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The elementary-equivalence classes of clopen algebras
of P -spaces

by

Brian Wynne (Great Barrington, MA)

Abstract. Two Boolean algebras are elementarily equivalent if and only if they sat-
isfy the same first-order statements in the language of Boolean algebras. We prove that
every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a
normal P -space.

1. Introduction. Let X be a topological space and Clop(X) the set of
all clopen subsets of X. Clop(X) is a Boolean algebra under the operations
of set-theoretic union, intersection, and complementation. Conversely, by a
famous theorem of M. Stone [5], every Boolean algebra is isomorphic to the
algebra of clopen subsets of a Boolean space, i.e., a space that is compact,
Hausdorff, and zero-dimensional. Recall that a P -space is a completely reg-
ular space in which every Gδ-set is open. The clopen algebras of P -spaces
are σ-complete and hence are less diverse than those of Boolean spaces.
However, if we require only classification up to elementary equivalence, a re-
lation from mathematical logic weaker than isomorphism, then an analogue
of Stone’s result is available. Specifically, we intend to prove

Theorem 1.1. Every Boolean algebra is elementarily equivalent to the
algebra of clopen subsets of a normal P -space.

In [7] Theorem 1.1 plays an essential role in proofs of model-theoretic
properties of certain lattice-ordered groups of continuous functions.

2. The Tarski invariants. We assume familiarity with the basic notions
of Boolean algebra; for all undefined terms we refer the reader to Chapter 1
of [4]. We consider Boolean algebras as structures for the first-order language
{+, ·,−, 0, 1}, where + is interpreted as join, · as meet, − as complement,
and 0 and 1 as the bottom and top elements, respectively, in the algebra.
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In [6] Tarski associates with each Boolean algebra a triple of numeri-
cal invariants that completely determines its elementary-equivalence class.
These triples encode information about certain ideals of the algebra. Let A
be a Boolean algebra and I and J ideals of A. Let sa(I) be the set of all
a ∈ A such that a is atomless mod I, at(I) the set of all a ∈ A such that a
is atomic mod I, and I + J the set of all a ∈ A such that a = b+ c for some
b ∈ I and some c ∈ J . Then sa(I), at(I), and I +J are all again ideals of A.
Let 0A be the bottom element of A, set E0 = {0A}, and for every integer
n ≥ 0 set En+1 = sa(En) + at(En).

We now define the Tarski invariants inv(A) of A. If A is the one-element
Boolean algebra then inv(A) = (−1, 0, 0); if A 6= En for every n ≥ 0 then
inv(A) = (ω, 0, 0); otherwise inv(A) = (i1, i2, i3) where (1) A 6= Ei1 and
A = Ei1+1, (2) i2 = 0 if A/Ei1 is atomic, otherwise i2 = 1, and (3) i3 is the
number of atoms of A/Ei1 if that number is finite, and ω if that number
is infinite. Let Inv be the set of triples consisting of (−1, 0, 0), (ω, 0, 0),
and all the triples (i1, i2, i3) with i1 a nonnegative integer, i2 ∈ {0, 1}, i3 a
nonnegative integer or ω, and i2 + i3 > 0.

For a proof of the following result see [1] or Chapter 7 of [4].

Theorem 2.1. Any two Boolean algebras A and B are elementarily
equivalent iff inv(A) = inv(B). Moreover , for any (i1, i2, i3) ∈ Inv there
is a Boolean algebra A with inv(A) = (i1, i2, i3).

3. P -spaces. P -spaces are a generalization of discrete spaces and were
named and studied by Gillman and Henriksen in [2]. Here are two useful
examples of nondiscrete P -spaces.

Example. Let S be an uncountable space in which all points are iso-
lated except for a distinguished point s, a neighborhood of s being any set
containing s whose complement is countable. Then S is a nondiscrete normal
P -space and Clop(S) is an atomic Boolean algebra.

Example. A totally ordered set T is called an η1-set if for any countable
subsets A and B, with A < B, there is a t ∈ T satisfying A < t < B. With
the interval topology every η1-set T is a normal P-space without isolated
points and Clop(T ) is an atomless Boolean algebra (see page 193 of [3]).

If {Xk}k∈K is an indexed collection of spaces, then we write
⊕

k∈K Xk

for their topological sum, i.e. the disjoint union of the Xk topologized so
that a subset U is open in the sum if and only if its intersection with each
Xk is open in Xk. Here are some basic properties of P -spaces.

Proposition 3.1. The following hold in any P -space X:

(i) Every zero-set of X is open.
(ii) Every subspace of X is a P -space.
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(iii) Every completely regular quotient space of X is a P -space.
(iv) X is zero-dimensional , i.e., has a base of clopen subsets.

Proof. See pages 62–63 of [3].

The rest of this paper is devoted to proving Theorem 1.1. Our strategy
will be to build for each triple of Tarski invariants a normal P -space whose
clopen algebra has those invariants. Many of these spaces will be obtained by
gluing together in a certain way copies of the two normal P -spaces mentioned
at the beginning of this section.

