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Recurrence of entire transcendental functions

with simple post-singular sets

by

Jan-Martin Hemke (Kiel)

Abstract. We study how the orbits of the singularities of the inverse of a meromor-
phic function determine the dynamics on its Julia set, at least up to a set of (Lebesgue)
measure zero. We concentrate on a family of entire transcendental functions with only
finitely many singularities of the inverse, counting multiplicity, all of which either escape
exponentially fast or are pre-periodic. For these functions we are able to decide whether
the function is recurrent or not. In the case that the Julia set is not the entire plane we
also obtain estimates for the measure of the Julia set.

1. Introduction. One of the main ideas in complex dynamics is to
divide the plane into the Fatou set of points where the iterates behave
stably, i.e. where they form a normal family, and its complement, the Julia
set. By definition the dynamics in the Fatou set is the simplest, and it is
very well understood. We are interested in the dynamics of meromorphic
functions on their Julia sets. In [6] H. Bock proved the following

Theorem 1.1 (Bock). For any non-constant meromorphic function de-

fined on the whole complex plane, one of the following two cases holds:

(i) the Julia set of f is the entire plane and for all A ⊂ C of positive

measure, all m ∈ N and almost all z ∈ C there are infinitely many

n ∈ N with fmn(z) ∈ A;
(ii) almost every forward orbit in the Julia set accumulates only on the

post-singular set.

Here the post-singular set is the closure of the union of the forward orbits
of all singularities of the inverse function, which are the critical and asymp-
totic values. This result is a generalization of similar results for rational
functions, obtained by M. Lyubich [16] and C. McMullen [19].

We introduce some important terms from ergodic theory which are re-
lated to the classification above. A meromorphic function is called ergodic
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(with respect to the Lebesgue measure) if any invariant set has full measure
or measure zero. It is called recurrent if for every set A ⊂ C and almost
every point z ∈ A the forward orbit O+(z) intersects A infinitely many
times. It is easy to see that (i) implies recurrence and ergodicity. Case (ii)

rules out neither of these two in general. If however P (f) 6= Ĉ, it implies
non-recurrence.

It is natural to ask which case holds for a given function. Since a non-
empty Fatou set always implies (ii), one can restrict oneself to the cases in
which the Julia set is the whole complex plane. If it is not, and thus (ii)
holds, it would still be interesting to know whether it has positive measure,
since otherwise statement (ii) would be trivial.

In the paper mentioned (see also [5]), H. Bock gives sufficient conditions
for (i): if f is entire, and the set of singularities of the inverse function is
finite and all of them are pre-periodic but not periodic, then (i) is satis-
fied. The function f(z) = 2πi exp(z) is an example, with the post-singular
set consisting of the only asymptotic value, zero, and its image 2πi. Other
conditions concerning this case are given by L. Keen and J. Kotus [14]. Con-
versely, it was already shown in 1984, independently by M. Rees [24] and
M. Lyubich [17], that the function f(z) = exp(z) is an example for (ii). Here
the post-singular set consists of the closure of the forward orbit of the only
asymptotic value, zero, which tends to infinity on the real axis. This result
was generalized in [12] to functions fλ(z) = λ exp(z) with fn

λ (0) tending to
infinity sufficiently fast. M. Urbański and A. Zdunik [28] even showed that
the Hausdorff dimension of the remaining set is smaller than 2.

The difference between the dynamics of exp(z) and 2πi exp(z) is caused
by the different behavior of the asymptotic value zero under iteration. One
might hope for a classification of the two cases depending on the behavior of
the singularities of the inverse. As a first approach, we restrict ourselves to
functions with few singularities of the inverse, with simple orbits. As we said,
we can neglect all orbits that would imply the existence of a component of
the Fatou set, such as periodic critical points or infinite orbits that converge
in C. The simplest orbits that remain are pre-periodic or escaping ones. If
one considers meromorphic functions with poles, another interesting case is
that of singularities which are eventually mapped onto a pole. This case has
been studied by B. Skorulski for the tangent family in [27] and for a larger
class of functions in his recent thesis.

We are interested in conditions ensuring case (ii). In the third section
we prove the rather technical Theorem 3.1, which provides a set of sufficient
conditions for this case. The proof applies the method developed by M. Rees
to construct a positive measure set of points whose iterates show a “spiral”
type behavior: they are eventually mapped close to some asymptotic value,
then follow its orbit for a certain number of iterates, coming close to infinity,
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until they are mapped again, and even closer than before, to some asymp-

totic value etc. These orbits are not dense in Ĉ, which implies (ii). Since
these orbits accumulate at infinity, the only type of components that could
possibly intersect this set are wandering and Baker domains. At least for
the various families (e.g. critically finite entire functions) in which those do
not occur (see Remark 3.2), we also conclude that the Julia set has positive
measure.

In Section 4 we consider functions which may be written in the form
f(z) =

Tz
0 P (t) exp(Q(t)) dt + c with polynomials P and Q and c ∈ C such

that Q is not constant and P not zero. These functions have at most deg(Q)
asymptotic values and deg(P ) critical points. In the extreme case that all
singularities of the inverse are pre-periodic but not periodic, the theorem of
H. Bock implies (i). We consider the other extreme case, in which the singu-
larities of the inverse tend to infinity. It turns out that we may neglect the
critical values, but have to specify the speed of escape of the asymptotic val-
ues. We say that a point z escapes exponentially if |fn(z)| ≥ exp(|fn−1(z)|δ)
for some δ > 0 and almost all n ∈ N. Of course for subsets of N the term
almost all means that the complement is finite and does not refer to the
Lebesgue measure. With this terminology Theorem 3.1 yields the following
principal result.

Theorem 1.2. Let P and Q be polynomials with P not zero and Q not

constant , c ∈ C and

f(z) :=

z\
0

P (t) exp(Q(t)) dt+ c.

Suppose that all asymptotic values escape exponentially. Then the Julia

set has positive measure and ω(z) ⊂ P (f) for almost every z ∈ J(f). If

deg(Q) ≥ 3, then meas(F (f)) <∞.

Here ω(z) denotes the ω-limit set that consists of all accumulation points
of the sequence (fn(z)). Conversely, one may ask whether almost every orbit
in the Julia set accumulates at every singularity s of f−1. It is easy to find
examples for which this is not the case if s is a critical value. In order not to
accumulate at an asymptotic value s, an orbit has to stay out of an entire
sector. In other contexts, sets with this property turned out to have measure
zero. Thus one may expect that indeed for almost every point z ∈ J(f) every
asymptotic value s is contained in ω(z). If, however the set of points in the
Julia set whose orbits are bounded had positive measure, there would be no
reason why these orbits should accumulate at a given asymptotic value. It is
not known whether this can actually occur, or similarly, whether the Julia
set of a polynomial may have positive measure, which is a well known open
question. A positive answer to this question would suggest a negative answer
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to our initial question also for asymptotic values. However, under additional
assumptions on the critical values the answer is affirmative. More precisely
we get the following.

Theorem 1.3. Let f be as in Theorem 1.2 and again suppose all its as-

ymptotic values escape exponentially. Suppose that every critical point either

also escapes exponentially , is pre-periodic or is contained in an attractive Fa-

tou component. Then ω(z) = O+(A) for almost every point z ∈ J(f), where

A denotes the set of asymptotic values.

We define the multiplicity of an asymptotic value s as the supremum of
the set of natural numbers n with the following property: there exists an
ε0 > 0 such that for all ε < ε0 the set f−1(B(s, ε)) contains at least n un-
bounded components. Then the functions above have exactly deg(Q) asymp-
totic values and deg(P ) critical points, counting multiplicity, and may even
be characterized as those entire transcendental functions with this property.
This was proved by G. Elfving in [9]. He generalized a method introduced
by R. Nevanlinna [21], who showed the same for deg(P ) = 0. This method
is summarized in [22].

Theorem 1.4 (Elfving). Let f be entire transcendental , with only fini-

tely many singularities of its inverse, counting multiplicity. Then there exist

polynomials P , Q and some c ∈ C such that

f(z) =

z\
0

P (t) exp(Q(t)) dt+ c.

For an entire transcendental function f with only finitely many singu-
larities of the inverse, all of which are pre-periodic or escape exponentially,
the set P (f) does not accumulate in C, in particular not everywhere in C.
Therefore if (ii) is satisfied, the function cannot be recurrent. Thus for this
restricted family of functions, the question whether (i) or (ii) is true is equiv-
alent to the question whether f is recurrent or not. As an answer to this
question we get the following.

Theorem 1.5. Let f be entire and transcendental with only a finite

number of singularities of its inverse, counting multiplicity , such that all

these either escape exponentially or are pre-periodic, but no critical point is

periodic. Then f is not recurrent if and only if all asymptotic values escape

exponentially.

It is remarkable that the condition in Theorem 1.5 only depends on the
asymptotic values. In the last section we discuss applications of Theorem 3.1
to other families, especially transcendental meromorphic functions with ra-
tional Schwarzian derivative.
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2. Preliminaries. Let fk denote the kth iterate, and f (k) the kth deriv-
ative of f . Let “meas” denote the Lebesgue measure in the plane, “dist” the
Euclidean distance, and “diam” the diameter. For any r > 0 and z ∈ C,
let B(z, r) denote the open ball of radius r and center z, B(M, r) :=⋃

z∈M B(z, r) for M ⊂ C and D(r) := C \ B(0, r). For a square S let rS
denote the square with the same center and with diam(rS) = r diam(S). For
a conformal map f : D → C we call supz,w∈D |f ′(z)/f ′(w)| its distortion.
We state the well known Koebe distortion theorem as may be found in [23].

Theorem 2.1 (Koebe). Suppose f : B(0, 1) → C is conformal with

f(0) = 0 and f ′(0) = 1, and z ∈ B(0, 1). Then

1 − |z|
(1 + |z|)3 ≤ |f ′(z)| ≤ 1 + |z|

(1 − |z|)3 ,(1)

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1 − |z|)2 ,(2)

1 − |z|
1 + |z| ≤

∣∣∣∣z
f ′(z)
f(z)

∣∣∣∣ ≤
1 + |z|
1 − |z| .(3)

This theorem implies in particular the following corollary, which is known
as Koebe’s 1/4-Theorem.

Corollary 2.2 (Koebe). Let f be as in Theorem 2.1. Then

(4) B(0, 1/4) ⊂ f(B(0, 1)).

It is much easier to show the following property, which will be sufficient
for most of our purposes.

Lemma 2.3. Let f : B(z0, r) → C be holomorphic. Then

(5) B(f(z0), inf
z∈B(z0,r)

|f ′(z)|r) ⊂ f(B(z0, r)).

