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Louis H. Kauffman (Chicago, IL) and
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Abstract. This paper gives a new method for converting virtual knots and links to
virtual braids. Indeed, the braiding method given here is quite general and applies to
all the categories in which braiding can be accomplished. This includes the braiding of
classical, virtual, flat, welded, unrestricted, and singular knots and links. We also give
reduced presentations for the virtual braid group and for the flat virtual braid group (as
well as for other categories). These reduced presentations are based on the fact that these
virtual braid groups for n strands are generated by a single braiding element plus the
generators of the symmetric group on n letters.

0. Introduction. Just as classical knots and links can be represented
by the closures of braids, so can virtual knots and links be represented by
the closures of virtual braids [16]. Virtual braids have a group structure that
can be described by generators and relations [17], generalizing the generators
and relations of the classical braid group. This structure of virtual braids
is worth studying for its own sake. The virtual braid group is an extension
of the classical braid group by the symmetric group. In [13] a Markov The-
orem is proved for virtual braids, giving a set of moves on virtual braids
that generate the same equivalence classes as the virtual link types of their
closures. Such theorems are important for understanding the structure and
classification of virtual knots and links.

In the present paper we give a new method for converting virtual knots
and links to virtual braids. Indeed, the braiding method given in this paper
is quite general and applies to all the categories in which braiding can be
accomplished. This includes the braiding of classical, virtual, flat, welded,
unrestricted, and singular knots and links. We also give reduced presenta-
tions for the virtual braid group and for the flat virtual braid group (as
well as for other categories). These reduced presentations are based on the
fact that these virtual braid groups for n strands are generated by a single
braiding element plus the generators of the symmetric group on n letters.
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In a sequel to this paper we shall give a new way to establish the Markov
Theorem for virtual braids via the L-move [22]. The L-move has provided a
new approach to Markov Theorems in classical low dimensional topology, and
it performs a similar role for virtual link theory. We shall recover the Markov
Theorem of [13] and put it into the context of L-move theory. In that sequel
paper we shall discuss the same issues for welded and flat virtual braids.

This paper consists in four sections. In Section 1 we review the definitions
of virtual knot theory and flat virtual knot theory. We recall the interpreta-
tions of virtual knot theory in terms of abstract Gauss codes, and in terms
of stabilized embeddings (immersions for flat virtuals) in thickened surfaces.
We emphasize the role of the detour move and of the forbidden moves in the
structure of the theory. A useful feature of this introduction is our descrip-
tion of ribbon neighborhood representations for virtual links and virtual
braids. These representations (also called abstract link diagrams) give the
least surface embedding (with boundary) that can represent a given link
diagram. In Section 2 we give a new braiding algorithm for virtual braids.
This algorithm generalizes Alexander’s original algorithm, converting clas-
sical links to braid form. The present algorithm is quite general, and gives a
uniform braiding method for many different categories. Section 3 gives the
definition of the virtual braid group via generators and relations. We see the
virtual braid group on n strands, V Bn, as an extension of the classical braid
group Bn by the symmetric group Sn. The relationship between Sn and Bn
in V Bn is intricate. One remarkable property of these subgroups is that
V Bn can be generated by Sn and a single generator of Bn (a single twist,
e.g. the braid σ1). We give a reduced presentation of V Bn that incorporates
this reduction. In Section 4 we give a similar reduced presentation for the
flat virtual braid group FVn. The flat group FVn is a free product, with
extra relations, of two copies of the symmetric group Sn. In Section 5 we
detail reduced presentations for the welded braid group, the unrestricted vir-
tual braid group and the flat unrestricted braid group. Section 6 concludes
the paper with a topological interpretation of welded and flat unrestricted
braids in terms of tubes embedded in four-space. All of these topics and
formulations will be explored further in our subsequent papers.

For reference to previous work on virtual braids the reader should consult
[5, 6, 9–14, 16–18, 20, 21, 23, 25–28]. For work on welded braids, see [7, 13].
For work on singular braids, see [2, 3, 8, 19, 28]. It is worth remarking that
virtual braids embed in the Artin braids just as virtual knots embed in
classical knots. This fact may be most easily deduced from [21], and can
also be seen from [23] and [7]. We should also mention that this paper does
not deal with invariants of braids, or with invariants of (virtual) knots and
links that can be constructed by using braids. These topics will be dealt
with in a sequel to the present paper.
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1. Virtual knot theory. Virtual knot theory is an extension of classical
diagrammatic knot theory. In this extension one adds a virtual crossing (see
Figure 1) that is neither an over-crossing nor an under-crossing. A virtual
crossing is represented by two crossing arcs with a small circle placed around
the crossing point.

Figure 1 illustrates the simplest example of a virtual knot. Note the
appearance of a virtual crossing in the diagram. There is no way to represent
in the plane the Gauss code of this diagram (shown in the figure) without
entering a virtual crossing that is not registered in the code itself. Similar
remarks apply to links and virtual links, where the codes are collections of
sequences, one for each component of the link. One way to understand the
structure of virtual knots and links is to regard their diagrams as planar
representatives of possibly non-planar Gauss codes. The virtual crossings
are artifacts of the planar representation.
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Fig. 1. Virtual knot and Gauss code

Moves on virtual diagrams generalize the Reidemeister moves for classical
knot and link diagrams. See Figures 2 and 3. One can summarize the moves
on virtual diagrams as follows: The classical crossings interact with one
another according to the usual Reidemeister moves (Part A of Figure 2).
The first move of Part A is called planar isotopy move. Virtual crossings
interact with one another by Reidemeister moves that ignore the structure
of under or over crossings (Part B of Figure 2). The key move between virtual
and classical crossings is shown in Part C of Figure 2. Here a consecutive
sequence of two virtual crossings can be moved across a single classical
crossing. The moves containing virtual crossings (the moves in Part B and
C of Figure 2) will be called virtual Reidemeister moves. All diagrammatic
moves of Figure 2 are called augmented Reidemeister moves and they give
rise to an equivalence relation in the set of virtual knot and link diagrams,
called virtual equivalence or virtual isotopy or just isotopy.

