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Linking and coincidence invariants

by

Ulrich Koschorke (Siegen)

Abstract. Given a link map f into a manifold of the form Q = N × R, when can it
be deformed to an “unlinked” position (in some sense, e.g. where its components map to
disjoint R-levels)? Using the language of normal bordism theory as well as the path space
approach of Hatcher and Quinn we define obstructions ω̃ε(f), ε = + or ε = −, which often
answer this question completely and which, in addition, turn out to distinguish a great
number of different link homotopy classes. In certain cases they even allow a complete
link homotopy classification.

Our development parallels recent advances in Nielsen coincidence theory and also
leads to the notion of Nielsen numbers of link maps.

In the special case when N is a product of spheres sample calculations are carried out.
They involve the homotopy theory of spheres and, in particular, James–Hopf invariants.

1. Introduction. Throughout this paper let Mm1
1 , Mm2

2 , Nn and Q
denote smooth manifolds (of the indicated dimensions) without boundary,
where M1, M2 are compact and N is connected, and let

f = f1 q f2 : M1 qM2 → Q

be a link map (i.e. the continuous maps f1 and f2 have disjoint images).
Two such link maps are called link homotopic (compare Milnor [M]) if

they can be deformed continuously into each other through a family of link
maps.

Question. When can f be unlinked? More precisely: when is f link
homotopic to a link map which is trivial in some sense?

In classical link theory two approaches to such problems have played a
central role: consider either appropriate intersections or (over)crossings.
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If there is some canonical notion of what a “trivial” or “faraway” position
of f1 should be, and if a homotopy F1 moves f1 to such a position, measure
the intersection locus C of F1 with f2 in some way. (For instance, if the
domain of f1 is a sphere and F1 is a nulhomotopy this approach leads to the
standard procedure of intersecting f2 with a singular ball spanned by f1.)

If Q has the special product form Q = N×R there are natural choices F+

and F− for such a homotopy: we can move f1 in the positive (or negative)
R-direction until the whole image of f1 lies above (or below) the image of
f2 with respect to the R-levels. The intersection of such a homotopy with
f2 corresponds to the overcrossing (or undercrossing, resp.) locus C± of the
projections f ′1 and f ′2 to N .

Whether we base our approach on intersections or over/undercrossings,
the resulting unlinking obstruction will be all the more powerful if we reg-
ister all relevant geometric data concerning the locus C or C± as carefully
as possible. One rather obvious strategy is to use the language of normal
bordism theory. It keeps track of the relations between the stable tangent or
normal bundles of the intersection or crossing locus on one hand, and of the
manifolds M1, M2, and N on the other hand. In very special situations this
amounts just to framed bordism (involving stably parallelized manifolds),
but in general normal bordism is much more widely applicable and flexi-
ble, and a much stronger tool than e.g. oriented bordism (if it applies) or
(co)homology with twisted coefficients.

An additional refinement was inspired by the fundamental work of Hatch-
er and Quinn [HQ]. It is easily overlooked that every coincidence point x
comes naturally with a path, namely the constant path at the common value
f ′1(x) = f ′2(x). But this datum carries very valuable information. Keeping
track of it and accommodating our obstruction accordingly in a normal
bordism group of a suitable path space will in certain situations supply the
necessary data needed to construct a homotopy which deforms maps away
from one another or which unlinks link maps.

In Sections 2 and 3 of this paper we define and study unlinking obstruc-
tions

ω̃+(f), ω̃−(f) ∈ Ωm1+m2−n(E(f); ϕ̃)

which often lead to a complete answer to our original question (see The-
orem 2.13 below). They lie in a normal bordism group of an appropriate
path space E(f). In many interesting cases this space has an extremely rich
topology. For example, already the set π0(E(f)) of path-components may
be huge (there is a natural bijection onto a certain well studied quotient of
π1(N), the so-called Reidemeister set). The resulting decomposition of our
invariants allows us to define Nielsen numbers N+(f) and N−(f) of a link
map: just count the (finitely many) essential path-components of E(f), i.e.
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those where the corresponding components of ω̃±(f) are nontrivial. This
procedure replaces the often unwieldy ω̃ε-obstruction (which e.g. lies in a
group varying with f) by the numerical link homotopy invariant Nε which
vanishes precisely if ω̃ε does, ε = + or −.

A similar point of view was recently introduced into the study of fixed
point and coincidence phenomena and led to a coherent Nielsen coincidence
theory involving manifolds with arbitrary orientation behaviour and dimen-
sion combinations (cf. [K5]).

Our approach is also closely related to recent work of A. Pilz (cf. [P]).
His invariant αw(f) registers the decomposition of the bordism class of the
intersection F+ t f2 (in framed, oriented or unoriented bordism, Ωfr

∗ , Ω∗
or N—as the situation may permit) into components indexed by the Rei-
demeister set. This is strong enough to yield a link homotopy classification
result when m1 +m2 = n (cf. [P, Theorem 5.4]).

