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Abstract. Let A2(n) = Γ2(n)\S2 be the quotient of Siegel’s space of degree 2 by
the principal congruence subgroup of level n in Sp(4,Z). This is the moduli space of
principally polarized abelian surfaces with a level n structure. Let A2(n)∗ denote the
Igusa compactification of this space, and ∂A2(n)∗ = A2(n)∗ − A2(n) its “boundary”.
This is a divisor with normal crossings. The main result of this paper is the determination
of H∗(∂A2(n)∗) as a module over the finite group Γ2(1)/Γ2(n). As an application we
compute the cohomology of the arithmetic group Γ2(3).

1. Introduction. This paper is a continuation of the authors’ previous
investigations of the topology of moduli spaces of abelian surfaces, [20]–[22],
[26]–[29]. In this paper, we will study the contribution to the cohomology
of Siegel modular threefolds that arises, in a manner to be explained below,
from the boundary of those threefolds. The term “boundary” can be inter-
preted in several ways depending on which compactification one is using. In
our study, we will work with the toroidal compactification, due to Igusa and
later generalized by Mumford and his coworkers. In this introduction we
will motivate the calculations done in this paper by discussing their relation
with the primary concern—that of computing the cohomology of congruence
subgroups of Sp(4,Z). Much of the general discussion that follows in this
introduction is valid more generally for arithmetic subgroups of reductive
algebraic groups defined over Q. Two excellent introductions to these topics
can be found in [4] and [37].

Let Sd be the Siegel space of degree d:

X = Sd = {τ ∈Md(C) : tτ = τ, Im(τ) is positive definite}.
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The group Sp(2d,R) operates on Sd in the usual way:

γ.τ = (Aτ +B)(Cτ +D)−1, γ =

(
A B

C D

)
,

and Sd is the corresponding symmetric space Sp(2d,R)/K, where the max-
imal compact K is isomorphic to the unitary group U(d). Let

Γ ⊂ Sp(2d,Q)

be a subgroup commensurable with Sp(2d,Z). Then Baily and Borel have
shown that the quotient XΓ = Γ\Sd admits the structure of a quasi-
projective algebraic variety of dimension d(d + 1)/2. If Γ is torsion-free,
this quotient is a complex manifold of this dimension. These varieties are
moduli spaces of abelian varieties with a principal polarization and a level
structure. Set

Γd(n) = {γ ∈ Sp(2d,Z) : γ ≡ 1 mod n},
the principal congruence subgroup of degree d and level n. For this case we
use the notation

Ad(n) = Γd(n)\Sd = XΓd(n).

Let
% : Sp(2d,R)→ GL(V )

be a rational representation on a finite-dimensional complex vector space.
By restricting this representation to the subgroup Γ we obtain in a well
known way a sheaf V on XΓ , which is a local system if Γ is torsion-free, and
it is also well known that

H∗(XΓ ;V) ∼= H∗(Γ ;V ).

One goal is to compute the dimensions of these spaces. Aside from the case of
modular curves, d = 1, even in the case of trivial coefficients V = C, very few
actual results are known. Already for d = 2 it is an open problem to deter-
mine these dimensions. These cohomology spaces carry additional structures
that are significant. Especially relevant to us here are the parts of the co-
homology related to boundary components of various compactifications. In
all cases, the combinatorics of the boundary components is described by a
finite geometry—the quotient by Γ of the Tits building of rational parabolic
subgroups of Sp2d. This is a geometric reflection of Harish-Chandra’s phi-
losophy of cusp forms and of Langlands’ theory of Eisenstein series. There
are several compactifications:

1. The Satake, or Baily–Borel, compactification Xbb
Γ . This is a generally

singular projective algebraic variety.
2. The Borel–Serre compactification Xbs

Γ . This is a manifold with corners
with the same homotopy type as XΓ (see [6]). The sheaf V extends to the
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compactification and one has

H∗(XΓ ;V) ∼= H∗(Xbs
Γ ;V).

There are maps Xbs
Γ → Xrbs

Γ → Xbb
Γ where Xrbs

Γ is the reductive Borel–Serre
compactification (see [15]).

3. The toroidal compactifications XΓ,Σ (see [2], [33], [23]). When d = 2,
this was first constructed by Igusa. These compactifications depend on the
choice of a Γ -admissible rational polyhedral subdivision Σ of the cone of
positive d×d symmetric real matrices. When d = 1 this is trivial; when d = 2
there is a canonical choice; for d ≥ 3 one has existence but not uniqueness.
In case d = 2 with the canonical choice of subdivision we will call it the
Igusa compactification and denote it by X∗Γ . When Γ is torsion-free it is a
nonsingular projective algebraic variety and the boundary

∂XΓ,Σ = XΓ,Σ −XΓ =
⋃

i∈I
Di

is a divisor with normal crossings. There is a morphism XΓ,Σ → Xbb
Γ which

extends the identity XΓ → XΓ ; otherwise said, XΓ,Σ is a desingularization

of Xbb
Γ along ∂Xbb

Γ = Xbb
Γ −XΓ .

The main results of this paper concern the cohomology of the boundary
of the Igusa compactification Hi(A2(n)∗;C). Actually, we often work with
homology rather than cohomology, which allows us to work with explicit
topological cycles. Also, wherever possible, we work with integer coefficients,
enabling us to obtain information about torsion.

The space A2(n) has a natural action of the finite group

Γ2(1)/Γ2(n) = Sp(4,Z/n),

and in fact this action factors through the projective group

G = PSp(4,Z/n) = Sp(4,Z/n)/± 1.

For n an odd prime this is a simple group. The group G acts on both
A2(n)∗ and ∂A2(n)∗, making the (co)homology groups of these spaces into
representation spaces of G. On the one hand, we are most interested in
these spaces as G-representations, and on the other hand, their structure
as G-representations is important for our argument. Thus our main result,
Theorem 2.13, is stated in these terms. We also call the reader’s attention
to the applications in Section 2.5.

These arguments are for general n ≥ 3. In Section 3 we investigate further
the case n = 3, using our results in [21], using a complementary approach
and refining somewhat the conclusions there.

Before turning to the proofs of our main theorems, we comment on pre-
vious work on the cohomology of the boundary of Siegel modular varieties.
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There is an exact sequence:

(1) · · · → Hi
c(XΓ ;V)→ Hi(Xbs

Γ ;V)
r→ Hi(∂Xbs

Γ ;V)→ . . .

We denote Ker(r), which is the image of the cohomology with compact
supports, by Hi

!(XΓ ;V). The theory of Eisenstein cohomology attempts to
determine Im(r), as well as a natural section Hi

Eis(XΓ ;V), so that

Hi(XΓ ;V) = Hi
!(XΓ ;V)⊕ Hi

Eis(XΓ ;V).

The general theory of Eisenstein cohomology can be found in [35]. Re-
sults specific to Siegel modular varieties appear in [34], [36] and [38]. Al-
though ∂Xbs

Γ is not an algebraic variety, Harris and Zucker have shown that

Hi(∂Xbs
Γ ;V) carries a canonical mixed Hodge structure so that (1) is an

exact sequence of Hodge structures. See [17], [18], [45]. A key point here
is the identification of the cohomology of the Borel–Serre boundary with
deleted neighborhood cohomology. Let Nbs

Γ be a tubular neighborhood of

∂Xbs
Γ . Then since Xbs

Γ is a manifold with corners, it is easy to see that there
is a homotopy equivalence

Nbs
Γ − ∂Xbs

Γ
∼= ∂Xbs

Γ .

Thus,
Hi(Nbs

Γ − ∂Xbs
Γ ;V) = Hi(∂Xbs

Γ ;V).

Harris and Zucker construct a system of compatible homotopy equivalences

Nbs
Γ − ∂Xbs

Γ ' NΓ,Σ − ∂XΓ,Σ ,

where NΓ,Σ is a system of neighborhoods of ∂XΓ,Σ in a projective and
smooth toroidal compactification. Thus, the deleted neighborhoods of the
boundary NΓ,Σ − ∂XΓ,Σ , have the same homotopy type as the Borel–Serre
boundary. Using the excision

(NΓ,Σ , NΓ,Σ − ∂XΓ,Σ) ∼ (XΓ,Σ ,XΓ,Σ − ∂XΓ,Σ)

one can often relate information obtained from these two different compact-
ifications.

Last we want to comment on an alternative viewpoint already alluded
to, namely the connection with automorphic forms. As is true for any arith-
metic subgroup Γ of a reductive algebraic group G over Q, the cohomology
is entirely expressible in terms of automorphic forms. The main assertion
here, a concatenation of results of Borel, Wallach, Casselman, Garland and
Franke, is that

H∗(Γ ;V ) = H∗(g,K;A(G/Γ )⊗ V ),

where the right-hand side is relative Lie algebra cohomology, g is the com-
plexified Lie algebra of the derived semisimple group Gder, and A(G/Γ ) is
the space of automorphic forms for Γ . For definitions and precise statements,
see [7], [12], [43]. These results are generalized in the context of weighted
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cohomology in [32]. Related to this is a decomposition, originally due to
Langlands (unpublished),

H∗(Γ ;V ) =
⊕

{P}∈C
H∗{P}(Γ ;V ),

where the direct sum is over the associativity equivalence classes of parabolic
subgroups of G. The summand corresponding to G is called cuspidal coho-
mology, Hi

cusp. See [5] for a proof. The summands corresponding to each P
are further decomposed in [13], the pieces of which are related to Eisenstein
series. One has Hi

cusp ⊂ Hi
! ⊂ Hi

(2), where the last one is the subset of coho-

mology representable by square-integrable differential forms. ForG = Sp(4),
one has (see [36], [34], [38])

H2 = H2
(2), H3

cusp = H3
! = H3

(2), H4
! = H4

(2).

2. The case of general n ≥ 3. We now compute the homology of
the “boundary” ∂A2(n)∗ for n ≥ 3. In addition to its intrinsic interest,
this provides us with a second proof of [21, Thm. 1.1b]. Although the proof
is longer, it yields more information. It allows us to control the torsion,
and enables us to more easily identify the various (co)homology groups as
representation spaces of G = PSp(4,Z/n) = PΓ2(1)/PΓ2(n), where Γ2(k)
denotes the principal congruence subgroup of level k in Sp(4,Z).

As a matter of notation, we let 1 denote the 1-dimensional trivial repre-
sentation (of whatever group is operating). Also, since all our representations
are defined over Q, they are self-dual, so we do not distinguish between a
representation and its dual.

Recall that ∂A2(n)∗ is a union of corank 1 boundary components D(l)
glued along a set of disjoint corank 2 boundary components C(h). Their
descriptions will be discussed below. The combinatorics of this gluing is
governed by the Tits building

T(Z/n) = (P1(Z/n),P2(Z/n),P1,2(Z/n)).

We will describe this finite geometry. Assume that n ≥ 3. We consider the
module (Z/n)4 with the standard alternating form

〈x, y〉 = (x1y3 + x2y4)− (x3y1 + x4y2).

A submodule M ⊂ (Z/n)4 is isotropic if 〈x, y〉 = 0 for all x, y ∈M . Consider
the following finite sets:

P1(Z/n) =

{
nonzero vectors l ∈ (Z/n)4 modulo ± 1
such that the submodule generated by l
is a free direct factor

}
,
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P2(Z/n) =





nonzero decomposable vectors
h = v1 ∧ v2 ∈

∧2(Z/n)4modulo ± 1
such that the submodule h̃ generated by v1, v2

is an isotropic free direct factor




,

P1,2(Z/n) =
{

pairs (l, h) with l, h as above
such that l is a direct factor of h̃

}
.

A vector l = (l1, l2, l3, l4) will generate a free direct factor precisely when

(l1, l2, l3, l4) is the unit ideal in Z/n. The submodule h̃ will be a free direct
factor precisely when the six Plücker coordinates of h generate the unit ideal
in Z/n. Note that when n has two or more prime factors, there are direct
factors of Z/n that are not free. In the cases n = 3 and n = 4, the units
of the ring Z/n consist only of ±1, and in these cases, we may identify the
above objects with subsets of the projective space P3(Z/n). Indeed,

P3(Z/n) = P1(Z/n)

for n = 3, 4, and the elements of P2(Z/n) are certain kinds of lines in that
projective 3-space.

These sets have the cardinalities:

#P1(Z/n) =
n4

2

∏

p|n
(1− p−4), #P2(Z/n) =

n4

2

∏

p|n
(1− p−4),

#P1,2(Z/n) =
n6

4

∏

p|n
(1− p−2)(1− p−4).