4. Topological equivalents of algebraic notions. Let X be an arbi-
trary normal P -space. To simplify our analysis we characterize membership
in the Tarski ideals En, at(En), and sa(En) of Clop(X) using a device remi-
niscent of Cantor–Bendixson derivatives. We associate with X the following
descending sequence of closed subspaces: let X0 = X and for every integer
n ≥ 0 let

Xn+1 = Is(Xn) ∩ (Xn − Is(Xn))

where the overline represents the topological closure operation in X and
Is(Xn) is the set of isolated points of the subspace Xn.

Proposition 4.1. Each of the following hold for any G ∈ Clop(X) and
any n ≥ 0:

(i) G ∈ En if and only if G ∩Xn = ∅.
(ii) G is an atom mod En if and only if |G ∩Xn| = 1.

(iii) G ∈ at(En) if and only if G ∩Xn ⊆ Is(Xn).
(iv) G ∈ sa(En) if and only if G ∩ Is(Xn) = ∅.
Proof. The proof goes by induction on n. That (i) holds when n = 0

is clear. Suppose G is an atom mod E0. Then G is an atom of Clop(X),
so G must have at least one element. If G has more than one element then
because X is Hausdorff and zero-dimensional G has nonempty proper clopen
subsets and hence is not an atom of Clop(X). Thus |G ∩ X0| = |G| = 1.
Conversely, if |G ∩X0| = 1 then clearly G is an atom of Clop(X). Thus (ii)
holds when n = 0. Now G ∈ at(E0) if and only if every clopen subset of
G contains an atom of Clop(X) and hence an isolated point of X. Since X
is zero-dimensional this is equivalent to having G ∩X0 ⊆ Is(X0). Similarly,
G ∈ sa(E0) if and only if G contains no atoms of Clop(X), which is the
same as having G ∩ Is(X) = ∅. Thus (iii) and (iv) both hold when n = 0.

Assume the result of the proposition for n = k ≥ 0 and let G ∈ Clop(X).
We show that (i)–(iv) hold when n = k + 1.

Suppose G ∩Xk+1 = ∅. Then, by the definition of Xk+1, we have

[G ∩ Is(Xk)] ∩ [G ∩ (Xk − Is(Xk))] = ∅.
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X is normal so by Urysohn’s Lemma (see page 44 of [3]) there is an f ∈ C(X)
such that

(1) G ∩ Is(Xk) ⊆ f−1(0)

and

(2) G ∩ (Xk − Is(Xk)) ⊆ X − f−1(0).

Note that f−1(0) ∈ Clop(X) because X is a P -space, so G ∩ f−1(0) and
G ∩ (X − f−1(0)) are also in Clop(X). If x ∈ G ∩ Xk and x /∈ Is(Xk)
then x ∈ X − f−1(0) by (2). It follows that (G ∩ f−1(0)) ∩ Xk ⊆ Is(Xk)
and therefore G ∩ f−1(0) ∈ at(Ek) by the induction hypothesis. If x ∈
G ∩ Is(Xk) then x ∈ f−1(0) by (1), so (G ∩ (X − f−1(0)) ∩ Is(Xk) = ∅
and thus G ∩ (X − f−1(0)) ∈ sa(Ek) by the induction hypothesis. Hence
G ∈ at(Ek) + sa(Ek) = Ek+1.

Conversely, suppose G ∈ Ek+1. Then G = H ∪ F for some H ∈ sa(Ek)
and F ∈ at(Ek). So by the induction hypothesis H ∩ Is(Xk) = ∅ and there-
fore, since H is open in X, H ∩ Is(Xk) = ∅. It follows that H ∩Xk+1 = ∅.
From the induction hypothesis we also see that F ∩ Xk ⊆ Is(Xk). So
(F ∩Xk) ∩ (Xk − Is(Xk)) = ∅. Since F is open in X it follows that

(F ∩Xk) ∩ (Xk − Is(Xk)) = ∅

and hence that F ∩Xk+1 = ∅ as Xk+1 ⊆ Xk. Thus G ∩Xk+1 = (H ∪ F ) ∩
Xk+1 = ∅ and we have shown that (i) holds when n = k + 1.

Suppose |G ∩Xk+1| = 1. Then G /∈ Ek+1 by (i). Suppose H ∈ Clop(X),
H ⊆ G, and H /∈ Ek+1. Then H ∩ Xk+1 6= ∅ by (i). Since |G ∩ Xk+1| = 1
and H ⊆ G, G and H must contain the same member of Xk+1. Therefore
(G − H) ∩ Xk+1 = ∅ and so G − H ∈ Ek+1 by (i). Hence G is an atom
mod Ek+1. Conversely, suppose G is an atom mod Ek+1. Then G /∈ Ek+1

so |G ∩ Xk+1| ≥ 1 by (i). If there were more than one member of Xk+1

in G then it would follow from (i) and the fact that X is Hausdorff and
zero-dimensional that G is not an atom mod Ek+1, which contradicts our
supposition. Hence |G ∩Xk+1| = 1 and (ii) holds when n = k + 1.

