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On the Glicksberg theorem for
locally quasi-convex Schwartz groups

by

Lydia Außenhofer (Eichstätt)

Abstract. We prove that every locally quasi-convex Schwartz group satisfies the
Glicksberg theorem for weakly compact sets.

1. Introduction. For an abelian topological group (G, τ) the group of
continuous homomorphisms G→ T, where T = R/Z, is denoted by G∧ and
called the character group. G∧ is endowed with the compact-open topology.
The elements of G∧ are named continuous characters. The topology on G
induced by all continuous characters, i.e. by the mapping G → TG∧ , x 7→
(χ(x))χ∈G∧ , is called the weak topology. The group G endowed with the weak
topology will be denoted by G+.

The famous Glicksberg theorem states that for a locally compact abelian
(LCA for short) group G the compact subsets of G and G+ coincide.

For discrete groups this was shown by Leptin ([22]) and in full generality
by Glicksberg ([16]). Since then it has been generalized in various manners:

• To non-abelian groups: [15], [26], and [30];
• To Hom(G,H) where G and H are topological groups: [13] and [29];
• By other characterizations and generalizations: [11], [12], [14], [19],

and [20];
• By studying properties of the weak topology: [18], [27], [28], and [30];
• To larger classes of groups (beyond LCA): [5], [6], and [25].

In this paper we take up the last point of view and we generalize the
Glicksberg theorem to the class of locally quasi-convex Schwartz groups in-
troduced in [3], a class of groups which contains all nuclear groups, all locally
convex Schwartz vector spaces and all locally quasi-convex groups which are

2000 Mathematics Subject Classification: 22A05, 46A11.
Key words and phrases: Glicksberg’s theorem, Bohr topology, Schwartz groups, locally

quasi-convex group, Namioka’s theorem, k-space.

[163] c© Instytut Matematyczny PAN, 2008



164 L. Außenhofer

hemicompact k-spaces, in particular, the character groups of abelian metriz-
able groups.

The paper is structured as follows: In the second section we gather aux-
iliary results, most of them well known. We have included the elementary
proofs of some of these in order to make the paper self-contained. In the
third section we introduce qc-precompact sets, a class of subsets which con-
tains all precompact sets, and prove that in locally quasi-convex groups both
classes coincide.

In the fourth section we prove the Glicksberg theorem for locally quasi-
convex Schwartz groups. As a first step we show that every weakly compact
set in a locally quasi-convex group has a property which is slightly weaker
than being bounded. In the theory of locally convex vector spaces the fact
that weakly bounded sets are bounded in the original topology can be proved
by applying the principle of uniform boundedness. Here we replace this the-
orem by Namioka’s theorem on joint continuity in order to obtain a similar
result in the group case. Combining this with the definition of a Schwartz
group and the result on qc-precompact sets established before, we finally
deduce that in a locally quasi-convex Schwartz group G every weakly com-
pact set is compact. In the last section this result is applied to the character
groups of metrizable groups which form an example of Schwartz groups.

2. Background and notation. In this section we gather some facts
which will be used in the following sections.

2.1. Weakly continuous homomorphisms. The set of all neighbourhoods
of the neutral element 0 of an abelian topological group (G, τ) will be de-
noted by Uτ (0) or, if no confusion can arise, by U(0).

Let (X,O) be a topological space. For a subset X0 ⊆ X we denote by
(X0,O|X0) the induced topology.

We identify T with ]−1/2, 1/2] and define T+ := [−1/4, 1/4].

Proposition 2.1.

(i) Let φ : H → G be a continuous homomorphism between abelian
Hausdorff groups. Then φ : H+ → G+ is also continuous.

(ii) If H is a dually embedded subgroup of G then H+ is topologically
isomorphic to a subgroup of G+. (Recall that a subgroup is called
dually embedded if every continuous character of the subgroup can
be extended to a continuous character of the whole group.)

Proof. (i) Since the weak topology on G is induced by all continuous
characters, it is sufficient to prove that H+ → T, x 7→ χ(φ(x)), is continuous
for every χ ∈ G∧. But this is clear since χ ◦ φ : H → T is continuous and
hence χ ◦ φ ∈ H∧.
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(ii) Consider the embedding ι : H → G. According to (i), ι : H+ → G+

is a continuous monomorphism. Let χ1, . . . , χn ∈ H∧. By assumption, these
continuous characters can be extended to ψ1, . . . , ψn∈G∧. As ι(

⋂n
j=1{x∈H :

χj(x) ∈ T+}) =
⋂n
j=1{x ∈ G : ψj(x) ∈ T+} ∩ ι(H), we conclude that H+ is

embedded in G+.

