Then for any t′ ∈ Per(qS) there is a t⋆ ∈ Per(f) ∩ conv S such

that 〈orb(qS , t′), qS〉 ∼ 〈orb(f, t⋆), f〉.

Proof. See [6, Th. 3.12].

As before, I denotes a compact real subinterval of R.

5.7. Definition. Let f : I → R be a continuous map and [x, y] ⊂ I.
We define

signf ([x, y]) =

{
+1, f(x) < f(y),

−1, f(x) > f(y).

5.8. Lemma. Let f : I → R be a continuous map, [a, b] ⊂ I, [c, d] ⊂ R,
f(a) 6= f(b) and

conv{f(a), f(b)} ⊃ [c, d].

There are a∗, b∗ ∈ [a, b] such that f([a∗, b∗]) = [c, d], f({a∗, b∗}) = {c, d} and

signf ([a∗, b∗]) = signf ([a, b]).

Proof. If f(a) > f(b) put

a∗ = sup{x ∈ [a, b] : f(x) = d}, b∗ = inf{x ∈ [a∗, b] : f(x) = c}.

The second case is similar.

5.9. Remark. For 〈T, g〉 ∈ T, the set Tran〈T, g〉 is a dense Gδ set in
the compact metric space T equipped by the Euclidean metric. Using this
fact and the classification of Section 2.1 we infer that for 〈T, g〉 ∈ M∪NM
and U ⊂ T countable we can consider a point t ∈ Tran〈T, g〉 such that
orb(g, t) ∩ U = ∅.

For a system 〈R, p〉, a map r ∈ C(conv R) is said to be 〈R, p〉-monotone

if r|R = p and r|J is monotone for any interval J ⊂ conv R such that
J ∩ R = ∅. We write C〈R, p〉 for the set of all 〈R, p〉-monotone maps. In
particular, pR ∈ C〈R, p〉.

As before, a subsystem of a system 〈R, p〉 is a system 〈A, α〉 such that
A ⊂ R and α = f |A.
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5.10. Lemma. Let 〈A, α〉 be a system. Assume that for some r ∈ C〈A, α〉
and a set T ⊂ conv A,

• 〈T, r〉 ∈ M∪NM,
• there is a point t ∈ Tran〈T, r〉 satisfying orb(r, t) ∩ A = ∅.

Assume that 〈A, α〉 is a subsystem of a transitive system 〈R, p〉 ∼ 〈S, q〉,
and let 〈B, q〉 be a subsystem of 〈S, q〉 such that BS,R(B) = A. Then for any

continuous map q̃ : [minB, maxB] → R satisfying q̃|B = q there exists a set

T ⋆ ⊂ [minB, maxB] such that 〈T ⋆, q̃〉 ∼ 〈T, r〉 and T ⋆ \ B 6= ∅.

Proof. An A-contiguous interval L (in conv A) will be called active if
rj(t) ∈ L◦ for some j ∈ N0. Obviously for any active interval L, the map
r|L is not constant and there is an n ∈ N for which

(5.2) rn(L◦) ∩ L◦ 6= ∅.

Let {LA
i }i∈N consist of all active closed A-contiguous intervals and define

{LB
i }i∈N as follows: if LA

i = [uA, vA] then LB
i = [uB, vB] satisfies

(5.3) uB , vB ∈ B, (uB, vB) ∩ B = ∅, BS,R({uB, vB}) = {uA, vA}.

Note that LB
i is well defined since BS,R(B) = A. Moreover, uB < vB. In-

deed, otherwise by (5.2), (5.3), the point uB would be periodic (of period
n, say), the intervals LA

i , . . . , rn−1(LA
i ) would be pairwise disjoint closed

A-contiguous intervals, rn(LA
i ) = LA

i and rn|LA
i would be monotone and by

our assumption also 〈LA
i ∩ T, rn〉 ∈ M∪NM, a contradiction.

Since 〈A, α〉 is a system, we have the implication

(i) r(LA
i(1)) ∩ [LA

i(2)]
◦ 6= ∅ ⇒ r(LA

i(1)) ⊃ LA
i(2).