The move in Part C of Figure 2 is a special case of the more general detour
move indicated in Figure 3. We will call it the special detour move. In the
detour move, an arc in the diagram that contains a consecutive sequence
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A

B

C

Fig. 2. Augmented Reidemeister moves for virtuals

of virtual crossings can be excised, and the arc re-drawn, transversal to
the rest of the diagram (or itself), adding virtual crossings whenever these
intersections occur. In fact, each of the moves in Parts B and C of Figure 2
can be regarded as special cases of the detour move of Figure 3.

The equivalence relation generated on virtual diagrams by virtual Rei-
demeister moves is the same as the equivalence relation on virtual diagrams
generated by the detour move. To see this: Obviously the moves in B and
C of Figure 2 are special cases of the detour move. On the other hand, by
similar arguments to those in the classical Reidemeister Theorem, it follows
that any detour move can be achieved by a finite sequence of local steps,
each one being a virtual Reidemeister move. Thus the general detour move
is itself the consequence of the collection of moves in Parts B and C of
Figure 2.

Fig. 3. The detour move
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A succinct description of virtual equivalence is that it is generated by
classical Reidemeister moves and the detour move.

We note that a move analogous to the move in Part C of Figure 2 but
with two real crossings and one virtual crossing is a forbidden move in virtual
knot theory. There are two types of forbidden moves: One with an over arc,
denoted F1, and another with an under arc, denoted F2. See [16] for expla-
nations and interpretations. Variants of the forbidden moves are illustrated
in Figure 4.

F
1

F
2

Fig. 4. The forbidden moves

We know [16, 9] that classical knot theory embeds faithfully in virtual
knot theory. That is, if two classical knots are equivalent through moves us-
ing virtual crossings, then they are equivalent as classical knots via standard
Reidemeister moves.

One can generalize many structures in classical knot theory to the virtual
domain, and use the virtual knots to test the limits of classical problems such
as the question whether the Jones polynomial detects knots. Counterexam-
ples to this conjecture exist in the virtual domain. It is an open problem
whether some of these counterexamples are isotopic to classical knots and
links.

There is a useful topological interpretation for virtual knot theory in
terms of embeddings of links in thickened surfaces. Regard each virtual
crossing as a shorthand for a detour of one of the arcs in the crossing through
a 1-handle that has been attached to the 2-sphere of the original diagram.
By interpreting each virtual crossing in this way, we obtain an embedding of
a collection of circles into a thickened surface Sg × I, where g is the number
of virtual crossings in the original diagram, Sg is a compact oriented surface
of genus g and I denotes the unit interval. We say that two such surface
embeddings are stably equivalent if one can be obtained from the other by
isotopy in the thickened surfaces, homeomorphisms of the surfaces and the
addition or subtraction of empty handles. Then we have the following.

Theorem ([16, 18, 5]). Two virtual link diagrams are equivalent if and
only if their corresponding surface embeddings are stably equivalent.

See 1.2 below for more discussion of surfaces and virtuals.
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1.1. Flat virtual knots and links. Every classical knot or link diagram
can be regarded as an immersion of cirlces in the plane with extra structure
at the double points. This extra structure is usually indicated by the over
and under crossing conventions that give instructions for constructing an
embedding of the link in three-dimensional space from the diagram. If we
take the diagram without this extra structure, it is the shadow of some link
in three-dimensional space, but the weaving of that link is not specified.
We call these shadow crossings flat crossings. It is well known that if one is
allowed to apply the Reidemeister moves to such a shadow (without regard
to the types of crossing since they are not specified) then the shadow can
be reduced to a disjoint union of circles. This reduction is no longer true in
the presence of virtual crossings.

More precisely, let a flat virtual diagram be a diagram with virtual cross-
ings and flat crossings. Two flat virtual diagrams are equivalent if there is
a sequence of generalized flat Reidemeister moves taking one to the other.
A generalized flat Reidemeister move is any move as shown in Figure 2,
but with flat crossings in place of classical crossings. Note that in studying
flat virtuals the rules for changing virtual crossings among themselves and
the rules for changing flat crossings among themselves are identical. How-
ever, detour moves as in Figure 2C are available only for virtual crossings
with respect to flat crossings and not the other way around. The study of
flat virtual knots and links was initiated in [16]. The category of flat virtual
knots is identical in structure to what are called virtual strings by V. Turaev
in [26].

We shall say that a virtual diagram overlies a flat diagram if the virtual
diagram is obtained from the flat diagram by choosing a crossing type for
each flat crossing in the virtual diagram. To each virtual diagram K there
is an associated flat diagram F (K) that is obtained by forgetting the extra
structure at the classical crossings in K. Note that if K is equivalent to
K ′ as virtual diagrams, then F (K) is equivalent to F (K ′) as flat virtual
diagrams. Thus, if we can show that F (K) is not reducible to a disjoint
union of circles, then it will follow that K is a non-trivial virtual link.

H DL

Fig. 5. Examples of flat knots and links
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Figure 5 ilustrates flat virtual links H and L and a flat virtual knot D.
The link H cannot be undone in the flat category because it has an odd
number of virtual crossings between its two components and each generalized
Reidemeister move preserves the parity of the number of virtual crossings
between components. The diagram D is shown to be a non-trivial flat virtual
knot using the filamentation invariant that is introduced in [10]. The diagram
L is also a non-trivial flat diagram. Note that it comes apart at once if we
allow the forbidden move.

The flat virtual diagrams present a strong challenge for the construction
of new invariants. It is important to understand the structure of flat virtual
knots and links. This structure lies at the heart of the comparison of classical
and virtual links. We wish to be able to determine when a given virtual
link is equivalent to a classical link. The reducibility or irreducibility of the
underlying flat diagram is the first obstruction to such an equivalence. See
[10, 11, 26] for a discussion of combinatorial invariants of flat virtual knots
based on the underlying Gauss code.

Just as virtual knots and links can be interpreted via stabilized em-
beddings of curves in thickened surfaces, flat virtuals can be interpreted as
stabilized immersions of curves in surfaces (no thickening required). See [12]
for applications of this point of view.