Proof. We can assume that f has no critical points. We consider the
straight line segment γ from f(z0) to the closest boundary point of the
image. The pre-image of γ contains a path γ′ connecting z0 with the bound-
ary of B(z0, r), which is mapped by f one-to-one onto γ. Since the length
of γ′ is at least r, the length of γ is at least infz∈B(z0,r) |f ′(z)|r .
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Rather than discs, we will be more interested in the distortion of
squares. From Koebe’s distortion theorem one can obtain similar estimates
for squares. The following lemma will be sufficient for our purpose and fol-
lows from Koebe’s distortion theorem. However, one could also prove it more
directly using normal families.

Lemma 2.4. For any 0 < c < 1 there exists a Kc > 0 such that for any

holomorphic function which is injective on some square S, the distortion of

its restriction to cS is bounded by Kc. Moreover , Kc tends to 1 as c→ 0.

The following lemma follows directly from our definition of distortion.

Lemma 2.5. Suppose that the distortion of the conformal map f is

bounded by K. Let D and M be measurable subsets of its domain of defini-

tion with meas(D) > 0. Then

(6)
meas(M ∩D)

meas(D)
≤ K2 meas(f(M) ∩ f(D))

meas(f(D))
.

The term on the left side of (6) is called the density of M in D. In
the next lemma we state two properties of quasi-squares, which we will
frequently use. The proof is simple and may be found in [12].

Lemma 2.6. Let D be a K-quasi-square and ε > 0. Then

(7) meas(D) ≥ diam(D)2

2K2
, meas(D ∩B(∂D, ε)) ≤ 4εK2 diam(D).

Here ∂S denotes the boundary of a set S ⊂ C. Finally, we state a tool
which we will frequently use to obtain injectivity of a function on certain
sets. It is a corollary of the Monodromy Theorem, to be found in most
function theory books, such as [7].

Lemma 2.7. Let D′ ⊂ D ⊂ C be domains, and f : D → C holomorphic

such that all singularities of the inverse of f are contained in the unbounded

component of C \ f(D′). Then f is injective on D′.

To avoid confusion we add the definition of a singularity of f−1.

Definition 2.8. Let D ⊂ Ĉ be a domain, f : D → Ĉ be meromorphic

and s ∈ Ĉ. Then s is called a singularity of f−1 if there exist

• a smooth function γ : [0, 1] → Ĉ with γ(1) = s;

• a domain U ⊂ Ĉ with γ([0, 1)) ⊂ U ;
• a branch φ of the inverse of f on U , i.e. φ : U → D meromorphic with
f(φ(z)) = z,

such that there is no domain V ⊂ Ĉ with γ([0, 1]) ⊂ V , and no branch ψ
of the inverse of f on V that coincides with φ on the component of U ∩ V
containing γ([0, 1)). We denote the set of singularities of f−1 by sing(f−1).
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Studying the set A :=
⋂

t∈(0,1) φ((t, 1)), one can classify these as follows.

Theorem 2.9. Let D, f be as above and s ∈ sing(f−1). Let γ, U and

φ be as in Definition 2.8. Then one of the following cases holds.

• There exists z ∈ D with f(z) = s and φ(γ(t)) → z as t→ 1. If neither

z nor s coincides with ∞ then f ′(z) = 0.
• dist(φ(γ(t)), ∂D) → 0 as t→ 1.

In the first case s is called a critical value and in the second case an

asymptotic value.

In the literature sometimes the closure of the set of singularities of the
inverse is denoted by the same name. However if this set is finite, which is
the case for all functions we consider, this makes no difference.

It is evident that the pre-image of a neighborhood of an asymptotic
value of an entire function must contain an unbounded component. Thus
the multiplicity, as defined in the introduction, is always at least 1. It may
however be larger and even infinite.

3. Non-recurrence. We follow the ideas used by M. Rees for the ex-
ponential function. We obtain a set of points with positive measure, whose
orbits are not dense in C, and therefore rule out case (i). This provides a
set of sufficient conditions for case (ii). In order to allow a wide application,
and hoping for further generalizations, we state our theorem as generally as
possible. It is therefore rather technical.

Theorem 3.1. Let f be meromorphic, A ⊂ C finite and G ⊂ C such

that :

(a) there exists ε > 0 such that the map

s : G→ A ∪ {0}, z 7→
{
s if ∃s ∈ A : |f(z) − s| ≤ exp(−|z|ε),
0 if |f(z)| ≥ exp(|z|ε),

is well defined and there are δ1, δ2 ∈ R such that for all z ∈ G,

|z|δ1 ≤
∣∣∣∣

f ′(z)
f(z) − s(z)

∣∣∣∣ ≤ |z|δ2;

(b) there exist B > 1 and β ∈ (−∞, 1) such that for every measurable

set D ⊂ {z : dist(z,C \G) ≤ 2|z|−δ1},
meas(D) ≤ B diam(D) sup

z∈D
|z|β;

(c) fm(s) → ∞ as m→ ∞ and B(fm(s), 2|fm(s)|τ ) ⊂ G for some

τ > β, almost all m ∈ N and all s ∈ A.

Then the set T (f) := {z : ω(z) ⊂ O+(A)} has positive measure. Further ,
there exists M > 0 such that for any square T0 ⊂ {z : dist(z,C\G) > |z|−δ1}
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with M0 := infz∈T0
|z| > M and diam(T0) ≥M−δ2

0 we have

meas(T (f) ∩ T0)

meas(T0)
≥ 1 − exp(−ηM ε

0 ),

where η := (τ − β)/max{1, 2 − 2τ} > 0.

Remark 3.2. We would like to know that T (f) ⊂ J(f). Since the orbits
of all points in T (f) accumulate at infinity, the only components that could
possibly intersect T (f) are Baker domains and wandering domains. There
are various families in which these do not occur. For the family which we
consider in the next section, the absence of wandering has been shown by
I. N. Baker in [1]. For entire functions with only finitely many singularities
of the inverse this has been shown by A. Eremenko and M. Lyubich in [10]
and by L. R. Goldberg and L. Keen in [11]. For meromorphic functions
with the same property this has been shown by I. N. Baker, J. Kotus and
Y. Lü in [4]. The absence of Baker domains has been shown for entire func-
tions with a bounded set of singularities of the inverse by A. Eremenko and
M. Lyubich in [10] and for meromorphic functions for which this set is finite
by P. J. Rippon and G. M. Stallard in [25]. Moreover in [2] I. N. Baker ob-
tained an upper estimate of the growth of |fn(z)| for a point z in the Baker
domain of an entire function, which is not compatible with the iterated ex-
ponential escape; we will find it in the proof below for points escaping to
∞ in T (f). Similar estimates implying the same for meromorphic functions
have been obtained in [3].

It also makes sense to choose A = ∅. Then we obtain sufficient conditions
for meas(I(f)) > 0, where I(f) denotes the set of escaping points (see 5.1).

Proof of Theorem 3.1. From our conditions (b) and (c) one can deduce
that −δ1 < β < τ < 1. We note that for any M > 0, taking B sufficiently
large allows us to assume that G ∩B(0,M) = ∅. For all s ∈ A we define

ms := max({m ∈ N : f ′(fm−1(s)) = 0} ∪ {0}),
ks := min{k ∈ N : (fms)(k)(s) 6= 0}.

The distortion constant Kc from Lemma 2.4 tends to 1 as c → 0. Thus
for c > 0 small enough we have cKc/4 < 1. Since A is finite one can even
find c > 0 such that ks arcsin(cK/4) < π for all s ∈ A and K := Kc. Suppose
that δ > 0 is small. In fact, it turns out that δ < (τ − β)(1 − τ)/(6 − 5τ − β)
is sufficient for all requirements needed. Similarly choose M > 0 sufficiently
large to satisfy the bounds appearing throughout the proof. For now we
only require the following two properties. Firstly, for any M0 > M the
series

∑
Mk defined by

Mk+1 := exp

(
min

{
1,

1

2 − 2τ

}
M ε

k

)
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tends to infinity fast enough, so that

(8)
∏

k∈N

(
1 − 1

4
Mβ−τ

k

)
≥ 1 −Mβ−τ

1 .

Secondly, there are no critical points in Ak for all k ∈ N ∪ {0} where

Ak :=

(
D

(
1

2
M

1/(1+2δ2−δ1+3δ)
k+1

)
∩G

)

∪
⋃

0≤l≤ms

(B(f l(s),M δ−1
k+1) \ {f l(s)}) ∪

⋃

l>ms

B(f l(s), ak,s,l),

ak,s,l := sup{|f j(s)|−δ2 : j ≥ l, |f j+1(s)| ≥M
1/(1+2δ2−δ1+3δ)
k+1 }.

Of course, at this point we only need to study A0 since Ak+1 ⊂ Ak. The set
A0 does not contain any critical points for M0 large enough, since those do
not accumulate in C and, by condition (a), G does not contain any critical
points. We note that due to (c) every s ∈ A escapes in G exponentially fast,
so that ak,s,l ≤ |f l(s)|−δ2 for large l.

Now let T0 and M0 be as in the theorem. Let S be a family of disjoint
open squares S ⊂ {z : dist(z,C \G) ≥ |z|−δ1} satisfying

(9)
c

8
( inf
z∈c−1S

|z|)−δ2 ≤ diam(S) ≤ c

2
( sup
z∈c−1S

|z|)−δ2,

whose union covers {z ∈ G : dist(z,C \G) ≥ 2|z|−δ1} up to a set of measure
zero, such that T 0 =

⋃
S∈X S for some finite X ⊂ S. A picture of this

could look like Figure 1. We can get this by covering the whole plane with
open squares of a constant diameter, beginning with T0, cutting these into
four until their diameter satisfies the upper bound, and discarding those

T0

G S

Fig. 1. The family S
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intersecting {z : dist(z,C \ G) ≤ |z|−δ1/2}. For M large enough and for
G ∩B(0,M) = ∅ our squares also satisfy the lower bound. We prove the
measure estimate in the theorem for all elements of S including the ones
inX. This implies this estimate also for T0. Thus we proceed with an element
of S, which we again call T0.

From the estimates of condition (a) one can show that if |z0| is large
enough and B(z0, |z0|−δ1) ⊂ G then

(10) f is injective on B(z0, |z0|−δ2/4).

To see this we use Lemma 2.7 and show first that

f(B(z0, |z0|−δ2/4)) ⊂ B(f(z0), 3|f(z0) − s(z0)|/8) ⊂ f(B(z0, |z0|−δ1)).