Suppose G ∩ Xk+1 ⊆ Is(Xk+1). Suppose H ∈ Clop(X), H ⊆ G, and
H /∈ Ek+1. Then H ∩ Xk+1 6= ∅ by (i). Since H ⊆ G and H is open in
X it follows that H ∩ Is(Xk+1) 6= ∅. So there is an F ∈ Clop(X) such
that |(F ∩ H) ∩ Xk+1| = 1. By (ii), F ∩ H is an atom mod Ek+1. Thus
G ∈ at(Ek+1). Conversely, suppose G ∈ at(Ek+1) and x ∈ G ∩Xk+1. Let H
be an open neighborhood of x in X. Since X is zero-dimensional we may
assume that H ∈ Clop(X). By (i), H ∩G /∈ Ek+1 and, since G ∈ at(Ek+1),
there must be an F ∈ Clop(X) such that F ⊆ H ∩G and F is an atom mod
Ek+1. By (ii), F ∩Xk+1 has only one element which is therefore an isolated
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point of Xk+1. Since this point is in H, it follows that G∩Xk+1 ⊆ Is(Xk+1).
Hence (iii) holds when n = k + 1.

Finally, G ∩ Is(Xk+1) 6= ∅ if and only if there is an H ∈ Clop(X) such
that H ⊆ G and |H∩Xk+1| = 1. By (i) and (ii) this is equivalent to H being
an atom mod Ek+1, which means that G /∈ sa(Ek+1). Hence (iv) holds for
n = k + 1.

Remark. Inspection of the proof of Proposition 4.1 reveals that the
result holds for any zero-dimensional Hausdorff space in which disjoint closed
sets may be separated by disjoint clopen sets. The latter property is also
possessed by zero-dimensional Lindelöf spaces (see page 247 of [3]). So, for
example, Proposition 4.1 holds in any Boolean space.

Proposition 4.2. Each of the following hold for any integers n,m ≥ 0:

(i) inv(Clop(X)) = (n, 0,m) iff |Xn| = m > 0.
(ii) inv(Clop(X)) = (n, 0, ω) iff Is(Xn) is infinite and Xn ⊆ Is(Xn).
(iii) inv(Clop(X)) = (n, 1,m) iff |Is(Xn)| = m and Xn * Is(Xn).
(iv) inv(Clop(X)) = (n, 1, ω) iff Is(Xn) is infinite and Xn * Is(Xn).
(v) inv(Clop(X)) = (ω, 0, 0) iff Xk 6= ∅ for all k ≥ 0.

Proof. By Proposition 4.1, Xk 6= ∅ for all k ≥ 0 if and only if Ek 6=
Clop(X) for all k ≥ 0. Thus (v) holds.

Fix n,m ≥ 0. Suppose inv(Clop(X)) = (n, 0,m). Then En 6= Clop(X)
and Clop(X)/En is atomic with m atoms. Note that m > 0, for otherwise
Clop(X) = En. Since Clop(X)/En is atomic, X ∈ at(En) and so Xn =
Is(Xn) follows from Proposition 4.1. Say G1, . . . , Gm are representatives of
the m atoms mod En. By Proposition 4.1, |Gi∩Xn| = 1 for all i. So each Gi
contains an isolated point of Xn. If Gi ∩Gj ∩Xn 6= ∅ for some i 6= j, then
Gi ∩ Gj /∈ En by Proposition 4.1, which contradicts the fact that Gi and
Gj represent distinct atoms mod En. Thus |Is(Xn)| ≥ m. Now Clop(X)/En
is atomic, so

⋃m
i=1Gi is equal to X modulo En and therefore X −

⋃m
i=1Gi

contains no points of Xn by Proposition 4.1. Hence m = |Is(Xn)| = |Xn|.
Conversely, suppose |Xn| = m > 0. Then |Is(Xn)| = m > 0 and

Xn ⊆ Is(Xn). So X ∈ at(En) by Proposition 4.1 and therefore Clop(X)/En
is atomic and the first Tarski invariant of Clop(X) is at most n. Since
|Is(Xn)| = m > 0, Xn 6= ∅ and X /∈ En by Proposition 4.1. Hence
En 6= Clop(X) and the first two Tarski invariants of Clop(X) are n and 0.
Now using the fact that X is Hausdorff and zero-dimensional we may find
pairwise disjoint G1, . . . , Gm ∈ Clop(X) such that |Gi ∩Xn| = 1 for each i.
It follows from Proposition 4.1 that there are at least m atoms modulo En.
Suppose G ∈ Clop(X) is an atom mod En. By Proposition 4.1, G must con-
tain exactly one member of Xn and therefore must be equal to one of the
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Gi modulo En. Thus Clop(X)/En has exactly m atoms, the third invariant
of Clop(X) is m, and (i) holds.