Our choice of {LA
i }i∈N, {LB

i }i∈N implies, for each i and i(1) 6= i(2),

(ii) LA
i ⊂ conv A and LB

i ⊂ conv B,
(iii) LA

i(1) ≤ LA
i(2) iff LB

i(1) ≤ LB
i(2),

(iv) r(LA
i(1)) ⊃ LA

i(2) ⇒ q̃(LB
i(1)) ⊃ LB

i(2) (in particular when q̃ = qB).

We have shown above that each LB
i is nondegenerate. Using this fact and

(iv) one can see that qB |L
B
i is not constant and

(v) signr(L
A
i ) = signq̃(L

B
i ).

We assume that orb(r, t)∩A = ∅. Define the map π̃ : orb(r, t)×N0 → N

and π = π̃|({t} × N0) by

π̃(s, i) = j if ri(s) ∈ LA
j , π(i) = π̃(t, i).

Set I1
i = LA

π(i) for i ∈ N0. We define closed intervals Ij
i , (i, j) ∈ N0 × N,

by the conditions Ij
i ⊂ Ij−1

i and r(Ij
i ) = Ij−1

i+1 (clearly from (i) we have

r(Ij−1
i ) ⊃ Ij−1

i+1 ). Put Ii =
⋂

j∈N
Ij
i . We have ri(t) ∈ Ii for each i ∈ N0; by
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our definition of the intervals Ij
i we even get ri(I0) = Ii, i.e. the itineraries

of t and I0 with respect to {LA
1 , . . . , LA

k , . . . } are the same. Obviously each
Ii is a point or a closed interval.

Without loss of generality we can assume that t 6= maxT . Using Remark
5.9 the transitive point t can be taken to satisfy

(5.4) ∀s ∈ orb(r, t) : s is a two-sided limit point of orb(r, t).

The map π would be periodic if there were a positive integer n such
that π(i) = π(i + n) for each i ∈ N0. Let us show that π is not periodic for
〈T, r〉 ∈ M ∪ NM. We know that ri(t) ∈ [LA

π(i)]
◦. If such an n did exist,

then the closed interval

J = conv{s ∈ orb(r, t) : π̃(s, i) = π(i) for each i ∈ N0}

would be r-periodic (not weakly) with period n and 〈J, rn〉 ∈ M∪NM for
the monotone map rn|J , a contradiction.

Now we show that Ii(1) ∩ Ii(2) = ∅ for i(1) 6= i(2). If Ii(1) ∩ Ii(2) 6= ∅,

from (5.4) we get some i(3) ∈ N greater than i(1), i(2) for which ri(3)(t) ∈
conv{ri(1)(t), ri(2)(t)}. Since ri(t) ∈ Ii, we necessarily have either ri(3)(t) ∈
Ii(1) or ri(3)(t) ∈ Ii(2), which is impossible for the nonperiodic function π.

Using (5.4) again, for EA =
⋃

i∈N0
{minLA

i , maxLA
i } we can show similarly

that Ii ∩ EA = ∅ for each i ∈ N0. Summarizing, rj(I0) ⊂ [LA
i ]◦ if and only

if rj(t) ⊂ [LA
i ]◦ and the orbits orb(r, I0), orb(r, t) have the same order.

As above (for A-contiguous intervals), let K1
i = LB

π(i) for i ∈ N0. Since

any interval LB
i is nondegenerate, using properties (ii)–(v) and Lemma 5.8

we can choose closed intervals Kj
i = [aj

i , b
j
i ], (i, j) ∈ N0 × N, such that

(a) Kj
i ⊂ Kj−1

i ,

(b) q̃(Kj
i ) = Kj−1

i+1 and conv{q̃(aj
i ), q̃(b

j
i )}) = Kj−1

i+1 ,

(c) signr(I
j
i ) = signq̃(K

j
i ),

(d) for each j ∈ N (see (5.1) and use (c)),

Kj
i(1) ≤ Kj

i(2) ⇔ Ij
i(1) ≤ Ij

i(2), i(1), i(2) ∈ N0.

