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Bi-Lipshitz embeddings of hyperspaes of ompat setsbyJeremy T. Tyson (Urbana, IL)
Abstrat. We study the bi-Lipshitz embedding problem for metri ompata hy-perspaes. We observe that the ompata hyperspae K(X) of any separable, uniformlydisonneted metri spae X admits a bi-Lipshitz embedding in ℓ2. If X is a ountableompat metri spae ontaining at most n nonisolated points, there is a Lipshitz em-bedding of K(X) in R

n+1; in the presene of an additional onvergene ondition, thisembedding may be hosen to be bi-Lipshitz. By way of ontrast, the hyperspae K([0, 1])of the unit interval ontains a bi-Lipshitz opy of a ertain self-similar doubling series-parallel graph studied by Laakso, Lang�Plaut, and Lee�Mendel�Naor, and onsequentlyadmits no bi-Lipshitz embedding into any uniformly onvex Banah spae. Shori andWest proved that K([0, 1]) is homeomorphi with the Hilbert ube, while Hohti showedthat K([0, 1]) is not bi-Lipshitz equivalent with a variety of metri Hilbert ubes.1. Introdution. The topologial struture of hyperspaes has beenintensively studied during the twentieth entury. Aording to a elebratedresult of Curtis and Shori [7℄, the hyperspae of any nondegenerate Peanoontinuum is homeomorphi with the Hilbert ube. An essential referenefor the topology of hyperspaes is the book [22℄ by Illanes and Nadler.Hyperspaes of metri spaes are naturally metrized by the Hausdor�metri. They play a role in dynamial systems, as the existene of attratorsfor iterated funtion systems on omplete metri spaes may be demon-strated by an appliation of a suitable �xed point theorem to the hyper-spae. This approah to fratal geometry was �rst presented by Huthinson[21℄ (but see Moran [32℄ for earlier ideas along the same lines) and is nowstandard.Motivated by these and other appliations, some reent studies have fo-used on the intrinsi metri geometry of hyperspaes. Boardman, Goodeyand MClure [5℄, [13℄, [14℄, [31℄ studied the generalized Hausdor� measures2000 Mathematis Subjet Classi�ation: Primary 54B20; Seondary 05C10, 26A16,26A18, 28A80, 46B20.Key words and phrases: ompata hyperspae, bi-Lipshitz embedding, iterated fun-tion system, series-parallel graph, round ball metri spae.Supported by the National Siene Foundation under Award No. DMS-0228807.[229℄



230 J. T. Tysonof hyperspaes of self-similar sets, while Hohti [20℄ showed that the hyper-spae of the losed unit interval is not bi-Lipshitz equivalent with a varietyof metri Hilbert ubes. Gruber, Lettl and Tihy [15℄, [16℄, [17℄ investigatedthe isometries of Eulidean and general hyperspaes. See also Bandt [3℄.In this paper we study the existene of bi-Lipshitz embeddings of om-pata hyperspaes in spei�ed targets. We observe that the hyperspae ofany separable, uniformly disonneted metri spae admits a bi-Lipshitzembedding in ℓ2. We prove that the hyperspae of any ountable ompatmetri spae ontaining at most n nonisolated points admits a Lipshitz em-bedding in R
n+1; provided a further onvergene riterion is satis�ed, theembedding in question is bi-Lipshitz.On the other hand, we show that the hyperspae K([0, 1]) of the losedunit interval admits no bi-Lipshitz embedding in any uniformly onvex Ba-nah spae, and more generally, it admits no bi-Lipshitz embedding in anyround ball metri spae, a onept introdued by Laakso [26℄. Note that

K([0, 1]) is topologially equivalent with the Hilbert ube, as was shown byShori and West [37℄, [38℄. To give another proof of this result, we exhibitwithin K([0, 1]) a bi-Lipshitz opy of a ertain series-parallel graph G stud-ied by Laakso [26℄, Lang�Plaut [27℄ and Lee�Mendel�Naor [28℄. Laakso [26℄showed that a variant of G admits no bi-Lipshitz embedding in any roundball metri spae; his argument an be adapted to apply to G. We onstruta planar iterated funtion omplex (generalized iterated funtion system)parameterized by an unountable olletion of geodesi segments in G. Thedesired embedding of G in K([0, 1]) is obtained by hoosing appropriatevertial slies of the attrators for this omplex.For reent results on the bi-Lipshitz and isometri embedding probleminto hyperspaes of losed unbounded sets, as well as other results on themetri geometry of hyperspaes, see [24℄.In Setion 2, we review some standard topis in metri geometry, givefurther history and motivation, and state our main results. In Setion 3 weonsider ountable ompat metri spaes and �nite-dimensional Eulideantargets, while Setion 4 ontains the proof of the nonembeddability of thehyperspae of the unit interval in any round ball metri spae. A onludingSetion 5 ontains some questions for future study.Aknowledgements. We are grateful to the referee for a areful readingof the paper.2. Review of metri geometry and main results2.1. Notation and basi de�nitions. For a metri spae X = (X, d), wewrite diamA (or diamd A in ase the metri deserves to be mentioned) forthe diameter of a set A ⊂ X and dist(A, B) for the distane between two



Bi-Lipshitz embeddings of hyperspaes 231nonempty sets A, B ⊂ X. We abbreviate dist(A, x) = dist(A, {x}) for A ⊂ Xand x ∈ X. We denote by B(x, r) the losed ball in X with enter x andradius r. A metri spae (X, d) is doubling if there exists a �nite onstant
M so that every ball B(x, r) in X an be overed by at most M balls ofradius r/2.A modulus of ontinuity for a map f : (X, d) → (Y, d′) between ompatmetri spaes is an inreasing funtion ω : [0, diamX] → [0,∞) satisfying

d′(f(x), f(y)) ≤ ω(d(x, y))for all x, y ∈ X. The map f is L-Lipshitz, L < ∞, if it has a modulus ofontinuity of the form ω(t) = Lt, and is β-Hölder ontinuous, 0 < β ≤ 1,if it has a modulus of ontinuity of the form ω(t) = Ctβ for some C < ∞.If the values of the onstants L or β are not important, the terms Lipshitzor Hölder ontinuous are used. An L-Lipshitz map with L < 1 is alled aontration.If f is a homeomorphism and f and f−1 are both (L-)Lipshitz, f is saidto be (L-)bi-Lipshitz. If f−1 is Hölder, f is said to be o-Hölder.A gauge funtion is a nondereasing, right-ontinuous funtion ϕ : [0,∞)
→ [0,∞) with ϕ(0) = 0. Assoiated with eah gauge funtion is the gener-alized Hausdor� ϕ-measure Hϕ on X, de�ned for E ⊂ X as
Hϕ(E) := lim inf

δ→0

{∑

i

ϕ(diamEi) : diamEi ≤ δ for all i ∈ N, X =
⋃

i

Ei

}
.The ase ϕs(t) = ts gives the lassial Hausdor� measures Hs := Hϕs .We write s∨ t, resp. s∧ t, for the maximum, resp. minimum, of two realnumbers s and t.2.2. Hyperspaes and the Hausdor� metri. The hyperspae of ompatsets (or (ompata) hyperspae) of a topologial spae X is the spae K(X)of all nonempty ompat subsets of X. When X = (X, d) is a metri spae,

K(X) is equipped with the Hausdor� metri
D(A, B) = Dd(A, B) := inf{ε : A ⊂ Nε(B) and B ⊂ Nε(A)}

= max
a∈A

dist(a, B) ∨ max
b∈B

dist(b, A)for A, B ∈ K(X), where Nε(A) = {x ∈ X : d(x, a) < ε for some a ∈ A}denotes the ε-neighborhood of A.The hyperspae K(X) of a omplete (resp. ompat) spae X is omplete(resp. ompat). See, e.g., [22, Chapter I℄. Furthermore, X embeds isomet-rially in K(X) and diamD K(X) = diamd X. The map A 7→ diam A is a
2-Lipshitz map from K(X) to R. If X is separable, then K(X) is also sep-arable. Indeed, if Y is a ountable dense subset of X, then the olletion ofall �nite subsets of Y is a ountable dense subset of K(X).