1.2. Ribbon neighborhood representations. As we have indicated above,
virtual knots and links can be represented as knots and links in thickened
surfaces. Another way to make this representation is to form a ribbon neigh-
borhood surface (sometimes called an abstract link diagram [14]) for a given
virtual knot or link, as illustrated in Figure 6. In this figure we show how
a virtual trefoil knot (two classical and one virtual crossing) has the clas-
sical crossings represented as diagrammatic crossings in disks, which are
connected by ribbons, while the virtual crossings are represented by ribbons
that pass over one another without interacting. The abstract link diagram
is shown embedded in three-dimensional space, but it is to be regarded as
specified without any particular embedding. Thus it can be represented with
the ribbons for the virtual crossings switched.

The abstract link diagram is a method for representing a virtual diagram
(as an embedding in a thickened surface) that is distinct from our description
in terms of handles given just before 1.1. These two points of view can be

Fig. 6. A ribbon neighborhood surface for the virtual trefoil
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Fig. 7. A special detour move

related to one another, and this will be done elsewhere. Here we note that
in the abstract link diagram any closed boundaries can be filled in with
disks or with any convenient orientable surface with boundary. This is in
accord with the representation of virtual knots and links as embeddings in
thickened surfaces, taken up to addition and subtraction of empty handles.

In Figure 7 we illustrate the abstract link diagram for one of the special
detour moves for virtuals (in braided form). Note again how this detour
move is accomplished via the freedom of movement of the virtual crossings
represented by non-interacting ribbons.

Fig. 8. Ribbon version of third Reidemeister move
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Fig. 9. Flat version of the detour move

In Figure 8 we illustrate a variant of the classical third Reidemeister
move in surface form. Note that we accomplish this move by adding a disk
and then performing an isotopy of the diagram on the surface.

Finally, in Figure 9 we illustrate the special detour move for flat vir-
tuals using abstract link diagrams. Note the stark difference here between
the virtual crossing structure and the immersion structure of the flat cross-
ings.

2. Braiding link diagrams. A virtual braid on n strands is a braid on
n strands in the classical sense, which may also contain virtual crossings.
The closure of a virtual braid is obtained by joining with simple arcs the
corresponding endpoints of the braid. The set of isotopy classes of virtual
braids on n strands forms a group. The virtual braid group structure will
be defined in the next section. In this section we shall describe a simple
and general method for converting any virtual knot or link diagram into the
closure of a virtual braid. That is, we shall give a new proof (see [13]) that
the classical Alexander Theorem [1, 4] generalizes to virtuals and, in fact,
to all the categories in which braids are constructed.

Theorem 1. Every (oriented) virtual link can be represented by a virtual
braid whose closure is isotopic to the original link.

Proof. The context of our braiding method is based on [22]. Any virtual
link diagram can be arranged to be in general position with respect to the
standard height function on the plane. This means that it does not contain
any horizontal arcs and it can be seen as a composition of horizontal stripes,
each containing either a local minimum or a local maximum or a crossing
(of classical or virtual type).
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Fig. 10. The braiding move

The idea of the braiding is on the one hand to keep the down-arcs of the
diagram that are oriented downwards and on the other hand to eliminate the
up-arcs that go upwards, and produce instead braid strands. First consider
up-arcs that occur between maxima and minima and contain no crossings.
Call such an arc in the diagram a free up-arc.

We eliminate a free up-arc as follows: We cut the arc at a point. We then
pull the two arcs, the upper upward and the lower downward, keeping their
ends aligned, and so as to obtain a pair of corresponding braid strands, which
create only virtual crossings with the rest of the diagram. See Figure 10. This
operation will be called a braiding move. The closure of the resulting tangle
is a virtual link diagram, obviously isotopic to the original one. Indeed, from
the free up-arc we created a stretched loop, which by the detour move is
isotopic to the up-arc.

Before performing these braiding moves, we prepare the diagram by ro-
tating all the crossings so that any arcs that pass through the crossings are
directed downwards. There are two types of rotation: If only one arc in the
crossing goes up, then we rotate the crossing by 90 degrees. If both arcs of
the crossing go up, then we rotate it by 180 degrees. See Figures 11 and 12.

A

A

B

B

C

C

D

D

~ =

Fig. 11. Full twist
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~ ~

Fig. 12. Half twist

These rotations may produce new free up-arcs. After adjusting all the cross-
ings, we then braid all the free up-arcs. The resulting tangle is the desired
virtual braid, the closure of which is isotopic to the original diagram.

The braiding algorithm given above will braid any virtual diagram and
thus it proves the analogue of the Alexander Theorem for virtual links.

In Figures 13 and 14 we illustrate an example. In Figure 13 we show a
virtual knot and its preparation for braiding by crossing rotation. In Figure
14 we braid the arcs of the diagram prepared in Figure 13. In the interme-
diate stage of Figure 14, we break each up-arc, and we name each pair of
endpoints with the same letter.

~ ~

Fig. 13. Prepare example

A

A

B

B

C

C

D

D
E

E

F
F

Fig. 14. Braid example

Remark 1. The braiding technique, described in this section, applies
equally well to flat virtual braids with no change in the description of the
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procedure. (See Section 4 for definition and further discussion on the flat
braid group.) For welded and unrestricted virtual braids the procedure is the
same with welded crossings replacing the role of virtual crossings. (See Sec-
tion 5 for definition and further discussion on the corresponding braid group
structures.) To use this procedure to create a classical braid from a classical
knot or link diagram, the braiding of arcs must be done so that the new
braid strands run entirely over the previously constructed tangle or entirely
under it. The same procedure applies also for singular braids [2, 3] with
singular crossings replacing the role of classical crossings. In this way, this
braiding method works in all the categories in which braids are constructed.

3. A reduced presentation for the virtual braid group. The set of
isotopy classes of virtual braids on n strands forms a group, the virtual braid
group denoted V Bn, that was introduced in [16]. The group operation is the
usual braid multiplication (form bb′ by attaching the bottom strand ends of b
to the top strand ends of b′). V Bn is generated by the usual braid generators
σ1, . . . , σn−1 and by the virtual generators v1, . . . , vn−1, where each virtual
crossing vi has the form of the braid generator σi with the crossing replaced
by a virtual crossing. See Figure 15 for illustrations. Recall that in virtual
crossings we do not distinguish between under and over crossing. Thus, V Bn
is an extension of the classical braid group Bn by the symmetric group Sn.

,

i

i i+1 n1

......

iv

i i+1 n1

......

Fig. 15. The generators of V Bn

Among themselves the braid generators satisfy the usual braiding rela-
tions:

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for j 6= i± 1.