Put Ki =
⋂

j∈N
Kj

i and EB =
⋃

i∈N0
{minLB

i , maxLB
i }. Clearly Ki is a

point or a closed interval in conv B. Using (a)–(d) and the property anal-
ogous to (5.4) formulated with the help of (d), we can show as for Ii the
following properties for each i, j, i(1), i(2) ∈ N0, i(1) 6= i(2):

(e) Ki(1) ∩ Ki(2) = ∅, Ki ∩ EB = ∅ and q̃i(K0) = Ki ⊂ LB
π(i),

(f) q̃j(K0) ⊂ [LB
i ]◦ ⇔ rj(I0) ⊂ [LA

i ]◦ ⇔ rj(t) ⊂ [LA
i ]◦,

(g) the orbits orb(q̃, K0), orb(r, I0), orb(r, t) have the same order.
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Now, Lemma 5.4 and property (g) yield a q̃-recurrent point t⋆ ∈ [LB
π(0)]

◦

such that for T ∗ = ω(q̃, t∗) ⊂ [minB, maxB] we have 〈T ∗, q̃〉 ∼ 〈T, r〉 and
t⋆ ∈ T ⋆ \ B 6= ∅.

This proves the lemma.

5.11. Lemma. Let 〈R, p〉 ∼ 〈S, f〉 and q̃ : [minS, maxS] → R be a

continuous map satisfying q̃|S = q. Moreover , assume that for some set

T ⊂ conv R,

• 〈T, pR〉 ∈ P,
• T ∩ R = ∅,
• 〈T, pR〉 is not a reducible system of pR.

Then there exists a set T ⋆ ⊂ [minS, maxS] for which 〈T ⋆, q̃〉 ∼ 〈T, pR〉.

Proof. Assume that 〈T, pR〉 is not equivalent to any subsystem of 〈S, q〉
(otherwise we are done). Moreover, our assumption that 〈T, pR〉 is not a
reducible system of pR together with Lemma 5.16(iv) shows that 〈T, pR〉
does not have a block structure with blocks in R-contiguous intervals.

Set I = conv S and define a map f ∈ C(I) by

f(x) =





q̃(x) if q̃(x) ∈ I,

maxS for q̃(x) > maxS,

minS for q̃(x) < minS.

Notice that if there is a set S⋆ ⊂ I for which 〈S⋆, qS〉 ∼ 〈T, pR〉, then by
Lemma 5.6 there is a set T ⋆ ⊂ I for which 〈T ⋆, f〉 = 〈T ⋆, q̃〉 ∼ 〈T, pR〉. Thus,
it is sufficient to show the existence of S⋆.

An R-contiguous interval L (in conv R) will be called active if T∩L◦ 6= ∅.
Obviously for any active interval L, the map pR|L is not constant and

for some n > 0,

(5.5) pn
R(L◦) ∩ L◦ 6= ∅.

Let {LR
i }

k−1
i=0 consist of all active closed R-contiguous intervals and define

{LS
i }

k−1
i=0 as follows: if LR

i = [uR, vR] then LS
i = [uS , vS ] satisfies

uS , vS ∈ S, (uS , vS) ∩ S = ∅, BS,R({uS , vS}) = {uR, vR}.

Note that LS
i is well defined since BS,R(S) = R. Moreover, uS < vS . Indeed,

otherwise by (5.5) the point uS would be periodic of a period k; analogously,

the intervals LR
i , pR(LR

i ), . . . , pk−1
R (LR

i ) would be pairwise disjoint closed R-

contiguous intervals satisfying pk
R(LR

i ) = LR
i . But then the set T ∩LR

i would
be a block of 〈T, pR〉. Since we assume that 〈T, pR〉 is not equivalent to any
subsystem of 〈S, q〉, we would have card T ∩ LR

i ≥ 2. This is impossible for
〈T, pR〉 that does not have a block structure with blocks in R-contiguous
intervals.
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Note that by our choice of LR
i and LS

i , we have

(5.6) signpR
(LR

i ) = signqS
(LS

i ) for each i.