232 J. T. Tyson2.3. Hyperspaes of disonneted spaes. A metri d on a spae X isalled an ultrametri if d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.Compata hyperspaes of ultrametri spaes embed isometrially in Hilbertspaes.2.4. Proposition. Let (X, d) be an ultrametri spae. Then K(X) ad-mits an isometri embedding in a Hilbert spae.The solution to the isometri embedding problem for Hilbert spae tar-gets was a major advane in twentieth entury metri geometry. Work ofShoenberg [35℄, [36℄ and Blumenthal [4℄ provided an intrinsi harateriza-tion of metri spaes admitting an isometri embedding in a Hilbert spae.Timan [39℄, Lemin [29℄ and Ashbaher et al. [1℄ gave independent proofsthat every ultrametri spae admits an isometri embedding in a Hilbertspae. Sine hyperspaes of ultrametri spaes are ultrametri, Proposition2.4 follows.A metri spae (X, d) is alled uniformly disonneted if it is bi-Lipshitzequivalent with an ultrametri spae. Uniformly disonneted spaes wereintrodued by David and Semmes [9, Chapter 15℄ using a di�erent but equiv-alent de�nition.2.5. Corollary. Let (X, d) be a uniformly disonneted spae. Then
K(X) admits a bi-Lipshitz embedding in a Hilbert spae.This is an immediate onsequene of Proposition 2.4, together with theobservation that eah bi-Lipshitz map f : X → Y indues a bi-Lipshitzmap Ff : K(X) → K(Y ) by Ff (A) = {f(a) : a ∈ A}.Sine hyperspaes of separable spaes are separable, and separable ultra-metri spaes embed isometrially in ℓ2, we also have the following2.6. Corollary. If (X, d) is separable and uniformly disonneted , then
K(X) admits a bi-Lipshitz embedding in ℓ2.For example, the hyperspae of the standard Cantor set C admits abi-Lipshitz embedding in ℓ2. Observe that K(C) is perfet and totally dis-onneted, hene homeomorphi with C. We do not know to what extentthis topologial equivalene an be made quantitative.2.7. Question. What is the optimal modulus of ontinuity for a hom-eomorphism of K(C) onto C?The haraterization of metri spaes whih admit a bi-Lipshitz em-bedding in a �nite-dimensional Eulidean spae is a major open problemin geometri analysis. The following theorem provides some in�nite metrispaes whose hyperspaes admit suh an embedding.



Bi-Lipshitz embeddings of hyperspaes 2332.8. Theorem. Let X be a ompat metri spae ontaining at most Nnonisolated points. Let I(X) = {x1, x2, . . .} be an enumeration of the isolatedpoints of X so that the sequene dn := dist(xn, X \ I(X)) is noninreasing.Then(a) there exists a Lipshitz embedding of K(X) in R
N+1,(b) if(2.9) r+ := lim sup

n→∞

dn+1

dn
< 1then the embedding in part (a) may be hosen to be o-Hölder ,() if r+ < 1/2, then the embedding in part (a) may be hosen to bebi-Lipshitz.For example, the hyperspae of X = {an : n = 1, 2, . . .} ∪ {0}, a < 1,admits an embedding in R

2 whih is Lipshitz and o-Hölder. When a < 1/2the embedding is bi-Lipshitz.Peªzy«ski [33℄ haraterized the hyperspaes of ompat totally dison-neted topologial spaes ontaining a dense set of isolated points: for everysuh spae X, the hyperspae K(X) is homeomorphi with the union of theCantor set and the midpoints of the omitted intervals. Metri analogues ofthis result of Peªzy«ski remain to be established.Observe that a ondition suh as (2.9) is neessary for the onlusion inTheorem 2.8. Indeed, for any presribed Hausdor� gauge funtion ϕ thereexists a ountable metri spae (X, d) with preisely one nonisolated point,so that the generalized Hausdor� measure Hϕ(K(X)) is positive and �nite.See, for example, Theorem 3.5 in [31℄.We will prove our Theorem 2.8 in Setion 3.2.10. The hyperspae of the unit interval. Charaterizing the hyperspaeof [0, 1] was a long-standing problem in the topology of hyperspaes. In 1938,Wojdysªawski onjetured that K([0, 1]) was homeomorphi to the Hilbertube Q = [0, 1]∞. The onjeture stood for over thirty years, until Shoriand West proved it in 1975 [38℄.The metri struture of K([0, 1]) was studied by Boardman and Goodey,who determined some gauge funtions ϕ with respet to whih K([0, 1]) haszero or in�nite generalized Hausdor� measure [13℄, [14℄, [5℄. The results ofBoardman and Goodey were extended to the setting of general self-similarsets satisfying the open set ondition by MClure [31℄.A metri spae X is alled bi-Lipshitz homogeneous if the group of bi-Lipshitz self-homeomorphisms of X ats transitively. In response to a ques-tion posed by Väisälä [41℄, Hohti [20℄ showed that the metri Hilbert ube
(Q, ds) ⊂ c0 is bi-Lipshitz homogeneous if and only if(2.11) sup

k

sk

sk+1
< ∞.



234 J. T. TysonHere s = (sk)k∈N is a dereasing sequene of positive real numbers onvergingto zero, and ds(x, y) = maxk sk|xk − yk| for x = (xk), y = (yk) ∈ Q. Onthe other hand, Hohti also showed in [20℄ that K([0, 1]) is not bi-Lipshitzhomogeneous. It follows that K([0, 1]) is not bi-Lipshitz equivalent with
(Q, ds) for any s satisfying (2.11).Using a omparison priniple for the ardinality of nets in bi-Lipshitzequivalent spaes, Hohti also demonstrated the bi-Lipshitz inequivalene of
K([0, 1]) with (Q, d) for some other metris d. For example, K([0, 1]) and
(Q, ̺s) ⊂ ℓ1 are bi-Lipshitz inequivalent, where s = (sk), sk = 2−k, and
̺s(x, y) =