Among themselves, the virtual generators are a presentation for the group
Sn, so they satisfy the following virtual relations:

v2
i = 1,

vivi+1vi = vi+1vivi+1,

vivj = vjvi for j 6= i± 1.

It is worth noting at this point that the virtual braid group V Bn does not
embed in the classical braid group Bn, since the virtual braid group contains
torsion elements and it is well known that Bn does not. The mixed relations
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between virtual generators and braiding generators are as follows:

σivj = vjσi for j 6= i± 1, viσi+1vi = vi+1σivi+1.

The second mixed relation will be called the special detour relation and it
is illustrated in Figure 7. Note that the following relations are also special
detour moves for virtual braids and they are easy consequences of the above:

σ−1
i vi+1vi = vi+1viσ

−1
i+1,

vivi+1σ
±
i = σ±i+1vivi+1,

σ±i vi+1vi = vi+1viσ
±
i+1.

This set of relations taken together define the basic isotopies for vir-
tual braids. Note that each relation is a braided version of a local vir-
tual link isotopy. The special detour relation is written equivalently as
σi+1 = vivi+1σivi+1vi. Notice that this relation is the braid detour move
of the ith strand around the crossing between the (i+1)st and the (i+2)nd
strand (see illustration in Figure 16) and it provides an inductive way of
expressing all braiding generators in terms of the first braiding generator σ1

and the virtual generators v1, . . . , vn−1.
In this section we give a reduced presentation for V Bn with generators

{σ1, v1, . . . , vn−1},
where we assume the defining relations:

(∗) σi+1 := (vi . . . v2v1)(vi+1 . . . v3v2)σ1(v2v3 . . . vi+1)(v1v2 . . . vi)

for i = 1, . . . , n − 2. In terms of braid diagrams, this relation is the braid
detour move of the strands 1, 2, . . . , i around the crossing σi+1. See right
hand illustration in Figure 16.

......

i i+1 i+2

= ......

i i+1 i+2

= ...

...
1 2

...

...

ni i+1 i+2

Fig. 16. Detouring the crossing σi+1

Remark 2. By the detour move, in the same way that a crossing can
be detoured to the first position of the braid, similarly any box in the braid
can be detoured to the first position (in fact, to any position); see Figure 17.
There it may undergo some changes and then it can be detoured back to its
original position in the braid. In particlular, a relation in V Bn occurring in



172 L. H. Kauffman and S. Lambropoulou

a box in the interior of a braid may be redundant. In order to omit it we
detour the box to the first position, there we apply a specific relation (see
statement of Theorem 2) and then we detour the result back, thus obtaining
the other side of the relation that we wanted to omit.

Fig. 17. Detouring a box

Theorem 2. The virtual braid group V Bn has the following reduced
presentation:

V Bn =
〈
σ1, v1, . . . , vn−1 | vivi+1vi = vi+1vivi+1, vivj = vjvi, j 6= i± 1,

v2
i = 1, 1 ≤ i ≤ n− 1, σ1vj = vjσ1, j > 2,

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2),

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1

〉
.

In Figure 18 we illustrate the last two reduced relations.

=

1 2 3 1 2 3

1 2 3 4

=

1 2 3 4

Fig. 18. The main reduced relations

Note that the relation

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2)

is equivalent to the relation

σ1(v1v2σ1v2v1)σ1 = (v1v2σ1v2v1)σ1(v1v2σ1v2v1),
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which reflects the braid relation σ1σ2σ1 = σ2σ1σ2. Also, the relation

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1

reflects the braid relation σ1σ3 = σ3σ1. Therefore:

• From the commuting relations σiσj = σjσi we only need to keep
σ1σ3 = σ3σ1.
• From the relations σiσi+1σi = σi+1σiσi+1 we only need to keep
σ1σ2σ1 = σ2σ1σ2.

Proof of Theorem 2. We note first that the special detour relations
viσi+1vi = vi+1σivi+1 can be omitted in the reduced presentation, since
they were used in the new defining relations (∗) for the σj ’s. The proof of
the reduced presentation is then a consequence of the three lemmas below.
The proofs of these lemmas are based on the simple geometric idea described
in Remark 2. In the proofs we underline the expressions that are used each
time in the next step.

Lemma 1. The mixed relations σivj = vjσi for i > 1 and j 6= i ± 1
follow from the defining relations (∗), the virtual relations and the reduced
relations σ1vj = vjσ1 for j > 2.

Proof. Substituting we have:

σivj
(∗)
= (vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)(v1v2 . . . vi−1)vj .

Since j 6= i ± 1 either j ≥ i + 2 or j ≤ i − 2. If j ≥ i + 2, then in the
above expression vj clearly commutes with all generators, thus σivj = vjσi.
If j ≤ i− 2 we have

σivj = (vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)(v1v2 . . . vi−1)vj

= (vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)

· (v1v2 . . . vj−1vjvj+1vjvj+2 . . . vi−1)

= (vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vj+1vj+2 . . . vi)

· (v1v2 . . . vj−1vj+1vjvj+1vj+2 . . . vi−1)

= (vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vjvj+1vj+2vj+1vj+3 . . . vi)

· (v1v2 . . . vi−1)

= (vi−1 . . . v2v1) (vi . . . vj+2vj+1vj . . . v3v2)σ1

· (v2v3 . . . vjvj+2vj+1vj+2vj+3 . . . vi)(v1v2 . . . vi−1)

= (vi−1 . . . v2v1)(vi . . . vj+3vj+2vj+1vj+2vj . . . v3v2)σ1(v2v3 . . . vi)

· (v1v2 . . . vi−1)
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= (vi−1 . . . vj+1vjvj−1 . . . v2v1)(vi . . . vj+3vj+1vj+2vj+1vj . . . v3v2)

· σ1(v2v3 . . . vi)(v1v2 . . . vi−1)

= (vi−1 . . . vj+2vj+1vjvj+1vj−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)

· (v1v2 . . . vi−1)

= (vi−1 . . . vj+2vjvj+1vjvj−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)

· (v1v2 . . . vi−1)

= vj(vi−1 . . . v2v1)(vi . . . v3v2)σ1(v2v3 . . . vi)(v1v2 . . . vi−1)

(∗)
= vjσi.