Put t = minT , n = card T and define π : {0, . . . , n− 1} → N by π(i) = j
if pi

R(t) ∈ LR
j . Since 〈T, pR〉 does not have a block structure with blocks in

R-contiguous intervals, the finite sequence π(0), . . . , π(n−1) is not repetitive.
By the above, for Q ∈ {R, S} and h ∈ {pR, qS},

LQ
π(0)

h
−→ · · ·

h
−→ LQ

π(n−1)

h
−→ LQ

π(0),

where K
h
−→ L denotes the fact that h(K) ⊃ L. Since the finite sequence

π(0), . . . , π(n − 1) is not repetitive, there is a periodic point s ∈ LS
π(0)

of period n such that qi
S(s) ∈ LS

π(i). From (5.6) it follows that 〈S⋆ =

orb(qs, s), qS〉 ∼ 〈T, pR〉.
This proves the lemma.

5.12. Lemma. Let 〈T, g〉 ∈ P. The system 〈T, g〉 is a roof system if and

only if either cardT = 1 or 〈T, g〉 is a 2-extension.

Proof. Let 〈T, g〉 ∈ P be a 2-extension with T -blocks Bi, and assume
that x ∈ T and g(x) = maxT . Then for a sufficiently small neighbourhood
U(x) of x, g(U(x)) ⊂ conv B(cardT )/2 ⊂ Per(gT ). This implies that for any
closed set S such that T ⊂ S ⊂ conv T and the system 〈S, gT 〉 is transitive
we necessarily have S = T .

Conversely, assume that a roof system 〈T, g〉 ∈ P is not a 2-extension.
Let 〈T, g〉 have a block structure over a cycle 〈S = {si}k

i=1, f〉 with maximal
number of points k = card S and T -blocks Bi ⊂ T . Obviously, k ≥ 2 and
(cardT )/k = card Bi > 2. Since 〈T, g〉 is a roof system, no system 〈R =
conv Bi, h = gk

T |R〉 is transitive; by Theorem 6.3 the system 〈Bi, g
k〉 has

a nontrivial (l ≥ 2) block structure with Bi-blocks Cj , cardCj ≥ 2, j =
1, . . . , l, and for any m ∈ {0, . . . , k − 1},

{gk+m
T (conv Cj), g

2k+m
T (conv Cj), . . . , g

lk+m
T (conv Cj)}

is an orbit (formed by disjoint intervals) of a periodic interval gm
T (conv Cj) in

gm
T (conv Bi) = conv Bp (if fm(si) = sp). Hence 〈T, g〉 has a block structure

over a cycle 〈S′, f ′〉 with S′ = {s′1 < · · · < s′kl}, which contradicts the
maximality of k.

5.13. Lemma. Let 〈S, f〉 ∈ M. The system 〈S, f〉 is a roof system if

and only if it is a solenoidal system.

Proof. By the definition, if 〈S, f〉 is a roof system then S is a maximal
ω-limit set of a map fS . Thus, a roof system 〈S, f〉 ∈ M is solenoidal by
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Theorem 6.1. Let {Ki}i∈N0
be a sequence of Q-generating intervals, where

S ⊂ Q =
⋂

i∈N0

orb(fS , Ki)

and ω(fS , x) = S for any x ∈ Q. If there were a set T for which S ( T ⊂
conv S and 〈T, fS〉 ∈ T, then there would exist a point y ∈ Tran〈T, fS〉 \
orb(fS , Ki) for some i. Without loss of generality we can assume that minS
= minKi for each i. Then y /∈ ω(fS , z) for any z ∈ Tran〈T, fS〉 ∩ Ki, a
contradiction. Thus S = T .

5.14. Lemma. Let 〈T, g〉 be a system and suppose that for some [α, β] ⊂
conv(T ) and m ∈ N, gm

T ([α, β]) ∩ [α, β] 6= ∅. Then there exist an n ∈ N and

a weakly gT -periodic closed interval J ⊂ conv(T ) of period n such that

orb(gT , [α, β]) = orb(gT , J).