∑
k sk|xk−yk|. The proof easily extends to the ase (Q, ̺s,p) ⊂ ℓp,

1 < p < ∞, where ̺s,p(x, y) = (
∑

k sp
k|xk − yk|p)1/p.The following theorem further illustrates the intrinsi metri omplexityof K([0, 1]) and signi�antly extends the preeding results of Hohti.2.12. Theorem. There is no bi-Lipshitz embedding of K([0, 1]) intoany round ball metri spae.Following Laakso [26℄, we say that a metri spae (X, d) is a round ballspae if for every ε > 0 there exists δ = δ(ε) > 0 so that(2.13) diam B(x, (1/2 + δ)d(x, y)) ∩ B(y, (1/2 + δ)d(x, y)) ≤ εd(x, y)for all x, y ∈ X. We all δ(ε) the roundness funtion of X. If X is a Banahspae, then X is a round ball spae if and only if X is uniformly onvex[26℄. Bi-Lipshitz embeddings in round ball metri spaes were studied byLaakso [26℄ in onnetion with strong A∞ deformations of geometry and byTyson and Wu [40℄ in onnetion with snow�ake metri spaes and Assouad'sembedding theorem [2℄.With no a priori ontrol on the geometry of the target, it is not learwhether one an prove Theorem 2.12 by the tehniques of [20℄. Note also thatgeneralized Hausdor� measures annot be used to rule out the existene ofsuh an embedding. Indeed, a lassial result of Goodey [12℄ asserts thatevery in�nite-dimensional Banah spae has non-σ-�nite Hausdor� measurefor every gauge funtion ϕ.To prove Theorem 2.12, we use reent results on the bi-Lipshitz non-embeddability of ertain series-parallel graphs due to Laakso, Lang�Plautand Lee�Mendel�Naor. Consider the in�nite graph G obtained as the Gro-mov�Hausdor� limit of the sequene of �nite series-parallel graphs Gn shownin Figure 1. In rough terms, Gn is obtained by replaing eah edge in Gn−1with a saled opy of the graph G1. For the preise de�nition, see De�ni-tion 4.8. We equip G with the path metri.Laakso [26℄ used a variant of this graph to answer a question of Heinonenand Semmes [19, Question 1℄ on the existene of a planar strong A∞ weight(in the sense of David and Semmes [8℄, [9℄) whose deformed geometry fails
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2,2 3,2Fig. 1. Approximations of the Laakso graph Gto admit a bi-Lipshitz embedding in any uniformly onvex Banah spae.Motivated by algorithmi problems in network theory and the failure of theJohnson�Lindenstrauss dimension redution lemma in L1, Lee, Mendel andNaor [28℄ showed that G admits no bi-Lipshitz embedding in Lp for any
1 < p ≤ 2. See also Lang and Plaut [27℄. Following the terminology of [28℄,we all G the Laakso graph.2.14. Proposition. The Laakso graph G does not admit a bi-Lipshitzembedding in any round ball metri spae.For the sake of ompleteness, we inlude a proof of Proposition 2.14 inSetion 4, following the argument given by Laakso [26, �2.5℄.Theorem 2.12 is a onsequene of Proposition 2.14 and the followingtheorem, whih we also prove in Setion 4.2.15. Theorem. There is a bi-Lipshitz embedding of the Laakso graph
G in K([0, 1]).We do not know whether K([0, 1]) admits a bi-Lipshitz embedding in L1,or whether every bounded series-parallel graph admits a bi-Lipshitz em-bedding in K([0, 1]). Gupta et al. [18℄ have shown that ℓ1 ontains a 14-bi-Lipshitz opy of every series-parallel graph.For additional questions and disussion, see Setion 5.3. Proof of Theorem 2.8. Throughout this setion, we let X be aompat metri spae and we denote by I(X), resp. L(X), the set of isolated,resp. limit, points of X. As in the statement of Theorem 2.8, we assumethat I(X) = {x1, x2, . . .}, where dn := dist(xn, L(X)) is noninreasing. For
x ∈ I(X), we de�ne the gap of X at x to be

gap(X, x) := inf{d(x, y) : y ∈ X, x 6= y}.Fix λ > 2 and de�ne
γn := min{λi−n gap(X, xi) : i = 1, . . . , n}.3.1. Lemma. For eah n ∈ N,

∑

m>n

γm ≤ 1

λ − 1
γn.



236 J. T. TysonProof. For eah i = 1, . . . , n,
∑

m>n

γm ≤
∞∑

m=n+1

λi−m gap(X, xi) =
1

λ − 1
λi−n gap(X, xi)and the result follows.The following theorem gives a more preise statement of part (a) of The-orem 2.8.3.2. Theorem. Let X be a ountable ompat metri spae with N limitpoints. Then there is a Lipshitz embedding F of K(X) in R

N+1 whose in-verse has a modulus of ontinuity(3.3) ω(t) = t + 2ω0

(
λ − 1

λ − 2
t

)
,where ω0 is any inreasing funtion from [0,∞) to [0,∞) with ω0(0) = 0 and(3.4) dn ≤ ω0(γn)for all n.Proof. We denote points in R

N+1 by x = (x0, . . . , xN ), and use the max-imum metri
‖x − y‖∞ = max

i=0,...,M
|xi − yi|, x, y ∈ R

N+1.Let L(X) = {z1, . . . , zN} and de�ne F = (f0, . . . , fN ) : K(X) → R
N+1 by

fi(A) = dist(A, zi), i = 1, . . . , N,and
f0(A) =

∑

n:xn∈A

γn.

Observe that f0(A) = f0(A ∩ I(X)) for all A ∈ K(X).3.5. Lemma. Suppose that A∩I(X) 6= B∩I(X) for some A, B ∈ K(X).Then(3.6) λ − 2

λ − 1
γn1

≤ |f0(A) − f0(B)| ≤ λ

λ − 1
γn1

< 2γn1
,where n1 = min{n : xn ∈ A △ B}.Here A △ B := (A \ B) ∪ (B \ A) denotes the symmetri di�erene of Aand B.Proof of Lemma 3.5. Without loss of generality assume that xn1

∈ A.By Lemma 3.1,
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|f0(A) − f0(B)| =

∣∣∣γn1
+

∑

n>n1 : xn∈A\B

γn −
∑

n>n1 : xn∈B\A

γn

∣∣∣

≥ γn1
−

∑

n>n1

γn ≥ λ − 2

λ − 1
γn1

.

In a similar manner, we have |f0(A)−f0(B)| ≤ γn1
+

∑
n>n1

γn ≤ λ
λ−1γn1

.Returning to the proof of Theorem 3.2, let A, B ∈ K(X), A 6= B. If
A ∩ I(X) = B ∩ I(X) then f0(A) = f0(B). Otherwise, using Lemma 3.5 we�nd(3.7) |f0(A) − f0(B)| ≤ 2γn1

≤ 2 gap(X, xn1
) ≤ 2D(A, B).On the other hand, for any i = 1, . . . , N and any b ∈ B,

fi(A) = dist(A, zi) ≤ dist(A, b) + d(b, zi) ≤ D(A, B) + d(b, zi)so fi(A) ≤ D(A, B) + fi(B). Reversing the roles of A and B shows that(3.8) |fi(A) − fi(B)| ≤ D(A, B),and ombining (3.7) and (3.8) yields(3.9) ‖F (A) − F (B)‖∞ ≤ 2D(A, B).To ompute a modulus of ontinuity for F−1, let A, B ∈ K(X), A 6= B.If A ∩ I(X) = B ∩ I(X), then A ∩ L(X) 6= B ∩ L(X) and
D(A, B) = max

a∈A
dist(a, B)∨max

b∈B
dist(b, A) = max

a∈A′
dist(a, B)∨max

b∈B′
dist(b, A),where A′ = (A\B)∩L(X) and B′ = (B\A)∩L(X). (Note that A′∪B′ 6= ∅.)Thus

D(A, B) ≤ max
zi∈A′∪B′

|fi(A) − fi(B)| ≤ ‖F (A) − F (B)‖∞(3.10)
≤ ω(‖F (A) − F (B)‖∞),where ω(t) is as in (3.3).Suppose instead that A∩ I(X) 6= B ∩ I(X) and let A′′ = (A \B)∩ I(X)and B′′ = (B \ A) ∩ I(X). Choose n1 as in Lemma 3.5. For eah a ∈ A′′,

dist(a, L(X)) = d(a, zi) for some zi ∈ L(X). Hene fi(A) ≤ d(a, zi) ≤ dn1and
dist(a, B) ≤ d(a, zi) + dist(zi, B) ≤ dn1

+ fi(B)

≤ 2dn1
+ |fi(B) − fi(A)| ≤ 2dn1

+ ‖F (B) − F (A)‖∞.