Indeed, if the first inclusion were false, we would find z ∈ B(z0, |z0|−δ2/4)
with

|f(z) − f(z0)| ≥ 3|f(z0) − s(z0)|/8.
We choose |z− z0| minimal with this property, so that for x on the segment
(z, z0) := {(1 − t)z + tz0 : 0 < t < 1} we have

|f(x) − s(z0)| ≤ |f(x) − f(z0)| + |f(z0) − s(z0)| ≤
11

8
|f(z0) − s(z0)|.

The mean value theorem provides x ∈ (z, z0) with

|f ′(x)| ≥ |f(z) − f(z0)|
|z − z0|

≥ 3

2
|f(z0) − s(z0)| |z0|δ2 ≥ 12

11
|f(x) − s(z0)| |z0|δ2 .

This contradicts (a), since for z0 large enough |x−z0| ≤ |z0|−δ2 is very small,

so that s(x) = s(z0) and |x| >
(

11
12

)−δ2 |z0|.
The second inclusion follows from the fact that there are no critical

points in B(z0, |z0|−δ1) ⊂ G. Thus we may extend the branch of f−1, map-
ping f(z0) to z0 along any path in B(f(z0), 3|f(z0) − s(z0)|/8) as long as
the image stays in B(z0, |z0|−δ1). As above the mean value theorem and
condition (a) ensure this, since for a given x ∈ B(z0, |z0|−δ1) with f(x) ∈
B(f(z0), 3|f(z0)−s(z0)|/8) it follows that |f(x)−s(z0)| ≥ 5|f(z0)−s(z0)|/8,
so that

|f ′(x)| ≥ |f(x) − s(z0)| |x|δ1 ≥ 1

2
|f(z0) − s(z0)| |z0|δ1 .

This implies that the image of any path in B(f(z0), 3|f(z0) − s(z0)|/8) in
fact stays inside B(z0, 3|z0|−δ1/4). From this it follows that f is injective on
B(z0, |z0|−δ2/4), as claimed. Together with (9) this implies that the distor-
tion of f on any S ∈ S is bounded by K.

Starting with F0 := {T0} and n0(T0) := 0, we will define for every k ∈ N

a family Fk of disjoint simply connected domains and functions nk : Fk → N

such that the sets Tk :=
⋃Fk =

⋃
F∈Fk

F form a decreasing sequence with
the following properties. For every U ∈ Fk and the corresponding V ∈ Fk−1
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with U ⊂ V :

(i) D(Mk) ⊃ fnk(U)(U) ∈ S and c−1fnk(U)(U) ⊂ fnk(U)(V );
(ii) f j(V ) ⊂ Ak for every nk−1(V ) < j < nk(U);

(iii) meas(V ∩ ⋃Fk) ≥
(
1 − 1

4M
β−τ
k

)
meas(V ).

Condition (ii) implies that ω(z) ⊂ ⋂
k∈N

Ak = O+(A) ∪ {∞} for all
z ∈ T :=

⋂
k∈N

Tk. Having (iii) for each component of Tk, that is, the

elements of Fk, implies that meas(Tk) >
(
1 − 1

4M
β−τ
k

)
meas(Tk−1), which,

together with the exponential growth of Mk, guarantees that

meas(T ) ≥
( ∞∏

k=1

(
1 − 1

4
Mβ−τ

k

))
meas(T0).

Together with (8) this implies the measure estimate from Theorem 3.1.
It remains to construct the sequences. We will do that inductively. Since

the starting step of the induction works just as any other step, we do not
consider it separately. We assume the existence of appropriate Fk and nk for
some k ∈ N. Let U ∈ Fk. Then S := fnk(U)(U) ∈ S. Due to condition (ii)
and the fact that there are no critical points inA0, one can extend the inverse
of fnk(U)|U to c−1S and its distortion on S is bounded by K. Furthermore,
S ⊂ D(Mk) so that we can consider the following cases separately.

Case 1: f(S) ⊂ D(Mk+1). We define

F := {R ∈ S : c−1R ⊂ f(S)}, FU := {(fnk(U)+1|U)−1(R) : R ∈ F}
and nk+1(V ) := nk(U) + 1 for all W ∈ FU . See Figure 2. Then (for FU

in place of Fk+1) property (i) holds by definition, while property (ii) is
trivial. Since f |S is injective and its distortion is bounded by K, f(S) is a

G

f fms
S

U ∈ Fk

T0 Tk Tk+1

s

S
fm−ms

fnU f

Fig. 2. Models for the construction in both cases
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K-quasi-square with

(11) diam(f(S)) ≥ 1√
2

diam(S) inf
z∈S

|f ′(z)| ≥ sup
z∈S

|f(z)|1−δ

for M0 large enough. Here the last inequality holds since the term |f ′(z)| is,
due to (a), of magnitude |f(z)| ≥ exp(|z|ε). This is far larger than all other
factors that appear, so they may be absorbed by |f(z)|δ. Also the infimum
may be substituted by the supremum, since the distortion is bounded by K.

By definition of S and F , the set f(S) \ ⋃F is contained in the union
of ∂

⋃S, which has measure zero, and small neighborhoods of ∂f(S) and
C \G. More precisely, we have

meas
(
f(S) \

⋃
F

)
≤ meas({z ∈ f(S) : dist(z, ∂f(S)) ≤ |z|−δ2})(12)

+ meas({z ∈ f(S) : dist(z,C\G)≤ 2|z|−δ1}).
With condition (b) we can control the second term on the right by

meas({z ∈ f(S) : dist(z,C \ f(S)) ≤ 2|z|−δ1}) ≤ B diam(f(S)) sup
z∈f(S)

|z|β.

Since f(S) is a K-quasi-square, the measure of an r-neighborhood of the
boundary of f(S) is, due to (7), at most 4rK2 diam(f(S)). Also the measure
of f(S) is bounded by diam(f(S))2/2K2. Since the set in the first term on
the right in (12) is contained in the supz∈f(S) |z|−δ2-neighborhood of ∂f(S)

and we know that −δ2 < −δ1 < β, we deduce, using (11), that

meas(f(S) \ ⋃F)

meas(f(S))
≤

2K2(4K2 supz∈f(S) |z|−δ2 +B supz∈f(S) |z|β)

diam(f(S))
(13)

≤ 8BK4 sup
z∈f(S)

|z|β+δ−1 ≤ 8BK4Mβ+δ−1
k+1

for M large enough. As mentioned, the distortions of fnk(U)|U and f |S are

bounded by K. Therefore the distortion of fnk+1(V )|U is bounded by K2

and we get
meas(U \ ⋃FU )

meas(U)
≤ K4 meas(f(S) \ ⋃F)

meas(f(S))
,

which, together with (13), implies property (iii) for δ small and M large
enough.

Case 2: f(S) ⊂ B(s,M−1
k+1) for some s ∈ A. We will study the behavior

of a certain number of iterates of f on S. See also Figure 2. We begin
with the first iterate. Let w be the center of S. For z ∈ S, (9) implies
|z − w| ≤ (c/4)|w|−δ2 and (a) implies |f ′(w)| ≤ |f(w) − s| |w|δ2 . The mean
value theorem provides x ∈ [z, w] with

|f(z) − f(w)| ≤ |f ′(x)| |z − w| ≤ K|f ′(w)| |z − w| ≤ c

4
K|f(w) − s|.
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Thus we know that f(S) is contained in

(14) B(s, (1 + cK/4)|f(w) − s|) \B(s, (1 − cK/4)|f(w) − s|).
Since S contains the disc B(w, c/16

√
2|w|δ2), (5) together with (a) implies

that

(15) B

(
f(w),

c|f(w) − s|
16

√
2K|w|δ2−δ1

)
⊂ f(S).

Next we consider those iterates in which we cannot avoid critical points.
We do this in terms of the power series

fms(z) = fms(s) + (fms)(ks)(s)(z − s)ks +O((z − s)ks+1).

This provides good estimates for fms and its derivative if |z − s| is very
small, which is the case for z ∈ f(S) since |f(w) − s| ≤ exp(−|w|ε). The
only purpose of our choice of c was to ensure that the diameter of f(S) is
small enough to guarantee that fms(s) lies in the unbounded component
of C \ fms+1(S). The reader may prefer to convince himself that this goal
is achievable by choosing c sufficiently small, instead of checking that our
concrete choice above is sufficient. Thus Lemma 2.7 implies that fms is
injective on f(S). The ratio of the outer and inner radii of the annulus
in (14) is

C :=
1 + cK/4

1 − cK/4
.

Thus the image lies in an annulus whose ratio of radii is very close to Cks

and the distortion is bounded by any constant greater than Cks−1, say Cks .
Using the factor 1 ± cK/4 for the error term of the power series we can
deduce from (14) and (15) that

(16) fms+1(S)⊃B

(
fms+1(w),

∣∣∣∣
ks(f

ms)(ks)(s)(1−cK/4)ks(f(w)−s)ks

16
√

2K|w|δ2−δ1

∣∣∣∣
)

and

(17) fms+1(S)⊂B(fms(s), |(fms)(ks)(s)(1 + cK/4)ks+1(f(w) − s)ks |).
Here no term except |f(w) − s| depends on k. One could get similar

estimates for 1 ≤ l ≤ ms + 1; they imply

f l(S) ⊂ B(f l−1(s),M δ−1
k+1) \ {f l−1(s)}

for M large enough. This implies that f l(S) is contained in Ak or, more
precisely, in the middle term of its definition.

Next we consider the maximal number of iterates for which we can ensure
injectivity and bounded distortion. By (c) the setB(fm(s), 16|fm(s)|−(δ2+δ))

is contained in {z : dist(z,C\G) ≥ |z|−δ1}∩B(fm(s), |fm(s)|−δ2) form large
enough. For m large, |fm(s)|δ > 64 so that, due to (10), f restricted to this
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set is injective. By Koebe’s 1/4-theorem we get

f(B(fm(s), 8|fm(s)|−(δ2+δ))) ⊃ B

(
fm+1(s),

2|f ′(fm)(s)|
|fm(s)|δ2+δ

)
(18)

⊃ B

(
fm+1(s),

2|fm+1(s)|
|fm(s)|δ2−δ1+δ

)
.