Proof. Since gm
T ([α, β]) ∩ [α, β] 6= ∅, the set J̃ = orb(gm

T , [α, β]) is a

gm
T -invariant interval, i.e. gm

T (J̃) ⊂ J̃ . Take pairwise disjoint components

J1, . . . , Jn of the set
⋃m−1

i=0 gi
T (J̃ ) and if [α, β] ⊂ Ji, put J = Ji. Clearly,

J, gT (J), . . . , gn−1
T (J) are pairwise disjoint, gn

T (J) ⊂ J and orb(gT , [α, β]) =
orb(gT , J).

5.15. Lemma. Let 〈B, f〉 ∈ NM. The system 〈B, f〉 is a roof system if

and only if it is a basic system.

Proof. By definition, if 〈B, f〉 is a roof system then B is a maximal ω-
limit set of a map fB. Thus, a roof system 〈B, f〉 ∈ NM is basic by Theorem
6.1. By our assumption the set B is infinite. Let K be an fB-periodic set
with a period n, L = orb(fB, K) and (see Section 3)

B = {x ∈ L : orb(fB, J(x)) = L for each neighbourhood J(x)}.

If there were a set T for which B ( T ⊂ conv B and 〈T, fB〉 ∈ T, then we
would also have T ( L (〈L, fB〉 is not transitive). Let J(x) be a neighbour-
hood of x ∈ T (in L). Since 〈T, fB〉 is transitive, by Lemma 5.14 we can
consider a weakly fB-periodic closed interval J ⊂ L such that

(5.7) orb(fB, J(x)) = orb(fB, J).

By our assumption B ⊂ T , we have B ⊂ orb(fB, J(x)), hence also B ⊂
orb(fB, J). Then from (5.7) we get L = orb(fB, J) = orb(fB, J(x)), i.e.,
x ∈ B. Thus T ⊂ B, hence B = T .

A system 〈T, g〉 has a block structure over a cycle 〈S, f〉 with S = {s1 <
· · · < sk} if there are T -blocks Bi = [ai, bi] ∩ T , i ∈ {1, . . . , k}, such that

ai ≤ bi, bi < ai+1 for i ∈ {1, . . . , k − 1},
⋃k

i=1{ai, bi} ⊂ T , T =
⋃k

i=1 Bi and
g(Bi) = Bj if and only if f(si) = sj . In this case we sometimes briefly write
that 〈T, g〉 has a block structure (with blocks Bi = [ai, bi]∩T , i ∈ {1, . . . , k}).
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5.16. Lemma.

(i) If A, B are transitive patterns, A →֒ B and A is piecewise monotone

then B is also piecewise monotone.

(ii) Let 〈T, g〉 ∈ P∪M with card T > 2 and piecewise monotone map gT .

If 〈T, g〉 ∼ 〈S, gT 〉 for some S ⊂ conv T , then S = T .

(iii) If 〈R, p〉 ∈ T has a block structure over a cycle 〈S, f〉 then the pattern

[〈R, p〉]∼ forces the pattern [〈S, f〉]∼.

(iv) Let 〈R, p〉 ∈ T and suppose that for some S ⊂ conv R,

— 〈S, pR〉 has a block structure with blocks Di and cardDi ≥ 2 for

each i = 0, . . . , k − 1,
— each block is a subset of an R-contiguous interval.

Then the system 〈S, pR〉 is a 2-extension, different blocks Di, Dj

are contained in different R-contiguous intervals [ci, di], [cj , dj], and

〈
⋃k−1

i=0 {ci, di}, p〉 ∈ P is a 2-extension equivalent to 〈S, pR〉. In par-

ticular , the cycle 〈S, pR〉 is a reducible system of pR.

(v) If 〈T = {t1 < t2 < · · · < t2k−1 < t2k}, g〉 is a 2-extension of a cycle

〈S, f〉 then gT has a unique representative

〈{(t1 + t2)/2 < · · · < (t2k−1 + t2k)/2}, gT 〉

of the pattern [〈S, f〉]∼.