There is an obvious notion of incidence among the configurations introduced
here, which coincides with the usual notion of incidence in projective space
when n = 3, 4. The number of l’s on each h is the same as the number of
h’s on each l, which is

n2

2

∏

p|n
(1− p−2).

The intrinsic definition of the sets P(Z/n) is that they index the Γ2(n)-
equivalence classes of nontrivial Q-parabolic subgroups of Sp(4). Recall that
apart from Sp(4) itself there are three classes of such—two maximal ones,
and the Borel subgroups.

Finally we note that the group Sp(4,Z/n) acts transitively on each of
the four sets here.

2.1. The surfaces D(l). We begin by considering a single boundary
component D = D(l). Recall that D is an elliptic modular surface over
M = M(l), a curve of genus g, with π : D →M having t exceptional fibers.
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Here

t =
n2

2

∏

p|n
(1− p−2), g = 1 +

(n− 6)t

12
.

We let F denote the union of the exceptional fibers and D◦ = D−F . Then
D◦ is an elliptic curve bundle over M ◦ = M − π(F ) and each fiber in F is
an “n-gon” (a fiber of type In in Kodaira’s classification [25]).

D(l)

π
. .. . M(l)

Fig. 1. Corank 1 boundary component for n = 3

Lemma 2.1. The projection π : D → M induces an isomorphism of
fundamental groups π1(D)→ π1(M).

Proof. This is well known; see for example [9, Prop. 1.31].

Corollary 2.2. Hi(D;Z) and Hi(D;Z) are torsion-free for all i. The
ranks are

1, 2g, 4g + nt− 2, 2g, 1

for i = 0, 1, 2, 3, 4.

Proof. The previous lemma shows that H1 is free of rank 2g, since it is
the H1 of a compact Riemann surface of genus g. Application of the universal
coefficient theorem ([41, Cor. 4, p. 244]) shows then that H1, H2 and H3 are
free. Poincaré duality ([41, Thm. 18, p. 297]) implies that H2 and H3 are
free. The second Betti number follows from an easy Euler characteristic
argument.

Proposition 2.3. For each i, Hi(D
◦;Z) has no torsion of order prime

to n. The ranks are given by

1, 2g + t− 1, 4g + 2t− 3, 2g + t− 1

for i = 0, 1, 2, 3. In fact , these are torsion-free for i = 0, 2, 3, and

H1(D◦;Z)tor = Z/n⊕ Z/n.
Proof. We are going to consider both the homology and cohomology

spectral sequence of the fibration D◦ → M◦. The fiber is topologically a
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torus T 2. The homology version of this is

E2
p,q = Hp(M

◦; Hq(T
2;A)),

where we have a nontrivial local coefficient system, converging to H∗(D◦;A).
Here A is a coefficient ring. We have E2

p,q = 0 for p ≥ 2, so these spectral
sequences collapse for dimensional reasons.

The data of a local system on M ◦ is equivalent to that of a representation
of π = π1(M◦). Since n ≥ 3, the principal congruence subgroup of level n in
SL(2,Z), denoted Γ1(n) = Γ , acts fixed-point free on the upper half-plane,
so this fundamental group is isomorphic to Γ1(n). Note also that as M ◦ is
a connected open surface, it has the homotopy type of a wedge of circles, so
that π1(M◦) is a free group of finite rank. This rank s is the dimension of
the first homology of M◦, which is 2g+ t− 1, since it is a genus g Riemann
surface with t punctures. Let γ1, . . . , γs be a set of free generators for this
group. Let R be the group ring Z[Γ ]. Since M ◦ is a K(π, 1)-space, we have
canonical isomorphisms

Hi(M
◦;V ) = Hi(Γ ;V )

for any R-module V , where on the right-hand side above we identify V with
its local system over M◦, and the left-hand side is Eilenberg–MacLane group
homology. We have a free resolution K∗ → Z:

0→ Rs
∂→ R

ε→ Z→ 0

of the trivial R-module Z, where the maps are defined as follows:

∂(r1, . . . , rs) =
s∑

j=1

(γj − 1)rj , ε
(∑

γ∈Γ
nγ γ

)
=
∑

γ∈Γ
nγ .

Then Hi(Γ ;V ) = Hi(K∗ ⊗R V ), Hi(Γ ;V ) = Hi(HomR(K∗, V )). Similar for-
mulas hold for V taken to be an A-module with a Γ -action, with R replaced
by A[Γ ].

We apply this to V either Hi(T 2;A) or Hi(T
2;A). First, H0(T 2;A) = A

and H2(T 2;A) = A are acted on trivially, but H1(T 2;A) is not. Indeed, as a
representation space of Γ1(n), H1(T 2;A) is Z2 ⊗ A where Γ1(n) acts on Z2

by the dual of its natural action on Z2, the natural action being matrix
multiplication of SL(2,Z) on Z2 (we have the dual action here as we are
dealing with cohomology rather than homology). Also, Hp(M◦;A) = 0 for
p > 1 from the above complex.

Hence we have, for any ring A, E0,0
2 = E0,2

2 = A, and E1,0
2 = E1,2

2 =
H1(M◦;A), free of rank s independent of A. Furthermore, from the above
complex,

E0,1
2 = H0(M◦; H1(T 2;A))
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is isomorphic to the invariant elements in H1(T 2;A) = A2 under the action
of Γ1(n). Note this is zero for A = Z or Z/p, p prime to n. It is Z/n⊕ Z/n
for A = Z/nk, for any k ≥ 1, because the fixed vectors in Z/nk⊕Z/nk under
the dual of the natural action of Γ1(n) are the vectors (a, b) with na and nb
both zero in Z/nk ⊕ Z/nk, and this subgroup is isomorphic to Z/n ⊕ Z/n.
We see thus that H1(D◦;A) is a free A-module of rank s, for A = Z or Z/p,
p prime to n, but that H1(D◦;Z/n) is free of rank s+ 2. Since

H1(D◦;A) = HomZ(H1(D◦;Z), A)

we see that H1(D◦;Z) has no torsion prime to n, and that

Hom(H1(D◦;Z)tor,Z/n) = Z/n⊕ Z/n.
For the assertions about i = 2, 3, we argue from the homology spectral
sequence. Note that, from the above complex, H1(Γ ;V ) is a submodule
of V s, so that if V is a free Z-module of finite rank, so is H1(Γ ;V ). Applied
to V = H1(T 2;Z), this shows that E2

1,1 is a free Z-module. Its rank is easy
to determine from an Euler characteristic argument. First, the universal
coefficient theorem ([41, Theorem 3, p. 243]) shows that E2

1,1⊗Q and E1,1
2 ⊗Q

have the same dimension. Since E0,1
2 ⊗Q is 0, as we have argued above, we

get

−dim E1,1
2 ⊗Q = χ(E∗,12 ) = (1− s) dim H1(T 2;Q) = 2− 2s,

which implies that the rank of E2
1,1 is 2s − 2. Since E2

0,2 is clearly free of
rank 1, we see that H2(D◦;Z) is free of rank 4g + 2t− 3.

The argument for i = 3 is easier. The only contribution is E2
1,2 =

H1(M◦;Z), which is visibly free of rank 2g + t− 1.

Corollary 2.4. Let E be the representation of Γ1(n) on Q2 given by
g(v) = g · v, g ∈ Γ1(n), v ∈ Q2, where the right-hand side is matrix multi-
plication. Then

dim H1(Γ1(n);E) = 2t+ 4g − 4, H1(D◦;Q) = 1 + H1(Γ1(n);E).

Proof. The spectral sequence in the proof collapses at E2 for dimensional
reasons. Also, Γ1(n) acts freely on {Im(z) > 0} with quotient M ◦, so we may
identify the cohomology of M ◦ with the cohomology of the group Γ1(n). We
then dualize to homology to obtain the corollary.

To compute representations we now look at specific matrix groups. Hence-
forth ε = ±1.

Definition 2.1. Let

Q1(k) =








1 m m′

0 a b

0 c d


 :

(
a b

c d

)
∈ Γ1(k), m,m′ ≡ 0 mod k




.
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Then Q1(k) acts on C × {Im(z) > 0}, covering the action of Γ1(k) on
{Im(z) > 0}, by


1 m m′

0 a b

0 c d



(
z

τ

)
=

(
(z +mτ +m′)/(cτ + d)

(aτ + b)/(cτ + d)

)
.

Letting k = n, we obtain D◦ as quotient of this action, and furthermore the
projection (z, τ) 7→ τ descends to the natural π : D◦ →M◦ ([23, Sec. I.2B]).

The group Q1(n) is a normal subgroup of Q1(1) and so Q1(1)/Q1(n)
acts as a group of automorphisms of D◦. Letting

π : Q1(1)→ SL(2,Z) =

{(
a b

c d

)}

be the obvious map suggested by the notation, this action covers the action
of Γ1(1)/Γ1(n) on {Im(z) > 0} by Möbius transformations. We also denote
by π the map Q1(1)/Q1(n)→ Γ1(1)/Γ1(n) = SL(2,Z/n). Henceforth we set
Q = Q1(1)/Q1(n) and H = Γ1(1)/Γ1(n). We have a split exact sequence

0→ Z/n⊕ Z/n→ Q
π→ H → 0.

If ϕ : G1 → G2 is a homomorphism of groups and σ : G2 → GL(V ) is a
representation, we denote by ϕ∗(σ) the representation of G1 given by σ ◦ϕ.

Corollary 2.5. As a representation of Q, Hi(D
◦;Q) is given by

Hi(D
◦;Q) =





1, i = 0,

π∗(H1(Γ1(n);Q)), i = 1, 3,

1 + π∗(Hi(Γ1(n);E)), i = 2,

where H acts by conjugation on Γ1(n), and E is as in 2.4. These represen-
tations have dimensions

1, 2g + (t− 1), 4g + 2t− 3, 2g + (t− 1)
respectively.

Proof. For i = 0, there is nothing to prove.
For i = 1, 3 this is immediate from the identifications

Hi(D
◦;Q) = Hi(Q1(n);Q) = H1(Γ1(n); Hi−1(T 2;Q)) = H1(Γ1(n);Q)

in the proof of 2.3.
For i = 2 this also follows from the identifications there, together with

the observation that

π−1

(
1 0

0 1

)
=








1 m m′

0 1 0

0 0 1








operates trivially on H1(T 2;Q).
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As for the dimensions, H1(Γ1(n);Q) = H1(M◦;Q) and M◦ is an open
Riemann surface of genus g with t punctures.

While the corollary identifies these representations in purely algebraic
terms, it leaves us with difficult computations. We now present a geomet-
ric description which is much easier to compute, assuming we understand
H1(M ;Q) as a representation of H.

Let

Q′′ =

{(
1 m

0 ε

)
: m ∈ Z/n, ε = ±1

}
.

Then Q′′ is isomorphic to the dihedral group D2m. We let R1 be the 1-
dimensional representation of Q′′ where ( 1 1

0 1 ) acts trivially and
(

1 1
0 −1

)
acts

by multiplication by −1, and we let Rn be the n-dimensional representation
of Q′′ with basis e0, . . . , en−1 where ( 1 1

0 1 ) takes ei to ei+1, and
(

1 1
0 −1

)
takes

ei to e−i (indices mod n).
Observe that the stabilizer of a single exceptional fiber in the action of

Q on D is isomorphic to the subgroup

Q′ =








1 m m′

0 ε b

0 0 ε







.

Let % : Q′ → Q′′ be the obvious map suggested by the notation. Also, let P
be the subgroup of H = Γ1(1)/Γ1(n) given by

P =

{(
ε b

0 ε

)}
.

Corollary 2.6. As a representation of Q, Hi(D
◦;Q) is given by

Hi(D
◦;Q) =





1, i = 0,

π∗(H1(M ;Q)) + π∗(IndHP (1))− 1, i = 1, 3,

H2(D;Q)− IndQQ′%
∗(Rn) + IndQQ′(1)− 1

+ IndQQ′%
∗(R1), i = 2.

Proof. We have the exact sequence

0→ H2(M ;Q)→ H2(M,M◦;Q)→ H1(M◦;Q)→ H1(M ;Q)→ 0.

Now H2(M ;Q) is the trivial representation of Γ1(1)/Γ1(n), and

H2(M,M◦;Q) = H0(M −M◦;Q)

is the permutation representation on the t cusps, hence so is the represen-
tation induced from the trivial representation of the stabilizer of any one of
them, and P stabilizes the cusp ∞. Now
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H1(D◦;Q) ' H3(D◦;Q) ' H1(M◦;Q),

establishing the claim for i = 1, 3.
To compute H2(D◦;Q) we consider the exact sequence of the pair (D,F ),

from which we see

H2(D◦;Q) = H2(D,F ;Q)

= Coker(H2(F ;Q)→ H2(D;Q))⊕Ker(H1(F ;Q)→ H1(D;Q)).