Here the last inclusion follows from (a) and (c). By (c) we know that
fm(s) escapes to ∞ in G. For z ∈ G, (a) implies |f ′(z)| ≥ |f(z)| |z|δ1. Thus
|f ′(fm(s))| → ∞ as m → ∞. Hence for m large enough, ms ≤ l ≤ m
and r > 0 small we know that fm−l is expanding on B(f l(s), r). Conse-

quently, the component of (fm−l)−1(B(fm(s), 8|fm(s)|−(δ2+δ))) containing

f l(s) is contained in B(f l(s), 8|fm(s)|−(δ2+δ)), which does not contain crit-
ical points. This allows us to extend the inverse g of fm−ms+1, mapping
fm+1(s) to fms(s), to B(fm+1(s), 2|fm+1(s)|/|fm(s)|δ2−δ1+δ). Thus the dis-

tortion on half the ball is bounded by some constant K̃. One could use

Lemma 2.4 to obtain K̃ = K1/
√

2 or the original distortion Theorem 2.1 to

obtain K̃ = 81. In any case we get

dist(fms(s), ∂g(B(fm+1(s), |fm+1(s)|/|fm(s)|δ2−δ1+δ)))

≥ |fm+1(s)|
|fm(s)|δ2−δ1+δ

inf
z∈B(fm+1(s),|fm+1(s)|/|fm(s)|δ2−δ1+δ)

|g′(z)|

≥ |fm+1(s)|
K̃|fm(s)|δ2−δ1+δ

|g′(fm+1(s))|

=
|fm+1(s)|

K̃|fm(s)|δ2−δ1+δ|(fm−ms+1)′(fms(s))|

=
|fm+1(s)|

K̃|fm(s)|δ2−δ1+δ
∏m

i=ms
|f ′(f i(s))|

≥ 1

K̃|fm(s)|1+2δ2−δ1+δ|fms(s)|δ2 ∏m−1
i=ms+1 |f i(s)|1+δ2

≥ |fm(s)|−(1+2δ2−δ1+2δ)

for large m. We define m as the greatest natural number that satisfies

|fm−1(s)|−(1+2δ2−δ1+2δ) ≥ |(fms)(ks)(s)|(1 + cK/4)ks+1|f(w) − s|ks .

We note that m → ∞ as |f(w) − s| → 0. Thus we can guarantee that m
is large by choosing M large. From the choice of m together with estimate
(16) we can deduce that fms+1(S) ⊆ g(B(fm(s), |fm(s)|/|fm−1(s)|δ2−δ1+δ)).
Thus fm−ms restricted to fms+1(S) is injective, its distortion is bounded
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by K̃, and

(19) fm+1(S)⊂B

(
fm(s),

|fm(s)|
|fm−1(s)|δ2−δ1+δ

)
⊂B

(
fm(s),

|fm(s)|
2

)
.

The choice of maximal m guarantees that

(20) |fm(s)| ≥ |f(w) − s|−ks/(1+2δ2−δ1+3δ)

for M0 large enough. Together with the discussion below (18), this implies
that fk(S) is contained in Ak for ms + 1 ≤ k ≤ m + 1. The exponential
growth of |fm(s)| and our estimates for |f ′| imply that

|fm(s)|1−α ≤ |(fm−k)′(fk(s))| ≤ |fm(s)|1+α

for any α > 0 and any natural numbers k < m with m large enough. This
allows us to cancel the smaller factors, transferring (16) and (17) by bounded
distortion of fm−ms to

(21) B(fm+1(w), |fm(s)|1−δ|f(w) − s|ks) ⊂ fm+1(S)

and

(22) fm+1(S) ⊂ B(fm(s), |fm(s)|1+δ|f(w) − s|ks).

Again we distinguish between two cases.

Case 2.1: We have

(23) |fm(s)| ≥ |f(w) − s|−ks/(1−τ+δ).

This is stronger than (20) and from (a) we get

(24) |fm(s)| ≥ exp

(
ks

1 − τ + δ
M ε

k

)
,

which together with (19) implies that fm+1(S) ⊂ D(Mk+1) for δ sufficiently
small. We define

F := {R∈S : c−1R ⊂ fm+1(S)}, FU := {(fnk(U)+m+1|U)−1(R) : R∈F}
and nk+1(V ) := nk(U) +m+ 1 for all V ∈ FU . Again properties (i) and (ii)
follow by definition. The distortion of f |S is bounded by K, while that
of fms |f(S) is bounded by Cks , and the distortion of fm−ms |fms+1(S) is

bounded by K̃. Thus the distortion of fm+1|S is bounded by K̃KCks . There-

fore fm+1(S) is a K̃KCks-quasi-square. For M large enough, (23) together
with (21) implies that

(25) diam(fm+1(S)) ≥ |fm(s)|τ−2δ ≥ sup
z∈fm+1(S)

|z|τ−3δ.

As in Case 1 the measure of the set fm+1(S) \ ⋃F is bounded by the
measure of {z : dist(z,C\G) ≤ 2|z|−δ1}, which itself is, due to condition (b),
bounded by B diam(fm+1(S)) supz∈fm+1(S) |z|β plus meas({z ∈ fm+1(S) :

dist(z, ∂fm+1(S)) ≤ |z|−δ2}), which in turn is, by (7), bounded above by
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4K̃2K2C2ks diam(fm+1(S)) supfm+1(S) |z|−δ2. Again using (7) we find that

the measure of fm+1(S) is bounded below by diam(fm+1(S))2/2K̃2K2C2ks .
Using −δ2 < β and (25) we can deduce from the above that

meas(fm+1(S) \ ⋃F)

meas(fm+1(S))
≤ 5BK̃2K2C2ks sup

z∈fm+1(S)

|z|β+3δ−τ(26)

≤
Mβ−τ

k+1

4K̃2K4C2ks
,

where the last inequality holds due to (19) and (24) for M large and δ

small enough. The distortion fnk(U)|U is bounded by K. Thus (26) together
with (6) implies (iii).

Case 2.2: |fm(s)| < |f(w) − s|−ks/(1−τ+δ). From (22) we get

(27) fm+1(S) ⊂ B(fm(s), |fm(s)|1+δ|f(w) − s|ks) ⊂ B(fm(s), |fm(s)|τ ),

which, due to condition (c), is contained in {z : dist(z,C \G) ≥ |z|−δ1}.
We distinguish between two more cases:

Case 2.2.1: diam(fm+1(S)) < (c/4)|fm(s)|−δ2 . Then due to (10),
f |fm+1(S) is injective and its distortion is bounded by K. We define

FU := {(fnk(U)+m+2|U)−1(T ) : T ∈ S, c−1T ⊂ fm+2(S)}

and nk+1(V ) := nk(U) + m + 2. Then properties (i) and (ii) are again
satisfied by definition. The bounds of the distortion of f |S, fms |f(S) and

fm−ms |fms+1(S) are as above. Then fm+2(S) is a K̃K2Cks-quasi-square
and, from (21), it follows that

diam(fm+2(S))≥|fm(s)|1−δ|f(w) − s|ks inf
z∈fm+1(S)

|f ′(z)| ≥ sup
z∈fm+2(S)

|z|1−δ.

Here the last inequality follows for M large enough, since for z ∈ fm+1(S),
the magnitude of |f(z)|, and given condition (a), also that of |f ′(z)|, is
exp(|fm(s)|ε). By (20), this is far larger than the other factors. From con-
dition (b) and (7) we get as before

(28)
meas(fm+2(S) \ ⋃

R∈S, c−1R⊂fm+2(S)R)

meas(fm+2(S))

≤ 5BK̃2K4C2ks sup
z∈fm+2(S)

|z|β+δ−1

≤ exp

((
1

2
exp

(
M ε

k

1 + 2δ2 − δ1 + 3δ

))ε)β+2δ−1

.
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Here the last inequality follows by (19) and (20). Again the distortion esti-
mates above and (6) imply that

meas(U \ FU )

meas(U)
≤
K̃2K6C2ks meas(fm+2(S) \ ⋃

T∈S, c−1T⊂fm+2(S) T )

meas(fm+2(S))
.

Together with estimate (28) this is far stronger than condition (iii).

Case 2.2.2: diam(fm+1(S)) ≥ (c/4)|fm(s)|−δ2 . We consider a family
F of disjoint open squares R ⊂ fm+1(S) with diameter exp(−|fm(s)|ε/2)
such that F covers all of fm+1(S) except a set of measure zero and an

exp(−|fm(s)|ε/2)-neighborhood of the boundary. As fm+1(S) is a K̃KCks-
quasi-square, (7) implies that

(29) meas
(
fm+1(S) \

⋃
F

)

≤ 4K̃2K2C2ks exp(−|fm(s)|ε/2) diam(fm+1(S))

≤ exp(−|fm(s)/2|ε/2)

for M large enough, since, by (27), again one factor, namely exp(|fm(s)|ε/2),
dominates all others. We define FU as

{((fnk(U)+m+1|U)−1 ◦ (f |R)−1)(Q) : R ∈ F and

Q ∈ S with c−1Q ⊂ f(R)}

and nk+1(V ) := nk(U) +m+ 2 for all V ∈ FU . Again properties (i) and (ii)
follow directly. The diameter of any R ∈ F ensures that, due to (10), f |R is
injective and its distortion is close to 1, say bounded by K. From the mean
value theorem we can deduce that

diam(f(R)) ≥ 1√
2

inf
z∈R

|f ′(z)| exp(−|fm(s)|ε/2) ≥ sup
z∈f(R)

|z|1−δ

for M0 large enough. Note that (19) also yields |f(z)| ≥ exp(|fm(s)/2|ε) for
z ∈ R. By the same arguments as above, (b) and (7) imply that

meas(f(R) \ ⋃
Q∈S, c−1Q⊂f(R)Q)

f(R)
≤ 5BK2 sup

z∈f(R)
|z|β+2δ−1

≤ 5BK2 exp((β + δ − 1)|fm(s)/2|ε),

where the last inequality may be deduced from (a) and (19). Since the
distortion of f |R is bounded by K, we can transfer this with the help of (6)
to R losing only a factor of K2. This estimate for the density in every R ∈ F
implies the same for their union

⋃F , which is contained in fm+1(S). More
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precisely, we see that

(30)
meas(

⋃F \ ⋃
R∈F , Q∈S, c−1Q⊂f(R)(f |R)−1(Q))

meas(fm+1(S))

≤ 5BK4 exp((β + δ − 1)|fm(s)/2|ε).
From the distortion estimates above, (6), (29) and (30) it follows that

meas(U \ ⋃FU )

meas(U)

≤
K̃2K4C2ks meas(fm+1(S) \ ⋃

R∈F , Q∈S, c−1Q⊂f(R)(f |R)−1(Q))

meas(fm+1(S))

≤ K̃2K4C2ks meas(fm+1(S) \ ⋃F))

meas(fm+1(S))

+
K̃2K4C2ks meas(

⋃F \ ⋃
R∈F , Q∈S, c−1Q⊂f(R)(f |R)−1(Q))

meas(fm+1(S))

≤ K̃2K4C2ks exp(−|fm(s)/2|ε/2) + 5K8K̃2C2ks exp((β+ δ− 1)|fm(s)/2|ε),
which, together with (20), is again far stronger than condition (iii) for δ
small and M0 large enough.