Proof. Property (i) is clear. (ii) is well known for 〈T, g〉 periodic [1]. For
the case of piecewise monotone minimal 〈T, g〉, see the proof of Theorem 3.2
in [5]. Property (iii) follows from Lemma 5.4 applied to the map pR.

(iv) If D0 = {a1 < · · · < al} ⊂ [c0, d0] then for each i ∈ {0, . . . , k − 1},
pi

R([a1, al]) is a subset of an R-contiguous interval [ci, di]. Since the map pR

is affine on each R-contiguous interval, it follows that l = 2, pk
R(a1) = a2,

pk
R(a2) = a1 and pk

R|[a1, a2], resp. p2k
R |[a1, a2] is an affine map with slope −1,

resp. 1. Since for any two R-contiguous intervals L1, L2 we have

pR(L1) ∩ [L2]
◦ 6= ∅ ⇒ pR(L1) ⊃ L2,

we can consider a closed interval J such that [a1, a2] ⊂ J ⊂ [c0, d0], pi
R(J) is

a subset of [ci, di] and pk
R(J) = [c0, d0]. By the above, pk

R|J has slope −1. It
follows that J = [c0, d0] and pi

R(J) ∩ [c0, d0] = ∅ for each i ∈ {1, . . . , k − 1}.

Starting from [ci, di] instead of [c0, d0] we obtain pk−i
R ([ci, di]) ⊂ [c0, d0]. This

implies pi
R[c0, d0] = [ci, di] since otherwise pk

R([c0, d0]) ( [c0, d0], a contradic-

tion. Thus 〈
⋃k−1

i=0 {ci, di}, p〉 ∈ P is a 2-extension equivalent to 〈S, pR〉. All
other properties follow immediately.

For property (v) see [8].

Let us recall that a roof system was defined in Definition 3.1. In the
proof of Theorem 3.5 we need the following description of those systems.
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5.17. Lemma. The following statements are equivalent :

(i) 〈T, g〉 is a roof system.

(ii) 〈T, g〉 is a system and there is a closed S ⊂ T such that for f = g|S,

fS = gT and T =
⋃
{T̃ : T̃ ⊃ S and 〈T̃ , gT 〉 is transitive}.

Proof. Put

(5.8) T ⋆ =
⋃

{T̃ : T̃ ⊃ S and 〈T̃ , gT 〉 is transitive}.

We will show that 〈T ⋆, gT 〉 is transitive if T ⋆ is nonempty. To show (i)⇒(ii)
we can put S = T . The opposite implication (ii)⇒(i) follows from T ⊂ T ⋆

and Definition 3.1.
Since fS = gT and the set S is closed,

minT = minT ⋆ = minS and maxT = maxT ⋆ = maxS.

In what follows we will work with closed intervals [α, β] ⊂ conv T satisfying
[α, β]◦ ∩ S 6= ∅. In particular, this holds when for a sufficiently small ε > 0
either [α = minS, β = ε + minS] or [α = −ε + maxS, β = maxS]
(we use the relative topology of conv T ). Since S is contained in T and
〈T, gT 〉 is transitive, there is an m ∈ N satisfying gm

T ([α, β])∩ [α, β] 6= ∅. By
Lemma 5.14 and (5.8) we get a weakly gT -periodic closed interval J ⊂ conv T
with a period n ∈ N such that

orb(gT , [α, β]) = orb(gT , J) and orb(gT , J) ⊃ T ⋆;

then the interval K =
⋂

l∈N0
gln
T (J) is gT -periodic of period n and with

orb(gT , K) ⊃ T ⋆.
I. The conclusion of our lemma holds true when card T ⋆ ∈ N. Then

Lemma 5.12 implies that 〈T ⋆, gT 〉 is a cycle.
Let T ⋆ be infinite. Using the classification from Section 2.1 we can verify

that T ⋆ is a perfect set.
II. There exist an increasing sequence {ni}i∈N of positive integers and a

decreasing sequence {Ki}i∈N of closed intervals such that Ki is gT -periodic
with a period ni and orb(gT , Ki) ⊃ T ⋆ for each i ∈ N. Then due to Section 3
there exists a unique infinite set T0 ⊂ Q =

⋂
i∈N0

orb(gT , Ki) such that
ω(gT , x) = T0 for any x ∈ Q ⊃ T ⋆ and 〈T0, gT 〉 is minimal. It follows that
T0 = T ⋆ and 〈T ⋆, gT 〉 is minimal.