238 J. T. TysonSimilarly dist(b, A) ≤ 2dn1
+‖F (B)−F (A)‖∞ for all b ∈ B′′. It follows that

D(A, B) = max
a∈A′′

dist(a, B) ∨ max
b∈B′′

dist(b, A)(3.11)
≤ 2dn1

+ ‖F (B) − F (A)‖∞
≤ 2ω0(γn1

) + ‖F (B) − F (A)‖∞

≤ 2ω0

(
λ − 1

λ − 2
|f0(B) − f0(A)|

)
+ ‖F (B) − F (A)‖∞

≤ ω(‖F (B) − F (A)‖∞).We used Lemma 3.5 in the penultimate step.3.12. Remark. The onstrution in the preeding proof was inspiredby a paper of Reiter and Reiter [34℄, who gave an expliit form for theembedding in the theorem of Peªzy«ski in the setting of ompat metrispaes with a single nonisolated point.Proof of Theorem 2.8(b),(). Assume that r+ < 1 and hoose r+ < ̺ < 1.If r+ < 1/2 hoose r+ < ̺ < 1/2. Then there exists n2 so that dn+1 ≤ ̺dnfor all n ≥ n2. Let Z = {x1, . . . , xn2
} and let

εZ = min
xn∈Z

gap(X, xn).The Lipshitz/Hölder onstant for F−1 will depend on the parameters n2and εZ .3.13. Lemma. For all n > n2, gap(X, xn) ≥ (1 − ̺)dn.Proof. For n ∈ N,
gap(X, xn) = inf{d(xi, xn) : i 6= n}

≥ (d1 − dn) ∧ · · · ∧ (dn−1 − dn) ∧ inf{dn − di : i > n}
≥ (dn−1 − dn) ∧ (dn − dn+1).If n > n2 then gap(X, xn) ≥ (1 − ̺)(dn−1 ∧ dn) = (1 − ̺)dn as desired.Returning to the proof of Theorem 2.8, we onsider two ases aordingto the value of ̺.

Case 1. If ̺<1/2, hoose λ=1/̺ > 2. Then γn = min{̺n−i gap(X, xi) :
i = 1, . . . , n}. For n ≤ n2 we have the trivial estimate

γn ≥ ̺n2−1εZ

diamX
dn.For 1 ≤ i ≤ n2 < n we estimate

̺n−i gap(X, xi) ≥
̺n2−iεZ

dn2

̺n−n2dn2
≥ ̺n2−1εZ

diamX
dn,



Bi-Lipshitz embeddings of hyperspaes 239while for n2 < i ≤ n we use Lemma 3.13 to estimate
̺n−i gap(X, xi) ≥ (1 − ̺)̺n−idi ≥ (1 − ̺)dn.In all ases we obtain

γn ≥ min

{
1 − ̺,

̺n2−1εZ

diamX

}
dnand dedue (3.4) with

ω0(t) = max

{
1

1 − ̺
,

diamX

̺n2−1εZ

}
t.

Case 2. If 1/2 ≤ ̺ < 1, hoose λ = 3 and(3.14) α = log(1/̺)/log 3.Then γα
n = min{̺n−i gap(X, xi)

α : i = 1, . . . , n}. For n ≤ n2 we have thetrivial estimate
γα

n ≥ ̺n2−1εα
Z

diam X
dn.As in the preeding ase we dedue that

̺n−i gap(X, xi)
α ≥

{
(diamX)−1̺n2−1εα

Zdn, 1 ≤ i ≤ n2 < n,

(diamX)α−1(1 − ̺)αdn, n2 < i ≤ n.Hene
γα

n ≥ min

{
(1 − ̺)α

(diamX)1−α
,
̺n2−1εα

Z

diam X

}
dn,so (3.4) holds with

ω0(t) = max

{
(diamX)1−α

(1 − ̺)α
,

diamX

̺n2−1εα
Z

}
tα.Using Theorem 3.2, we onlude that F−1 is α-Hölder ontinuous if 1/2 ≤

̺ < 1, where α is the value in (3.14), and that F−1 is Lipshitz ontinuousif ̺ < 1/2.3.15. Remark. We do not know whether there exists a spae X, with
L(X) in�nite, so that K(X) admits a bi-Lipshitz, or Lipshitz and o-Hölder, embedding in a �nite-dimensional Eulidean spae.4. Proof of Theorem 2.154.1. Iterated funtion systems and iterated funtion omplexes. An it-erated funtion system (or IFS ) is a �nite olletion of ontrations of aomplete metri spae. The basi theory of IFS's an be found in standardtextbooks of fratal geometry, e.g., [11℄, [30℄, [10℄ or [23℄. We brie�y reallthe basi theory.



240 J. T. TysonAssoiated to eah IFS F on a omplete metri spae X is a uniquenonempty ompat set A = A(F) ∈ K(X), alled the attrator of F , har-aterized by the relation A = F (A), where(4.2) F (S) :=
⋃

f∈F

f(S).Indeed, the map F de�ned in (4.2) is a ontration of K(X), and the attra-tor A is the unique �xed point for F . It is easy to see that A =
⋂∞

m=1 F (m)(T )for any T ∈ K(X) with F (T ) ⊂ T , where F (m) denotes the m-fold ompo-sition of F .Let M be the ardinality of F . For m ∈ N, we let Wm
M = {1, . . . , M}mbe the spae of words of length m on M letters. We abbreviate WM := W 1

M .For m = 0 we set W 0
M = {∅}. We let W ∗

M =
⋃

m≥0 Wm
M be the spaeof all �nite words, and ΣM = {1, . . . , M}N be the spae of in�nite wordson M letters (ommonly referred to as the shift spae or symbol spae).We denote elements of Wm

M , m ∈ N, and ΣM by onatenation of letters,i.e., w = w1 · · ·wm ∈ Wm
M or w = w1w2 · · · ∈ ΣM . For v ∈ W ∗

M and
w ∈ W ∗

M∪ΣM we denote by vw the word obtained by adjoining v = v1 · · · vmto the left of w = w1w2 · · · , i.e., vw = v1 · · · vmw1w2 · · · . Conversely, for
w ∈ ΣM and m ∈ N we denote by [w]m the word in Wm onsisting of the�rst m letters of w; thus w = [w]mw′ for some w′ ∈ ΣM .For eah IFS F = {f1, . . . , fM} there is a anonial surjetion πF : ΣM →
A(F) given by

{πF(w1w2 · · · )} =

∞⋂

m=1

fw1
◦ · · · ◦ fwm(T ),where T is any element of K(X) with F (T ) ⊂ T . We write fw = fw1

◦· · ·◦fwmfor any w = w1 · · ·wm ∈ W ∗
M .We now introdue a generalization of the notion of IFS.4.3. Definition. Let F1, . . . ,Fr be a �nite olletion of iterated fun-tion systems on a omplete metri spae X. For v = v1v2 · · · ∈ Σr, let

Fv = (Fv1
,Fv2

, . . .). The olletion of sequenes {Fv}v∈Σr
is alled an iter-ated funtion omplex (of rank r), or IFC.Assoiated to eah rank r IFC {Fv}v∈Σr

is a family {Av}v∈Σr
of non-empty ompat subsets of X, the attrator of {Fv}, haraterized by theidentity(4.4) Av =

∞⋂

m=1

Fv1
◦ · · · ◦ Fvm(T )for any T suh that Fi(T ) ⊂ T for all i. Here Fi, i = 1, . . . , r, denotes the setfuntion for Fi de�ned in (4.2). Indeed, the set funtions F1, . . . , Fr form anIFS on K(X) whose attrator A ∈ K(K(X)) is preisely the olletion {Av}.