From the proof of (i) we see that having at least m atoms mod En is
equivalent to |Is(Xn)| ≥ m. With the aid of this fact, (ii)–(iv) are easily
established.

5. Technical topological lemmas. Let {Yk}k∈K be a collection of
disjoint spaces, X a space disjoint from all the Yk and of cardinality at least
|K|, yk ∈ Yk for each k ∈ K, and {xk}k∈K a collection of distinct points
in X. We call Z the pointwise gluing of {(Yk, yk)}k∈K and (X, {xk}k∈K) over
K if

Z =
((⊕

k∈K
Yk

)
⊕X

)
/∼,

where ∼ is the equivalence relation on (
⊕

k∈K Yk) ⊕ X which identifies yk
with xk for each k ∈ K. We call the yk and xk glue points and, for any
U ⊆ (

⊕
k∈K Yk)⊕X, we write gp(U) for {k ∈ K : {xk, yk}∩U 6= ∅}. Finally,

we always use q to denote the canonical quotient map from (
⊕

k∈K Yk)⊕X
to Z.

Lemma 5.1. Let Z be the pointwise gluing of the spaces {(Yk, yk)}k∈K
and (X, {xk}k∈K) over K. If U ⊆ W = (

⊕
k∈K Yk) ⊕ X and gp(U) ∩

gp(W − U) = ∅ then (i) U is open in W if and only if q(U) open in Z,
and (ii) U is closed in W if and only if q(U) is closed in Z.

Proof. Since gp(U)∩gp(W −U) = ∅, we see that q−1(q(U)) = U . There-
fore U is open if and only if q−1(q(U)) is open. But the latter is open just
in case q(U) is open, because q is a quotient map. Thus (i) holds.

By (i), U is closed if and only if q(W −U) is open. As gp(U)∩gp(W −U)
= ∅ we see that q(W − U) = q(W )− q(U). But q(W )− q(U) is open if and
only if q(U) is closed because q is surjective. Hence (ii) holds.

Lemma 5.2. Let Z be the pointwise gluing of the normal P -spaces
{(Yk, yk)}k∈K and (X, {xk}k∈K) over K. Then Z is a normal P-space.

Proof. Since any topological sum of P -spaces is a P -space and since any
completely regular quotient of a P -space is a P -space (see page 63 of [3]),
to prove the lemma it suffices to show that Z is normal. Let F and G be
disjoint closed subsets of Z. Then q−1(F ) and q−1(G) are disjoint closed
sets in W = (

⊕
k∈K Yk)⊕X. So

q−1(F ) =
( ⋃
k∈K

Fk

)
∪HF and q−1(G) =

( ⋃
k∈K

Gk

)
∪HG,
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where Fk, Gk are disjoint closed sets in Yk for each k, and HF and HG are
disjoint closed sets in X. Note that

(3) yk ∈ Fk iff xk ∈ HF

and

(4) yk ∈ Gk iff xk ∈ HG

for each k ∈ K. Since X and the Yk’s are normal, there exist disjoint open
U, V ⊆ X and disjoint open Uk, Vk ⊆ Yk such that

q−1(F ) ⊆
( ⋃
k∈K

Uk

)
∪ U and q−1(G) ⊆

( ⋃
k∈K

Vk

)
∪ V.

In order to ensure that their images under q will be open, we may need to
adjust these open sets separating q−1(F ) and q−1(G). First, since Fk and
Gk are closed and Yk is completely regular, we may assume that

(5) yk ∈ Uk iff yk ∈ Fk
and

(6) yk ∈ V k iff yk ∈ Gk
for each k ∈ K. Next, let L = {k ∈ K : xk ∈ U −HF } and M = {k ∈ K :
xk ∈ V −HG}. Since U ∩ V = ∅ and HG ⊆ U , if k ∈ L then xk /∈ HF ∪HG

and so yk /∈ Uk ∪ V k by (1)–(4). Since each Yk is completely regular we
therefore may choose for each k ∈ L an open Tk ⊆ Yk such that yk ∈ Tk
and Tk ∩ (Uk ∪ Vk) = ∅. Similarly, we may choose for each k ∈ M an open
Sk ⊆ Yk with yk ∈ Sk and Sk ∩ (Uk ∪ Vk) = ∅. Finally, set

OF =
( ⋃
k∈K

Uk

)
∪ U ∪

( ⋃
k∈L

Tk

)
,

OG =
( ⋃
k∈K

Vk

)
∪ V ∪

( ⋃
k∈M

Sk

)
.