III. There exists an n ∈ N and a closed interval K which is gT -periodic
with a period n, L = orb(gT , K) ⊃ T ⋆ and

(5.9) ∀[α, β] ⊂ L : [α, β]◦ ∩ S 6= ∅ ⇒ orb(gT , [α, β]) = L.

Consider the set B = B(L, gT ) defined in Section 3. Immediately from (5.9),
it follows that S ⊂ B.

We need to show that T ⋆ ⊂ B. Consider an interval [α, β] ⊂ L satisfying
[α, β]◦∩T ⋆ 6= ∅. Repeating the procedure from Lemma 5.14 for this interval
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we obtain a weakly gT -periodic closed interval L̃ of period k, hence M =⋂
l∈N0

glk
T (L̃) is a gT -periodic closed interval of period k such that

orb(gT , [α, β]) = orb(gT , M), S ⊂ orb(gT , M) ⊂ L.

Without loss of generality we can assume that minM = minS. Then from
(5.9) applied to M we obtain orb(gT , [α, β]) = orb(gT , M) = L. Therefore,
T ⋆ ⊂ B. We have argued that T ⋆ is a perfect set. It follows that B is infinite
and by Section 3 the system 〈B, gT 〉 is transitive. But then B = T ⋆, i.e.,
〈T ⋆, gT 〉 is a transitive system.

The following lemma is a direct consequence of Definition 2.1 and the
ones of solenoidal and basic systems from Section 3. We leave its proof to
the reader.

5.18. Lemma. Two equivalent transitive systems 〈T, g〉, 〈S, f〉 are si-

multaneously solenoidal , resp. basic.

6. The most important known needed notions and results. For
f ∈ C(I) and x ∈ I, the ω-limit set ω(f, x) is a maximal ω-limit set of f
if for any y ∈ I and ω(f, y) ⊃ ω(f, x) we have ω(f, y) = ω(f, x). The most
important properties of maximal ω-limit sets are presented in Theorem 6.1.
This result uses the notions of solenoidal and basic systems, recalled in Sec-
tion 3. We present a simplified version using only piecewise affine extensions
of systems.

6.1. Theorem ([4]). If ω ⊂ I is a maximal ω-limit set of an interval

map f ∈ C(I) then the system 〈ω, f〉 is transitive. Moreover , when cardω
= ∞ then 〈ω, f〉 is either a solenoidal system (∈ M) or a basic system

(∈ NM).

The sets NMC , NMI , NM have been defined in Section 2.

6.2. Theorem. Let 〈R, p〉 ∈ NM be a roof system. There is a system

〈T = [a1, b1] ∪ · · · ∪ [ak, bk], g〉 ∈ NMI (k ∈ N) such that 〈R, p〉 ∼ 〈T, g〉.
Moreover , if 〈T, g〉 has a block structure over a cycle 〈S = {s1 < · · ·
< sk}, f〉 then we can suppose that si ∈ [ai, bi] for each i ∈ {1, . . . , k}
and f = g|S.

Proof. See [4].

An interval map f ∈ C(I) is said to be mixing if 〈I, fn〉 ∈ NM for
each n ∈ N. A pattern [〈T, g〉]∼ is said to be mixing if its adjusted map
gT ∈ C(conv T ) is mixing. A periodic pattern [〈S, f〉]∼ has a division if the
system 〈S, f〉 has a block structure over a 2-cycle.

6.3. Theorem ([8]). If A is a periodic pattern then it has either a divi-

sion or a block structure over a mixing pattern.
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In accordance with the classification given in Section 2 we consider sep-
arately periodic, resp. minimal piecewise monotone patterns.

6.4. Theorem ([2], [5]). The forcing relation on periodic and on mini-

mal piecewise monotone patterns is a partial ordering.
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