Let f denote a single exceptional fiber, the fiber over∞. Then the stabilizer
of f is π−1(P ) = Q′.

Let Σ be the union of the cusps in M . We have a commutative diagram

H1(F ) //

��

H1(D)

��
0 = H1(Σ) // H1(M)

and by Lemma 2.1 the map H1(D)→ H1(M) is an isomorphism, so

H1(F ;Q)→ H1(D;Q)

is the zero map. Thus the second summand above is IndQQ′H1(f ;Q).

As for the first summand, we have seen that for each exceptional fiber f ,
H2(f ;Q) → H2(D;Q) is an injection, and that in fact the only relation
between the images of these homology groups in H2(D;Q) is that the sum
of the homology classes of the P1’s in each n-gon is the homology class of
a general fiber. Note that the sum of the homology classes of the P1’s in
H2(f ;Q) is acted on trivially by Q′, and the homology class of a general
fiber is acted on trivially by the whole group Q. Hence the image of the map
H2(F ;Q)→ H2(D;Q) is isomorphic to

IndQQ′(H2(f ;Q)− 1) + 1.

Thus to complete the proof it remains to determine IndQQ′Hi(f ;Q) for i =
1, 2.

Now as f is an n-gon of P1’s, the elements



1 0 1

0 1 0

0 0 1


 and




1 0 0

0 1 1

0 0 1




of Q′ act trivially on f , while the element



1 1 0

0 1 0

0 0 1



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acts by “rotating” the n-gon, taking the ith P1 to the (i+ 1)st P1, mod n,
and the element 


1 0 0

0 −1 0

0 0 −1




acts by “reflecting” the n-gon, taking the ith P1 to the (−i)th P1, mod n.
(For all this see the construction in [23, Section I.2B]. In other words, the
action of Q′ factors through Q′′, and Q′′ acts as R1 on H1(f ;Q) and as Rn
on H2(f ;Q).)

Assembling these terms gives H2(D,F ;Q) and thus H2(D◦;Q).

Finally, let P (l) denote the stabilizer of l in G. We wish to find the action
of P (l) on D(l). To do so, we choose l = (0, 0, 0, 1). Then

P (0, 0, 0, 1) =








a 0 b ∗
m 1 m′ s

c 0 d ∗
0 0 0 1







,

where the entries marked ∗ are determined by the condition that the matrix
be symplectic. (Compare [23, I.3.100].) Note that although the entries in σ
are only determined up to a common sign, letting the element in the lower
right-hand corner be +1 eliminates any ambiguity. The element



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1




acts trivially on D(0, 0, 0, 1). We thus see:

Proposition 2.7. The action of P (0, 0, 0, 1) on H∗(D(0, 0, 0, 1);Z) fac-
tors through the map prl : P (l)→ Q given by

prl




a 0 b ∗
m 1 m′ s

c 0 d ∗
0 0 0 1




=




1 m m′

0 a b

0 c d


 .

We can recapitulate these calculations in the language of sheaf cohom-
ology. For a treatment of this for an arbitrary fibration of elliptic curves,
see [9]. The Leray spectral sequence

Ep,q2 = Hp(M◦;Rqπ∗Q)⇒ H∗(D◦;Q)
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is degenerate at E2 by a theorem of Deligne [10, Section 1]. One has

π∗Q = Q, R2π∗Q = Q
(ignoring Tate twists). The local system E = R1π∗Q is equivalent to the dual
E∗ representation of π1(M◦) = Γ1(n) described in Corollary 2.4. Therefore,
Hi(M◦; E) is 0 for i = 0, 2, being the π1(M◦)-invariants in E∗ and coin-
variants in E, respectively. The rank for i = 1, namely 4g + 2t− 4, follows
easily from an Euler characteristic calculation. We recover the calculation
of Hi(D◦) this way.

The spectral sequence for π : D → M has π∗Q = Q and nontrivial
sheaves E = R1π∗Q and F = R2π∗Q. We claim that the sequence is E2-
degenerate, and we will evaluate the terms. Let Σ ⊂ M be the set of t
cusps, and j : M◦ →M the inclusion of their open complement.

The constructible sheaf E is given as the local system j∗E on M◦, equiv-
alent to the representation E∗ of π1(M◦). On Σ it is

⊕

s∈Σ
(R1π∗Q)s =

⊕

s∈Σ
Qs,

since over each cusp sits an n-gon of P1’s. The monodromy of E∗ around
the cusp s is equivalent to

γs =

(
1 n

0 1

)

(see the proof of Theorem 2.13) and at each cusp the gluing map

Es ∼= Q→ (j∗j∗E)s = Ker(γs − 1) ∼= Q
is an isomorphism. Thus, E = j∗j∗E . We have the local cohomology exact
sequence

· · · → Hi
Σ(M ; E)→ Hi(M ; E)→ Hi(M◦; j∗E)→ . . .

and the local-to-global spectral sequence

Ea,b2 = Ha(M ;HbΣ(E))⇒ H∗Σ(M ; E)

(see [16]). The exact sequence

0→H0
Σ(E)→ E → j∗j∗E → H1

Σ(E)→ 0

shows that HiΣ(E) = 0 for i = 0, 1. These are 0 for i ≥ 3 and

H2
Σ(E)s = R1j∗(j∗E)s = Coker(γs − 1) ∼= Q.

Thus, the only nonzero local cohomology group is

H2
Σ(M ; E) = H0(M ;H2

Σ(E)) = Qt.
The exact sequence

0→ j!j
∗E → j∗j∗E = E →

⊕

s∈Σ
Qs → 0



Cohomology of the boundary of Siegel varieties 15

shows that

H2(M ; E) ∼= H2(M ; j!j
∗E) = H2

c(M◦; j∗E).

This last one is Verdier dual ([42]) to H0(M◦; (j∗E)∗), which vanishes, as
mentioned before. Therefore, Hi(M ; E) = 0 for i 6= 1, and we have an exact
sequence

0→ H1(M ; E)→ H1(M◦; j∗E)→ Qt → 0,

which gives the rank of the left-hand term as 4g + t− 4.
The sheaf j∗F is the constant sheaf Q on M ◦, hence j∗j∗F = Q. For

each s ∈ Σ we have Fs ∼= Qn, generated by the fundamental classes of the
P1’s in the n-gon lying over s. The gluing map

Qn ∼= Fs → (j∗j∗F)s = Q
is (ni) 7→

∑
ni. We get the exact sequence

0 // H0
Σ(F) // F // j∗j∗F // H1

Σ(F) // 0

⊕
s∈Σ(Qn−1)s Q 0

From the long exact cohomology sequence of this sheaf sequence we see that
Hi(M ;F) has dimension t(n− 1) + 1, 2g, 1 for i = 0, 1, 2 and is 0 for i ≥ 3.

It is now clear that the spectral sequence degenerates as claimed, and
that it gives the dimensions of Hi(D) as calculated. Actually, the degenera-
tion of this spectral sequence is a general phenomenon [44, §15].

There is a precision of these results in Hodge theory. Namely,

H1(D) ∼= H1(M) and H3(D) ∼= H1(M)(−1)

as Hodge structures (over Q). Also, there is a canonical Hodge structure on

H1(M ; j∗j∗E) = H1(M ; E)

(see [44]) of pure weight 2. This contributes the (2, 0) and (0, 2) part of
H2(D). Shioda [40] has identified the (2, 0) part as the space of Γ1(n)-cusp
forms of weight 3, and the image of

H1(M ; j∗j∗R1π∗Z)→ H1(M ; j∗j∗R1π∗C)

is the lattice of Eichler periods. It is more elementary, and classical, that
the (1, 0) part of H1(M) is identified with the weight 2 cusp forms. As to
H1,1(D), it is entirely generated by algebraic cycles. This is now clear from

the spectral sequence: E0,2
2 contributes n − 1 of the P1’s over each of the

cusps, plus a general fiber of the map π. In turn, E2,0
2 contributes the class

of any one of the sections of π. Finally, H1(M◦; j∗E) carries a mixed Hodge
structure. All these various Hodge structures are compatible with the maps
arising from the Leray sequence (for details on this see [9], [39] and [44]).
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Remark 2.1. The referee has pointed out that the above calculations
can be summarized neatly using the Decomposition Theorem for perverse
sheaves ([3, Theorem 6.2.5]). The simple sheaves over an algebraic curve M
are of the form (up to dimension shift) j∗L for a local system L on a Zariski
open subset j : U →M , or i∗Q for the inclusion of a point i : p→M . Then
the above calculations show that

Rπ∗QD = QM ⊕ j∗j∗E [−1]⊕QM [−2]⊕
⊕

s∈Σ
Qn−1
s [−2]

in Db
c(M(C),Q).

2.2. The curves C(h). We now consider a corank 2 boundary component
C(h). Note that C(h) is a union of n-gons, one for each l with l ⊂ h. The P1’s
in C(h) are D(l1, l2) where h = l1 ∧ l2, so we see that each P1 is contained
in two n-gons. Each point which is the intersection of two P1’s is in fact a
triple point D(l1, l2)∩D(l1, l3)∩D(l2, l3) with h = l1 ∧ l2 = l1 ∧ l3 = l2 ∧ l3;
necessarily, l3 = l1 ± l2. Recall that D(l) = D(−l). We set

r1 = dim H1(C(h);Q), r2 = dim H2(C(h);Q),

and note that Hi(C(h);Q) = 0 for i ≥ 3.

C(h)

Fig. 2. Corank 2 boundary component for n = 3

Proposition 2.8. We have

r2 = nt/2, r1 = 1 + nt/6,

where n is the level , and t the number of cusps of the modular curve (see
the beginning of Section 2.1).

Proof. The integer r2 is simply the number of P1’s. Now an h-vertex in
T(Z/n) has valence t, an edge leading out from h corresponds to an n-gon
of P1’s. This counts nt P1’s, but each is counted twice, yielding r2 = nt/2.

To compute r1, we observe that the Euler characteristic of C(h) is
r2 − r1 + 1. On the other hand, as each P1 contains two triple points, and
the Euler characteristic of P1 − 2 points is zero, the Euler characteristic
of C(h) is equal to the number of triple points, which by the same logic is
nt/3.
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In fact, it is easy to see, say by Mayer–Vietoris, that H2(C(h);Z) is free
on the fundamental classes of the D(l1, l2).

We further observe that, as is well known and can be verified by an Euler
characteristic computation, if each D(l1, l2) = P1 = S2 in C(h) is replaced
by the interval [0, 1], then the 1-complex so obtained is the 1-skeleton C ′(h)
of a tessellation of a Riemann surface N = N(h) of genus g by t n-gons. To
determine H1(C(h)), we replace the complex C(h) by the 1-skeleton C ′(h),
which has the same homology in dimensions i = 0, 1. Here we want to be
careful about orientations, as an element of the stabilizer subgroup P (h)
of C(h) may reverse the orientation of a path. To this end, if (l1, l2) is an
ordered pair of elements of (Z/n)4 with h = l1 ∧ l2, we let d(l1, l2) denote
an oriented path in D(l1, l2) connecting the vertices D(l1, l2, l1 + l2) and
D(l1, l2, l1 − l2). We define a chain complex

C0(h) = the free Z-module on d(l1, l2, l3)

with l1 ∧ l2 = l1 ∧ l3 = l2 ∧ l2 = ±h,
C1(h) = the free Z-module on d(l1, l2) with l1 ∧ l2 = ±h.

The boundary is defined by

∂d(l1, l2) = d(l1, l2, l1 + l2)− d(l1, l2, l1 − l2).

This provides an orientation of these 1-cells. These symbols cannot depend
essentially on the order or sign changes of their arguments. Consistency
demands that the symbol d(l1, l2, l3) is invariant under li → ±li but that

d(l1,−l2) = d(−l1, l2) = −d(l1, l2).