2.2. Polars and quasi-convex sets. For a subset A of an abelian topo-
logical group (G, τ), the set A. = {χ ∈ G∧ : χ(A) ⊆ T+} is called the polar
of A, and for a subset D ⊆ G∧, the set D/ := {x ∈ G : χ(x) ∈ T+ ∀χ ∈ D}
is called the inverse polar of D. Of course,

A ⊆ B ⊆ G ⇒ B.⊆ A. ⊆ G∧,
C ⊆ D ⊆ G∧ ⇒ D/⊆ C/ ⊆ G.

A set ∅ 6= A ⊆ G is called quasi-convex if for every x ∈ G \ A there
exists χ ∈ A. such that χ(x) /∈ T+. Hence A is quasi-convex iff A = (A.)/.
E.g. [−1/4n, 1/4n] is a quasi-convex subset of T. A subset A of an abelian
group G is called algebraically quasi-convex if it is quasi-convex when G is
endowed with the discrete topology.

Lemma 2.2.

(i) Intersections of quasi-convex sets are quasi-convex.
(ii) Inverse images of quasi-convex sets under continuous homomor-

phisms are quasi-convex.
(iii) Polars and inverse polars are quasi-convex.

Proof. (i) and (ii) are straightforward.
(iii) Fix A ⊆ G and let χ /∈ A.. Hence there exists a ∈ A such that

χ(a) /∈ T+. The mapping αG(a) : G∧ → T, χ 7→ χ(a), is continuous,
satisfies αG(a)(A.) ⊆ T+ and αG(a)(χ) = χ(a) /∈ T+.

The proof that C/ is quasi-convex for every subset C ⊆ G∧ is even
easier.

According to 2.2(i), for a non-empty set B ⊆ G, the smallest quasi-
convex set which contains B exists. It is called the quasi-convex hull and
will be denoted by qc(B). We have

(1) qc(B) = (B.)/.

This can be proved as follows: Since B ⊆ (B.)/ and the set on the right
hand side is quasi-convex (2.2(iii)), we obtain qc(B) ⊆ (B.)/. Conversely,
let Q ⊇ B be a quasi-convex set. Then Q. ⊆ B. and hence Q = qc(Q) =
(Q.)/ ⊇ (B.)/, which implies that (B.)/ is the smallest quasi-convex set
which contains B.

An abelian topological group is called locally quasi-convex if there is a
neighbourhood basis of 0 consisting of quasi-convex sets. It is easy to see
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that the characters of a Hausdorff locally quasi-convex group G separate
points and hence G+ is a Hausdorff group.

Proposition 2.3.

(i) Let ∅ 6= B ⊆ G where G is an abelian Hausdorff group. Then B. =
(qc(B))..

(ii) In a locally quasi-convex Hausdorff group, the quasi-convex hull of a
precompact set is precompact.

Proof. (i) Since B ⊆ qc(B), we obtain B. ⊇ (qc(B)).. Conversely, fix
χ ∈ B. and x ∈ qc(B). Since qc(B) = (B.)/ by (1), we obtain χ(x) ∈ T+,
and hence the opposite inclusion also holds.

(ii) is (7.12) in [1].

Notation 2.4. For a symmetric subset A of an abelian group G we
define (1/n)A = {x ∈ G : kx ∈ A ∀1 ≤ k ≤ n}.

If U is a symmetric neighbourhood of 0 in an abelian topological group
then (1/n)U is also a neighbourhood of 0.

It is easy to see that (1/n)T+ = [−1/4n, 1/4n]; for a quasi-convex set A,
we have

(2) (1/n)A =
⋂
χ∈A.

χ−1([−1/4n, 1/4n]), A∞ :=
⋂
n∈N

(1/n)A =
⋂
χ∈A.

ker(χ).

The second equality follows from the first one. We have x ∈ (1/n)A
⇔ ∀1 ≤ k ≤ n kx ∈ A ⇔ ∀1 ≤ k ≤ n, ∀χ ∈ A. kχ(x) = χ(kx) ∈ T+ ⇔
∀χ ∈ A. χ(x) ∈ (1/n)T+ ⇔ ∀χ ∈ A. χ(x) ∈ [−1/4n, 1/4n].

Proposition 2.5. For a quasi-convex set A of an abelian topological
group G and all n ∈ N we have:

(i) (1/n)A+ n. . . + (1/n)A⊆A and (1/2n)A+ n. . . + (1/2n)A⊆(1/2)A,
(ii) (1/2n)A+ (1/2n)A ⊆ (1/n)A,

(iii) (1/n)A+A∞ = (1/n)A.