In the proofs of Lemmas 2 and 3 below we use repeatedly the following
virtual braid relations, which are easy consequences of the virtual relations:

(†) vivi−1 . . . vj+1vjvj+1 . . . vi−1vi = vjvj+1 . . . vi−1vivi−1 . . . vj+1vj ,

(‡) (v4v3v2v1) . . . (vi+2vi+1vivi−1)

= (v4 . . . vi+2)(v3 . . . vi+1)(v2 . . . vi)(v1 . . . vi−1).

Lemma 2. The braid relations σiσi+1σi = σi+1σiσi+1 for i > 1 follow
from the defining relations (∗), the virtual relations, the reduced relations
σ1vj = vjσ1 of Lemma 1, and the reduced relation

σ1(v1v2σ1v2v1)σ1 = (v1v2σ1v2v1)σ1(v1v2σ1v2v1).

Proof. Indeed, on the one hand we have

σiσi+1σi
(∗)
= [(vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)][(vivi−1 . . . v1)

· (vi+1 . . . v2)σ1(v2 . . . vi+1)(v1 . . . vi−1vi)][(vi−1 . . . v1)

· (vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)]

(†)
= (vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(vi . . . v2v1v2 . . . vi)(vi+1 . . . v2)σ1

· (v2 . . . vi+1)(vi . . . v2v1v2 . . . vi)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)

= (vi−1 . . . v1)(vi . . . v2)σ1(v1v2 . . . vi)(vi+1vi . . . v2)σ1

· (v2 . . . vivi+1)(vi . . . v2v1)σ1(v2 . . . vi)(v1 . . . vi−1)

(†)
= (vi−1 . . . v1)(vi . . . v2)σ1v1(vi+1 . . . v3v2v3 . . . vi+1)σ1

· (vi+1 . . . v3v2v3 . . . vi+1)v1σ1(v2 . . . vi)(v1 . . . vi−1)

= (vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1v1v2σ1(v3 . . . vi+1)(vi+1 . . . v3)

· v2v1σ1(v3 . . . vi+1)(v2 . . . vi)(v1 . . . vi−1)

= (vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1v1v2σ1v2v1σ1(v3 . . . vi+1)

· (v2 . . . vi)(v1 . . . vi−1)
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= (vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)v1v2σ1v2v1σ1v1v2σ1v2v1

· (v3 . . . vi+1)(v2 . . . vi)(v1 . . . vi−1)

= (vi−1 . . . v1)(vi . . . v1)(vi+1 . . . v2)σ1v2v1σ1v1v2σ1

· (v2 . . . vi+1)(v1 . . . vi)(v1 . . . vi−1)

= A.

On the other hand, with similar manipulations we obtain

σi+1σiσi+1 = · · ·
= (vi . . . v1)(vi+1 . . . v2)(vi+1 . . . v3)σ1v2v1σ1v1v2σ1

· (v3 . . . vi+1)(v2 . . . vi+1)(v1 . . . vi)

= B.

But

(vi . . . v1)(vi+1vivi−1 . . . v2)(vi+1vi . . . v3)

= (vi . . . v1)vi+1vivi+1(vi−1 . . . v2)(vi . . . v3)

= (vivi−1vi−2 . . . v1)vivi+1vi(vi−1 . . . v2)(vi . . . v3)

= vivi−1vi(vi−2 . . . v1)(vi+1 . . . v2)(vi . . . v3)

= vi−1vivi−1(vi−2 . . . v1)(vi+1vi . . . v2)(vi . . . v3)

= (vi−1vivi+1)(vi−1 . . . v1)(vi . . . v2)(vi . . . v3)

...

= (vi−1vivi+1)(vi−2vi−1vi) . . . (v1v2v3)v1v2

= (vi−1vi−2 . . . v1)(vivi−1 . . . v2)(vi+1vi . . . v3)v1v2

= (vi−1 . . . v1)(vi . . . v1)(vi+1 . . . v2).

Hence, and by the symmetry of the underlined expressions in A and B, we
have shown that B = A.

Lemma 3. The braid relations σiσj = σjσi for i > 1, i < j and j 6=
i+ 1 follow from the defining relations (∗), the virtual relations, the reduced
relations σ1vj = vjσ1 of Lemma 1, and the reduced relation

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1.

Proof. Indeed, on the one hand we have

σiσj
(∗)
= [(vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)]

· [(vj−1 . . . vi+2vi+1vi . . . v1)(vj . . . v2)σ1(v2 . . . vj)(v1 . . . vj−1)]
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= (vj−1 . . . vi+2)(vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)vi+1

· (v1 . . . vi−1)(vi . . . v1)(vj . . . v2)σ1(v2 . . . vj)(v1 . . . vj−1)

(†)
= (vj−1 . . . vi+2)(vi−1 . . . v1)(vi . . . v2)σ1

· (v2 . . . vivi+1)(vi . . . v2v1v2 . . . vi)(vj . . . v2)σ1

· (v2 . . . vj)(v1 . . . vj−1)

(†)
= (vj−1 . . . vi+2)(vi−1 . . . v1)(vi . . . v2)σ1(vi+1 . . . v3v2v3 . . . vi+1)

· (v1 . . . vi)(vj . . . vi+3vi+2vi+1 . . . v2)σ1(v2 . . . vj)(v1 . . . vj−1)

= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1

· (v2 . . . vi+1)vi+2(v1v2 . . . vi)(vi+1vi . . . v2)σ1(v2 . . . vj)(v1 . . . vj−1)

(†)
= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1

· (v2 . . . vi+2)v1(vi+1 . . . v3v2v3 . . . vi+1)σ1(v2 . . . vj)(v1 . . . vj−1)

= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1

· (v2v3 . . . vi+2)(vi+1 . . . v3)v1v2σ1(v3 . . . vi+1)(v2 . . . vj)(v1 . . . vj−1)

(†)
= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)σ1

· v2(vi+2 . . . v4v3v4 . . . vi+2)v1v2σ1(v3 . . . vi+1)(v2 . . . vj)(v1 . . . vj−1)

= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)(vi+2 . . . v4)

· σ1v2v3v1v2σ1(v4 . . . vi+2)(v3 . . . vi+1)(v2 . . . vj)(v1 . . . vj−1).