Note that this is in contrast to the symbol D(l1, l2) which is insensitive
to sign changes of l1 and l2. The symbols d(l1, l2) and d(l1, l2, l3) are sym-
metrical under permutations of their respective arguments. The reader can
check that the complex is well defined. Then H1(C(h)) = H1(C ′(h)), and
H1(C ′(h)) is generated by the cycles given by the n-gons. The n-gons are
the faces of the polyhedron C ′(h). These are indexed by the flags l ⊂ h. For
a given such flag we have l∧ l′ = ±h for some other l′. The edges of the face
are labeled by pairs (l′ + il, l) for i ∈ Z/n. Then

c(h, l) = d(l, l′) + d(l, l′ + l) + . . .+ d(l, l′ + (n− 1)l)

is a generating cycle on this face (one checks that ∂c(h, l) = 0). It is well
defined up to a sign. Let P (h) be the stabilizer of h in G. We can now
determine the action of P (h) on H∗(C(h)). To do so, we choose

h = (0, 0, 1, 0) ∧ (0, 0, 0, 1).

Then
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P (h) =








a c ∗ ∗
b d ∗ ∗
0 0 εd −εb
0 0 −εc εa







,

where ε = ad − bc = ±1 and the entries marked ∗ are determined by the
condition that the matrix be symplectic.

If l is a line with l ⊂ h then l is of the form (0, 0, x, y), and the image of
the line under the action of g ∈ P (h) is lg−1 = (0, 0, x′, y′), where

(x′, y′) = (x, y)

(
a b

c d

)
.

The action of P (h) on the generators D(l1, l2) is induced from the obvious
action on the symbols li. The same goes for its action on the symbols d(l1, l2)
and d(l1, l2, l3). Notice that this action does factor, as it should, across the
center ±1 (a nontrivial assertion only in the case of the d(l1, l2)). We thus
see:

Proposition 2.9. For h = (0, 0, 1, 0)∧ (0, 0, 0, 1), the action of P(h) on
H∗(C(h)) factors through prh : P (h)→ H where

prh




a c ∗ ∗
b d ∗ ∗
0 0 εd −εb
0 0 −εc εa




=

(
a b

c d

)
∈ GL(2,Z/n).

For future purposes we record (for notations, see 2.6):

Proposition 2.10. Let l = (0, 0, 0, 1) and h = (0, 0, 1, 0) ∧ (0, 0, 0, 1),
and f(h, l) the corresponding exceptional fiber. The stabilizer P (h, l) = P (h)
∩P (l) of f(h, l) is pr−1

l (Q′) ⊂ P (l). Its action on H∗(f(h, l)) factors through
the projections

pr−1
l (Q′)→ Q′ → Q′′.

2.3. Homology of the boundary. We now turn to the boundary ∂A2(n)∗,
n ≥ 3, as a whole. We let q be the number of corank 1 boundary components,
which is the same as the number of corank 2 boundary components; we have
computed

q =
n4

2

∏

p|n
(1− p−4).

The corank 1 and corank 2 boundary components each have valence t, which
is the integer so denoted in the previous section.
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The Tits building T = T(Z/n) is a connected 1-complex with 2q vertices
and qt edges, so H1(T;Z) is a free Z-module of rank q(t− 2) + 1.

Lemma 2.11. As a representation of G,

H1(T;Q) = IndGP (l,h)(1)− IndGP (l)(1)− IndGP (h)(1) + 1.

Proof. We know that the Euler characteristic of T is equal to the Euler
characteristic of H∗(T;Z). Now the vertices of T are indexed by {l} and {h}
and the edges by {(l, h) : l ⊂ h}, so T has Euler characteristic

−IndGP (l,h)(1) + IndGP (l)(1) + IndGP (h)(1),

while H∗(T;Z) has Euler characteristic

−H1(T;Z) + H0(T;Z).

But T is connected, so H0(T;Z) = 1, the trivial 1-dimensional representation
of G, and the result follows.

Lemma 2.12. The representation of G on H1(∂A2(n)∗;Q) contains
H1(T;Q).

Proof. Let D◦(l) be D(l) with the exceptional fibers removed, and let
C•(h) be a regular neighborhood of C(h) in ∂A2(n)∗. Let I = P1(Z/n)

∐

P2(Z/n). Then {Ui}i∈I = {D◦(l), C•(h)} is an open cover of ∂A2(n)∗ with
nerve T(Z/n), and furthermore each D◦(l), C•(h), D◦(l) ∩ C•(h) for l ⊂ h
is connected. Then the sheaf cohomology spectral sequence for this open
covering,

Ea,b1 =
⊕

#I=a+1

Hb(UI ;Q)⇒ H∗(∂A2(n)∗;Q),

where UI = Ui0 ∩ . . . ∩ Uia for I = {i0, . . . , ia}, has

E1,0
2 = Coker(E0,0

1 → E1,0
1 ),

which is clearly H1(T;Q). The spectral sequence collapses at E2 for dimen-
sional reasons, showing H1(T;Q) does indeed exist inside H1(∂A2(n)∗;Q)
and hence by duality H1(T;Q) is in H1(∂A2(n)∗;Q) (see [14, Theorem
5.4.1]).

Remark 2.2. This conclusion holds for the boundary of the Borel–Serre
compactification, as observed in [36], and for the boundary of the Satake
compactification.

In case l ⊂ h, we let C•(h, l) be the intersection C•(h) ∩ D(l), and
C◦(h, l) be the intersection C•(h)∩D◦(h, l), where D◦(h, l) denotes D with
the singular fiber f(h, l) associated with (l, h) removed. Note that the inclu-
sion f(h, l) ↪→ C•(h, l) is a homotopy equivalence, and hence this has the
homotopy type of an n-gon of P1’s. Also C◦(h, l) has the homotopy type of
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∂C•(h, l), which is that of a T 2-bundle over S1 with monodromy ( 1 n
0 1 ). We

let

C◦(h) =
⋃

l⊂h
C◦(h, l) for fixed h, C◦(l) =

⋃

l⊂h
C◦(h, l) for fixed l.

These are both disjoint unions. We set

C•(l) =
⋃

l⊂h
C•(h, l).

Then we have decompositions

D(l) = C•(l) ∪D◦(l), ∂A2(n)∗ = C• ∪D◦,
C◦(l) = C•(l) ∩D◦(l), C◦ = C• ∩D◦

with

C• =
⋃
C•(l), D◦ =

⋃
D◦(l), C◦ =

⋃
C◦(l) =

⋃
C◦(h),

where the last three unions are disjoint. We shall use these decompositions
to calculate homology.

Theorem 2.13. (a) For i = 0, 1, 2, 3, 4, dim Hi(∂A2(n)∗;Q) is

1, q(r1 + 2g − 1) + 1, q(r2 + 4g − 1), 2gq, q

respectively. (The definition of q is at the beginning of Section 2.3; that of
r1, r2 before Proposition 2.8; that of g at the beginning of Section 2.1.)

(b) Hi(∂A2(n)∗;Z) is torsion-free for i = 0, 3, 4. It has no torsion of
order prime to n for i = 1, and no torsion of order prime to 2n for i = 2.

(c) As representations of G = PΓ2(1)/PΓ2(n), Hi(∂A2(n)∗;Q) is as
follows:





1, i = 0,

IndGP (h)H1(N(h);Q) + IndGP (l)H1(M(l);Q) + H1(T;Q), i = 1,

IndGP (h)H2(C(h);Q) + IndGP (l)H2(D◦(l);Q)

− IndGP (h,l)H1(f(h, l);Q)− H1(T;Q) + 1, i = 2,

IndGP (l)H1(M(l);Q), i = 3,

IndGP (l)(1), i = 4.

The definition of the Riemann surface N(h) is in the second paragraph after
the proof of Proposition 2.8.

Remark 2.3. Note that the representations of P (h) on H∗(C(h);Q) are
identified in Section 2.2 and the representations of P (l) on H∗(D◦(l);Q) are
identified in Section 2.1 (see especially Corollary 2.5 and Propositions 2.7
and 2.9).
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Remark 2.4. If n = p is an odd prime, the dimensions in (a) are

1,

1 + ((p4 − 1)/2)(2 + (p− 3)(p2 − 1)/6),

((p4 − 1)/2)(3 + (5p− 12)(p2 − 1)/12),

(p4 − 1)(1 + (p− 6)(p2 − 1)/24),

(p4 − 1)/2.

For p = 3 these integers are 1, 81, 200, 0, and 40. For p = 5 they are 1, 3121,
9048, 0, and 312.

Proof of Theorem 2.13. In what follows, we will sometimes omit refer-
ence to the coefficient ring in our homology groups, but we will be careful to
specify it when necessary. In all cases where group characters are involved,
the coefficient ring will be Q.

We apply Mayer–Vietoris to the decomposition ∂A2(n)∗ = C• ∪D◦. We
shall write H∗(C) rather than H∗(C•) and H∗(∂C•) rather than H∗(C◦),
using the fact that C → C• and ∂C• → C◦ are homotopy equivalences.
Then Mayer–Vietoris reads:

(2) . . .→ Hi(∂C
•)→ Hi(C)⊕ Hi(D

◦)
ϕi−→ Hi(∂A2(n)∗)→ . . .

A segment of this implies an exact sequence

0→ Im(ϕ3)→ H3(∂A2(n)∗)→ H2(∂C•)
i2−→ H2(C)⊕ H2(D◦).

We analyze the image. For any fixed l we have an exact sequence coming
from the Mayer–Vietoris applied to D(l) = C•(l) ∪D◦(l):
(3) 0→ H4(D(l))→ H3(C◦(l))→ H3(D◦(l))

ml−→ H3(D(l))→ H2(C◦(l))

(as the term H3(C•(l)) vanishes), and where the first three terms have di-
mensions 1, t, and 2g + (t − 1) respectively, by Corollary 2.5. We may re-
place the last group above by 0, in other words, the map ml is onto. With
Q-coefficients this follows because the dimension of the term

H3(D(l)) ' H1(D(l)) ' H1(M(l))

is 2g. With Z-coefficients now, if ml were not onto, its cokernel would be
finite by the previous argument. But this would inject into the last term.
But this is a free Z-module, because C◦ is a disjoint union of spaces whose
homology is shown to have a free H2 in the spectral sequence argument
that comes next. Thus the cokernel of ml is 0. In fact, with Z-coefficients
all terms in the above exact sequence are free Z-modules of the indicated
ranks.

Since ∂A2(n)∗ is a union of complex surfaces D(l), which intersect in
complex curves, it is easily seen by repeated application of Mayer–Vietoris
that H4(∂A2(n)∗;Z) is a free Z-module on the fundamental classes of the
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surfaces D(l). The same argument shows that H4(∂A2(n)∗;Z) is a free Z-
module on the duals of these fundamental classes. The universal coefficient
theorem ([41, Cor. 4, p. 244]) then shows that H3(∂A2(n)∗;Z) is free.

As G acts transitively on the D(l) with stabilizer P (l) it is clear that

H4(∂A2(n)∗) = IndGP (l)H4(D(l)).

For essentially the same reason, easier here because the unions ∂C• ' C◦ =⋃
C◦(l) and D◦ =

⋃
D◦(l) are disjoint, we have

H3(∂C•) = IndGP (l)H4(C◦(l)), H3(D◦) = IndGP (l)H4(D◦(l)).

Applying the functor IndGP (l) to the first three terms of the exact sequence

(3) we thus get the segment of Mayer–Vietoris

0→ H4(∂A2(n)∗)→ H3(∂C•)→ H3(D◦)
ϕ3−→ . . .

Therefore, IndGP (l) applied to the entire exact sequence (3) shows that

Im(ϕ3) = IndGP (l)H3(D(l)) = IndGP (l)H1(M(l)).

Now for any fixed (h, l), ∂C•(h, l) is an S1 × S1-bundle over S1 with
monodromy γ = ( 1 n

0 1 ). The homology of this is computed from the spectral
sequence of a fibration

E2
p,q = Hp(S

1; Hq(S
1 × S1;R))⇒ H∗(∂C•(h, l);R),

which for dimensional reasons degenerates at E2. Local systems on S1 are
identified canonically with R[γ]-modules V and their homology is computed
from the complex

V
γ−1−→ V,

so in the case at hand we see that

Hi(∂C
•(h, l);R) =





E2
0,0 = R for i = 0,

E2
0,1 ⊕ E2

1,0 = (R⊕R/n)⊕R for i = 1,

E2
0,2 ⊕ E2

1,1 = R⊕R for i = 2,

E2
1,2 = R for i = 3.

Lemma 2.14. i2 : H2(∂C•) → H2(C) ⊕ H2(D◦) is injective for the co-
efficient rings R = Q,Z,Z/p for p odd. The kernel of i2 is nontrivial for
p = 2.