We will show that q(OF ) and q(OG) separate F and G in Z.
First, clearly F ⊆ q(OF ) and G ⊆ q(OG). Next we show that q(OF )

and q(OG) are open in Z. Fix k ∈ K. Then from the definition of OF we
see that xk ∈ OF if and only if xk ∈ U . Now xk ∈ U means xk ∈ HF or
xk ∈ U − HF , so by (1) and the definition of Tk we have xk ∈ U if and
only if either yk ∈ Fk or yk ∈ Tk. Thus xk ∈ OF is equivalent to yk ∈ OF .
It follows that gp(OF ) ∩ gp(W − OF ) = ∅ and so q(OF ) is open in Z by
Lemma 5.1. A similar argument shows that gp(OG) ∩ gp(W − OG) = ∅
and so q(OG) is also open in Z. Finally, we show that q(OF ) ∩ q(OG) = ∅.
Since gp(OF ) ∩ gp(W − OF ) = gp(OG) ∩ gp(W − OG) = ∅ we see that
q(OF ) ∩ q(OG) 6= ∅ implies OF ∩ OG 6= ∅. So to complete the proof of the



156 B. Wynne

lemma it suffices to show that OF ∩ OG = ∅. Let w ∈ OF . We show that
w /∈ OG.

Case (1). Suppose w ∈ Ut for some t ∈ K. Then w ∈ Yt and Yt∩X = ∅,
so w /∈ V . Since Yk∩Yt = ∅ whenever k 6= t, and since Ut∩Vt = ∅, we see that
w /∈

⋃
k∈K Vk. Fix k ∈ M . If t 6= k then w /∈ Sk because w ∈ Yt, Sk ⊆ Yk,

and Yt ∩ Yk = ∅. If t = k then w /∈ Vk because w ∈ Ut and Sk ∩ Uk = ∅ by
choice of Sk. Thus w /∈

⋃
k∈M Sk. Hence w /∈ OG.

Case (2). Suppose w ∈ U . Then w ∈ X so w /∈ (
⋃
k∈K Vk)∪ (

⋃
k∈M Sk)

because X ∩ (
⋃
k∈K Yk) = ∅. Also, U ∩ V = ∅ so w /∈ V . Hence w /∈ OG.

Case (3). Suppose w ∈ Tl for some l ∈ L. Then w /∈ V since Tl ⊆ Yl
and Yl ∩X = ∅. Now Tl ∩ Yk = ∅ whenever l 6= k, and Tl ∩ Vl = ∅ by choice
of Tl, so we see that w /∈

⋃
k∈K Vk. Finally, w /∈

⋃
k∈M Sk because L∩M = ∅

and so Tl ∩ Sk = ∅ for any k ∈M . Hence w /∈ OG.

Lemma 5.3. Let X be a normal P-space and U ∈ Clop(X). Then each
of the following holds for any n ≥ 0:

(i) Un = U ∩Xn.
(ii) Is(Un) = U ∩ Is(Xn).

(iii) Un − Is(Un) = U ∩ (Xn − Is(Xn)).

Proof. The proof goes by induction on n. Note that with the subspace
topology U is a normal P -space because it is a closed subset of X. Suppose
n = 0. Then Xn = X and Un = U , so (i) is obvious and (ii) holds because
U ∈ Clop(X). If G is an open set in U with no isolated points of U , then
G is open in X and contains no isolated points of X by (ii). Similarly, if G
is an open set in X with no isolated points then G ∩ U is an open set in U
with no isolated points in U by (ii). Thus (iii) holds when n = 0.

Now suppose the result holds for n = k ≥ 0. By definition

Uk+1 = Is(Uk) ∩ (Uk − Is(Uk))

and by the induction hypothesis

Is(Uk) ∩ (Uk − Is(Uk)) = (U ∩ Is(Xk)) ∩ (U ∩ (Xk − Is(Xk)).

Now U is clopen in X, so

(U ∩ Is(Xk)) ∩ (U ∩ (Xk − Is(Xk)) = (U ∩ Is(Xk)) ∩ (U ∩ (Xk − Is(Xk)).

Since the right-hand side of the last formula is equal to U ∩ Xk+1, we see
that (i) holds for n = k + 1. That (ii) holds when n = k + 1 follows easily
from (i) and the fact that U ∈ Clop(X).

Finally,

Uk+1 − Is(Uk+1) = (U ∩Xk+1)− (U ∩ Is(Xk+1))
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by (i) and (ii), and since U is clopen in X,

(U ∩Xk+1)− (U ∩ Is(Xk+1)) = (U ∩Xk+1)− (U ∩ Is(Xk+1)).

Since the right-hand side of the last formula is equal to U∩(Xk+1−Is(Xk+1)),
(iii) holds when n = k + 1.

Lemma 5.4. Let W and Z be normal P-spaces and q : W → Z a map.
If U ∈ Clop(W ), q(U) ∈ Clop(Z), and q|U is a homeomorphism, then each
of the following hold for any n ≥ 0:

(i) q(U ∩Wn) = q(U) ∩ Zn.
(ii) q(U ∩ Is(Wn)) = q(U) ∩ Is(Zn).

(iii) q(U ∩ (Wn − Is(Wn))) = q(U) ∩ (Zn − Is(Zn)).