But

(v4 . . . vi+2)(v3 . . . vi+1)(v2 . . . vivi+1 . . . vj)(v1 . . . vi−1vi . . . vj−1)
(‡)
= (v4v3v2v1) . . . (vi+2vi+1vivi−1)(vi+1vi+2 . . . vj)(vi . . . vj−1)

= (v4v3v2v1) . . . (vi+1vivi−1vi−2)vi(vi+2vi+1vivi−1)(vi+2 . . . vj)(vi . . . vj−1)

= · · ·
= v2(v4v3v2v1) . . . (vi+1vivi−1vi−2)(vi+2vi+1vivi−1)(vi+2 . . . vj)

· (vivi+1 . . . vj−1)

= v2(v4v3v2v1) . . . (vi+1vivi−1vi−2)vi−1(vi+2vi+1vivi−1)

· (vi+2 . . . vj)(vi+1 . . . vj−1)

= · · ·
= v2v1(v4v3v2v1) . . . (vi+1vivi−1vi−2)(vi+2vi+1vivi−1)(vi+2vi+3 . . . vj)

· (vi+1 . . . vj−1)
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= v2v1(v4v3v2v1) . . . (vi+1vivi−1vi−2)vi+1(vi+2vi+1vivi−1)

· (vi+3 . . . vj)(vi+1 . . . vj−1)

= · · ·
= v2v1v3(v4v3v2v1) . . . (vi+1vivi−1vi−2)(vi+2vi+1vivi−1)(vi+3 . . . vj)

· (vi+1vi+2 . . . vj−1)

= · · ·
= v2v1v3v2(v4v3v2v1) . . . (vi+2vi+1vivi−1)(vi+3 . . . vj)(vi+2 . . . vj−1).

Thus

σiσj = (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)

· (vi+2 . . . v4)σ1(v2v3v1v2σ1v2v1v3v2)(v4v3v2v1) . . . (vi+2vi+1vivi−1)

· (vi+3 . . . vj)(vi+2 . . . vj−1)

= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)(vi+2 . . . v4)

· (v2v3v1v2σ1v2v1v3v2)σ1(v4v3v2v1) . . . (vi+2vi+1vivi−1)

· (vi+3 . . . vj)(vi+2 . . . vj−1)

(‡)
= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3v2v1)

· (vi+2 . . . v4v3v2)σ1v2v1v3v2σ1(v4 . . . vi+2)(v3 . . . vi+1)(v2 . . . vi)

· (v1 . . . vi−1)(vi+3 . . . vj)(vi+2 . . . vj−1)

= (vj−1 . . . vi+2)(vj . . . vi+3)

· (vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3v2v1)(vi+2 . . . v4v3v2)

· σ1(v2v3v4 . . . vi+2vi+3 . . . vj)

· (v1v2 . . . vi+1vi+2 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

(‡)
= (vj−1 . . . vi+2)(vj . . . vi+3)(vi−1vivi+1vi+2) . . . (v1v2v3v4)(v2v1v3v2)

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

= · · ·
= (vj−1 . . . vi+2)vi+1(vj . . . vi+3)(vi−1vivi+1vi+2) . . . (v1v2v3v4)(v1v3v2)

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

= · · ·
= (vj−1 . . . vi+2)vi+1vi(vj . . . vi+3)(vi−1vivi+1vi+2) . . . (v1v2v3v4)(v3v2)

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

= · · ·
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= (vj−1 . . . vi)(vj . . . vi+3)vi+2(vi−1vivi+1vi+2) . . . (v1v2v3v4)v2

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

= · · ·
= (vj−1 . . . vi)(vj . . . vi+3)vi+2vi+1(vi−1vivi+1vi+2) . . . (v1v2v3v4)

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

(‡)
= (vj−1 . . . vi)(vj . . . vi+1)(vi−1 . . . v1)(vi . . . v2)(vi+1 . . . v3)(vi+2 . . . v4)

· σ1(v2 . . . vj)(v1 . . . vj−1)σ1(v2 . . . vi)(v1 . . . vi−1)

= (vj−1 . . . v1)(vj . . . v2)σ1(vi+1 . . . v3)(vi+2 . . . v4)(v2 . . . vj)(v1 . . . vj−1)

· σ1(v2 . . . vi)(v1 . . . vi−1).

On the other hand, we have

σjσi
(∗)
= (vj−1 . . . v1)(vj . . . v2)σ1(v2 . . . vj)(v1 . . . vj−1)(vi−1 . . . v1)(vi . . . v2)

· σ1(v2 . . . vi)(v1 . . . vi−1).

Therefore, in order that σiσj = σjσi it suffices to show that the underlined
expressions above are equal. Indeed, we have

(vi+1 . . . v3)(vi+2 . . . v4)(v2v3 . . . vj)(v1 . . . vj−1)

= (vi+1 . . . v3v2)(vi+2 . . . v4)(v3v4 . . . vi+2vi+3 . . . vj)(v1 . . . vj−1)

(†)
= (vi+1 . . . v3v2)(v3 . . . vi+1vi+2vi+1 . . . v3)(vi+3 . . . vj)(v1 . . . vj−1)

(†)
= (v2 . . . vivi+1vi . . . v2)(vi+2vi+1 . . . v3)(vi+3 . . . vj)(v1v2 . . . vj−1)

= (v2 . . . vi+1vi+2vi+3 . . . vj)(vi . . . v2)v1

· (vi+1 . . . v3)(v2v3 . . . vi+1vi+2 . . . vj−1)

(†)
= (v2 . . . vj)(vi . . . v2v1)(v2 . . . vivi+1vi . . . v2)(vi+2 . . . vj−1)

(†)
= (v2 . . . vj)(v1 . . . vi−1vivi−1 . . . v1)(vi+1vi . . . v2)(vi+2 . . . vj−1)

= (v2 . . . vj)(v1 . . . vj−1)(vi−1 . . . v1)(vi . . . v2).

By Lemmas 1, 2, and 3 the proof of Theorem 2 is now concluded.

4. A reduced presentation for the flat virtual braid group. The
flat virtual braids were introduced in [17]. As with the virtual braids, the set
of flat virtual braids on n strands forms a group, the flat virtual braid group,
denoted FVn. The generators of FVn are the virtual crossings v1, . . . , vn−1
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Fig. 19. The generators of FVn

and the flat crossings c1, . . . , cn−1, which—as already said in 1.1—can be
seen as immersed crossings. See Figure 19.