Proof. (i) Let us fix x1, . . . , xn ∈ (1/n)A and χ ∈ A.. Since, by (2),
χ(xj) ∈ [−1/4n, 1/4n] for all 1 ≤ j ≤ n, we obtain χ(x1 + . . . + xn) ∈ T+,
and since χ ∈ A. was arbitrary, x1 + . . .+ xn ∈ A.

Analogously, the other assertions follow from (2).

Corollary 2.6. Let A be an algebraically quasi-convex subset of an
abelian group G. Then the sets ((1/n)A)n∈N form a neighbourhood basis
of a (not necessarily Hausdorff ) locally quasi-convex group topology on G,
which will be denoted by TA.

Let π : G → G/A∞. Then (1/n)π(A) = π((1/n)A) and hence the sets
((1/n)π(A)) form a neighbourhood basis of a locally quasi-convex Hausdorff
group topology on the quotient group, which will be denoted by Tπ(A).
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Proof. 2.5(ii) implies that the family ((1/n)A)n∈N has the properties of
a neighbourhood basis of 0 of a group topology. Since A is algebraically
quasi-convex, (2) implies (1/n)A =

⋂
χ∈A. χ−1([−1/4n, 1/4n]), where A. =

{χ ∈ Hom(G,T) : χ(A) ⊆ T+} and Hom(G,T) denotes the set of all ho-
momorphisms G → T. Since every character χ ∈ A. is continuous with
respect to (G, TA), as a consequence of 2.2(ii) the neighbourhoods (1/n)A
are quasi-convex subsets of (G, TA) for all n ∈ N.

Further,

(1/n)π(A) = {π(x) : kπ(x) ∈ π(A) ∀1 ≤ k ≤ n}
= {π(x) : kx ∈ A+A∞︸ ︷︷ ︸

=Aby 2.5(iii)

∀1 ≤ k ≤ n} = π((1/n)A).

Combining this equality with 2.5(ii), we find that ((1/n)π(A))n∈N is a neigh-
bourhood basis of a group topology on G/A∞. It is a Hausdorff topology,
since

⋂
n∈N(1/n)π(A) =

⋂
n∈N π((1/n)A) = π(A∞) = {0}.

It is an easy consequence of 2.5(iii) that the sets (1/n)π(A) are quasi-
convex in (G/A∞, Tπ(A)) for every n ∈ N.

Proposition 2.7. Let A and B be symmetric subsets of an abelian
Hausdorff group G and suppose that 0 ∈ A ∩B. Then:

(i) (A+ n. . . +A). = {χ ∈ G∧ : χ(A) ⊆ [−1/4n, 1/4n]}.
(ii) qc(A) + qc(A) ⊆ qc(A+A).

(iii) (A+B). ⊇ (A+A). ∩ (B +B)..
(iv) A. +A. ⊆ ((1/2)A)..
(v) ((1/n)A.)/ = qc(A+ n. . . +A).

Proof. (i) Fix χ ∈ (A+ n. . . +A).. Since for arbitrary x ∈ A we have
χ(kx) ∈ T+ for 1 ≤ k ≤ n, it follows that χ(A) ⊆ [−1/4n, 1/4n]. Conversely,
if χ(A) ⊆ [−1/4n, 1/4n] then χ(x1 + . . .+ xn) ∈ T+ for all x1, . . . , xn ∈ A.

(ii) Let χ ∈ (A + A).. According to (i), χ(A) ⊆ [−1/8, 1/8] and hence
A ⊆ χ−1([−1/8, 1/8]), and since [−1/8, 1/8] is quasi-convex, 2.2(ii) implies
that qc(A) ⊆ χ−1([−1/8, 1/8]). For x1, x2 ∈ qc(A) we obtain χ(x1+x2) ∈ T+

and hence x1 + x2 ∈ ((A+A).)/ = qc(A+A) by (1).
(iii) Let χ ∈ (A+ A). ∩ (B +B).. According to (i), χ(A) ⊆ [−1/8, 1/8]

and χ(B) ⊆ [−1/8, 1/8]. Hence χ(a+ b) ∈ T+ for all a ∈ A and b ∈ B.
(iv) Fix χ1, χ2 ∈ A. and x ∈ (1/2)A. Since χj((1/2)A) ⊆ [−1/8, 1/8]