Proof. The result essentially follows from Lemma 5.3. For example,
q(U ∩Wn) = q(Un) by Lemma 5.3 since U ∈ Clop(W ). Then q(Un) = q(U)n
because q|U is a homeomorphism. Finally, q(U) ∈ Clop(Z) so q(U)n =
q(U) ∩ Zn by Lemma 5.3. Similar arguments prove the other two identi-
ties.

Lemma 5.5. Suppose {Yk}k∈K is a collection of normal P-spaces. If
W =

⊕
k∈K Yk, then each of the following hold for any n ≥ 0:

(i) Wn =
⋃
k∈K(Yk)n.

(ii) Is(Wn) =
⋃
k∈K Is((Yk)n).

(iii) Wn − Is(Wn) =
⋃
k∈K((Yk)n − Is((Yk)n)).

Proof. Since Yk ∈ Clop(W ) for all k ∈ K, we can apply Lemma 5.3.

Lemma 5.6. Let Z be the pointwise gluing of the normal P -spaces
{(Yk, yk)}k∈K and (X, {xk}k∈K) over K. Then q((Yk)n) ⊆ Zn for every
k ∈ K and every n ≥ 0.

Proof. Let W = (
⊕

k∈K Yk) ⊕ X. Note that Z is a normal P -space by
Lemma 5.2. Fix k ∈ K. If n = 0 then the result holds because (Yk)0 = Yk
and Z0 = Z. Suppose n > 0 and w ∈ (Yk)n. Let V be a neighborhood of
q(w) in Z. We must show that V meets both Is(Zn−1) and Zn−1− Is(Zn−1).
Now w ∈ (Yk)n and n > 0, so we know that

w ∈ Is((Yk)n−1) ∩ ((Yk)n−1 − Is((Yk)n−1)).

Therefore q−1(V )∩Yk must contain infinitely many elements of Is((Yk)n−1)
and infinitely many elements of (Yk)n−1−Is((Yk)n−1). Pick y ∈ Is((Yk)n−1)∩
(q−1(V ) ∩ Yk) such that y 6= yk.

Choose U ∈ Clop(W ) such that U ⊆ Yk, y ∈ U , and yk /∈ U . Then
gp(U) = ∅, so U satisfies the hypotheses of Lemma 5.4. Since y ∈ Is(Wn−1)
by Lemma 5.5, it follows that q(y) ∈ Is(Zn−1). A similar argument shows
that V contains members of Zn−1 − Is(Zn−1).
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Lemma 5.7. Let X be an η1-set , γ an ordinal , xγ ∈ X, and {xα}α∈γ a
strictly increasing sequence in X that is cofinal in {x ∈ X : x < xγ}. If Z is
the pointwise gluing of the normal P -spaces {(Yα, yα)}α∈γ and (X, {xα}α∈γ)
over γ, n ≥ 1, and (Yα)n = {yα} for all α ∈ γ, then q(xγ) ∈ Is(Zn)− Is(Zn)
and Zn+1 = ∅.

Proof. Let W = (
⊕

α∈γ Yα) ⊕ X. Note that Z is a normal P -space by
Lemma 5.2 and fix α < γ. First we show that q(yα) ∈ Is(Zn).

Case (1). Suppose there is an open set G ⊆ X such that xα ∈ G and
gp(G) = {α}. We show that q(yα) ∈ Is(Zn). By hypothesis yα ∈ (Yα)n, so
q(yα) ∈ Zn by Lemma 5.6. Since W is zero-dimensional we may find H ∈
Clop(W ) such that xα, yα ∈ H and H ⊆ G∪Yα. Note that gp(H) = {α} and
gp(H)∩ gp(W −H) = ∅. So q(H) ∈ Clop(Z) by Lemma 5.1. We claim that
q(H)∩Zn = {q(yα)}. Let w ∈ H. We already know that q(yα) = q(xα) ∈ Zn,
so suppose w is not yα or xα. Then there is a U ∈ Clop(W ) such that
w ∈ U ⊆ H and xα, yα /∈ U . Now X is an η1-set and n ≥ 1, so Xn = ∅,
and (Yα)n = {yα}. It follows that U ∩ (Yα)n = U ∩Xn = ∅ and hence that
U ∩Wn = ∅, by Lemma 5.5. Since gp(U) = ∅, we may apply Lemma 5.4 to
conclude that q(U) ∩ Zn = ∅. Thus q(w) /∈ Zn, q(H) ∩ Zn = {q(yα)}, and
q(yα) ∈ Is(Zn).

Case (2). Suppose the hypothesis of Case (1) fails. Let V be an open
neighborhood of q(yα) in Z. Then q−1(V )∩X is open in X, and since X is
an η1-set, there is an open interval I ⊆ q−1(V )∩X such that xα ∈ I. By our
supposition there is a β < γ such that β 6= α and xβ ∈ I. Since either xα+1

or xβ+1 is in I, we may choose a successor ordinal δ < γ such that xδ ∈ I.
Then (xδ−1, xδ+1)∩ I is an open subset of X containing xδ whose only glue
point is xδ, so q(xδ) ∈ Is(Zn) by Case (1). Since q(xδ) ∈ V , it follows that
q(yα) ∈ Is(Zn).