Proof. The above argument shows that H2(∂C•(h, l)) is free of rank 2
over any ring. We can decompose the cohomology spaces as

⊕

h,l

H2(∂C•(h, l))
i2−→
(⊕

h

H2(C(h))
)
⊕
(⊕

l

H2(D◦(l))
)

corresponding to disjoint unions of the various spaces involved. We are going
to show that the map i2 can be represented in an appropriate basis in the
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shape (
α2 0

∗ β2

)

and we will show that β2 is injective and that Ker(α2) is 2-torsion, which
suffices. From the spectral sequence argument above, we can write

H2(∂C•(h, l)) = A(h, l)⊕B(h, l),

where the first summand is represented by the class of a fiber of this bundle,
and that class includes into H2(C•(h, l)) with image the sum of the funda-
mental classes of the P1’s in an n-gon, a class that is a direct summand of
H2(C•(h, l)). The second generator is represented by a (trivial) S1-bundle
over S1. We can give an explicit geometric representative for this as follows:
In any fiber T 2 of the projection ∂C•(h, l) → S1 we let σ1 be an S1 ⊂ T 2

invariant under the monodromy γ and let σ2 be the image of the base S1

under any section s of this fibration (recall that there are n2 global sections
of the map D(l) → M(l) for any l). Then σ1 × σ2 represents a generator
of the summand B(h, l). Since the base S1 ⊂ M(l) bounds a disk ∆ in
M(l), we see that σ1× σ2 bounds σ1× s(∆) in C•(h, l). In other words, the
summand B(h, l) maps to zero under

H2(∂C•(h, l))→ H2(C•(h, l))→ H2(C•(h)) = H2(C(h)).

Thus, the map i2 does have the matrix form as claimed relative to this
splitting.

The map β2: A segment of the Mayer–Vietoris sequence for a single
boundary component D(l) = C•(l) ∪D◦(l) is

0→ H4(D(l))→ H3(∂C•(l))→ H3(D◦(l))

→ H3(D(l))→ H2(∂C•(l))
j2(l)→ H2(C•(l))⊕H2(D◦(l))

(as H3(C•(l)) = 0). The ranks of the first 4 of these are respectively 1, t,
2g + (t − 1), 2g, independently of the coefficient ring R we are considering
(which in all cases we are considering is a field), showing that the map j2(l)
is an injection. Note that

H2(C•(l)) =
⊕

h⊃l
H2(∂C•(h, l)).

Restricted to the subspace
⊕

h⊃lB(h, l), this is precisely 0⊕ β2, so β2 is an
injection.

The map α2: This is a sum over h of components
⊕

l⊂h
A(h, l)→ H2(C(h)).
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C(h) is a polyhedron of P1’s, and H2(C(h)) is free on the fundamental
classes of the P1’s in it. The image of each A(h, l) = Q · a(h, l) is generated
by the cycle of P1’s in one face of this polyhedron. That the above map is
injective means that these face-cycles a(h, l) are linearly independent. This
can be seen as follows. Suppose that there were a relation

∑

l⊂h
ml · a(h, l) = 0.

Consider any vertex of C(h). This is a triple l1, l2, l3 with h = l1 ∧ l2 and
l3 = l1 ± l2 (recall that all of these are well defined up to multiplication
by ±1.) The given relation implies that the coefficients ml cancel along each
of the three edges emanating from this vertex, in other words that

ml1 +ml2 = 0, ml1 +ml3 = 0, ml2 +ml3 = 0,

which implies that all three are zero provided we are not in characteristic 2,
where there visibly is a kernel. As this is true at all vertices, theml are all 0 in
characteristic not 2. Thus the map α2 is an injection in these characteristics
as well.

Since i2 is an injection we see that

Im(ϕ3) = H3(∂A2(n)∗) = IndGP (l)H1(M(l))

as claimed in the theorem for i = 3, where the first equality holds with
Z-coefficients, and Q-coefficients are understood in the second equality.

Examining this further, we see that the subspace of H2(∂C•;Q) spanned
by the first generators is

⊕

h,l

A(h, l) = IndGP (h,l)(1),

since as we have noted, the first generator is invariant under the automor-
phisms of ∂C•(h, l). Also, H2(C) = IndGP (h)H2(C(h)).

Now we must identify the subspace spanned by the second generators
of H2(∂C•;Q). As we have just observed, for any fixed pair (h, l) this
generator is represented by an S1-bundle over S1. Under the inclusion of
∂C• into C•, the base includes trivially, but the fiber includes to a path
representing a generator of H1(f(h, l)). Put another way, the exact sequence
of the pair (C•, ∂C•) and the Alexander duality theorem gives an equivariant
(for P (h, l)) identification

B(h, l) = H3(C•(h, l); ∂C•(h, l)) = H1
c(C•(h, l)− ∂C•(h, l))

∼= H1(f(h, l)) ∼= H1(f(h, l)).
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Therefore the space of second generators is
⊕

h,l

B(h, l) = IndGP (h,l)H1(f(h, l)),

and we have described how P (h, l) acts on H1(f(h, l)) in the previous section
(see the proof of Corollary 2.6).

Also, H2(D◦) = IndGP (l)H2(D◦(l)) and we have described the action of

P (l) on H2(D◦(l)) in the previous section (see Corollaries 2.5, 2.6, and
Proposition 2.7).

If we examine the continuation of the Meyer–Vietoris starting at the
term H2(∂C•), the above results show that, as representations,

Coker(i2) = H2(C) + H2(D◦)− H2(∂C•)

= IndGP (h)H2(C(h)) + IndGP (l)H2(D◦(l))

− IndGP (h,l)(1)− IndGP (h,l)H1(f(h, l)).

Now we consider Z-coefficients again. We have an exact sequence:

0→ Coker(i2)→ H2(∂A2(n)∗)→ H1(∂C•)
i1−→ H1(C)⊕ H1(D◦).

This sequence shows that the torsion of H2(∂A2(n)∗) will be contained in
that of Coker(i2) and H1(∂A2(n)∗). The latter has no torsion prime to n as
we have seen in the spectral sequence argument preceding Lemma 2.14. As
to the former, the following lemma shows that it has only 2-power torsion.
Thus, H1(∂C•) has no torsion prime to 2n.

Lemma 2.15. Coker(i2) has no torsion prime to 2. Its 2-power torsion
is nontrivial.

Proof. We may consider i2 as defining the differential in a 2-term com-
plex of free Z-modules of finite type, K = [K1 → K0]. Lemma 2.14 shows
that H1(K ⊗ Z/p) = 0 for all odd primes, but that it is nonzero for p = 2.
Since H1(K) = 0, the universal coefficient theorem [41, Thm. 8, p. 222]
shows that

H1(K ⊗ Z/p) = TorZ1 (H0(K),Z/p),
which is nonzero if and only if p = 2. Of course, H0(K) = Coker(i2).

We now study H1(∂A2(n)∗). We must analyze the last map i1 above. In
what follows, our coefficient ring is such that n is invertible. Again, for each
(h, l), H1(∂C•(h, l)) is two-dimensional, and we split this into two subspaces
according to the spectral sequence of a fibration. The first generator is rep-
resented by an S1 in a fiber, and the second is represented by a section (the
fiber bundle has a section as it is the restriction of the S1 × S1-bundle over
D◦(l), which we have seen has sections). Now H1(C•(h, l)) is one-dimensional
(recall that C•(h, l) is an n-gon) and the inclusion ∂C•(h, l) ↪→ C•(h, l)
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sends the first generator to the generator of H1(C•(h, l);Q) and the second
generator to zero, as the section over D◦(l) extends to a section over D(l),
so this second generator bounds a disk in C•(h, l). On the other hand, in
the inclusion ∂C•(h, l) ↪→ D◦(l) the first generator goes to zero, as we see
from the commutative diagram

H1(S1;Q) //

��

H1(D◦;Q)

'
��

H1(pt;Q) // H1(M◦;Q)

whereas we may compute the image of the second generator by considering
its image in M◦, from the diagram

H1(D◦;Q)

'

��

H1(S1;Q)

77ppppppppppp

''NNNNNNNNNNN

H1(M◦;Q)

In other words, if we let A (resp. B) be the subspace of H1(∂C•) spanned
by the first (resp. second) generators, then the map from H1(∂C•),

⊕

h,l

H1(∂C•(h, l))
i1−→
(⊕

h

H1(C(h))
)
⊕
(⊕

l

H1(D◦(l))
)
,

can be represented as a block matrix

i1 =

(
α1 0

0 β1

)

Thus it remains to calculate α1 and β1.
The map α1: Fix h and consider C(h). As we have observed in Section

2.2 there is an isomorphism H1(C(h)) ' H1(C ′(h)). Each first generator is
a path around an n-gon and is represented by a cycle

c(h, l) = d(l, l′) + d(l, l′ + l) + . . .+ d(l, l′ + (n− 1)l)

in C ′(h), well defined up to sign. But C ′(h) is the 1-skeleton of a cell de-
composition of the oriented surface N(h), and each of these cycles is the
boundary of a 2-cell in N(h). Hence there is a single relation between them:
The sum of all these cycles, with signs chosen suitably, is zero. Thus the
map α1 has kernel a 1-dimensional trivial representation of P (h) on each
C(h). We also see that, for fixed h, the map α1 is exactly the boundary map
on 2-cells of N(h) in a complex for the cellular homology of N(h), so its
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cokernel is isomorphic to H1(N(h)). Hence we see that

Ker(α1) = IndGP (h)(1), Coker(α1) = IndGP (h)H1(N(h)).

The map β1: Fix l and consider D(l). As we observed earlier in this
proof, we may calculate β1 by looking at it on H1(M◦(l)) ' H1(D◦(l)). Here
it is the inclusion of the loops around the t punctures of the oriented surface
into this surface, so there is again a single relation between them: The sum
of all these cycles is zero. Thus the map β1 has kernel a 1-dimensional
trivial representation of P (l) on each D◦(l). We also see that, for fixed l, the
cokernel of the inclusion of the classes of the loops around the punctures of
M◦(l) into H1(M◦(l)) is just H1(M◦). Hence we see that

Ker(β1) = IndGP (l)(1), Coker(β1) = IndGP (l)H1(M(l)).

Applied to the coefficient rings Z/p for primes p not dividing n, these argu-
ments show that Ker(i1) has a rank independent of p and equal to the rank
of Ker(i1) when computed with coefficients Z[1/n]. This is free, since it is a
submodule of a free Z[1/n]-module.

We have an exact sequence:

0→ Coker(i1)→ H1(∂A2(n)∗)→ H0(∂C•)
i0−→ H0(C)⊕ H1(D◦).

Since H0(∂C•) is torsion-free, the only possible torsion in H1(∂A2(n)∗)
comes from Coker(i1). The next lemma shows that this is contained in the
divisors of n:

Lemma 2.16. Coker(i1) has no torsion prime to n.

Proof. We may consider i1 as defining the differential in a 2-term com-
plex of free Z[1/n]-modules of finite type, K = [K1 → K0]. According to
[41, Thm. 8, p. 222] we have an exact sequence

0→ H1(K)⊗R µ→ H1(K ⊗R)→ Tor
Z[1/n]
1 (H0(K), R)→ 0

for any Z[1/n]-module R. The arguments in the previous paragraph show
that µ is an isomorphism for R = Z/p, where p is a prime not dividing n.
Thus the Tor term is zero for these. Therefore, H0(K) = Coker(i1) has no
torsion prime to n.

To complete the analysis of H1(∂A2(n)∗) we must look at the terms that
follow it in the Mayer–Vietoris sequence:

H0(∂C•)
i0−→ H0(C•)⊕ H0(D◦)→ H0(∂A2(n)∗)→ 0.

As representations of G, this is the sequence

IndGP (h,l)(1)→ IndGP (h)(1)⊕ IndGP (l)(1)→ 1→ 0,

so
Ker(i0) = IndGP (h,l)(1)− IndGP (h)(1)− IndGP (l)(1) + 1,
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and by Lemma 2.11 this is simply H1(T). Note that this part of the sequence
is exact over Z, though the representations do not split.

We have

H2(∂A2(n)∗) = Coker(i2)⊕Ker(i1) = Coker(i2)⊕Ker(α1)⊕Ker(β1),

H1(∂A2(n)∗) = Coker(i1)⊕Ker(i0) = Coker(α1)⊕ Coker(β1)⊕Ker(i0).

Then, assembling and identifying all the pieces, Theorem 2.13 follows.