Bi-Lipshitz embeddings of hyperspaes 241Observe that the set Ai de�ned by (4.4) with i = (i, i, . . .) oinides withthe attrator Ai for the IFS Fi.4.5. The Laakso graph. In this subsetion, we desribe the Laakso graph
G in further detail, �rst as a quotient of the produt spae [0, 1] × Σ2, andthen as the attrator of a self-similar IFS.We denote by I0 = [0, 1] the unit interval in R, whih we view as theattrator for the IFS H = {h1, h2, h3, h4}, where(4.6) hi : R → R, hi(x) = (x + i − 1)/4.The symboli oding map πH : Σ4 → I0 orresponds to the representationof elements of I0 = [0, 1] in base four. We let C be the 1/4 Cantor set, i.e.,the invariant set for the IFS {h1, h4}. For m ∈ N, let(4.7) Om :=

4m−1−1⋃

j=0

((4j + 1)/4m, (4j + 3)/4m).The union of the open sets Om is the omplement of C in I0.4.8. Definition. The Laakso graph is the spae G = I0 ×Σ2/∼, where
(t, v) ∼ (t, v′) if and only if t ∈ I0 \

⋃{Om : vm 6= v′m}.4.9. Example. Let 1 = 111 · · · and 2 = 222 · · · . Then (t, 1) ∼ (t, 2) ifand only if t ∈ C.We denote the equivalene lass of (t, v) in G by [t, v], and equip G withthe anonial quotient path metri, de�ned as follows:
d([t, v], [t′, v′]) = inf

k∑

j=1

|t(j) − t(j − 1)|,where the in�mum is taken over all �nite sequenes
(t, v) = (t(0), v(0)), (t(1), v(1)), . . . , (t(k), v(k)) = (t′, v′)satisfying [t(j), v(j − 1)] = [t(j), v(j)] for all j = 1, . . . , k. (Compare the�wormhole metris� of [25℄ or [26℄.) Then G is a ompat geodesi doublingmetri spae. The maps γv : I0 → G, v ∈ Σ2, given by γv(t) = [t, v] areisometri embeddings, de�ning an unountable family of geodesi segmentsin G joining the two endpoints.The spae G may be viewed as the attrator for a self-similar IFS ofardinality six. To simplify the desription, we use an alternate notation forthe alphabet. Thus let

U = {1, (2, 1), (2, 2), (3, 1), (3, 2), 4}.The spaes Um, m ∈ N, U∗ and ΣU of words of length m, �nite words, andin�nite words are de�ned in the usual manner.



242 J. T. TysonTo eah u ∈ U there orresponds a set Su ⊂ G whih is the imageof G under a ontrative similarity gu with sale fator 1/4. These �rst-order similarity piees are indiated in Figure 1. Thus G is the attratorfor the IFS G = {gu : u ∈ U} with symbol spae ΣU . As usual, we write
gu = gu1

◦ · · · ◦ gum and Su = gu(G) for u = u1 · · ·um ∈ Um.The following diagram ommutes:
(4.10)

Σ4 × Σ2
πH×id−−−→ I0 × Σ2

↓ ↓
ΣU

πG−−−→ G

↓ ↓
Σ4

πH−−−→ I0Here the maps from Σ4 × Σ2 to ΣU and from ΣU to Σ4 are given, in eahoordinate, by the following maps from W4 × W2 to U and from U to W4:
(4.11)

(1, 1), (1, 2) → 1 → 1

(2, 1) → (2, 1) ց
2

(2, 2) → (2, 2) ր

(3, 1) → (3, 1) ց
3

(3, 2) → (3, 2) ր

(4, 1), (4, 2) → 4 → 4The map from I0×Σ2 to G in (4.10) is the quotient map (t, v) 7→ [t, v], whilethe map from G to I0 is the projetion [t, v] 7→ t. Finally, πH : Σ4 → I0 and
πG : ΣU → G denote the symboli oding maps for the IFS's H and G.Sketh of the proof of Theorem 2.15. In Setion 4.27, we will onstruta spei� rank two iterated funtion omplex {Fv}v∈Σ2

in the plane. Theessential feature of the attrator {Av}v∈Σ2
for this IFC is the equivalene(4.12) (t, v) ∼ (t′, v′) ⇔ Av
t = Av′

t ,whih guarantees that the map Φ : G → K(I0) given by
Φ([t, v]) = Av

tis well de�ned. We will prove that
(4.13) Φ is 33-bi-Lipshitz,
and

(4.14) Φ ◦ γv : I0 → K(I0) is an isometry for eah v ∈ Σ2.We now prove Proposition 2.14. Compare the proof in [26, �2.5℄.



Bi-Lipshitz embeddings of hyperspaes 243Proof of Proposition 2.14. Let (Y, d′) be a round ball spae with round-ness funtion δ(ε), and suppose that F : G → Y is L-bi-Lipshitz. For eah
x, y ∈ G, let L(x, y) := d′(F (x), F (y))/d(x, y) be the Lipshitz onstant of
f |x,y. Let a = S1 ∩ S(2,1) ∩ S(2,2), b = S(3,1) ∩ S(3,2) ∩ S4, c = S(2,1) ∩ S(3,1)and d = S(2,2) ∩ S(3,2). Observe that {c, d} ⊂ B(a, 1/4) ∪ B(b, 1/4) and
d(c, d) = 1/2. Then d′(F (c), F (d)) ≥ L−2d′(F (a), F (b)). From the de�nitionof round ball spaes, we onlude that

max{L(a, c), L(a, d), L(c, b), L(d, b)} ≥ (1 + δ(L−2))L(a, b).Eah pair of points on the left hand side oinides with the endpoints of oneof the �rst-order similarity piees Su, u ∈ U . Thus the endpoints x and y ofone of these piees satisfy L(x, y) ≥ (1 + δ(L−2))L(a, b).The same argument an be applied to points au = Su,1∩Su,(2,1)∩Su,(3,1)and bu = Su,(2,2)∩Su,(3,2)∩Su,4 for any u ∈ Um and m ∈ N. For eah suh uand m there exists a similarity piee of order m + 1 with endpoints xu and
yu so that L(xu, yu) ≥ (1 + δ(L−2))L(au, bu).Note that ∑∞

m=1

∑
u∈{1,4}m(bu − au) = 1. Hene L(au, bu) ≥ L(0, 1) forsome u ∈ {1, 4}m, and so

L(xu′ , yu′) ≥ (1 + δ(L−2))L(0, 1)for the endpoints xu′ , yu′ of some similarity piee Su′ of G. By self-similarity,
Su′ ontains a further similarity piee Su′v′ with endpoints xu′v′ , yu′v′ so that

L(xu′v′ , yu′v′) ≥ (1 + δ(L−2))2L(0, 1).Continuing in this fashion, we eventually ontradit the L-bi-Lipshitz har-ater of F .4.15. A lemma on geodesi segments in K(I0). The following lemmaprovides a su�ient ondition for the vertial slies of a ompat set A ⊂
I0 × I0 to sweep out a geodesi in K(I0).We denote by Q0 = I0 × I0 the unit square in R

2. For a ompat set
A ⊂ R

2, we write At = {x : (t, x) ∈ A} for the vertial slie of A withabsissa t. Finally, for p = (t, x) ∈ Q0, we write
X(p) = {p′ = (t′, x′) ∈ Q0 : |t′ − t| ≥ |x′ − x|}.Then X(p) is the union of two antipodal setors with opening angle π/4entered at p.4.16. Lemma. For a ompat set A ⊂ Q0, the map t 7→ At is an iso-metri embedding of I0 in K(I0) provided(4.17) t ∈ At ⊂ [0, t] ∀t ∈ I0and(4.18) A ⊂

⋃

x∈At

X(t, x) ∀t ∈ I0.