Now we show that q(xγ) ∈ Is(Zn) − Is(Zn). Let G ∈ Clop(Z) be a
neighborhood of q(xγ). Then q−1(G) ∩ X is open in X, and since X is an
η1-set, there is an open interval U ⊆ q−1(G) ∩X containing xγ . Since U is
an open interval there must be an x ∈ U such that x < xγ . But {xα}α<γ
is cofinal in {x ∈ X : x < xγ}, so xα ∈ U for some α < γ. As we know,
q(xα) ∈ Is(Zn) and hence G must contain some member of Is(Zn). Since G
was arbitrary and q(xα) 6= q(xγ), it follows that q(xγ) ∈ Is(Zn)− Is(Zn).

Finally, to prove that Zn+1 = ∅ we show that Zn − Is(Zn) = ∅. Let
w ∈ W . If w = yα for some α ∈ γ then q(w) ∈ Is(Zn). If w ∈ Yα for some
α ∈ γ and w 6= yα then w /∈ (Yα)n, and so q(w) /∈ Zn follows from Lemma
5.4. If w ∈ X and there is U ∈ Clop(X) such that gp(U) = ∅ then q(w) /∈ Zn
follows from Lemma 5.4. Otherwise, every neighborhood of w contains some
xα and therefore q(w) ∈ Is(Zn). Thus Zn − Is(Zn) = ∅.
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Lemma 5.8. Let Z be the pointwise gluing of the normal P -spaces (Y, y0)
and (X,x0) and let n ≥ 0. If Yn+1 = ∅ = Xn+1, y0 ∈ Is(Yn) − Is(Yn), and
x0 ∈ Xn − Is(Xn), then inv(Clop(Z)) = (n+ 1, 0, 1).

Proof. Let W = X ⊕ Y . We know that Z is a normal P -space by
Lemma 5.2. Let z0 = q(x0) = q(y0). By Proposition 4.2, it suffices to show
that Zn+1 = {z0}. First we show that z0 ∈ Zn+1. Let V be any open
neighborhood of z0 in Z. Since Z is zero-dimensional we may assume that
V ∈ Clop(Z). Since y0 ∈ q−1(V ) and y0 ∈ Is(Yn) − Is(Yn), we may pick
y ∈ (q−1(V )∩Y )∩ Is(Yn) such that y 6= y0. Then y ∈ Is(Wn) by Lemma 5.5
and there is a clopen subset U ⊆ Y with y ∈ U and y0 /∈ U . Since gp(U) = ∅,
it follows from Lemma 5.4 that q(y) ∈ Is(Zn). Thus V ∩ Is(Zn) 6= ∅ and
z0 ∈ Is(Zn).

Now q−1(V ) ∩X ∈ Clop(X) and by hypothesis x0 /∈ Is(Xn), so there is
an H ∈ Clop(X) with x0 ∈ H ⊆ (q−1(V )∩X)∩(Xn−Is(Xn)). Since x0 ∈ H
and x0 /∈ Is(Xn), we may choose x ∈ H with x 6= x0. Then x ∈Wn− Is(Wn)
by Lemma 5.5. Let U be a clopen subset of X containing x but not x0. Then
gp(U) = ∅, so q(x) ∈ Zn− Is(Zn) by Lemma 5.4. Thus V ∩(Zn− Is(Zn)) 6= ∅
and z0 ∈ Zn − Is(Zn). Hence z0 ∈ Zn+1.

Finally, we show that z0 is the only member of Zn+1. Suppose w ∈ W
with x0 6= w 6= y0. Then there is a clopen neighborhood U of w in W
such that x0, y0 /∈ U . Since Yn+1 = Xn+1 = ∅, Lemma 5.5 tells us that
Wn+1 = ∅. Thus w /∈ Wn+1. But gp(U) = ∅, so it follows from Lemma 5.4
that q(w) /∈ Zn+1.

6. Construction of P -spaces. The empty space is a normal P -space
whose algebra of clopen subsets has invariants (−1, 0, 0). Let X be any
one-point space. Then X is a normal P -space and |X0| = |X| = 1. So it
follows from Proposition 4.2 that inv(Clop(X)) = (0, 0, 1). Next let Y be
the space from the first example at the start of Section 2 and let X be an
η1-set. Let y0 be the sole nonisolated point in Y and pick some x0 in X.
Note that Is(X) = ∅ and that Is(Y ) = Y − {y0}. Form Z, the pointwise
gluing of (Y, y0) and (X,x0). Then Z is a normal P -space by Lemma 5.2.
Since Y1 = ∅ = X1, y0 ∈ Is(Y )− Is(Y ), and x0 ∈ X − Is(X), it follows from
Lemma 5.8 that inv(Clop(Z)) = (1, 0, 1).