(j ∈ {1, 2}) by (2), we obtain (χ1 + χ2)(x) ∈ T+.
(v) We have qc(A+ n. . . +A) = ((A+ n. . . +A).)/ by (1). Hence it is

sufficient to show that (A+ n. . . +A). = (1/n)A..
According to (i), (A+ n. . . +A). = {χ ∈ G∧ : χ(A) ⊆ [−1/4n, 1/4n]}

and it is easy to prove that this set equals (1/n)A.. This completes the
proof.
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2.3. Schwartz groups. The class of Schwartz groups has recently been
introduced in [3]. It contains all Schwartz vector spaces and all nuclear
groups, moreover all free locally convex vector spaces L(X) and all free
abelian groups A(X) if X is a hemicompact k-space. Subgroups, Hausdorff
quotients and products of Schwartz groups are again Schwartz groups (3.6
in [3]).

The advantage over nuclear groups is that the definition is quite easy:

Definition 2.8. An abelian Hausdorff group G is called a Schwartz
group if for every neighbourhood U of 0 there exists a neighbourhood W
of 0 and a sequence (Fn) of finite subsets such that W ⊆ (1/n)U + Fn for
every n ∈ N.

2.4. Character groups

Lemma 2.9. Let (G, τ) be an abelian Hausdorff group. For any neigh-
bourhood U of 0 the polar U. is a compact subset of G∧ endowed with the
compact-open topology.

Proof. This is a consequence of the Arzelà–Ascoli theorem.

Proposition 2.10. Let (G, τ) be an abelian metrizable group. Then:

(i) Every compact subset of G∧ is equicontinuous.
(ii) G∧ is a hemicompact k-space (i.e. it has a countable cobasis for the

compact sets and a subset is closed iff the intersection with every
compact subset is compact).

(iii) G∧ is a locally quasi-convex Schwartz group.

Proof. (i) Since a metrizable space is a k-space, this is a consequence of
the Arzelà–Ascoli theorem.

(ii) is Theorem 1 in [8] or (4.7) in [1].
(iii) In (5.6) in [3] it is proved that G∧ is a Schwartz group if G is

metrizable. According to 2.2(iii), G∧ is locally quasi-convex.

Proposition 2.11. Let (G, τ) be an abelian metrizable group. If G is
locally quasi-convex , then G∧ is a nuclear group if and only if G itself is
nuclear.

Proof. If G is a nuclear metrizable group then G∧ is a nuclear group
((16.1) in [4] or (20.35) and (20.36) in [1]). Assume now thatG is a metrizable
locally quasi-convex group and that G∧ is nuclear. Since G is metrizable
and locally quasi-convex, the canonical mapping αG : G→ G∧∧, x 7→ (χ 7→
χ(x)), is an embedding (2.10(i) and (6.10) in [1]) and G∧ is a hemicompact
k-space (2.10(ii)). So Theorem (6.10) in [2] implies that G∧∧ is a metrizable
nuclear group. Since αG is an embedding and subgroups of nuclear groups
are nuclear, G must be a nuclear group.
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Remark 2.12. The character groups of metrizable locally quasi-convex
non-nuclear groups provide examples of locally quasi-convex Schwartz groups
which are not nuclear.

3. Precompact subsets in locally quasi-convex groups. In this
section we intend to prove that the definition of a precompact set in a
locally quasi-convex group can be weakened:

Recall that a subset S of a topological group G is precompact if for every
0-neighbourhood U the set S is covered by a finite number of translates
of U , i.e. there exists a finite set F ⊆ G (or equivalently, F ⊆ S) such that
S ⊆ F + U .

The weaker version (which in the case of quasi-convex groups will be
shown to be equivalent to precompactness) and which we will call qc-pre-
compactness, is: for every neighbourhood U of 0 there exists a finite set
F ⊆ G such that

S ⊆ qc(F + U).

Our aim is to show that every qc-precompact set in a locally quasi-convex
group is precompact.

First we need a lemma which will ensure a completeness property:

Lemma 3.1. Let O1 and O2 be Hausdorff group topologies on an abelian
group G and assume that id : (G,O1) → (G,O2) is continuous. Assume
moreover that there exists a 0-neighbourhood basis in (G,O1) consisting of
O2-closed sets. If K ⊆ G is complete for O2, then it is also complete for O1.

Proof. This is Theorem 3.2.4 in [21]. Only the group, but not the vector
space structure is used in the proof.

Lemma 3.2. LetM be a family of subsets of an abelian topological group
G which has the following properties:

(a)
⋃
M∈MM = G,

(b) M is closed with respect to finite unions,
(c) M is closed with respect to finite sums.