Setting Fk+1 :=
⋃

U∈Fk
FU completes the recursive definition, and all

required properties are satisfied. This completes the proof of the theorem.

4. Entire functions. In this section we will only work with functions
of the same type as in Theorem 1.2. First of all we will prove some gen-
eral properties and introduce some notations which will frequently occur.
Throughout the section let P and Q be polynomials with P not zero and Q
not constant, c ∈ C and

(31) f(z) :=

z\
0

P (t) exp(Q(t)) dt+ c.

For k ∈ {1, . . . ,deg(Q)} define

φk :=
(2k + 1)π − arg(q)

deg(Q)
,

where q denotes the leading coefficient of Q(z) = qzdeg(Q) + · · · . For R→∞
the modulus of exp(Q(R exp(φi))) decreases very fast, and f(R exp(φi))
converges to the point

(32) sk := lim
R→∞

R exp(iφ)\
0

P (t) exp(Q(t)) dt+ c,



Recurrence of entire transcendental functions 273

which therefore is an asymptotic value of f . For z ∈ C choose k such that

φk − π

deg(Q)
≤ arg(z) < φk +

π

deg(Q)

and define s(z) = sk. Let A denote the set of asymptotic values.

Lemma 4.1.

f(z) = s(z) +
P (z) exp(Q(z))

Q′(z)
+O(|z|deg(P )−deg(Q)) exp(Q(z)) as z → ∞.

Proof. Let z ∈ C. We define w := 2|z| exp(φki) with the k as above.
Instead of integrating from 0 to z along a segment, one might as well go
from 0 to infinity in the direction φk, come back the same way up to w, and
finally move forward to z. If z, w are not zeros of Q′, one can find a path
from w to z avoiding these zeros such that integration by parts yields

f(z) = sk +
P (z) exp(Q(z))

Q′(z)
− P (w) exp(Q(w))

Q′(w)

+

z\
w

(
P ′Q′ − PQ′′

(Q′)2

)
(t) exp(Q(t)) dt

−
∞\
2|z|

P (t exp(φki)) exp(Q(exp(φki))) dt.

It is easy to obtain estimates of the last three terms that imply the claim.

Lemma 4.2. For every δ, δ′ > 0 there exists M > 0 such that for

every z ∈ G := {z : |Re(Q(z))| ≥ |z|δ} ∩ D(M) the restriction of f to

B(z, (1 − δ′)π/|Q′(z)|) is injective.

Proof. We will apply Lemma 2.7. Assume the existence of z, w ∈ G with
f(z) = f(w) and |z − w| < (2 − 2δ′)π/|Q′(z)|. Then f([z, w]) is a closed
curve with a singularity of f−1 in a bounded component of its complement.
The condition |f(z) − s| = |f(w) − s| together with Lemma 4.1 implies

1 − δ′/8 < |Re(Q(w))|/|Re(Q(z))| < 1 + δ′/8

for |w| large enough. Then

1 − δ′/4 < |Re(Q(x))|/|Re(Q(z))| < 1 + δ′/4

for every x ∈ [z, w]. Again by Lemma 4.1 we have

1 − δ′/2 < |f(x)|/|f(z)| < 1 + δ′/2

for |z| large enough. Therefore the length of the curve f([z, w]) must be at
least π(2 − δ′)|f(z)|. On the other hand, the mean value theorem does not
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allow this length to exceed |z − w|maxx∈[z,w] |f ′(x)|, which is smaller than

π(2 − δ′ − δ′2) maxx∈[z,w] |Q′(x)|
|Q′(z)| |f(z)|,

contradicting the above estimate for |z| large enough. Thus the claim follows
from Lemma 2.7.

Now we prove the first of the results given in the introduction.

Proof of Theorem 1.2. We verify the properties of Theorem 3.1. Since
every s ∈ A escapes exponentially, there exists δs > 0 such that |fn+1(s)| ≥
exp(|fn(s)|δs) for almost every n ∈ N. Suppose 0 < δ < mins∈A δs. By
Lemma 4.1 we have an estimate for |f |. For ε < δ and δ1 < deg(Q) − 1
< δ2 property (a) follows if we redefine s as zero on the part of G where
Re(Q(z)) > 0.

Far away from the origin, C \ G consists of neighborhoods around the
pre-images under Q of the imaginary axis, whose widths at a distance R
from the origin are of magnitude R−deg(Q)+1+δ. By the width at distance R
from the origin we mean the diameter of the largest disc that is contained
in the set and whose center has modulus R. For −deg(Q) + 1 + δ < β < 1
and B sufficiently large, (b) follows.

As mentioned above, we have |fn+1(s)| ≥ exp(|fn(s)|δs) except for a
finite number of n ∈ N. Thus the real part of Q(fn(s)) is at least of
magnitude |Q(fn(s))|δs/deg(Q). The distance of fn(s) to C \ G is there-

fore no less than |fn(s)|−deg(Q)+1+δs . If we choose τ such that β < τ <
−deg(Q)+1+mins∈A δs, then (c) is satisfied. Now we can apply Theorem 3.1
and get meas(T (f)) > 0. Case (ii) of Theorem 1.1 follows. As explained in
Remark 3.2 we know that T (f) ⊂ J(f) due to a result of I. N. Baker [1].

Assume now deg(Q) ≥ 3. Then deg(Q) − 1 − δ > 1 for δ small enough.
This implies that meas(C \G) < ∞ and if δ1 > 1 even that the measure of
{z : dist(z,C \G) ≤ |z|−δ1} is finite. This follows since this set is contained
in

B(0,M) ∪
deg(Q)⋃

k=1

{
z :

∣∣∣∣arg(z) − (4k + 1)π − 2 arg(q)

2 deg(Q)

∣∣∣∣ ≤ 2q|z|δ−deg(Q)

}
.

Using polar coordinates one sees that the measure of the last set is bounded
by

deg(Q)

∞\
M

R1−deg(Q)+δ d2qR =
2q deg(Q)M2−deg(Q)+δ

2 − deg(Q) + δ
.

We cover the set {z : dist(z,C\G) ≥ 2|z|−δ1} with a family S of squares
S ⊂ {z : dist(z,C \ G) ≥ |z|−δ1} whose diameters satisfy supz∈S |z|−δ2 ≤
diam(S) ≤ 4 supz∈S |z|−δ2. The density of F(f) in any S ∈ S is, due to
Theorem 3.1, at most exp(−η infz∈S |z|ε). LetRk := M+k for all k ∈ N∪{0}.
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Then it follows that

meas(F (f)) ≤ meas({z : dist(z,C \G) ≤ 2|z|−δ1}) +
∑

S∈S
meas(F(f) ∩ S)

≤ πM2 +
2q deg(Q)M2−deg(Q)+δ

2 − deg(Q) + δ
+

∑

k∈N

∑

S∈S
Rk<infz∈S |z|≤Rk+1

meas(F(f) ∩ S)

≤ πM2 +
2q deg(Q)M2−deg(Q)+δ

2 − deg(Q) + δ
+

∞∑

k=1

2π(Rk + 1) exp(−ηRε
k),

which is finite. This gives the second part of Theorem 1.2.

This allows us to construct examples of functions f for which we have
0 < meas(F(f)) < ∞. For example we can choose the parameters a, b (e.g.

a = (27π2/16)1/3, b = log(
√
a/3)) so that both critical points of the function

f(z) = exp(z3 + az + b)

are fixed, and the only asymptotic value 0 escapes to infinity on the real axis.
Thus the Fatou set of f , which consists of those two super-attractive basins,
has finite measure. In Figure 3, where the part {z : |Re(z)| ≤ 2, |Im(z)| ≤ 2}
of the plane is displayed, these two super-attractive basins are coloured
black. We should note that the existence of such examples is not very sur-
prising after the construction of examples with a positive measure Julia
set by C. McMullen in [18]. Also the idea of using concrete measure es-

Fig. 3. The Fatou set of f(z) = exp(z3 + az + b)

with a = (27π2/16)1/3 and b = log(
√

a/3)
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timates like the one in Theorem 3.1 in order to show finite measure of
subsets of the Fatou set has been used before by H. Schubert, who proved
in [26] that the measure of the Fatou set of the sine function in the strip
{z : 0 ≤ Re(z) ≤ 2π} is finite, as conjectured by J. Milnor in [20].

We choose 0 < δ < mina,b∈A dist(a, b)/2, R > maxa∈A |a| and assume
that M is sufficiently large. Then for any z ∈ G, either there will be exactly
one a ∈ A for which |f(z) − a| < δ, or |f(z)| ≥ R. For a ∈ A we denote by
Ga and G∞ the parts of G for which the respective conditions are satisfied.
In order to prove Theorem 1.3 we need the following lemma.

Lemma 4.3. Let Γ :=
⋃

n∈N
(fn)−1(B(a, ε)) for some a ∈ A and ε > 0.

Then there exist positive constants c, C, and a family F of disjoint do-

mains D such that

diam(D)≤ C

supz∈D |Q′(z)| ,
meas(Γ ∩D)

meas(D)
≥ c, and meas

(
Gs\

⋃
F

)
= 0

if s = ∞ or if s is an asymptotic value that escapes exponentially.

Proof. Since a is an asymptotic value, we have limR→∞ f(R exp(φai))=a
for some k ∈ {0, 1, . . . ,degQ} and

φa =
(2k + 1)π − q

degQ
.

From Lemma 4.1 it follows that for any δ′ > 0 there exists M > 0 such that
f−1(B(s, ε)) contains the set

{
z : φa −

(1 − δ′)π
2 deg(Q)

< arg(z) < φa +
(1 − δ′)π
2 deg(Q)

}
∩D(M).

Since Lemma 4.1 also gives good estimates for the argument of f in G∞
it follows that the set{
z : φa −

(1 − 2δ′)π
2 deg(Q)

< arg

(
P (z)

Q′(z)

)
+ Im(Q(z)) < φa +

(1 − 2δ′)π
2 deg(Q)

}
∩G∞

is contained in f−2(B(s, ε)). Every component of this set is an unbounded
region whose width at distance R from the origin is at least

1 − 3δ′

deg(Q)
2π|q|−1R1−deg(Q)

for sufficiently large R. We refer to these regions as “channels”; see the
left side of Figure 4, where these channels are coloured black. In order to
be able to display the structure we had to magnify their diameter rel-
ative to M . The “gaps” in between these channels have a width of at
most (2− (1 − 3δ′)/deg(Q))π|q|−1R1−deg(Q), still assuming that M is large.
The complement of Γ in G∞ must lie in the gaps between these channels.
For δ′ sufficiently small, simple geometric arguments give for any constant
C ′ >

√
2π(2 − 1/deg(Q)) a constant c′ > 0 such that for any square S



Recurrence of entire transcendental functions 277

f

GG

F∞

Am,n

fm−msfms

Fs
s

Fig. 4. Construction of the family F

intersecting G∞ and satisfying diam(S) ≥ C ′(infz∈S |Q(z)|)−1, the density
of Γ in S is bounded below by c′. (For C ′ sufficiently large one can choose
c′ arbitrarily close to 1/2 deg(Q)).