So, flat crossings and virtual crossings both represent geometrically the
generators of the symmetric group Sn. But the mixed relations between
them are not symmetric (see below). In fact, the flat virtual braid group is
the quotient of the virtual braid group V Bn modulo the relations σ2

i = 1
for all i. Thus, FVn is the free product of two copies of Sn, modulo the
set of mixed relations specified below. Note that FV2 = S2 ∗ S2 (no extra
relations), and it is infinite.

Recall that in Section 1.1 we discussed flat virtual knots and links, and
that we pointed out that this category is equivalent to the category of virtual
strings developed in [26]. Just so, the flat virtual braids are the appropriate
theory of braids for the category of virtual strings. Every virtual string is
the closure of a flat virtual braid.

The virtual generators satisfy among themselves the virtual relations.
Similarly, the flat generators satisfy among themselves the following flat
relations:

c2
i = 1,

cici+1ci = ci+1cici+1,

cicj = cjci for j 6= i± 1.

The mixed flat relations between flat and virtual generators are as follows:

civj = vjci for j 6= i± 1,

vici+1vi = vi+1civi+1.

The second mixed relation will be called the special detour flat relation
and it is illustrated in Figure 9. Then, as for the virtual braids, we have
for the flat crossings the inductive defining relations ci+1 = vivi+1civi+1vi,
which leads to the defining relations

ci+1 := (vi . . . v2v1)(vi+1 . . . v3v2)c1(v2v3 . . . vi+1)(v1v2 . . . vi)

for i = 2, . . . , n− 1. In terms of flat braid diagrams, this relation is the flat
braid detour move of the strands 1, 2, . . . , i − 1 around the flat crossing ci.
In complete analogy to the virtual braid group we now have the following:
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Theorem 3. The flat virtual braid group FVn has the following reduced
presentation:

FVn =
〈
c1, v1, . . . , vn−1 | vivi+1vi = vi+1vivi+1, vivj = vjvi, j 6= i± 1,

c2
1 = 1, v2

i = 1, 1 ≤ i ≤ n− 1, c1vj = vjc1, j > 2,

(v1c1v1)(v2c1v2)(v1c1v1) = (v2c1v2)(v1c1v1)(v2c1v2),

c1(v2v3v1v2c1v2v1v3v2) = (v2v3v1v2c1v2v1v3v2)c1

〉
.

5. Other categories. Welded braids were introduced in [7]. They
satisfy the same isotopy relations as the virtuals, but for welded braids
one also allows one of the two forbidden moves, the move (F1) of Figure 4,
which contains an over arc and one virtual crossing. One can consider welded
knots and links in this way, and the explanation for the choice of moves lies
in the fact that the first forbidden move preserves the combinatorial fun-
damental group. This is not true for the other forbidden move (F2). The
corresponding welded braid group on n strands, WBn, has the same gen-
erators and relations as the virtual braid group, but with the extra rela-
tions

(F1) viσi+1σi = σi+1σivi+1.

Figure 4 illustrates a variant of this relation. Just as in the virtual braid
group, the braiding generators σ2, . . . , σn−1 of the welded braid group can
be written in terms of σ1 and the welded generators v1, . . . , vn−1. We can
then obtain a reduced presentation for WBn with generators

{σ1, v1, . . . , vn−1}

and the defining relations

(∗) σi+1 := (vi . . . v2v1)(vi+1 . . . v3v2)σ1(v2v3 . . . vi+1)(v1v2 . . . vi).

By the box detour trick (see Remark 2) we can easily reduce the set of extra
relations (F1) to the basic relation

v1σ2σ1 = σ2σ1v2,

which with the substitution σ2 = v1v2σ1v2v1 is equivalent to the relation

v2σ1v2v1σ1 = v1v2σ1v2v1σ1v2.

Thus we have:

Theorem 4. The welded braid group WBn has the following reduced
presentation:
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WBn =
〈
σ1, v1, . . . , vn−1 | vivi+1vi = vi+1vivi+1, vivj = vjvi, j 6= i± 1,

v2
i = 1, 1 ≤ i ≤ n− 1, σ1vj = vjσ1, j > 2,

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2),

v1(v2σ1v2v1σ1) = (v2σ1v2v1σ1)v2,

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1

〉
.

Note now that the relations (F1) can be regarded as a way of detour-
ing sequences of classical crossings over welded crossings, via the inductive
relations

vi+1 = σ−1
i σ−1

i+1viσi+1σi,

which, by induction, lead to the defining relations

(∗∗) vi+1 := (σ−1
i . . . σ−1

i )(σ−1
i+1 . . . σ2

−1)v1(σ2 . . . σi+1)(σ1 . . . σi)

for i = 1, . . . , n−2. By the box detour trick we reduce the relations involving
welded generators. For example, the welded relations reduce to the following
two basic ones:

v1v2v1 = v2v1v2 and v1v3 = v3v1.

Thus, we obtain the following reduced presentation for WBn with a single
welded generator.

Theorem 5. The welded braid group WBn has the following reduced
presentation:

WBn =
〈
v1, σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, j 6= i± 1,

v2
1 = 1, v1σj = σjv1, j > 2,

(σ1v1σ
−1
1 )(σ−1

2 v1σ2)(σ1v1σ
−1
1 ) = (σ−1

2 v1σ2)(σ1v1σ
−1
1 )(σ−1

2 v1σ2),

v1(σ−1
2 σ−1

1 σ−1
3 σ−1

2 v1σ2σ3σ1σ2) = (σ−1
2 σ−1

1 σ−1
3 σ−1

2 v1σ2σ3σ1σ2)v1

〉
.

Another generalization of the virtual braid group is obtained by adding
both types of forbidden moves (recall Figure 4). We call this the unrestricted
virtual braid group, denoted UBn. It is known that any classical knot can be
unknotted in the virtual category if we allow both forbidden moves [15, 24].
Nevertheless, linking phenomena still remain. The unrestricted braid group
itself is non-trivial, deserving further study.