Then the family of polars (M.)M∈M forms a 0-neighbourhood basis V for a
Hausdorff group topology τM on G∧, called the topology of uniform conver-
gence on elements of M.

Proof. (a) implies that
⋂
M. = {0}. It is a consequence of (b) that

M.
1 ∩M.

2 = (M1 ∪M2). ∈ V for all M1,M2 ∈ M. Fix M ∈ M. Because of
(a) and (b) we may assume that 0 ∈M . Since M ⊆ (1/2)(M +M), 2.7(iv)
implies (M +M). + (M +M). ⊆ ((1/2)(M +M)). ⊆M.. Hence V induces
a Hausdorff group topology on G∧.
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Example 3.3. The families F of finite sets, C of compact sets, and P
of precompact sets have the properties stated above and hence induce the
topologies τF , τC , and τP .

Notation 3.4. In a locally quasi-convex group G we consider the set S
of all qc-precompact subsets.

Lemma 3.5. The family S has the properties stated in 3.2.

Proof. Since all singletons belong to S, (a) is obviously satisfied. Let
S1, S2 ∈ S. We fix a neighbourhood U of 0 and choose a neighbourhood W
of 0 which satisfies W +W ⊆ U . By assumption, there exists a finite set F
such that Si ⊆ qc(F +W ) (i ∈ {1, 2}). Hence S1 ∪ S2 ⊆ qc(F +W ) and

S1+S2 ⊆ qc(F+W )+qc(F+W )
2.7(ii)

⊆ qc(F+F+W+W ) ⊆ qc(F+F+U).

Proposition 3.6. Let (G, τ) be a metrizable locally quasi-convex group.
Let τS be the topology of uniform convergence on members of S.

(i) τS coincides with the compact-open topology.
(ii) Every qc-precompact set of (G, τ) is precompact.

Proof. Since S ⊇ P ⊇ C ⊇ F , the identity mappings

(G∧, τS)→ (G∧, τP)→ (G∧, τC)→ (G∧, τF )

are continuous.
(i) We want to show that the first three topologies coincide. First we

shall show that every τC-compact set K is also compact with respect to τS .
Because of 2.10(i) and 2.9, we may assume that K = U. for some U ∈ U(0).

First we shall show that U. is precompact in (G∧, τS). Therefore, we fix
S ∈ S. Let W ∈ U(0) be quasi-convex such that W + W ⊆ (1/2)U . By
assumption, there exists a symmetric and finite set F with 0 ∈ F such that
S ⊆ qc(F +W ). This implies

(3) S. ⊇ (qc(F +W )).
2.3(i)
= (F +W ).

2.7(iii)

⊇ (F + F ). ∩ (W +W )..

By the continuity of (G∧, τC)→ (G∧, τF ), the set U. is also τF -compact,
hence there exists a finite set H ⊆ U. such that U. ⊆ H + (F + F ).. Since
H ⊆ U., we even have

(4) U. ⊆ H + ((F + F ). ∩ (U. + U.)).

Hence we obtain

(F+F ).∩(U.+U.)
2.7(iv)

⊆ (F+F ).∩((1/2)U). ⊆ (F+F ).∩(W+W ).
(3)

⊆ S.,

which enables us to reformulate (4):

U. ⊆ H + S..

This shows that U. is precompact in τS .
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(U., τS |U.) is complete according to 3.1: S. is closed in τF and hence in
τC , and (U., τC |U.) is compact (2.9), therefore complete.

Up to now we have shown that every τC-compact set is also compact
with respect to τS .

According to 2.10(ii), (G∧, τC) is a k-space. In order to show that (G∧, τC)
→ (G, τS) is continuous, it is sufficient to verify that on every subset K of
G∧ which is compact with respect to τC both topologies coincide. Since we
know that K is also compact with respect to τS , this indeed holds true
(because τC |K cannot be strictly coarser that τS |K). This proves (i).

(ii) For every S ∈ S, there exists a compact subset C ⊆ G such that
S. ⊇ C., which implies qc(S) ⊆ qc(C). Since qc(C) is precompact (2.3(ii)),
the assertion follows.

Theorem 3.7. In a locally quasi-convex group (G,O) all qc-precompact
sets are precompact.