Remark 2.5. We may alternatively consider the projectivization PT
of T. For n ≥ 3 the map PT→ T is ϕ(n)/2-to-1. (It is 1-1 for n = 1, 2.) The
group PSp(4,Z/n) acts on H1(PT;Q), and the representation so obtained is
known as the Steinberg representation. We denote it by Stn. For n = p prime,
Stp is known to be the unique irreducible representation of PSp(4,Z/p) of
degree p4. In particular, H1(T(Z/n);Q) = Stn for n = 3, but these differ for
n > 3.

2.4. The mixed Hodge structure. We will determine the weight filtrations
on the mixed Hodge structures of the cohomology of the boundary. Let Di,
i ∈ I, be the components of the boundary. The indexing set I is a set of
vertices in the building T(Z/n), and #I = q. For each J ⊂ I we let

DJ =
⋂

j∈J
Dj

and for each a ≥ 0 the disjoint union

D[a] =
∐

#J=a+1

DJ .

These are smooth projective varieties, which as a varies, form a simplicial
scheme in a natural way which “resolves” ∂A2(n)∗. In this case, D[0] is the
disjoint union of q copies of the boundary component D, D[1] is the disjoint
union of qr2 copies of P1, D[2] is the disjoint union of 2q(r1 − 1) = qnt/3

copies of a point, and all other D[a] are empty.
We have a spectral sequence

Ea,b1 = Hb(D[a];Q)⇒ Ha+b(∂A2(n)∗;Q).

It is a theorem of Deligne [11] that E2 = E∞, and the weight filtration

W0 ⊂ . . . ⊂Wi = Hi(∂A2(n)∗;Q)

has

GrWa = Wa/Wa−1 = Ei−a,a∞ .

The dimensions of the E1 terms are known and the only nontrivial differen-
tials to determine are

(4) E∗,01 : H0(D[0];Q)
d1−→ H0(D[1];Q)→ H0(D[2];Q),
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the dimensions of whose terms are q, qr2, 2q(r1 − 1), respectively, and

(5) E∗,21 : H2(D[0];Q)
d2−→ H2(D[1];Q)→ H2(D[2];Q) = 0,

whose dimensions are q(4g + nt − 2), qr2 and 0 (see Corollary 2.2). It is
known that ∂A2(n)∗ is connected, so that

Ker(d1) = E0,0
2 = H0(∂A2(n)∗;Q)

is one-dimensional, spanned by the function that is 1 on all components Di.
For the right-hand side of the sequence (4) we can break it up into a sum
of complexes indexed by the corank 2 boundary components h. Namely, fix
an h, and only consider those boundary components D(l) such that l ⊂ h.
The resulting subcomplex

(6)
⊕

H0(D(l1, l2);Q)
d3−→
⊕

H0(D(l1, l2, l3);Q)

of complex (4) has Coker(d3) equal to the homology in degree 2 of (4)
because the C(h) for various h are disjoint. In the above sequence the

D(l1, l2) = D(l1) ∩D(l2) ' P1

are the various pairwise intersections of boundary components D(l), l ⊂ h.
Similarly, the D(l1, l2, l3), which are points, are the various threefold inter-
sections of boundary components. There are r2 P1’s in C(h), and 2(r1 − 1)
such triple points (see the proof of Proposition 2.8). It is known that the
nerve of C(h) is that of the 1-skeleton of a tessellation by n-gons of the com-
pact oriented surface N(h) of genus equal to g = (r1 + 1 − t)/2, the genus
of the modular curve A1(n)∗. Thus, Coker(d3) is the same as the second
homology of that surface, whose dimension is 1. Since this holds for each of
the q h’s, we have dim E2,0

2 = q. By taking Euler characteristics, we see that

dim E1,0
2 = q(r2 − 2r1 + 2) + 1.

We now claim that d2 is surjective, which gives E1,2
2 = 0 and

dim E0,2
2 = q dim H2(D;Q)− qr2 dim H2(P1;Q) = q((4g + nt− 2)− r2)

= q(2r1 − r2 + (n− 2)t).

To prove the surjectivity of d2, fix any one L = D(l1, l2) ' P1. We will

show the existence of a class γ in D[0] restricting to a generator of H2(L)
and zero on any other D(l′1, l

′
2). The various D(l1, l2), call them simply P1’s,

belong to the disjoint configurations C(h), so in this argument we need only
consider those P1’s belonging to the same C(h) as L, namely h = l1 ∧ l2.
In fact, we will only need three boundary components, D(l1), D(l2), D(l3),
where l3 is chosen so that D(l1, l2, l3) is a triple point of C(h), i.e., l3 is in
the span of l1 and l2. We claim that there is a class c1 ∈ H2(D(l1)) such that
ϕ|D(l1, l2) is the generator (12) of H2(D(l1, l2)) and ϕ|D(l1, l3) is − (13) in
H2(D(l1, l3)) and restricts to 0 on any other P1 contained in D(l1). Similarly
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c2 ∈ H2(D(l2)) restricts to (12)− (23), and c3 to (23)− (13). Accept this for

the moment. We let γ1 ∈ H2(D[0]) stand for the class that is c1 in H2(D(l1))
and 0 in all other H2(D(l)), and similarly for γ2, γ3. In defining the spectral
sequence, we have chosen an ordering of the l’s. Without loss of generality,
assume that l1 < l2 < l3. Then, for ϕ ∈ H2(D[0]) =

⊕
H2(D(l)),

d2ϕ|D(li, lj) = Res
D(li)
D(li,lj)

(ϕ)− Res
D(lj)

D(li,lj)
(ϕ),

where li < lj is understood. Define γ = (γ1−γ2 +γ3)/2. One checks that d2γ
is the generator (12) on D(l1, l2) = L, and is zero on D(l1, l3) and D(l2, l3),
and on any other P1, and is thus the required class. For instance,

d2γ|D(l1, l2) = Res
D(l1)
D(l1,l2)(γ)− Res

D(l2)
D(l1,l2)(γ)

= (Res
D(l1)
D(l1,l2)(c1)− Res

D(l2)
D(l1,l2)(−c2))/2

= ((12) + (12))/2 = (12).

To complete the proof we must show that a class such as c1 exists. Recall
that the various D(l1, l2) in D are projective lines appearing in the n-gons
lying over the t cusps of the modular curve. The class c1 lives on components
D(l1, l2), D(l1, l3) of an n-gon of P1’s lying over a cusp, namely the n-gon
corresponding to h = l1∧ l2 ⊃ l1. The total degree of this class on this n-gon
is 0, while it vanishes identically on any other n-gon. Thus the claim follows
from the following lemma:

Lemma 2.17. Let D be the elliptic modular surface of level n, and fix any
cusp of the modular curve M of level n. Recall the morphism π : D → M
whose fiber over any cusp is an n-gon of P1’s. Let ki be a collection of
integers, i = 1, . . . , n. There exists an element c ∈ H2(D;Q) such that

(1) deg(c|Li) = ki for each i, where Li are the P1’s lying over this cusp,
(2) c|L = 0 for any P1 lying over a different cusp,

if and only if
∑
ki = 0.

Proof. Recall that there is a canonical isomorphism

deg : H2(P1;Q) ' Q.
The condition is necessary: Because H2 of the projective line is purely of
Hodge type (1, 1), the only classes in H2(D) that can restrict nontrivially
to a projective line L lying in D must themselves have Hodge type (1, 1).
Such a class c is known to be the class of an algebraic cycle C on D (see
[40]). But in that case, deg(c|L) is the intersection number C · L. The sum
of these intersection numbers for the L’s in a cuspidal fiber is the same for
all cusps because, being fibers of π, they are all homologically equivalent.
Any c satisfying condition (2) in the lemma has total degree 0 over every
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cusp except the chosen one, so it has to have total degree 0 on the chosen
one as well.

To see sufficiency, we will construct c as a linear combination of the cycle
classes of the Li. These clearly have intersection number 0 with the L’s
above any other cusp. Now each Li has self-intersection −2 and intersection
number 1 with its two adjacent Lj ’s and intersection number 0 for all the
rest. This leads to an n by n intersection matrix as follows:




−2 1 0 0 . . . 1

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
...

1 0 . . . 0 1 −2



.

Each row (and column) sums to 0, reflecting the fact that each element
in the span of the cycles Li has total degree 0 in the n-gon. An inductive
computation shows that the determinant of the upper (n − 1) by (n − 1)
minor is (−1)n−1n. Hence the rank of the above matrix is n−1, so that any
vector (ki) summing to 0 is in the column span, proving the lemma.

We have now proved:

Proposition 2.18. Let hij = dim GrWj (Hi(∂A2(n)∗;Q)). Then

h0
0 = 1,

h1
0 = 2qg, h1

1 = q(r2 − 2r1 + 2) + 1,

h2
0 = q, h2

1 = 0, h2
2 = q(4g + nt− r2 − 2),

h3
3 = 2qg,

h4
4 = q,

all others being 0.

The reader can check that these numbers give the same dimensions as
Theorem 2.13(a).

2.5. Further results. We have already observed that, by the work of
Kazhdan [24], for any d ≥ 2 and any n, H1(Γd(n);Q) = 0, or equivalently,
H1(Γd(n);Z) is finite. We refine this.

Proposition 2.19. For any d ≥ 2 and any n, H1(Γd(n);Z) is a finite
group of exponent dividing 2n.

Proof. For ease of notation we prove this for d = 2; the general case is
immediate.
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Mennicke [31] has shown that, as a subgroup of Γ2(1), Γ2(n) is normally
generated by the single element

g =




1 0 0 0

0 1 0 n

0 0 1 0

0 0 0 1




and similarly for Γd(n), d ≥ 2. Let

a =




1 0 0 0

n 1 0 0

0 0 1 −n
0 0 0 1



, b =




1 0 0 n

0 1 n 0

0 0 1 0

0 0 0 1



.

Note that a, b ∈ Γ2(n). Then direct calculation shows that a−1b−1ab =
g2n. This proves the claim since H1(Γd(n);Z) is the commutator quotient
Γd(n)/[Γd(n), Γd(n)].

Proposition 2.20. H4(Γ2(n);Q) contains H1(T(Z/n);Q).

Proof. We have H4(Γ2(n);Q) = H2(A2(n)∗, ∂A2(n)∗;Q) and the exact
sequence

H2(A2(n)∗, ∂A2(n)∗;Q)→ H1(∂A2(n)∗;Q)→ H1(A2(n)∗;Q).

But H1(∂A2(n)∗;Q) contains H1(T(Z/n);Q) by Lemma 2.12, while we have
H1(A2(n)∗;Q) = 0 as A2(n)∗ is simply connected [19].

Using our detailed computations in Theorem 2.13, we may refine this.

Proposition 2.21. dim H4(Γ2(n);Q) ≥ q(r1 + 2g − 1) + 1.

Proof. Same as that of the above proposition, noting that

dim H1(∂A2(n)∗;Q) = q(r1 + 2g − 1) + 1

by Theorem 2.13.

Remark 2.6. For n = p an odd prime, the lower bound in Proposition
2.21 is

q(r1 + 2g − 1) + 1 =
p4 − 1

2

p3 − 3p2 − p+ 15

6
+ 1.

For p = 3 this lower bound is 81, and this is indeed the dimension of
dim H4(Γ2(n);Q), as shown in Theorem 3.2 below.

Adem in [1] has also investigated this question. His methods and in-
terests in [1] are different from ours, but he obtains a lower bound for
dim H4(Γ2(p);Q) which is asymptotic to ours. Actually, his bound is slightly
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sharper, but there is unfortunately an error in his calculations, as his lower
bound in case p = 3 is 161, which is too high.

Remark 2.7. For n = p an odd prime, dim H1(T(Z/p);Q) is asymptotic
to p6/4, while the lower bound in Proposition 2.21 is asymptotic to p7/12.

Proposition 2.22. dim H3(A2(n)∗;Q) ≥ q(r2 + 4g − 1).

Proof. Oda and Schwermer [34] have shown that the map

H2(A2(n)∗;Q)→ H2(A2(n);Q)

is an epimorphism. Dualizing, we see that

H4(A2(n)∗;Q)→ H4(A2(n)∗, ∂A2(n)∗;Q)

is an epimorphism, so the exact sequence of the pair (A2(n)∗, ∂A2(n)∗) shows
that the map

H3(∂A2(n)∗;Q)→ H3(A2(n)∗;Q)

is a monomorphism, and the conclusion is immediate from Theorem 2.13.

Remark 2.8. In particular, this shows that H3(A2(n)∗;Q) is nonzero
for n ≥ 6. Our lower bound is asymptotic to p7/24 for n = p an odd prime.