We cover G∞ up to a set of measure zero by a family F∞ of squares
S with C ′(infz∈S |Q′(z)|)−1 < diam(S) < 4C ′(supz∈S |Q′(z)|)−1. We obtain
this family in a similar way to the family S in the proof of Theorem 3.1.
We begin with a grid of open squares with a constant diameter, covering
the whole plane, subdivide each into four parts until they satisfy the upper
bound, and finally discard those not intersecting G∞. Then our conditions
are satisfied with c = c′ and C = 4C ′. The family F∞ could look similar to
the left side of Figure 4.

Now we need to find a covering Fs of Gs for every asymptotic value s
that escapes exponentially. We define ms ∈ N∪{0} as before: minimal such
that for m ≥ ms the point fm(s) is not a critical point of f , and choose
m0 ≥ ms such that for m ≥ m0, f

m(s) is not a critical point of Q. Then we
choose nm to be the smallest natural number for which there exists lm ≤ 4
with ∣∣∣∣

(fm−ms)′(fms(s))Q′(fm(s))

(fm−ms−1)′(fms(s))Q′(fm−1(s))

∣∣∣∣ = lnm
m .

The exponential escape of s implies that lnm
m is of magnitude |fm(s)|, so

that lm → 4 and nm → ∞ as m→ ∞. For 0 ≤ n ≤ nm we define

Rm,n :=

∣∣∣∣
(1 − δ′)lnmπ

2(fm−ms)′(fms(s))Q′(fm(s))

∣∣∣∣

and for n 6= 0 we consider the slit annulus

Am,n := {z : Rm,n−1 < |z − fms(s)| < Rm,n, z − fms(s) 6∈ R>0}.
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Let Fs be the family of all connected components of (fms+1)−1(Am,n)
intersecting Gs, for m ≥ m0 and n ∈ {1, . . . , nm}. We try to give an idea of
Fs in Figure 4. For M large enough these components cover Gs up to a set
of measure zero. Next we will verify the diameter condition. For large m the
annulus Am,k is very close to fms(s), so that the power series of fms gives
good estimates. If ks is the multiplicity of fms in s, there are ks pre-images
A′ of Am,k under fms which are contained in B(s, r) \B(s, r−) with

r(−) :=
1 + (−)δ′

|(fms)(ks)(s)| |Rm,n(−1)|1/ks .

Since the ratio of the outer and inner radii of this annulus is 1+δ′

1−δ′ l
1/ks
m , the

distortion of fms on these A′ is bounded by any constant C2 which is larger
than this ratio to the power of ks − 1 for m0 large enough.

Every connected componentD of f−1(A′) intersectingGs, which is there-
fore an element of Fs, is a simply connected domain with a diameter of at
most C infz∈D |Q′(z)|−1 for any C > 42/ks +241/ksπ/ks and M large enough.
This follows since we can connect any two points in A′ by a path in A′ whose

length is at most (2π/ks + l
1/ks
m )r, and for z ∈ D we know from Lemma 4.1

that |f ′(z)| is bounded by |Q′(z)|r−. Thus the diameter condition in the
claim is satisfied. An analogous upper estimate for |f ′| on D implies that the
distortion of f on such a domain D is bounded by any constant C3 > 41/ks

if M is large enough.
It remains to show that the density of Γ in these pre-images is again

bounded away from zero by some c > 0.
The diameter of Am,nm is chosen in such a way that for m large enough

fm−ms is injective on this set and its distortion is bounded by Kc̃ from
Lemma 2.4 with c̃ < 1/

√
2 lnm−n

m . This follows since for m large enough,
fm−ms−1 is injective on B(fms , Rm−2,0) so that its distortion on Am,n is
bounded by any constant larger than 1, say (1 − δ′/2)/(1 − δ′). Thus we
have

fm−ms−1(Am,n) ⊂ B

(
fm−1(s),

(1 − δ′/2)π

2|Q′(fm−1(s))|

)
.

By Lemma 4.2 we know that f is injective on the ball with the same center
but twice the radius, and the distortion estimate for fm−ms |Am,n follows
from Lemma 2.4.

Since s escapes exponentially we may assume that δ is small enough to

ensure |fn+1(s)| ≥ exp(|fn(s)|2δ) for large n, and in particular fn(s) ∈ G∞.
To show that the density of Γ in fm−ms(Am,n) is bounded below by

some c > 0, we distinguish between large and small n.
If n is so small that lnm ≤ |fm(s)|δ, it follows from the definition of nm

that nm − n is large. Assuming δ < 1/2 we get nm − n ≥ nm/2 for m large
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enough. Thus the distortion of fm−ms on Am,n is bounded by some Km,
which tends to 1 as m→ ∞. Thus for m large the set fm−ms(Am,n) is close
to the annulus

B

(
fm(s),

∣∣∣∣
(1 − δ′)lnmπ
2Q′(fm(s))

∣∣∣∣
)
\B

(
fm(s),

∣∣∣∣
(1 − δ′)ln−1

m π

2Q′(fm(s))

∣∣∣∣
)

in the sense that as m→ ∞ the density of the complement of fm−ms(Am,n)
in this annulus tends to zero. This annulus is contained in G∞ and its
diameter is more than twice the width of the gaps in between the channels
of Γ . Thus it has to intersect these channels. More precisely, the diameter
ensures that the density of Γ in fm−ms(Am,n) is bounded below by a positive
constant c2. Since the distortion of fm−ms on Am,n is arbitrarily close to 1
for large m, for c3 < c2 this carries over by (6) to

(33)
meas(Am,n ∩ Γ )

meas(Am,n)
> c3.

For larger n the distortion is still bounded by K := K1/
√

2, so that one

could call fm−ms(Am,n) a K-quasi-annulus, whose center fm(s) lies in G∞
and whose diameter is far larger than the gaps in between the channels of Γ .
We choose

0 < c4 < sin

(
π

2 deg(Q)

)
/K

and z∈∂B(fms(s), (Rm,n+Rm,n−1)/2) maximizing the distance of fm−ms(z)
to C \ G∞. For large m it follows that fm−ms(B(z, c4Rm,n)) ⊂ G∞, since
the choice of c4 guarantees that fm−ms(B(z, c4Rm,n)) lies in a sector of
angle π/deg(Q) and vertex fm(s), and the boundary of the component of
G∞ containing fm(s) is tangent to the boundary of a sector of the same
angle and vertex 0. This is displayed in Figure 5. We note that c4 < 1/4,

fm(s)

G∞

π
deg(Q)

Am,n

fm−ms

B(z, c4Rm,n)

Fig. 5. Constructions to estimate the density of Γ in Am,n
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so that B(z, c4Rm,n) ⊂ Am,n. Using the family F∞ defined above as a
cover, one sees that the density of Γ in fm−ms(B(z, c4Rm,n)) is bounded
below by any 0 < c5 < c′ if m large enough. This carries over by (6) to
B(z, c4 diam(fm−ms(Am,n))), in which the density of Γ is at least c5/K

2.
Assuming c3 ≤ c5c

2
4/K

2 we get (33) for all n and m if m0 is large enough.
By (6) this carries over to the elements of Fs and completes the proof for
c = c3/C

2
2C

2
3 .

Lemma 4.4. Let B ⊂ C be finite and such that every b ∈ B escapes expo-

nentially. Suppose that every singularity of the inverse is either pre-periodic,
escapes exponentially , or is contained in some attractive basin. Suppose fur-

ther that A 6⊂ O+(B). Then the set {z ∈ J(f) : ω(z) ⊂ O+(B) ∪ {∞}} has

zero measure.

Proof. We assume that X̃ := {z ∈ J(f) : ω(z) ⊂ O+(B) ∪ {∞}} has
positive measure. Then we find ε > 0 such that

X := {z ∈ X̃ : ω(z) 6= {∞} and dist(O+(z), a) > ε, ∀a ∈ A \O+(B)}
also has positive measure. We may assume ω(z) 6= {∞} since A. Eremenko
and M. Lyubich [10] proved that the set I(f) of escaping points has measure
zero. The assumption dist(O+(z), a) > ε is permissible since X is contained
in the countable union of the sets {z : dist(a,O+(z)) > εn > 0, ∀a ∈ A}
where εn → 0.

Due to the exponential escape of all elements of B, we may choose δ > 0
such that |fn+1(b)| ≥ exp(|fn(b)|4δ) for every b ∈ B and n large enough.
Let z0 be a density point of X. Since the iterates of z0 do not tend to
infinity, there exists a convergent subsequence fβ(n)(z0), whose limit must
be of the form fn0(b) with n0 ∈ N ∪ {0} and b ∈ B. We may assume
n0 ≥ mb := max({m ∈ N : f ′(fm−1(b)) = 0} ∪ {0}). For all n ∈ N we take
α(n) ≥ β(n) smallest possible with

|fα(n)(z0) − fα(n)−β(n)+n0(b)| ≥ |fα(n)(z0)|1−deg(Q)+3δ

and Bn := B(fα(n)(z0), |fα(n)(z0)|1−deg(Q)+2δ). We will see that for large n
the inverse branch gn of fα(n) mapping fα(n)(z0) to z0 may be extended
to Bn with uniformly bounded distortion. Furthermore we show that the
density of X in Bn does not tend to 1. This carries over to gn(Bn) by (6).
Finally, we show diam(gn(Bn)) → 0, a contradiction to the choice of z0 as a
density point of X.

Since sing(f−1) is bounded, we can extend every branch of f−1 to every
slit annulus around the origin whose inner radius is larger than the modu-
lus of every singularity of the inverse. For large n the diameter of Bn and
the definition of α ensure that we can extend the branch of f−1 mapping
fα(n)(z0) to fα(n)−1(z0) to Bn so that the distortion is bounded by a con-
stant, which can be chosen arbitrarily close to 1, and for the image B−1

n it
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follows that

(34)
diam(B−1

n )

|fα(n)−1(z0) − fn0+α(n)−β(n)−1(b)| ≤ |fα(n)−1(z0)|−δ/2

and

B−1
n ⊂ B(fn0+α(n)−β(n)−1(b), 2|fn0+α(n)−β(n)−1(b)|1−deg(Q)+3δ).