Let X l and Xr be η1-sets and pick an arbitrary point xl ∈ X l and an
arbitrary point xr ∈ Xr. Choose an ordinal γ and a strictly increasing se-
quence {xrα}α∈γ in Xr such that {xrα}α∈γ is cofinal in the set of x ∈ Xr with
x < xr. Let {xlk}k∈K be an enumeration of X l. Assume that Y is a normal
P -space with inv(Clop(Y )) = (n, 0, 1) for some n ≥ 1. Then Yn consists
of a single point by Proposition 4.2. Let {Y r

α}α∈γ and {Y l
k}k∈K be collec-

tions of copies of Y with yrα and ylk representing the lone elements of (Y r
α )n
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and (Y l
k)n, respectively. Let Zr be the pointwise gluing of {(Y r

α , y
r
α)}α∈γ

and (Xr, {xrα}α∈γ) over γ, and Z l the pointwise gluing of {(Y l
k , y

l
k)}k∈K and

(X l, {xlk}k∈K) over K. Both Zr and Z l are normal P -spaces by Lemma 5.2.
Let L = q(xl) ∈ Z l and R = q(xr) ∈ Zr. Finally, let Z be the pointwise
gluing of (Z l, L) and (Zr, R). We claim that inv(Clop(Z l)) = (n, 1, 0) and
that inv(Clop(Z)) = (n+ 1, 0, 1).

To prove that inv(Clop(Z l)) = (n, 1, 0) it suffices, by Proposition 4.2,
to show that Is(Z ln) = ∅ and Z ln 6= ∅. The latter follows from Lemma 5.6
because ylk ∈ (Y l

k)n for all k ∈ K; in particular, note that L ∈ Z ln be-
cause xl = xlk for some k ∈ K and q(xlk) = q(ylk). As for the former, let
G ∈ Clop(Z l) with G ∩ Z ln 6= ∅. Then q−1(G) ∩ X l 6= ∅, for otherwise
gp(q−1(G)) = ∅ and G ∩ Z ln = ∅ by Lemma 5.4. Now q−1(G) ∩ X l must
be infinite because it is clopen in X l, and X l has no isolated points. Since
q(xlk) = q(ylk) for every k ∈ K, it follows that G ∩ Z ln is infinite and hence
that Is(Z ln) = ∅.

To prove that inv(Clop(Z)) = (n + 1, 0, 1) it suffices, by Lemma 5.8, to
show that Z ln+1 = ∅ = Zrn+1, R ∈ Is(Zrn)− Is(Zrn), and L ∈ Z ln− Is(Z ln). We
have already seen that L ∈ Z ln and Is(Z ln) = ∅, from which it follows that
Z ln+1 = ∅ and L ∈ Z ln − Is(Z ln). That R ∈ Is(Zrn) − Is(Zrn) and Zrn+1 = ∅
both follow from Lemma 5.7.

So by induction there are, for every integer n ≥ 0, normal P -spaces
whose clopen algebras have the invariants (n, 0, 1) and also normal P -spaces
whose clopen algebras have the invariants (n, 1, 0). Fix n ≥ 0 and let m be
a countable cardinal greater than zero. Next we build a normal P -space
whose clopen algebra has invariants (n, 0,m). Let {Yk}k∈K be a collection
of normal P -spaces such that |K| = m and inv(Clop(Yk)) = (n, 0, 1) for
each k ∈ K. Let

X =
⊕
k∈K

Yk.

From Proposition 4.1 we know that |Is((Yk)n)| = 1 and (Yk)n = Is((Yk)n)
for each k ∈ K. So |Is(Xn)| = m and Xn = Is(Xn) both follow from Lemma
5.5. Hence inv(Clop(W )) = (n, 0,m) by Proposition 4.2.

Next we build a normal P -space whose clopen algebra has invariants
(n, 1,m). Let Y be a normal P -space with inv(Clop(Y )) = (n, 1, 0), X be
a normal P -space with inv(Clop(X)) = (n, 0,m), and W = X ⊕ Y . Then
|Is(Xn)| = m, Xn = Is(Xn), Is(Yn) = ∅, and Yn 6= Is(Yn). It follows from
Lemma 5.5 that |Is(Wn)| = m and Wn 6= Is(Wn). Hence, by Proposition 4.2,
inv(Clop(W )) = (n, 1,m) as desired.

Finally, we build a normal P -space whose clopen algebra has the in-
variants (ω, 0, 0). For each integer j ≥ 0 let Yj be a normal P -space with
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inv(Clop(Yj)) = (j, 0, 1). Let

W =
⊕
j≥0

Yj .

By Proposition 4.2, (Yj)n 6= ∅ whenever n ≥ 0 and j ≥ n. So Wn 6= ∅ for all
n ≥ 0 by Lemma 5.5. Thus inv(Clop(X)) = (ω, 0, 0) by Proposition 4.2 and
the proof of Theorem 1.1 is complete.
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