244 J. T. TysonCondition (4.17) says that A lies in the triangle(4.19) T0 = {(t, x) : 0 ≤ x ≤ t ≤ 1}and ontains the diagonal {(t, t) : 0 ≤ t ≤ 1}, while ondition (4.18) saysthat whenever an open vertial segment J is in the omplement of A, thenthe open square with diagonal J is also in the omplement of A.Proof of Lemma 4.16. Let 0 ≤ t′ < t ≤ 1. Condition (4.17) implies that(4.20) D(At, At′) ≥ dist(t, At′) ≥ |t − t′|.On the other hand, ondition (4.18) implies that {t}×At ⊂
⋃

x′∈At′
X(x′, t′)and the orresponding statement with the roles of (t, x) and (t′, x′) reversed.Consequently,(4.21) D(At, At′) ≤ |t − t′|.Inequalities (4.20) and (4.21) show that t 7→ At is an isometri embedding.4.22. Remark. Inequality (4.20) an be generalized as follows: if A and

A′ are ompat sets in Q0 satisfying (4.17) and (4.18), then D(At, A
′
t′) ≥

|t − t′| for all t, t′ ∈ I0. The proof is the same.4.23. Two planar iterated funtion systems. We begin by de�ning twoplanar IFS's orresponding to the digits in the alphabet W2.The 4-adi subsquares of Q0 are the sixteen squares [(i − 1)/4, i/4] ×
[(j − 1)/4, j/4], i, j = 1, 2, 3, 4.The IFS F1 onsists of nine planar ontrative maps. Eight of these mapsare ontrative similarities, with sale fator 1/4, while the ninth is a degen-erate a�ne ontration, with sale fator 1/4 in one diretion and zero inthe other diretion. These nine ontrations are indiated pitorially in theleft part of Figure 2; they are the eight ontrative maps of R

2 whih sendthe ordered triple A, B, C of verties of Q0 to eah of the ordered triples
a, b, c of verties of the spei�ed 4-adi subsquares of Q0, together with thedegenerate map sending A and the pair B, C to the endpoints a and b of theline segment labelled �8�. We label these maps f j

1 , j = 1, . . . , 9, as indiatedin the left part of Figure 2.The IFS F2 onsists of ten ontrative similarities, eah with sale fator
1/4. These similarities f j

2 , j = 1, . . . , 10, are indiated pitorially in the rightpart of Figure 2.4.24. Remark. Observe that F2 ontains two ontrations f5
2 and f8

2mapping into a ommon subsquare. However, both F1 and F2 satisfy theopen set ondition [11, �9.2℄.4.25. Remark. Note that the maps in the �rst and last olumns o-inide: f j
1 = f j

2 for j = 1, 4, 7 and f9
1 = f10

2 . In the middle two olumns,
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8
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a

a
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c

b

cbc

cFig. 2. Similarities omprising F1 (left), F2 (right)the set of maps is not the same: {f2
1 , f5

1 } 6= {f2
2 , f5

2 , f8
2 } and {f3

1 , f6
1 , f8

1 } 6=
{f3

2 , f6
2 , f9

2 }.4.26. Remark. Figure 3 shows the attrators Ai for the IFS's Fi, i =
1, 2. It is lear that onditions (4.17) and (4.18) hold for these attrators. Itfollows from the previous remark and the self-similarity of the onstrutionsthat A1(m)t = A2(m)t if and only if t ∈ I0 \

⋃m
j=1 Oj for eah m ∈ N, where

Ai(m) is the image of T0 under m iterates of F i, i = 1, 2. Hene A1
t = A2

t ifand only if t ∈ C, as asserted in (4.12) (see Example 4.9).4.27. A planar iterated funtion omplex. We now onsider the rank twoIFC {Fv}v∈Σ2
de�ned by F1 and F2. To aid the reader, we desribe thestruture of the attrator of this IFC in greater detail. Given an in�niteword v = v1v2 · · · ∈ Σ2, let Wm

v = Wv1
×· · ·×Wvm and fw

v = fw1
v1

◦ · · · ◦fwm
vmfor all w ∈ Wm

v , and let(4.28) Fm
v (S) :=

⋃

w∈W m
v

fw
v (S).

The attrator for {Fv}v∈Σ2
is the family {Av}v∈Σ2

of ompat sets, where
Av =

⋂∞
m=1 Fm

v (T0). When v = 1, Av oinides with the attrator A1 inthe left part of Figure 3; when v = 2, Av oinides with A2 in the right

Fig. 3. Attrators A1 and A2



246 J. T. Tysonpart of Figure 3. For any v ∈ Σ2, Av is the Hausdor� limit of the sequene
Av(m) := Fv1

◦ · · · ◦ Fvm(T0).We now extend Remark 4.26 to the full IFC.4.29. Proposition. For eah v ∈ Σ2, Av satis�es (4.17) and (4.18).Furthermore, (4.12) holds.Proof. Sine Fi(Q0) ⊂ T0 and Fi ⊃ {f j
i : j = 1, 2, 3, 4} for eah i = 1, 2,(4.17) holds. To prove (4.18), let U1, U2 be the open sets shaded in the leftand right parts of Figure 2 respetively. Then

Av(m) = int(Q0) \
m⋃

i=1

⋃

w∈W i
v

fw
v (Uvi

)

for eah m, where int(Q0) denotes the interior of Q0 and S denotes thelosure of a set S. It follows that (4.18) is satis�ed for eah Av(m), m ∈ N,and hene (4.18) is satis�ed for Av =
⋂

m Av(m).To see why (4.12) holds, observe that Remark 4.25 guarantees that
Av(m)t = Av′

(m)t ⇔ t ∈ I0 \
⋃

j=1,...,m :vj 6=v′
j

Oj

for all v, v′ ∈ Σ2 and m ∈ N, where Om is the open set de�ned in (4.7).Then (4.12) follows by interseting these onditions over all m and using thede�nition of the equivalene relation on I0 × Σ2 (see De�nition 4.8).4.30. Corollary. The map Φ : G → K(I0) given by Φ([t, v]) = Av
t iswell de�ned.4.31. Subsets and supersets of the sets Av

t . In this setion we prove twotehnial lemmas desribing ertain distinguished subsets and supersets ofthe vertial slies Av
t . These lemmas will play a key role in the proof ofTheorem 2.15 by yielding lower bounds for the Hausdor� distane betweenslies Av

t and Av′

t′ .We begin by observing the ommon elements of the two parts of Figure 2.Figure 4 shows a set of line segments Γ ⊂ Q0 whih are ommon to thesetwo �gures. Expliitly,
Γ =

7⋃

j=1

f j
1 (∆) ∪ f9

1 (∆) =

8⋃

j=1

f j
2 (∆) ∪ f10

2 (∆),where ∆ := {(t, t) : t ∈ I0} denotes the prinipal diagonal of I0. Thus
Γ ⊂ Fi(∆) for i = 1, 2, whene Γ ⊂ Av for any v ∈ Σ2. In fat,(4.32) Fm

v (Γ ) ⊂ Avfor all m ∈ N, where Fm
v is the set funtion de�ned in (4.28).
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Fig. 4. The set ΓReall our notation [u]m for the element of Um onsisting of the �rst mletters of u ∈ ΣU . For eah m ∈ N, the projetion of S[u]m ⊂ G to I0 (viathe map in (4.10)) is an interval [au,m, bu,m] with(4.33) bu,m − au,m = diamS[u]m = 4−m.If [t, v] = πG(u), then(4.34) au,m +
i(um+1) − 1