The choice of n0≥mb ensures that we can apply the same argument as above
α(n)− β(n)− 1 times. Thus we can extend the branch of (fα(n)−β(n)−1)−1,

mapping fn0+α(n)−β(n)−1(b) to fn0(b), to a ball around fn0+α(n)−β(n)−1(b)
with a diameter of almost the modulus of its center. Again this implies
that its distortion on B(fn0+α(n)−β(n)−1(b), 2|fn0+α(n)−β(n)−1(b)|1−deg(Q)+3δ)
tends to 1 as n tends to infinity. Moreover from (34) it follows that B−1

n is

mapped to a small ball B(fβ(n)(z0), rn) with rn/|fβ(n)(z0) − fn0(b)| → 0
as n → ∞. Since P (f) does not accumulate at fn0(b), we can extend

the branch of the inverse of fβ(n) mapping fβ(n)(z0) to z0 to B(fβ(n)(z0),

|fβ(n)(z0) − fn0(b)|). Thus gn exists and its distortion tends to one as n
tends to infinity.

For s ∈ A ∪ {∞} we define Gs as in Lemma 4.3. Due to our choice of
diam(Bn), the density of C \ G in Bn tends to zero as n tends to infinity.
For M large enough and s ∈ A \O+(B) we have Gs ∩X = ∅. On the other
hand, for s ∈ A ∩ O+(B) ∪ {∞} we can apply Lemma 4.3 to Γ := C \ X
and obtain a family F of disjoint domains covering Bn ∩ Gs up to a set of
measure zero, such that the density of Γ in all of these is bounded below
by some positive constant c. The diameter of these domains is much smaller
than the diameter of Bn, so that we can neglect the ones intersecting the
boundary of Bn. Thus the density of X in Bn does not tend to 1.

It remains to show that diam(gn(Bn)) → 0, which is equivalent to
|(fα(n))′(z0)| |fα(n)(z0)|deg(Q)−1−2δ → ∞.

Lemma 4.1 implies the existence of R > 0 such that

1

2
|f ′(z)| ≤ |f(z) − s(z)|

|Q′(z)| ≤ 2|f ′(z)| for |z| ≥ R.

We choose ε′ > 0 small enough such that for b ∈ O+(B) ∩ B(0, R) and
z ∈ B(s, ε′) and

(35) m := min{m ∈ N : |fm(z) − fm(s)| ≥ |fm(s)|1−deg(Q)+3δ},
we have

(36) |(fm)′(z)| ≥ 2|fm(z)|1−deg(Q)+9δ/4

|z − s| .

If the distortion of fm on B(s, |z − s|) were bounded by a constant,
a stronger statement would follow from the mean value theorem. There
are however two obstructions to uniformly bounded distortion. There may
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be critical points on the orbit of s and the distortion of the last iterate
f |fm−1(B(s, |z−s|)) is not necessarily uniformly bounded. Thus in order to
obtain the existence of such an ε′ we need to consider these iterates sepa-
rately. For ε′ small enough the power series of fms guarantees that the mod-
ulus of the derivative of fms on B(s, |z−s|) is bounded by 2|(fms)′(z)|. Here
ms is again chosen such that fn(s) is not a critical point of f for n ≥ ms.
The choice of m guarantees that the distortion of fm−ms−1|fms(B(s, |z−s|))
is arbitrarily close to 1 for ε′ small enough and

fm−1(B(s, |z − s|)) ⊂ B(fm−1(s), 2|fm−1(s)|1−deg(Q)+3δ).

The definition of δ and the diameter of the latter set ensure that the magni-
tude of Re(Q(fm−1(x))) is the same for all x ∈ B(s, |z− s|). By Lemma 4.1
this carries over to |fm(x)| and |f ′(fm−1(x))| and gives estimate (36).

As ω(z0) ⊂ O+(B), there exists j0 ∈ N such that for all j ≥ j0 the point

f j(z0) is not contained in the compact set B(0, R) \ ⋃
n∈N, s∈B B(fn(s), ε′).

Now let I be the set of j0 ≤ j ∈ N such that f j(z0) 6∈ B(0, R) and f j+1(z0) ∈
B(0, R). Then for every j0 ≤ j 6∈ I with |f j(z0)| ≥R we have |f ′(f j(z0))| ≥ 1.
This follows since otherwise |f j+1(z)−s| ≤ 2/|Q′(f j(z0))| would imply j ∈ I,
if we assume R to be larger than the modulus of every s ∈ A.

Now for j ∈ I we have

(37) |f j+1(z0) − s| ≤ 2|f ′(f j(s))|
|Q′(f j(s))| ,

which is at most ε′. We assume ε′ < ε, so that s ∈ O+(B). We choose mj

as in (35) for z = f j+1(s). Then we have mj ≤ α(n), and (36) together
with (37) imply that

|(fmj)′(f j(z0))| = |f ′(f j(z0))| |(fmj−1)′(f j+1(z0))|(38)

≥ |Q′(f j(z0))| |fmj+j(z0)|1−deg(Q)+9δ/4.

Let ∆j := min{i ∈ I ∪ {α(n)} : i > j} −mj − j. We may assume j0 ∈ I
since otherwise we continue with j0 ≤ j′0 ∈ I smallest possible. By the chain
rule we get

|(fα(n))′(z0)|
|fα(n)(z0)|1−deg(Q)+2δ

=
|(f j0)′(z0)|

|fα(n)(z0)|1−deg(Q)+2δ

∏

j∈I, j0≤j<α(n)

|(f∆j)′(fmj+j(z0))| |(fmj)′(f j(z0))|.

From (38) we obtain a lower estimate of the product above, in which
most of the factors in the product cancel out each other. More precisely, for
each j ∈ I except the first and the last in the product, the factor |fmj+j(z0)|
only remains with a power of 9/4. If ∆j = 0 this follows directly from (38)
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by considering the jth and the (j + 1)st factor of the product together. Of
course there the factor |q| deg(Q) appears as the leading coefficient of |Q′|.

If ∆j 6= 0, we have mj + j 6∈ I, so that

|(f∆j)′(fmj+j(z0))| ≥ |f ′(fmj+j(z0))| ≥
R−maxs∈A |s|

2
|Q′(fmj+j(z0))|.

This implies the same conclusion as above with a factor which is larger than
|q| deg(Q) for R large enough.

Finally, due to the definition of mj , for the last j in the product we have
j +mj = α(n) so that this factor cancels out with the denominator in front

of the product up to |fα(n)(z0)
δ/4| and we get

|(fα(n))′(z0)|
|fα(n)(z0)|1−deg(Q)+2δ

≥ |fα(n)(z0)|δ/4|(f j0)′(z0)| |Q′(f j0(z0))|

×
∏

α(n)−mj>j∈I

|q| deg(Q)

2
|fmj+j(z0)|9δ/4,

which tends to infinity as n→ ∞.

Proof of Theorem 1.3. From the assumptions on the singular orbits it
follows that P (f)′ ∩ J(f) = ∅. An indifferent periodic point in the Julia
set must be an accumulation point of P (f). This is a well known fact,
whose proof may be found in [20], where it is stated for rational func-
tions. However only minor changes are necessary for the transcendental
case.

Therefore all periodic points in J(f) are repelling. Due to Theorem 3.1,
we have ω(z) ⊂ P (f) for almost every z ∈ J(f). If O+(z) accumulates
at a repelling periodic point, ω(z) also accumulates at this point. This
follows from the fact that O+(z) accumulates at every compact annulus
{z : r ≤ |z − z0| ≤ 2|(fp)′(z0)|r} if r > 0 is small enough and p is the
period of the repelling periodic point z0. Thus for almost every z ∈ J(f)

we have ω(z) ⊂ O+(B) if B is the set of singularities that escape expo-
nentially. Now Lemma 4.4 implies that the set of points that accumulate
at no asymptotic values has measure zero. This concludes the proof for the
inclusion ω(z) ⊃ A.

For the other inclusion we assume that there exists s ∈ B \ O+(A)

such that X ′ := {z ∈ J(f) : s ∈ ω(z) ⊂ O+(B)} has positive mea-
sure. Then the whole proof of Lemma 4.4 works identically, with X ′ in-
stead of X, the only difference being that at the point where Lemma 4.3
is used we now use the measure estimate of Theorem 3.1. Since O+(T (f))
is disjoint from O+(X ′), we find again that X ′ contains no density point,
contradicting the assumption of positive measure. More precisely, instead
of using the family F from Lemma 4.3 to see that the density of Γ in
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Bn := B(fα(n)(z0), |fα(n)(z0)|1−deg(Q)+2δ) is bounded below, we use the fam-
ily S from the proof for meas(F (f)) < ∞ of Theorem 1.2 to see that the

density of T (f) := {z : ω(z) ⊂ O+(A)} in Bn is bounded below. We re-
call that the family S was a family of squares in {z : dist(z,C \ G) ≥
|z|1−deg(Q)+δ} covering the set {z : dist(z,C\G) ≥ 2|z|1−deg(Q)+δ}, such that

for all S ∈ S we have supz∈S |z|1−deg(Q) ≤ diam(S) ≤ 4 supz∈S |z|1−deg(Q).
The density of T (f) in any Bn ⊃ S ∈ S is, due to Theorem 3.1, very
close to 1 for large n. In particular, it is bounded below by some positive
constant c. The choice of the diameter of Bn implies that the density of
{z : dist(z,C \ G) ≤ 2|z|1−deg(Q)+δ} tends to zero as n → ∞. The same
is true for the union of those squares in S that intersect the boundary
of Bn. This gives the estimate needed to proceed with the proof of Lem-
ma 4.4.

Proof of Theorem 1.5. If all asymptotic values escape exponentially we
can apply Theorem 1.2 and obtain a set of positive measure whose orbits
accumulate only at the orbits of the asymptotic values and the point at infin-
ity. In particular, the function is not recurrent. We now assume that the set
of pre-periodic asymptotic values is non-empty and case (ii) of Theorem 1.1
holds. Since P (f)′∩J(f) = ∅, there are again no indifferent periodic points.
From Lemma 4.4 we know that the orbit of almost every z ∈ J(f) accumu-
lates at least at one point in P (f) which does not escape exponentially and
thus has to be pre-periodic. By continuity, O+(z) accumulates at a repelling
periodic point. As above this implies that ω(z) accumulates at this repelling
periodic point. Since P (f) has no cluster points in C, this is a contradic-
tion. Thus (i) of Theorem 1.1 is satisfied and f is recurrent and ergodic on
J(f) = C.

The assumption that no critical point is periodic is no real restriction,
since this case is trivial in terms of measurable dynamics. If this assumption
is not satisfied the Fatou set obviously contains a Böttcher domain, so that
f is not recurrent and case (ii) of Theorem 1.1 holds.