Proof. Fix S ∈ S. Let W be a quasi-convex neighbourhood of 0 in G
and let π : (G,O)→ (G/W∞, Tπ(W )) be the canonical projection. 2.6 implies
π−1((1/n)π(W )) = π−1(π((1/n)W )) = (1/n)W+W∞ = (1/n)W by 2.5(iii),
which implies that π is continuous. By assumption, for every n ∈ N, there
exists a finite set Fn ⊆ G such that S ⊆ qc(Fn + (1/n)W ). We have

qc(Fn + (1/n)W )
2.2(ii)

⊆ π−1(qc(π(Fn + (1/n)W )))
2.6= π−1(qc(π(Fn) + (1/n)π(W )))

where qc denotes the quasi-convex hull in the quotient group (G/W∞,Tπ(W )).
From this we derive

π(S) ⊆ π(qc(Fn + (1/n)W )) ⊆ qc(π(Fn) + (1/n)π(W )).

Since the sets ((1/n)π(W )) form a neighbourhood basis of 0 in the locally
quasi-convex quotient group (G/W∞, Tπ(W )), the set π(S) is qc-precompact
(more precisely: qc-precompact). 3.6 implies that π(S) is precompact with
respect to Tπ(W ). As a consequence, there exists a finite set F ⊆ G with
π(S) ⊆ π(F ) + π(W ) and hence S ⊆ F + W + W∞ = F + W by 2.5(iii).
Since W was arbitrary, we have shown that S is precompact.

Example 3.8. Let G be an abelian topological group which has only the
trivial continuous character. Then G is qc-precompact, since G = qc({0}),
but it is not precompact, because the characters would then separate points.

Assume that the continuous characters of the abelian topological group
(G, τ) separate points. The family of sets (qc(U))U∈U(0) forms a neighbour-
hood basis of a Hausdorff locally quasi-convex group topology τqc on G (see
[7] or (6.18) in [1] for details).
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Corollary 3.9. Suppose that the continuous characters of the abelian
group (G, τ) separate points. Then the qc-precompact sets in (G, τ) coincide
with the precompact sets in (G, τqc).

Proof. Let S ⊆ G be qc-precompact in (G, τ). Fix a neighbourhood U ∈
Uτ (G). There exists a finite set F such that S ⊆ qc(F +U) ⊆ qc(F +qc(U)),
which shows that S is qc-precompact in (G, τqc). Now 3.7 implies that S is
precompact in (G, τqc).

Conversely, assume that S ⊆ G is precompact in (G, τqc). Fix U ∈ Uτ (0)
and choose W ∈ Uτ (0) such that qc(W ) + qc(W ) ⊆ qc(U). Since S is
precompact in (G, τqc), there exists a finite set F such that S ⊆ F + qc(W ).

Further, for F̃ := ({0} ∪ F ) + ({0} ∪ F ) we obtain

(F̃ + U). ⊆ F̃ . ∩ U. 2.3(i)
= F̃ . ∩ (qc(U)).

⊆ (({0} ∪ F ) + ({0} ∪ F )). ∩ (qc(W ) + qc(W )).
2.7(ii)

⊆ (F + qc(W ))..

This implies S ⊆ F+qc(W ) ⊆ qc(F̃+U) and shows that S is qc-precompact
in (G, τ).

Example 3.10. Let (G, τ) be a completely metrizable abelian group
such that the characters separate points, but assume that it is not locally
quasi-convex, e.g. `p with 0 < p < 1.

Since both (G, τ) and (G, τqc) are metrizable and τ is strictly finer than
τqc, there exists a sequence (xn) tending to 0 in τqc but not in τ . Then
S := {xn : n ∈ N} ∪ {0} is a compact subset of (G, τqc). According to 3.9, it
is qc-precompact in (G, τ). We shall show that it is not precompact. Since
(G, τ)→ (G, τqc) is continuous, S is closed in (G, τ) and hence complete. If
it were precompact, it would be compact, but then both topologies would
coincide on S. This contradiction shows that S is not precompact in (G, τ).

4. The Glicksberg theorem

Proposition 4.1. Let U be a neighbourhood of 0 in the abelian topolog-
ical group H and suppose that 〈U〉 = H. Then

id : (H∧, TU.)→ (H∧, τF )

is continuous and (H∧, TU.) is complete and metrizable. (A neighbourhood
basis of this group is given by the sets (1/n)U..

Proof. Observe first that (U.)∞ = {χ ∈ H∧ : 〈χ〉 ⊆ U.} = {χ ∈ H∧ :
χ(U) = {0}} = {0}. Hence TU. is a Hausdorff topology on H∧. Since TU. is
first countable, (H∧, TU.) is metrizable.