3. The case n = 3

Theorem 3.1. The cohomology of the principal congruence subgroup of
level 3 in Sp(4,Z) is given by :

H0(Γ2(3);Z) = Z,

H1(Γ2(3);Z) = 0,

H2(Γ2(3);Z) = Z21 ⊕ (Z/3)10 ⊕ Z/2,
H3(Γ2(3);Z[1/6]) = Z[1/6]139,

H4(Γ2(3);Z[1/3]) = Z[1/3]81,

Hi(Γ2(3);Z) = 0 for i > 4.

Remark 3.1. These calculations immediately translate into results for
homology:

H0(Γ2(3);Z) = Z,

H1(Γ2(3);Z) = (Z/3)10 ⊕ Z/2,
H2(Γ2(3);Z[1/6]) = Z[1/6]21,

H3(Γ2(3);Z[1/3]) = Z[1/3]139,

H4(Γ2(3);Z) = Z81,

Hi(Γ2(3);Z) = 0 for i > 4.
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For i = 1, 4 these confirm the results of MacPherson–McConnell [30, Section
10], which were obtained by massive computer calculation.

Proof of Theorem 3.1. We consider the exact sequence of the pair
(A2(3)∗, ∂A2(3)∗). In [21, Thm. 1.1] we computed that Hi(A2(3)∗) = Z, 0,
Z61, 0,Z61, 0,Z for i = 0, . . . , 6. Theorem 2.13 shows that

H0(∂A2(3)∗;Z) = Z, H1(∂A2(3)∗;Z[1/3]) = Z[1/3]81,

H2(∂A2(3)∗;Z[1/6]) = Z[1/6]200, H3(∂A2(3)∗;Z) = 0,

and

H4(∂A2(3)∗;Z) = Z40.

It is an easy corollary of [21, Prop. 4.3] that the map

H4(∂A2(3)∗)→ H4(A2(3)∗)

is a monomorphism: The left-hand side above is free on the fundamental
classes [D(l)]. Thus, the image of H4(∂A2(3)∗) in H4(A2(3)∗) is a subspace
of rank 40. A computer calculation as in the proof of [20, Theorem 4.9]
(computing the intersection numbers of the classes D(l) with generators of
H2(A2(3)∗)) shows that this subspace has elementary divisors 1 (multiplicity
30), 3 (multiplicity 9), and 6, i.e., that

H4(A2(3)∗)/ImH4(∂A2(3)∗) = (Z/3)9 ⊕ Z/6.
In view of the vanishing of H3(∂A2(3)∗;Z), this computes H4(A2(3)∗,

∂A2(3)∗;Z), hence H2(A2(3)∗ − ∂A2(3)∗;Z), by Alexander duality:

H6−i(A2(3)∗, ∂A2(3)∗) = Hi(A2(3)) = Hi(Γ2(3)\S2) = Hi(Γ2(3)).

The last isomorphism follows from the fact that Γ2(3) acts freely on the
contractible space S2.

Also,

H2(∂A2(3)∗;Z)→ H2(A2(3)∗;Z)

is onto: By [21, Thm. 4.9], H2(A2(3)∗;Z) is generated by the 130 classes
denoted h1(∆), h1(∆), 4d(l) there. But all of these classes are supported in
∂A2(3)∗ by their very construction.

The homology sequence shows that H1(A2(3)∗, ∂A2(3)∗;Z) = 0, being a
quotient of H1(A2(3)∗;Z) = 0. Thus by duality, H5(Γ2(3);Z) = 0. The rest
of the argument is chasing through the homology sequence of the pair, using
Alexander duality.

We now decompose H∗(Γ2(3);Q) into irreducible representations of
PSp(4,F3). Henceforth we use the notations of [8], which we refer to as
the Atlas, except that we continue to use 1 to denote the trivial representa-
tion of the relevant group.



Cohomology of the boundary of Siegel varieties 35

Theorem 3.2. As representation spaces of PSp(4,F3),

H0(Γ2(3);Q) = 1,

H1(Γ2(3);Q) = 0,

H2(Γ2(3);Q) = 1 + 20a,

H3(Γ2(3);Q) = 5a+ 5b+ 15a+ 24a+ 30a+ 60a,

H4(Γ2(3);Q) = 81a.

Proof. For i = 0, 1 this is trivial. In [21, Cor. 6] we determined

H2(A2(3)∗;Q) = H4(A2(3)∗;Q) = 1 + 1 + 15a+ 20a+ 24a.

(Actually, this uses results from the Atlas which we will derive in Lemma
4.1 independently below.) Also, by Lemma 4.1,

H4(A2(3)∗;Q) = IndGP (l)(1) = 1 + 15a+ 24a.

This yields the case i = 2 and reduces the case i = 3 to the computation of
H2(∂A2(3)∗;Q).

To identify this representation we return to the proof of Theorem 2.13.
Recall that we showed there that

i2 : H2(∂C•;Q) → H2(C;Q)⊕H2(D◦;Q)

is an injection and that

i1 : H1(∂C•;Q) → H1(C;Q)⊕H1(D◦;Q)

has cokernel

IndGP (h)H1(N(h);Q)⊕ IndGP (l)H1(M(l);Q),

where N(h) and M(l) are both Riemann surfaces of genus g. But g = 0 for
n = 3, so i1 is a surjection. Hence,

H2(∂A2(3)∗;Q) = Coker(i2)⊕Ker(i1)

= (H2(C;Q) + H2(D◦;Q))− H2(∂C•;Q)

+ H1(∂C•;Q)− (H1(C;Q) + H1(D◦;Q))

= H2(C;Q) + H2(D◦;Q)− H1(C;Q)− H1(D◦;Q)

as H2(∂C•;Q) and H1(∂C•;Q)
are isomorphic representations,

= IndGP (h)H2(C(h);Q) + IndGP (l)H2(D◦(l);Q)

− IndGP (h)H1(C(h);Q)− IndGP (l)H1(D◦l;Q).

We determine these four representations.
IndGP (h)H2(C(h);Q): A single P1 in C(h) is specified by a set {l1, l2} of

two lines with li ⊂ h and h = l1 ∧ l2 (this last condition is automatic),
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and the stabilizer of this set acts trivially on the second homology group
of this P1 (as it preserves its orientation). Thus by Lemma 4.4 below, this
representation is

1 + 15a+ 15b+ 20a+ 2 · 24a+ 60a+ 81a.

IndGP (l)H2(D◦(l);Q): While we have described H2(D◦(l);Q) in Theorem

2.13, here, because n = 3, we have a slightly simpler description. If F denotes
the union of the 4 singular fibers in D(l), then we have, as in Corollary 2.6,
the exact sequence

H2(F )
j→ H2(D(l))→ H2(D(l), F )→ H1(F )→ 0

and the cokernel of j has rank 1, generated by a section, or equivalently,
by the sum of sections. This class is clearly left invariant by P (l), so we see
that, as a representation of P (l),

H2(D◦(l);Q) = H2(D◦(l);Q) = 1 + H2(F )

and so by Lemmas 4.1 and 4.5 below, inducing up to G we obtain the
representation

(1 + 15a+ 24a) + (5a+ 5b+ 2 · 30a+ 45a+ 45b).

IndGP (h)H1(C(h);Q): This is determined in Lemma 4.6 below as

30a+ 45a+ 45b.

IndGP (l)H1(D◦(l);Q): We have H1(D◦(l)) = H1(M◦(l)) and M◦ is a Rie-

mann surface of genus 0 with 4 punctures. Thus H1(M◦(l)) is generated
by the loops around the punctures with the single relation that their sum
bounds. Hence, as a representation of P (l),

H1(D◦(l);Q) = Ind
P (l)
P (l,h)(1)− 1

and so, inducing up to G, we see that the representation in question is

IndGP (l,h)(1)− IndGP (l)(1),

which by Lemmas 4.1(iv) and 4.4 below is

15b+ 24a+ 81a.

Assembling these results gives the character of H3(A2(3);Q) = H3(Γ2(3);Q).
Finally, for i = 4 we deduce that H1(T;Q) is given by Lemma 2.11 and

so by Lemmas 4.1 and 4.3 below, this is

(1 + 15a+ 15b+ 2 · 24a+ 81a)− (1 + 15a+ 24a)− (1 + 15b+ 24a) + 1 = 81a

(a result which is consistent with our observation in Remark 2.5).
In the next section we compute the characters that were used in the

preceding arguments.
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4. Characters. We use the following principles throughout:

P0 If R is a real representation of G and χ and χ are conjugate irreducible
representations, then 〈R,χ〉 = 〈R,χ〉. Furthermore, ifR is rational and
g, g′ ∈ G are in the same “cohort” (in the sense of the Atlas), then the
character R takes the same value on g and g′.

P1 If R is a transitive permutation representation of G then

(a) R contains the trivial representation with multiplicity 1.
(b) The character of R takes a value which is a nonnegative integer

on each element of G.

P2 If H ⊂ G is a subgroup and R is a representation of H and χ is a
representation of G then

〈χ, IndGHR〉G = 〈ResGHχ,R〉H
(Frobenius reciprocity). This will be used here only in the case χ = 1,
where it simplifies to

〈1, IndGHR〉 = 〈1, R〉
and it is clear where the inner product of characters is taken.

We begin by compressing the 20 × 20 character table of PSp(4, F3)
into a 15 × 15 table by adding rows together which correspond to pairs of
conjugate representations and by retaining only one column for each cohort
of elements. Note that all our representations factor through this quotient
by ±1; we will simply identify them with representations of G = PSp(4,F3).

The Atlas gives IndGH(1), i.e., the permutation representation of G on
the left cosets G/H, for each of the five maximal subgroups H of G. As
it is short and simple (and illuminating) to do so, we derive these, using
principle P3:

P3 If G acts transitively on a set X, and H is the stabilizer of any x ∈ X,
then the permutation representation of G on X is IndGH(1). Moreover,
G has five maximal subgroups:

(i) The stabilizer of a line l.
(ii) The stabilizer of an isotropic plane h.

(iii) The stabilizer of a split nonsingular pair ∆.
(iv) The stabilizer of a spread of nonsingular pairs (nsp-spread).
(v) The stabilizer of a double-six.

We have seen cases (i) and (ii) in this paper, and case (iii) appeared in
[21] where it was involved in H∗(A2(3)∗;Q). Cases (iv) and (v) do not enter
directly, but we include them for completeness. An nsp-spread was defined
in [22]; suffice it to say here that G is also the group of even automorphisms
of the 27 lines on a nonsingular projective surface, and the nsp-spreads
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correspond to the lines, while a double-six of nsp-spreads corresponds to a
double-six of lines.

Lemma 4.1. The representation of G = PSp(4,F3) is:
(i) on isotropic planes:

χ1 + χ8 + χ10 (1 + 15b+ 24a),

(ii) on lines:
χ1 + χ7 + χ10 (1 + 15a+ 24a),

(iii) on split nonsingular pairs:

χ1 + χ9 + χ10 (1 + 20a+ 24a),

(iv) on spreads of nonsingular pairs:

χ1 + χ4 + χ9 (1 + 6a+ 20),

(v) on double-sixes:
χ1 + χ8 + χ9 (1 + 15b+ 20a).

Proof. In cases (iii) and (iv) there is a unique representation of the rel-
evant degree satisfying P1.

There are two representations of degree 40 satisfying P1, χ1 + χ7 + χ10

and χ1 + χ8 + χ10. Calculating the characters of the two given elements
of order 2 (in the next lemma) on the two representations simultaneously
distinguishes between (i) and (ii), and assigns these elements to their classes
in the Atlas.

As for (v), there are two representations of degree 36 satisfying P1, but
the element 2A fixes 12 double-sixes, and that suffices to determine which
of the two it is.