4
· 4−m ≤ t ≤ au,m +

i(um+1)

4
· 4−m,where i : U → W4 is as in (4.11).In our �rst lemma, we desribe some subsets of the slies Av

t . Let hi,
i = 1, 2, 3, 4, be the maps from (4.6).4.35. Lemma. Let u ∈ ΣU with πG(u) = [t, v] and let m ∈ N.(i) If um+1 = (3, 2), then

Av
t ⊃ hi(u1) ◦ · · · ◦ hi(um) ◦ h1(Γs),where s =

(
au,m + 3

4 · 4−m − t
)
/
(

1
4 · 4−m

).(ii) If um+1 = (2, 2), then
Av

t ⊃ hi(u1) ◦ · · · ◦ hi(um) ◦ h1(Γ̃s),where s =
(
t − au,m − 1

4 · 4−m
)
/
(

1
4 · 4−m

) and Γ̃ = Γ ∪ f1
1 (Γ ) ∪ f1

1 ◦
f1
1 (Γ ) ∪ · · · .To eah u ∈ U , we assoiate a olletion C(u) of elements of F1 ∪F2 asfollows:

C(1) = {f1
1 }, C(2, 1) = {f2

1 , f5
1 }, C(3, 1) = {f3

1 , f6
1 , f8

1 },
C(2, 2) = {f2

2 , f5
2 , f8

2 }, C(3, 2) = {f3
2 , f6

2 , f9
2 }, C(4) = {f4

2 , f7
2 , f10

2 }.Observe that eah olletion C(u) ontains preisely one diagonal ontra-tion, namely Hi(u) := hi(u) × hi(u). (By a diagonal ontration we mean oneof the maps f i
1, i = 1, 2, 3, 4.)



248 J. T. TysonProof of Lemma 4.35. Let u ∈ ΣU be as in the statement of the lemma.From (4.32), we dedue that
Av ⊃ Hi(u1) ◦ · · · ◦ Hi(um)(Fvm+1

(Γ )).If um+1 = (3, 2), then
Av

t ⊃ [Hi(u1) ◦ · · · ◦ Hi(um) ◦ f9
2 (Γ )]t = hi(u1) ◦ · · · ◦ hi(um) ◦ h1(Γs)where s =

(
au,m + 3

4 · 4−m − t
)
/
(

1
4 · 4−m

). (Note that f9
2 (t, x) = (h3(1 − t),

h1(1 − x)).)Similarly, if um+1 = (2, 2), then
Av

t ⊃ [Hi(u1) ◦ · · · ◦ Hi(um) ◦ f8
2 (Γ )]t = hi(u1) ◦ · · · ◦ hi(um) ◦ h1(Γ̃s),where s = (t−au,m−1

4 ·4−m)/(1
4 ·4−m). (Note that f8

2 (t, x) = (h2(t), h1(x)).)Next, we give some supersets of the slies Av
t .4.36. Lemma. Let u ∈ ΣU with πG(u) = [t, v] and let m ∈ N.(i) If um+1 = (3, 1), then Av

t ⊂ [0, au,m] ∪
[
au,m + 1

4 · 4−m, t
].(ii) If um+1 = (2, 1), then Av

t ⊂ [0, au,m] ∪
[
t − 1

4 · 4−m, t
].Proof. Let m ∈ N. By onstrution,

Av = Fm
v (Av) ⊂ Fm

v (T0).If um+1 ∈ {(3, 1), (2, 1)}, then vm+1 = 1 and
Av ⊂ Fm

v (F1(T0)) ⊂ Fm
v (T0 \ U1),where U1 denotes the open set from the proof of Proposition 4.29. Separatingthe diagonal and nondiagonal elements gives

Av ⊂ I0 × [0, au,m] ∪ Hi(u1) ◦ · · · ◦ Hi(um)(T0 \ U1)whene
Av

t ⊂ [0, au,m] ∪ [Hi(u1) ◦ · · · ◦ Hi(um)(T0 \ U1)]t

= [0, au,m] ∪ hi(u1) ◦ · · · ◦ hi(um)((T0 \ U1)s),where s = (t − au,m)/4−m. If um+1 = (2, 1), then by (4.34) we have 1/4 ≤
s ≤ 1/2 and
Av

t ⊂ [0, au,m] ∪ hi(u1) ◦ · · · ◦ hi(um)

([
s − 1

4 , s
])

= [0, au,m] ∪
[
t − 1

4 · 4−m, t
]
;if um+1 = (3, 1), then by (4.34) we have 1

2 ≤ s ≤ 3
4 and

Av
t ⊂ [0, au,m]∪ hi(u1) ◦ · · · ◦ hi(um)

([
1
4 , s

])
= [0, au,m]∪

[
au,m + 1

4 · 4−m, t
]
.Proof of Theorem 2.15. By Corollary 4.30 the map Φ : G → K(I0)given by Φ([t, v]) = Av

t is well de�ned. The assertion in (4.14) follows fromProposition 4.29. To prove (4.13) we will show that(4.37) D(Av
t , A

v′

t′ ) ≤ K1d(p, p′)



Bi-Lipshitz embeddings of hyperspaes 249with K1 = 4, and(4.38) d(p, p′) ≤ K2D(Av
t , A

v′

t′ )with K2 = 33, for all points p = [t, v] and p′ = [t′, v′] in G.4.39. Remark. We do not know the best bi-Lipshitz onstants K1 and
K2 for the embedding Φ. Let p = [1/2, 1v] and p′ = [1/2, 2v′] for arbitrary
v, v′ ∈ Σ2. Then

{
1
4 , 1

2

}
⊂ Φ(p) = A1v

1/2 ⊂
[

1
4 , 1

2

]
,

{
0, 1

4 , 1
2

}
⊂ Φ(p′) = A2v′

1/2 ⊂
[
0, 1

2

]
,so d(p, p′) = 1/2 and D(Φ(p), Φ(p′) = 1/4, whih shows that K2 annot besmaller than 2.Returning to the proof of the theorem, let p = [t, v] and p′ = [t′, v′] bedistint elements of G. Choose a word [u]m ∈ Um of maximal length m sothat p, p′ ∈ S[u]m . By hanging the representatives of p and p′ if neessary,we may assume that vj = v′j for j = 1, . . . , m. We begin by noting that(4.40) |t − t′| ≤ D(Av

t , A
v′

t′ ) ≤ diamS[u]m = 4−m;see Remark 4.22 for the lower bound in (4.40).There exist indies i, i′ ∈ U , i 6= i′, so that p ∈ S[u]mi and p′ ∈ S[u]mi′ .We distinguish several ases aording to the values of i and i′.
Case 1. Suppose that {i, i′} = {(2, 1), (3, 2)} or {i, i′} = {(2, 2), (3, 1)}.Then(4.41) 1

4 · 4−m ≤ d(p, p′) ≤ 1
2 · 4−m.By (4.40) we see that (4.37) holds with K1 = 4.If |t − t′| ≥ 1

8 · 4−m, then (4.38) holds with K2 = 4 by (4.40) and (4.41).Suppose that |t− t′| ≤ 1
8 · 4−m. Let cu,m = (au,m + bu,m)/2 = au,m + 1

2 · 4−m.Then |t − t′| = |t − cu,m| + |cu,m − t′| and
D(Av

t , A
v′

t′ ) ≥ D(Av
cu,m

, Av′

cu,m
) − D(Av

t , A
v
cu,m

) − D(Av′

cu,m
, Av′

t′ )

≥ D(Av
cu,m

, Av′

cu,m
) − |cu,m − t| − |cu,m − t′|

= 1
4 · 4−m − |t − t′| > 1

8 · 4−m,where we used Lemma 4.16 and Remark 4.39 in the seond and third lines, re-spetively. Combining this with (4.40), we see that (4.38) holds with
K2 = 4.We divide the remaining possibilities into two ases:
Case 2. {i, i′} ∩ {1, 4} 6= ∅ or {i, i′} = {(2, 1), (3, 1)} or

{i, i′} = {(2, 2), (3, 2)}.
Case 3. (a) {i, i′} = {(3, 1), (3, 2)} or (b) {i, i′} = {(2, 1), (2, 2)}.