For fixed u ∈ U the homomorphism αH(u) : H∧ → T, χ 7→ χ(u), is
continuous with respect to TU. , because αH(u)(U.) ⊆ T+. Since we assumed
〈U〉 = H, the continuity of id : (H∧, TU.)→ (H∧, τF ) follows.
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In order to show that (H∧, TU.) is complete, we fix a Cauchy net (xi) in
(H∧, TU.). There exists i0 ∈ I such that xi − xi0 ∈ U. for all i ≥ i0. So we
may and do assume that xi ∈ U. for all i ∈ I. Hence we are in a position to
prove that (U., TU. |U.) is complete. This will follow from 3.1: Observe first
that the sets (1/n)U. = {χ ∈ H∧ : χ(U) ⊆ [−1/4n, 1/4n]} are closed in
(H∧, τF ). Further, the set U. is compact in τC (2.9) and hence also in τF .

In the following proposition we shall show that every weakly compact
S set is “qc-bounded”, i.e. for every neighbourhood U ∈ U(0) there exist a
finite set F and a natural number n such that S ⊆ F + qc(U + n. . . +U).

Proposition 4.2. Let G be a locally quasi-convex group and let S ⊆ G
be a weakly compact subset. For every U ∈ U(0) there exists a weakly compact
subset S0 ⊆ 〈U〉 and a finite set F such that S ⊆ F + S0. Further , there is
a natural number n ∈ N such that

S0 ⊆ qc(U + n. . . +U).

Proof. Let π : G → G/〈U〉 be the canonical projection. Since U is a
neighbourhood, the quotient G/〈U〉 is discrete. Further, π is continuous
if both groups are endowed with their weak topologies (2.1). So π(S) is
a weakly compact set in G/〈U〉. According to the Glicksberg theorem for
discrete groups, π(S) is finite. (For an easy proof of the Glicksberg theorem
for discrete groups, see [10].)

Hence there exists a finite set F ⊆ G such that π(S) = π(F ). The set
S0 := 〈U〉 ∩ (S − F ) is weakly compact, contained in 〈U〉, and satisfies
S ⊆ F + S0. Therefore, it is sufficient to show that S0 ⊆ qc(U + n. . . +U)
for some n ∈ N. H := 〈U〉 is an open and hence dually embedded subgroup
of (G, τ). 2.1(ii) implies that S0 is a weakly compact subset of H.

Consider the mapping

m : S0 ×H∧ → T, (x, χ) 7→ χ(x),

where S0 is endowed with the topology coming from H+ and H∧ is en-
dowed with the topology TU. . The continuity of m in the first coordi-
nate (when the second is fixed) holds by the definition of the weak topol-
ogy. The continuity in the second variable is a consequence of 4.1. But
S0 is compact and (H∧, TU.) is completely metrizable (4.1), which per-
mits us to apply Namioka’s theorem (Theorem 1.2 in [24]). Hence there
exists a dense Gδ-subset Y of H∧ such that m is continuous at every point
(x, χ) ∈ S0 × Y . We fix χ ∈ Y . Since S0 is compact, there exists n ∈ N
such that m(x, χ′)−m(x, χ) ∈ T+ for all x ∈ S0 and all χ′ ∈ χ+ (1/n)U..
This implies ψ(x) ∈ T+ for all x ∈ S0 and ψ ∈ (1/n)U., or equivalently,
S0 ⊆ ((1/n)U.)/. It remains to observe that ((1/n)U.)/ = qc(U + n. . . +U)
by 2.7(v).
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Remark 4.3. It is a well known fact in the theory of locally convex
vector spaces that every weakly bounded set is bounded.

Indeed, fix a weakly bounded subset S of a locally convex vector space
V and an absolutely convex neighbourhood U of 0. Every x ∈ S induces
a continuous linear function Tx : (V, TU )′ → R, φ 7→ φ(x). By assump-
tion, this family is pointwise bounded and since (V, TU )′ is a Banach space,
the uniform, boundedness principle implies that (Tx) is uniformly bounded,
which means that |Tx(φ)| = |φ(x)| ≤ c for a suitable constant c > 0 and all
φ ∈ U◦, the polar of U , and all x ∈ U . An equivalent formulation is that

S × (V, TU )′ → R, (x, φ) 7→ φ(x),

is jointly continuous at every point (x, 0) (x ∈ S).
This was generalized in the preceding proof for topological groups where

the uniform boundedness principle was replaced by Namioka’s theorem on
joint continuity.

Theorem 4.4. Let (G, τ) be a locally quasi-convex Schwartz group. Then
every weakly compact set is compact.