Lemma 4.2. The following elements of G have the given order and be-
havior :

2A




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




order 2,
fixes 8 lines and 16 isotropic planes,

2B




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




order 2,
fixes no lines and 4 isotropic planes,

3AB




1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1




order 3,
fixes 13 lines and 4 isotropic planes,
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3C




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




order 3,
fixes 4 lines and 1 isotropic plane,

3D




1 0 0 0

−1 1 0 0

0 0 1 1

0 0 0 1




order 3,
fixes 4 lines and 7 isotropic planes,

4A




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1




order 4,
fixes 4 lines and no isotropic planes,

4B




0 0 0 1

1 0 0 0

0 −1 0 0

0 0 1 0




order 4,
fixes no lines and 2 isotropic planes,

5A




−1 −1 0 1

1 0 0 0

0 −1 0 0

0 −1 1 0




order 5,
fixes no lines and no isotropic planes,

6AB




1 0 0 1

0 −1 0 −1

0 0 1 0

0 0 0 −1




order 6,
fixes 5 lines and 4 isotropic planes,

6CD




1 0 1 0

0 −1 0 −1

0 0 1 0

0 0 0 −1




order 6,
fixes 2 lines and 1 isotropic plane,
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6E




1 0 1 0

0 −1 0 1

0 0 1 0

0 0 0 −1




order 6,
fixes 2 lines and 1 isotropic plane,

6F




0 −1 0 0

1 0 0 0

0 1 0 −1

0 0 1 0




order 6,
fixes no lines and 1 isotropic plane,

9AB




1 0 1 1

−1 1 0 0

0 0 1 1

0 0 0 1




order 9,
fixes 1 line and 1 isotropic plane,

12AB




0 0 1 0

0 1 0 1

−1 0 0 0

0 0 0 1




order 12,
fixes 1 line and no isotropic planes,

Proof. It is direct to verify that these elements have the indicated orders,
and act as indicated on lines and isotropic planes. This determines their
classes in the Atlas. (Note that the stabilizer of a line or an isotropic plane
has order 25920/40 = 648 so contains no element of order 5.)

Lemma 4.3. The permutation representation of G on the flags {l ⊂ h},
of degree 160, is

χ1 + χ7 + χ8 + 2χ10 + χ20 (1 + 15a+ 15b+ 2 · 24a+ 81a).

Proof. As 2B and 4B fix no lines, 4A fixes no isotropic planes, and 5A
fixes neither, these four elements have character value 0 for the represen-
tation, since this representation is the permutation representation IndGH(1)
for the stabilizer subgroup H of {l ⊂ h} (hence the character value on an
element g is the number of fixed points of g acting on the set of the {l ⊂ h}).
There is only one representation of degree 160 giving these character values
and satisfying P1, the one given above.

Lemma 4.4. The permutation representation of G on the flags {{l1, l2}
⊂ h}, of degree 240, is

χ1 + χ7 + χ8 + χ9 + 2χ10 + χ18 + χ20

(1 + 15a+ 15b+ 20a+ 2 · 24a+ 60a+ 81a).
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Proof. As 4A and 5A fix no isotropic planes, these two elements have
character value 0. The element 3C fixes the single isotropic plane (0010) ∧
(0001), and leaves every line therein pointwise fixed, so 3C has character 6.
The element 2A fixes 16 isotropic planes, among them (0010) ∧ (0001). On
this plane it leaves the two pairs {(0010), (0001)} and {(0011), (0012)} fixed,
and similarly for the other 15 fixed isotropic planes, so 2A has character 16.
These character values and P1 determine the representation uniquely.

Lemma 4.5. The representation IndGP (l⊂h)H1(f) of G, of degree 160, is

χ2 + χ3 + 2χ11 + χ16 + χ17 (5a+ 5b+ 2 · 30a+ 45a+ 45b),

where f is the exceptional fiber of D(l) corresponding to h.

Proof. Since, as observed above, 2B, 4A, 4B, and 5A are contained in
no stabilizer P (l ⊂ h), the character values are zero.

Recall that f is a triangle, so H1(f) ∼= Z. Thus, if an element of order
3 is in P (l ⊂ h), its trace is 1, and if not, its trace is 0. Hence we see that
every element of order 3 has character ≥ 0.

On the other hand, consider the element 2A and let l = (0001), h =
(0010) ∧ (0001). Then the projective lines in the triangle are schematically
indexed as in Figure 3.

{0012, 0001}

{0011, 0001}

{0010, 0001}

Fig. 3. Projective lines in a triangle

Note that 2A preserves the lines (0001), (0010), and interchanges the lines
(0011), (0012). Thus it acts as multiplication by −1 on H1(f). Therefore, by
P2, we see that the desired representation of G does not contain the trivial
representation. There is only one such representation of G consistent with
the above character values, that of the lemma.

Lemma 4.6. The representation IndGP (h)H1(C(h)) of G, of degree 120, is

χ11 + χ16 + χ17 (30a+ 45a+ 45b).

Proof. Since 4A and 5A fix no isotropic planes, their character value
is 0. The element 2A fixes 16 isotropic planes. On each h = {l1, l2, l3, l4} it
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fixes two of the li’s and interchanges the other two in pairs. Now H1(f) is
unchanged if we replace each P1 in the “tetrahedron” C(h) by a segment
[0, 1], so that we obtain a true tetrahedron (see Figure 4), and if that is

Fig. 4. Tetrahedron

done, the action of 2A on the resulting simplicial complex is:

0-cells: fix 2; interchange 2.

1-cells: fix 1; leave 1 invariant but reverse it; interchange 4 in pairs.

Hence, the trace of the action on the cell complex is −(1− 1) + 2 = 2, and
as H0(C(h)) = Z is acted on trivially, the trace on H1(C(h)) is −1, so 2A
has character 16(−1) = −16.

The element 2B fixes 4 isotropic planes, and on each such h, interchanges
all four li in pairs. Then the action of 2B on the resulting simplicial complex
is:

0-cells: interchange 4 in pairs.

1-cells: fix none; leave 2 invariant but reversed; interchange 4 in pairs.

Hence, the trace of the action on the cell complex is −(−2)+0 = 2, so again
the trace on H1(C(h)) is −1, and 2B has character 4(−1) = −4.

Now neither 2A nor 2B leaves any generator of H1(C(h)) invariant in any
h that it fixes (as can easily be seen from the fact that P (h) acts transitively
on the triangle in h), so the representation in the lemma does not contain
the trivial representation, and there is only one possibility consistent with
the data.

Alternate proof. Replacing each P1 by a segment, we obtain a 1-complex
C ′(h) for each h with union C ′ (see Section 2.2 for the notations that follow).
Then H1(C) = H1(C ′). As a representation of G,

−H1(C) + H0(C) = −C1(C ′) + C0(C ′),

where Ci, i = 0, 1, is the group of i-chains, so

H1(C) = IndGP (h)H0(C ′(h)) + IndGP (h)C1(h)− IndGP (h)C0(h).
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Now H0(C ′(h)) = Z is acted on trivially by P (h), so the first term on
the right is simply the representation of G on {h}, which we have already
determined.

For the second term: C1(h) is generated by pairs {l1, l2} with h = ±l1∧l2.
But this second condition holds for any distinct pair l1, l2 ∈ h, so that
C1(C ′(h)) is generated by the 6 pairs of distinct l1, l2 ∈ h. Note that the
stabilizer of any such pair is contained in the stabilizer of h. Thus again
we see that the elements 4A and 5A have character 0, as they stabilize no
isotropic planes.

The element 2A is in P (h) for 16 isotropic planes h, and in each of them
leaves two pairs l1, l2 invariant, preserving the orientation of one pair and
reversing the orientation of the other, so 2A has character 16(−1 + 1) = 0.
The element 2B is in P (h) for 4 values of h, and in each of them leaves
two pairs invariant, reversing the orientation of both, so 2B has character
4(−2) = −8.

Thus IndGP (h)C1(h) is a 240-dimensional representation of G, not contain-

ing the trivial representation, with character values as above; this determines
the representation uniquely as

χ7 + χ10 + χ11 + χ16 + χ17 + χ20

(15a+ 24a+ 30a+ 45a+ 45b+ 81a).

Lemma 4.7. The representation IndGP (h)H2(D(l)) of G, of degree 400, is

2χ1 + 3χ7 + χ9 + 3χ10 + χ11 + χ16 + χ17 + χ18 + χ20

(2 · 1 + 3 · 15a+ 20a+ 3 · 24a+ 30a+ 45a+ 45b+ 60a+ 81a).

Proof. Let D(l) be a boundary component, {f(h, l) : l ⊂ h} the excep-
tional fibers in D(l), and

F (l) =
⋃

l⊂h
f(h, l).

Then H2(F (l))→ H2(D(l)) has 1-dimensional cokernel, represented by a sec-
tion, or equivalently, by the sum of the nine sections through the 3-division
points. This class is obviously acted on trivially by P (l), so contributes
IndGP (l)(1) to the representation of the lemma.

Now for each h, H2(f(h, l)) is 3-dimensional (as f(h, l) is a triangle) and
there is one relation among the images: the sum of the fundamental classes
of the P1’s in the triangle is the class of a general fiber, and is thus the
same for all the triangles. Note that the class of a general fiber is acted on
trivially by P (l), so this also contributes IndGP (l)(1) to the representation

of the lemma. Of course the sum of the fundamental classes of the P1’s in
f(h, l) is acted on trivially by the stabilizer P (h, l), so we see that, as a
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Table 1. Multiplicities and character values

Conjugate pairs of irreducible representations of Sp(4,F3):

1 2 4 5 7 8 9 10 11 12 14 16 18 19 20

3 6 13 15 17

Dimensions:

1 5 6 10 15 15 20 24 30 30 40 45 60 64 81

Cohorts of conjugacy classes:

1 2 2 3 3 3 4 4 5 6 6 6 6 9 12

A A B AB C D A B A AB CD E F AB AB

Representation on spreads of nonsingular pairs:

mult. 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

χ 27 3 7 0 9 0 3 1 2 0 3 0 1 0 0

Representation on double-sixes:

mult. 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

χ 36 12 8 0 6 3 0 2 1 0 0 3 2 0 0

Representation on split nonsingular pairs:

mult. 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

χ 45 13 5 9 6 3 1 1 0 1 4 1 2 0 1

Representation on {l}:
mult. 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

χ 40 8 0 13 4 4 4 0 0 5 2 2 0 1 1

Representation on {h}:
mult. 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

χ 40 16 4 4 1 7 0 2 0 4 1 1 1 1 0

Representation on {l ⊂ h}:
mult. 1 0 0 0 1 1 0 2 0 0 0 0 0 0 1

χ 160 32 0 16 4 10 0 0 0 8 2 2 0 1 0

Representation on {{l1, l2} ⊂ h} = IndGP (h)H2(C(h)):

mult. 1 0 0 0 1 1 1 2 0 0 0 0 1 0 1

χ 240 32 8 24 6 6 0 0 0 8 2 2 2 0 0

IndGP (l)H1(F (l)) = IndGP (l⊂h)H1(f):

mult. 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0

χ 160 −32 0 16 4 10 0 0 0 −8 −2 −2 0 1 0

IndGP (h)H1(C(h)):

mult. 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

χ 120 −16 −4 12 3 3 0 2 0 −4 −1 −1 −1 0 0

IndGP (l⊂h)H2(f):

mult. 1 0 0 0 2 1 1 3 1 0 0 1 1 0 2

χ 480 32 0 48 12 12 0 0 0 8 2 2 0 0 0
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representation of P (l),

H2(D(l)) = Ind
P (l)
P (h,l)(H2(f(h, l))− 1) + 2 · 1

and hence

IndGP (l)H2(D(l)) = IndGP (h,l)H2(f(h, l))− IndGP (h,l)(1) + 2IndGP (l)(1).

We have computed the last two terms on the right, so we need only compute
the first one. Classes 2B and 4B fix no lines and hence no pairs (l, h); class
4A fixes no isotropic planes and hence no pairs (l, h); class 5A fixes none of
either, so these three classes all have character 0.

The element 3C fixes 4 lines, and each fixed line is contained in a fixed
isotropic plane. In the corresponding exceptional fiber f(h, l) of D(l) it
leaves all the P1’s in the triangle invariant, in each case, so it has char-
acter 4 · 3 = 12.

Every group element leaves the sum of the three fundamental classes of
the P1’s in every invariant triangle fixed, so this representation contains the
trivial representation once. Finally, its dimension is 160 · 3 = 480. There is
only one representation satisfying these conditions:

χ1 + 2χ7 + χ8 + χ9 + 3χ10 + χ11 + χ16 + χ17 + χ18 + χ20

(1 + 2 · 15a+ 15b+ 20a+ 3 · 24a+ 30a+ 45a+ 45b+ 60a+ 81a),

and the lemma follows.
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schetz locaux et globaux (SGA 2), Adv. Stud. Pure Math. 2, North-Holland, 1962.

[17] M. Harris and S. Zucker, Boundary cohomology of Shimura varieties, I. Coherent

cohomology on toroidal compactifications, Ann. Sci. École Norm. Sup. 27 (1994),
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[42] J.-L. Verdier, Dualité dans la cohomologie des espaces localement compacts, Sém.

Bourbaki 1965/66, exp. 300.
[43] J.-L. Waldspurger, Cohomologie des espaces de formes automorphes (d’après

J. Franke), Sém. Bourbaki 1995/96, exp. 809, Astérisque 241 (1997), 139–156.
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