250 J. T. TysonIn Case 2 we may assume that t < t′ and hoose
t′′ ∈

{
au,m + 1

4 · 4−m, au,m + 1
2 · 4−m, au,m + 3

4 · 4−m
}

so that t ≤ t′′ ≤ t′. In Case 3(a) we hoose t′′ = au,m + 1
4 · 4−m, while inCase 3(b) we hoose t′′ = au,m + 3

4 · 4−m. In all ases, for a suitable hoieof p′′ = [t′′, v′′], we have (t′′, v) ∼ (t′′, v′) ∼ (t′′, v′′) and
d(p, p′) = d(p, p′′) + d(p′′, p′)(4.42)

= |t − t′′| + |t′′ − t′| = D(Av
t , A

v′′

t′′ ) + D(Av′′

t′′ , A
v′

t′ )

≥ D(Av
t , A

v′

t′ )by (4.14) and Lemma 4.16. Thus (4.37) holds with K1 = 1.The proof of (4.38) splits aording to the various ases.In Case 2, sine t < t′′ < t′, we dedue from (4.42) and (4.40) that
d(p, p′) = |t − t′| ≤ D(Av

t , A
v′

t′ ). Thus (4.38) holds with K2 = 1 in this ase.In Case 3(a), we have au,m + 1
2 · 4−m ≤ t, t′ ≤ t′′ = au,m + 3

4 · 4−m. Wemay assume that i = (3, 1) and i′ = (3, 2). By Lemma 4.35(i), Av′

t′ ontainsa point x′ suh that
au,m + 1

16 · 4−m ≤ x′ ≤ max
{
au,m + 1

8 · 4−m, t′ − 1
2 · 4−m

}
;Lemma 4.36(i) guarantees that Av

t ⊂ [0, au,m] ∪
[
au,m + 1

4 · 4−m, t
]. Hene

D(Av
t , A

v′

t′ ) ≥ min
{
x′ − au,m, au,m + 1

4 · 4−m − x′
}

≥ min
{

1
16 · 4−m, t′′ − t′

}
≥ 1

4(t′′ − t′)sine t′′ − t′ ≤ 1
4 · 4−m. Thus

d(p, p′) = 2t′′ − t − t′ ≤ 2(t′′ − t′) + |t′ − t| ≤ 9D(Av
t , A

v′

t′ )by the �rst two equalities of (4.42) and by (4.40). We obtain (4.38) with
K2 = 9.In Case 3(b), we have t′′ = au,m + 1

4 · 4−m ≤ t, t′ ≤ au,m + 1
2 · 4−m. Wemay assume that i = (2, 1) and i′ = (2, 2). If t − t′′ ≤ 15

16(t′ − t′′), then
D(Av

t , A
v′

t′ ) ≥ |t − t′| ≥ 1
16(t′ − t′′).Otherwise, hoose an integer k ≥ 1 so that

t′′ +
1

4k
· 4−m ≤ t′ ≤ t′′ +

1

4k−1
· 4−m.By Lemma 4.35(ii), Av′

t′ ontains a point x′ suh that
au,m +

1

4k+1
· 4−m ≤ x′ ≤ t′ −

(
1

4
+

3

4k+1

)
4−m.
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t ⊂ [0, au,m]∪

[
t− 1

4 · 4−m, t
]. Hene

D(Av
t , A

v′

t′ ) ≥ min

{
x′ − au,m, t − 1

4
· 4−m − x′

}

≥ min

{
1

4k+1
· 4−m,

3

4k+1
· 4−m − |t − t′|

}

≥ min

{
1

4k+1
· 4−m,

3

4k+1
· 4−m − 1

16
(t′ − t′′)

}

≥ 1

4k+1
· 4−m ≥ 1

16
(t′ − t′′).In either ase, we �nd D(Av

t , A
v′

t′ ) ≥ 1
16(t′ − t′′), whene

d(p, p′) = t + t′ − 2t′′ ≤ 2(t′ − t′′) + |t′ − t| ≤ 33D(Av
t , A

v′

t′ )by the �rst two equalities of (4.42) and (4.40). We obtain (4.38) with
K2 = 33.5. Questions and remarks
Question 1. Does K([0, 1]) admit a bi-Lipshitz embedding in L1?The map F : K([0, 1]) → L1([0, 1]) given by F (A) = dist(x, A) is a

1-Lipshitz embedding. Its inverse an be no better than 1/2-Hölder, as anbe seen by onsidering the distane from an arbitrary point A ∈ K(X) to
B = [0, 1]. Is F−1 1/2-Hölder ontinuous?
Question 2. Is there a onstant L < ∞ so that every series-parallelgraph of diameter one admits an L-bi-Lipshitz embedding in K([0, 1])?As previously observed, Gupta et al. [18℄ have reently shown that everyseries-parallel graph admits a 14-bi-Lipshitz embedding in L1. Bi-Lipshitzembeddings of graphs and/or �nite metri spaes in �good� targets play aninreasingly important role in algorithmi problems in omputer siene andsorting problems (see [18℄ for a more omplete list of appliations). It wouldbe interesting to know whether hyperspaes an play the role of the targetin embedding results of this type.
Question 3. For whih spaes X does K(X) admit a bi-Lipshitz em-bedding into a uniformly onvex Banah spae? into a �nite-dimensionalEulidean spae?Taking into aount the prinipal theorems of this paper, it is natural tobegin an attak on the �rst part of Question 3 by onsidering nonuniformlydisonneted subsets of [0, 1], for example, the �fat� Cantor sets of [6℄. Whendo the hyperspaes of suh sets admit bi-Lipshitz embeddings in uniformlyonvex Banah spaes? For the seond part of Question 3, see Remark 3.15.



252 J. T. TysonOther lasses of hyperspaes. For a �xed losed set C in a metri spae
X, denote by K(X, C) the hyperspae of all losed subsets A ⊂ X with
D(A, C) < ∞. Thus K(X, {x0}) (for �xed x0 ∈ X) is the hyperspae ofall losed and bounded sets in X, whih oinides with K(X) when X is aproper (or Heine�Borel) metri spae. The metri struture of hyperspaesof the type K(X, C) is onsidered by Kovalev and the author in [24℄. Hereis a sample result from that study related to the topi of this paper: For anyonneted metri spae X and unbounded losed set C ⊂ X, the hyperspae
K(X, C) ontains an isometri opy of ℓ∞+ = {x = (xk) ∈ ℓ∞ : xk ≥ 0for all k} and hene of every bounded separable metri spae. Furthermore,
K(X, C) ontains a√2-bi-Lipshitz embedded opy of every separable metrispae.
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