By adding both types of forbidden moves:

viσi+1σi = σi+1σivi+1 (F1) and σiσi+1vi = vi+1σiσi+1 (F2)

and using the defining relations (∗) we obtain a reduced presentation for
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UBn with generators σ1, v1, . . . , vn−1, which is in fact a quotient of the
corresponding reduced presentation of WBn by the second forbidden move:

σ1σ2v1 = v2σ1σ2.

Theorem 6. The unrestricted virtual braid group has the following re-
duced presentation:

UBn =
〈
σ1, v1, . . . , vn−1 | vivi+1vi = vi+1vivi+1, vivj = vjvi, j 6= i± 1,

v2
i = 1, 1 ≤ i ≤ n− 1, σ1vj = vjσ1, j > 2,

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2),

v1(v2σ1v2v1σ1) = (v2σ1v2v1σ1)v2,

(σ1v1v2σ1v2)v1 = v2(σ1v1v2σ1v2),

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1

〉
.

Just as in the case of welded braids, we can also give a reduced pre-
sentation with one virtual generator and n − 1 braiding generators. For
unrestricted virtual braids, there are two possible such reduced presenta-
tions, depending upon using either the first or the second forbidden move in
performing the detour substitutions. In the (F1) case the defining relations
are given by (∗∗) and, thus, the reduced presentation is a quotient of the
corresponding presentation of the welded braid group by the relation

σ1σ2v1σ
−1
2 σ−1

1 = σ−1
1 σ−1

2 v1σ2σ1.

Since in this presentation v2 is defined via (F1) in terms of v1, the reader
will note that the transcription of this last relation appears to be a mix-
ture of (F1) and (F2). Similarly we could have started with (F2) and ob-
tained first an analogue of the welded braid group and then, adding (F1),
obtained another reduced presentation of the unrestricted virtual braid
group.

Finally, we define the flat unrestricted braid group, denoted FUn, to be
the quotient of the flat virtual braid group FVn (see Theorem 3) by the
forbidden moves of FVn (see Figure 9):

cici+1vi = vi+1cici+1.

Note that for the flat virtual braid group there is only one type of forbidden
move.

Theorem 7. The flat unrestricted braid group FUn has the following
reduced presentation:
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FUn =
〈
c1, v1, . . . , vn−1 | vivi+1vi = vi+1vivi+1, vivj = vjvi, j 6= i± 1,

c2
1 = 1, v2

i = 1, 1 ≤ i ≤ n− 1, c1vj = vjc1, j > 2,

(v1c1v1)(v2c1v2)(v1c1v1) = (v2c1v2)(v1c1v1)(v2c1v2),

v1(v2c1v2v1c1) = (v2c1v2v1c1)v2,

c1(v2v3v1v2c1v2v1v3v2) = (v2v3v1v2c1v2v1v3v2)c1

〉
.

Remark 3. Note that the flat unrestricted braid group FUn is a free
product with amalgamation of two copies of the symmetric group Sn. An
unreduced presentation of FUn can be configured to be symmetric with
respect to the roles of the generators ci and vi. As a result there is another
reduced presentation that can be obtained from the reduced presentation
above by interchanging the roles of vi and ci.

Remark 4. Note that the flat unrestricted braid group FUn is also a
quotient of the welded braid group WBn (see Theorem 4), obtained by set-
ting all the squares of the braiding generators equal to 1. Thus there is
a surjective homomorphism from WBn to FUn. This homomorphism is a
direct analogue of the standard homomorphism from Bn to the symmetric
group Sn. Figure 20 gives a commutative diagram of these relationships.
Note that all structures map eventually to the symmetric group Sn. In the
case of the virtual braids and their quotients, this map to the symmetric
group takes the same value on virtual generators vi and braiding genera-
tors σi. The intermediate mappings to FVn and FUn preserve these differ-
ences.

�������)

-

---

S
S
S
S
S
S
Sw

�������

?

??

Sn

FUnFVn

UBnWBnV BnBn

Fig. 20. A diagram of relationships

6. Welded braids and tubes in four-space. The welded braid group
WBn can be interpreted as the fundamental group of the configuration space
of n disjoint circles trivially embedded in three-dimensional space R3. This
group (the so-called motion group of disjoint circles) can, in turn, be inter-
preted as a braid group of tubes embedded in R3 × R = R4. These braided
tubes in four-space are generated by two types of elementary braiding. In
Figure 21, we show diagrams that can be interpreted as immersions of tubes
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Fig. 21. Tubular correspondences

in three-space. Each such immersion is a projection of a corresponding em-
bedding in four-space. The first two diagrams of Figure 21 each illustrate a
tube passing through another tube. When tube A passes through tube B we
make a corresponding classical braiding crossing with arc A passing under
arc B. The four-dimensional interpretation of tube A passing through tube
B is that: As one looks at the levels of intersection with R3 × t for different
values of t, one sees two circles A(t) and B(t). As the variable t increases, the
A(t) circle (always disjointly embedded from the B(t) circle) moves through
the B(t) circle. This process is illustrated in Figure 22.

While the classical crossing in a welded braid diagram corresponds to
a genuine braiding of the tubes in four-space (as described above), the vir-
tual crossing corresponds to tubes that do not interact in the immersion
representation (see again Figure 21). These non-interacting tubes can pass
over or under each other, as these local projections correspond to equivalent
embeddings in four-space.

Fig. 22. Braiding of circles

It is an interesting exercise to verify that the moves in the welded braid
group each induce equivalences of the corresponding tubular braids in four-
space. In particular, the move (F1) induces such an isotopy, while the for-
bidden move (F2) does not. For more on this subject, the reader can consult
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[25] and also [18] and the references therein. The basic idea for this corre-
spondence is due to Satoh [25], where torus embeddings in four-space are
associated with virtual knot diagrams.

Consider now the surjection WBn → FUn from the welded braid group
to the flat unrestricted braids. Flat unrestricted braids can be represented
by immersions of tubes in three-space as illustrated also in Figure 21. There
we have indicated a decorated immersion of two intersecting tubes as the
correspondent of the flat classical crossing in FUn. One must specify the
rules for handling these immersions in order to obtain the correspondence.
We omit that discussion here, but point out the interest in having a uniform
context for the surjection of the welded braids to the flat unrestricted braids.
The flat unrestricted braids carry the distinction between braided flat and
welded flat crossings and otherwise keep track of the relative permutations
of these two types of crossing.
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