5. Other applications. As mentioned in Remark 3.2, one can use The-
orem 3.1 to obtain positive measure for the escaping set I(f). As an example
one can consider the following family containing the sine and cosine family,
for which this result was proved by C. McMullen in [18].

Theorem 5.1. Let f(z) := P (z) exp(Q(z)) + P̃ (z) exp(Q̃(z)), where

P , P̃ , Q, and Q̃ are polynomials with deg(P ) ≥ 0, deg(P̃ ) ≥ 0 and with

n := deg(Q̃) = deg(Q) > 0 such that the arguments of their nth coeffi-

cients q, q̃ differ by some odd multiple of π/n. Then the measure of I(f) is

positive. If Q̃ = −Q and n ≥ 3 then meas(C \ I(f)) <∞.
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Sketch of proof. With the same arguments as in the proof of Theo-
rem 1.2, one can show that for 0 < δ < β < 1, −1 < δ1 < n − 1 < δ2,
M large enough, A := ∅ and

G :=

{
z :

∣∣∣∣arg(z) − (2k + 1)π − 2 arg(q)

2n

∣∣∣∣ ≤ |z|δ−1

}

conditions (a) and (b) of Theorem 3.1 are satisfied, while condition (c) is
trivial. The theorem implies the first part. The second part follows as in the
proof of Theorem 1.2 by choosing 1 − n < δ < β < −1.

As an example we consider the function

f(z) := exp(z3) − exp(−z3).

Its Fatou set is not empty, since it contains a super-attractive basin around
zero, and the theorem above gives 0 < meas(C \ I(f)) < ∞. In Figure 6
the Fatou set is black. The picture shows the part of the plane given by
{z : |Re(z)| ≤ 2, |Im(z)| ≤ 2}.

Fig. 6. The Fatou set of f(z) = exp(z3) − exp(−z3)

The functions discussed in the previous chapter have rational Schwarzian
derivative S(f) := f ′′′/f ′ − 3

2(f ′′/f ′)2. Much is known about functions
whose Schwarzian derivative is a polynomial. The asymptotic behavior of
functions with this property has already been studied by E. Hille [13] and
R. Nevanlinna [21]. Most results carry over to the rational case, which was
studied by G. Elfving [9]. It is easy to see that a critical point of f is a
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pole of S(f). Thus functions with a rational Schwarzian derivative have
only finitely many critical points. If S(f)(z) = czn(1 + o(1)) as z → ∞
with c 6= 0 and n ≥ 0, there are n + 2 so-called critical rays defined by
arg z = φ with arg c + (n + 2)φ = 0 (mod 2π). It turns out that these
divide the complex plane into n + 2 sectors in which the asymptotic be-
havior of f is well known. If z tends to infinity in a non-critical direction,
f tends to an asymptotic value, which is the same for all directions inside
the same sector. Thus f has only finitely many asymptotic values. Simi-
larly to the proof of Theorem 1.2 one can show that conditions (a) and
(b) of Theorem 3.1 are satisfied. If one of these asymptotic values happens
to be ∞, points and also asymptotic values may escape exponentially in-
side the corresponding sector satisfying condition (c). However, these func-
tions may have infinitely many poles, so that points can also escape ex-
ponentially, “jumping from pole to pole”, without satisfying condition (c)
of Theorem 3.1. The poles are, however, contained in small neighborhoods
around these critical rays. Thus we can formulate another more geometric
condition in order to guarantee condition (c). More precisely, we get the
following.

Theorem 5.2. Let f be a meromorphic function with rational Schwarz-

ian derivative behaving at infinity as czn(1 + o(1)) with c 6= 0 and n ≥ −1.
Suppose that all asymptotic values s tend to ∞ under iteration and there

exists some ε > 0 such that∣∣∣∣arg(fm(s)) − 2πk + arg(c)

n+ 2

∣∣∣∣ ≥ |fm(s)|ε−(n+2)/2

for almost all m ∈ N and all k ∈ {0, 1, . . . , n+1}. Then meas(J(f)) > 0 and

ω(z) ⊂ P (f) for almost every z ∈ J(f). If n ≥ 3 then meas(F (f)) <∞.

Sketch of proof. The principle is exactly as in the proof of Theorem 1.2.
First one has to check that the properties of Theorem 3.1 are satisfied.
This gives us measure estimates of T (f) that imply case (ii) of Theo-
rem 1.1. We obtain T (f) ⊂ J(f) again from the absence of Baker and
wandering domains, which once more follows from the finiteness of sing(f−1)
(see Remark 3.2). For meromorphic functions with polynomial Schwarzian
derivative this has also been shown by R. L. Devaney and L. Keen
in [8].

To check the properties we briefly summarize how to obtain estimates
of the asymptotic behavior of f . We refer to the post-graduate notes of
Jim Langley [15] for more details. It is easy to see that functions with the
rational Schwarzian derivative S(f) = 2A coincide with quotients f1/f2 of
two linearly independent solutions of the differential equation f ′′i +Afi = 0.
Moreover, the asymptotic behavior of these solutions is well known. For a
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critical ray with argument φ and R0 > 0 large we define

Z(z) :=

z\
2R0eiφ

A(t)1/2 dt =
2c1/2

n+ 2
z(n+2)/2

(
1 +O

(
ln |z|
|z|

))
as z → ∞

in the set {z : R0 ≤ |z|, |arg z−φ| ≤ 2π/(n+ 2)}. Then it is easy to see that
for δ′ > 0 and R1 large enough, the change of coordinates Z is univalent in

S1 := {z : |z| ≥ R1, |arg(z) − φ| < 2π/(n+ 2) − δ′}. We use the Liouville

transformation and consider Wi(Z) = A(z)1/4fi(z), for which we get the
differential equation

∂2Wi

∂Z2
+ (1 − F0(Z))Wi = 0

with F0(Z) := A′′(z)/4A(z)2 − 5A′(z)2/16A(z)3. This equation has been
integrated asymptotically by Hille [13] and his method has been used by
many others afterwards. The following theorem and remark may be found
explicitly in [15].

Theorem 5.3 (Hille, Langley). Let c′ > 0 and 0 < ε′ < π. Then there

exists d′ > 0, depending only on c and ε′, with the following properties.

Suppose that F is analytic, with |F (z)| ≤ c′|z|−2, in

Ω := {z : 1 ≤ R0 ≤ |z| ≤ R1 <∞, |arg z| ≤ π − ε′}
Then the equation

ω′′ + (1 − F (z))ω = 0

has two linearly independent solutions U, V satisfying

U(z) = exp(−iz)(1 + δ1(z)), U ′(z) = −i exp(−iz)(1 + δ2(z)),(39)

V (z) = exp(iz)(1 + δ3(z)), V ′(z) = i exp(iz)(1 + δ4(z)),(40)

such that |δi(z)| ≤ d′|z|−1 for z ∈ Ω \ {z : Re(z) < 0, |Im(z)| < R}.
Remark. Ω may be replaced by

Ω′ := {z : 1 ≤ R0 ≤ |z| ≤ R1 <∞, |arg z − π| ≤ π − ε′}
and also by the unbounded region

Ω′′ := {z : 1 ≤ R0 ≤ |z| <∞, |arg z| ≤ π − ε′}.
To see this, we take a sequence Rk → ∞ and obtain solutions Uk, Vk with
uniformly bounded δi,k in Ωk, where Ωk is Ω with R1 replaced by Rk.
Therefore both form a normal family, and a subsequence of Uk,Vk converges
in Ω′′ =

⋃
k∈N

Ωk.
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Thus for every j ∈ {1, .., n+ 2} and every critical ray with argument φj

there are constants aj , bj , cj, dj ∈ C and Uj , Vj such that

f(z) =
ajUj(Z) + bjVj(Z)

cjUj(Z) + djVj(Z)
,

Vj(z) = exp

(
2ic1/2

n+ 2
z(n+2)/2

(
1 +O

(
ln |z|
|z|

)))
(1 +O(|z|−1/2)),

Uj(z) = exp

(−2ic1/2

n+ 2
z(n+2)/2

(
1 +O

(
ln |z|
|z|

)))
(1 +O(|z|−1/2))

as z → ∞ in

Sj :=

{
z : 1 ≤ R0 ≤ |z|, |arg(z) − φj | <

2π

n+ 2
− δ

}
.

Thus f tends to aj/cj in the half-sector S+
j := {z ∈ Sj : arg(z) > φj |} and

to bj/dj in the other half-sector S−
j := {z ∈ Sj : arg(z) < φj}. If cj or dj

happen to be zero, while aj or bj are not, we obtain a sector, on which f
tends to ∞, such that points may escape exponentially in this sector. We
get a similar estimate for the derivative, so that we can prove with similar
arguments to those in the proof of Theorem 1.2 that f satisfies the conditions
of Theorem 3.1 for 0 < δ < ε, δ − n/2 < β < 1, −1 < δ1 < n/2 < δ2, M

large enough, and G :=
⋃

1≤j≤n+2{z ∈ Sj : |Im(Zj(z))| ≥ |Zj(z)|2δ/(n+2)},
where Zj is the above change of coordinates Z for the sector Sj . If n ≥ 3,
we can choose δ < (n− 2)/2. Then the proof of meas(F (f)) < ∞ goes just
as in Theorem 1.2.
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Acta Soc. Sci. Fenn. 2 (1934).



Recurrence of entire transcendental functions 289

[10] A. Eremenko and M. Lyubich, Dynamical properties of some classes of entire func-

tions, Ann. Inst. Fourier (Grenoble) 42 (1992), 889–1019.
[11] L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire

functions, Ergodic Theory Dynam. Systems 6 (1986), 183–192.
[12] J.-M. Hemke, Typische Orbits der Exponentialfamilie, Diplomarbeit, 2002.
[13] E. Hille, On the zeros of the functions of the parabolic cylinder , Ark. Mat. 18 (1925).
[14] L. Keen and J. Kotus, Ergodicity of some classes of meromorphic functions, Ann.

Acad. Sci. Fenn. 24 (1999), 133–145.
[15] J. Langley, Postgraduate notes on complex analysis, on J. Langley’s website: www.

maths.nott.ac.uk/personal/jkl/pg1.pdf, 40–50.
[16] M. Lyubich, On typical behaviour of the trajectories of a rational mapping on the

sphere, Soviet Math. Dokl. 27 (1983), 22–25.
[17] —, The measurable dynamics of the exponential , Sibirsk. Mat. Zh. 28 (1987), no. 5

111–127 (in Russian).
[18] C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans.

Amer. Math. Soc. 300 (1987), 329–342.
[19] —, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994.
[20] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg,

Braunschweig, 2000.
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