Proof. We fix a weakly compact set S ⊆ G.
First we want to show that S is precompact. Therefore, we fix a quasi-

convex neighbourhood W of 0. Since G is a Schwartz group, there exist a
quasi-convex neighbourhood U of 0 and a sequence (Fn) of finite subsets
such that

U ⊆ Fn + (1/2n)W for all n ∈ N,
in particular,

U + m. . . +U ⊆ Fm + (1/2m)W + m. . . +Fm + (1/2m)W(5)
2.5(i)

⊆ F̃m + (1/2)W

for F̃m = Fm + m. . . +Fm and all m ∈ N.
According to 4.2, there is a finite set F and a weakly compact set S0⊆〈U〉

such that S ⊆ F + S0; further, there is a natural number m ∈ N such that

S0 ⊆ qc(U + m. . . +U)
(5)

⊆ qc(F̃m + (1/2)W ).(6)

This implies

S ⊆ F + S0

(6)

⊆ F + qc(F̃m + (1/2)W )

⊆ qc((F ∪ F̃m) + (1/2)W ) + qc((F ∪ F̃m) + (1/2)W )
2.7(ii)

⊆ qc((F ∪ F̃m) + (1/2)W + (F ∪ F̃m) + (1/2)W )

⊆ qc((F ∪ F̃m) + (F ∪ F̃m) +W ).
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Since W was arbitrary, this shows that S is qc-precompact, and 3.7 implies
that it is precompact.

It remains to show that S is complete in (G, τ). Consider the identity
(G, τ) → G+, which is obviously continuous. (G, τ) is locally quasi-convex
and each quasi-convex set is weakly closed; further, S is weakly compact
and hence weakly complete, so 3.1 implies that (S, τ |S) is complete. The
assertion follows.

Comfort, Trigos-Arrieta and Wu introduced the following

Definition 4.5 ([11]). A MAP G is said to strongly respect compactness
if for every closed, metrizable subgroup N ≤ bG the following holds: if
A ⊆ G is such that φ(A) is compact (where φ : bG→ bG/N is the canonical
projection) then A · (N ∩G) is compact.

For the special case N = {0}, the condition reduces to respecting com-
pactness and hence every group which strongly respects compactness re-
spects compactness.

It was shown in [11] that every LCA groups strongly respects compact-
ness, and in [14] that for every Dieudonné complete space X the free abelian
group A(X) strongly respects compactness.

So it is natural to ask:

Question 4.6. Does every locally quasi-convex Schwartz group strongly
respect compactness?

Further, it was shown in [6] that every nuclear group respects countable
compactness and pseudocompactness. If, in addition, the group is complete,
then it respects functional boundedness.

Question 4.7. Do analogous results hold true for locally quasi-convex
Schwartz groups?

5. An application. Finally, we are going to apply the Glicksberg the-
orem for Schwartz groups to character groups of metrizable groups.

Proposition 5.1. Let G be a metrizable abelian group. Every weakly
compact subset of G∧ is equicontinuous.

Proof. According to 2.10(iii), the character group of G is a locally quasi-
convex Schwartz group. Hence 4.4 implies that every weakly compact set is
compact with respect to the compact-open topology. Applying 2.10(i), we
conclude that it must be equicontinuous.

Remark 5.2. This result has been proved by other methods in (2.3)(c)
of [23].

In (1.5) of [9] it has been shown that every σ(G∧, G)-compact subset of
the character group G∧ of a complete metrizable group is equicontinuous
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(σ(G∧, G) is the topology on G∧ induced by the mapping G∧ → TG, χ 7→
(χ(x))x∈G). This result is stronger, but requires completeness. The next
proposition will show that it is not possible to drop this assumption.

Proposition 5.3. A countable locally quasi-convex Hausdorff group
(G, τ) such that every σ(G∧, G)-compact subset of G∧ is equicontinuous must
be discrete.

Proof. Let H = G∧ be endowed with the σ(G∧, G) topology. Then H →
TG, χ 7→ (χ(x))x∈G, is an embedding and hence H is a metrizable (since
G was assumed to be countable) precompact group. By Theorem 2 in [8]
or (4.10) in [1], its character group is discrete. Let us show that H∧ ∼=
G. Algebraically, this is clear. So let us fix a compact subset K of H. By
assumption, K is equicontinuous, hence there exists a neighbourhood U of 0
such that K ⊆ U.. We may assume that K = U., because U. is σ(G∧, G)-
compact as well. This implies K. = {x ∈ G : χ(x) ∈ T+ ∀χ ∈ U.} = qc(U).
Since (G, τ) is locally quasi-convex, H∧ ∼= G and hence G is discrete.
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