If M1 and M2 are sufficiently highly connected then natural isomor-
phisms (exhibited by Hatcher and Quinn) allow us to interpret ω̃± itself as
a link homotopy invariant. It takes values in the (m1 + m2 − n)th framed
bordism group of the loop space ΛN of N .

In particular, this applies when M1 and M2 are spheres of dimensions
≤ n − 2. In this case there is also a well defined addition of link maps and
ω̃± turns out to be compatible with this and other natural operations (cf.
5.2–5.4 below). Moreover a simple construction (using “meridians”) supplies
many examples of link maps with interesting ω̃±-values (cf. 5.7–5.11). Thus
our invariants—originally conceived as unlinking obstructions—turn out to
also distinguish a great number of different link homotopy classes. In some
situations they even lead to a complete classification.

Theorem 1.1. Assume 1 ≤ m1 + 1,m2 ≤ 2n−m1−m2− 2 and that N
is stably parallelized. Then two base point preserving link maps

f, f̂ : Sm1 q Sm2 → N × R
are link homotopic (in the base point preserving sense) if and only if [fi] =
[f̂i ] ∈ πmi(N × R), i = 1, 2, and if in addition

ω̃+(f) = ω̃+(f̂ ) ∈ Ωfr
m1+m2−n(ΛN)

(or , equivalently , ω̃−(f) = ω̃−(f̂ )).

This is proved in Section 5; the relation between base point preserving
and base point free link homotopy theory is indicated in Remarks 3.9 and 4.2.

For an illustration we consider the case when N is a product of spheres.
In Section 4 we reduce the calculation of the framed bordism groups of the
loop space ΛN (which accommodate ω̃±(f)) via James–Hopf invariants to
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standard methods of the stable homotopy theory of spheres. This can be
used in many concrete settings such as

Example 1.2 (N = S1×S2×S8). The (base point free) link homotopy
class of a link map

f = f1 q f2 : S6 q S7 → S1 × S2 × S8 × R
is completely determined by the homotopy classes

[f1] ∈ [S6, N × R] ∼= Z12, [f2] ∈ [S7, N × R] ∼= Z2

of the component maps and by the (base point free) unlinking obstruction
[ω̃+(f)] which lies in

Ωfr
2 (ΛN)/∼ ∼=

( ∞⊕

−∞
(Ωfr

2 ⊕Ωfr
1 ⊕Ωfr

0 )
)
/∼ ∼= (Z2 ⊕ Z2 ⊕ Z)[X±1]/∼.

Here two (formal) Laurent polynomials (with coefficients in the group Z2 ⊕
Z2 ⊕ Z) are equivalent if they differ by the factor Xj for some integer j.

This follows from Theorems 1.1, 4.1, Remarks 3.9, 4.2 and the tables of
Toda [T].

Example 1.3 (N = (S1)3 × S2). Both for ε = + and ε = − every
element of

Ωfr
1 (Λ((S1)3 × S2)) ∼=

⊕

j∈Z3

(Z2 ⊕ Z)

occurs as the ω̃ε-value of a (base point preserving) link map

f : S3 q S3 → (S1)3 × S2 × R.

This and further examples will be discussed at the end of Section 5.

2. The unlinking obstructions ω̃± and ω±. In this section we adapt
the coincidence invariants ω̃ and ω constructed in [K5] to the setting of link
maps. We obtain the obstructions ω̃ε and ωε where ε stands for the symbols
+ or − (and, in formulas, for the factors +1 and −1).

Throughout the remainder of this paper (unless mentioned otherwise)

(2.1) f = f1 q f2 : M1 qM2 → N × R
is a link map into a manifold of the indicated product form, and fi = (f ′i , f

′′
i )

is the corresponding decomposition via the projections to N and R, resp.,
i = 1, 2. Consider also the product manifold M := M1 × M2 with the
dimension m := m1 +m2 and the projections pi : M →Mi, i = 1, 2.
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Our discussion will center around the space (∗)

(2.2) E(f) := {((x1, x2); θ) ∈M × P (N) | θ(0) = f ′1(x1), θ(1) = f ′2(x2)}
where P (N) is the set of all continuous paths θ : [0, 1]→ N , endowed with
the compact-open topology. Let pr : E(f) → M denote the obvious fiber
projection.

If the map

(f ′1 ◦ p1, f
′
2 ◦ p2) = f ′1 × f ′2 : M = M1 ×M2 → N ×N

is smooth and transverse to the diagonal

(2.3) ∆ := {(y, y) ∈ N ×N | y ∈ N}
then the ε-coincidence locus

(2.4) Cε(f) := {(x1, x2) ∈M1×M2 | f ′1(x1) = f ′2(x2), εf ′′1 (x1) < εf ′′2 (x2)}
(where “f2 overcrosses f1” if ε = + and f2 undercrosses f1 if ε = −) is a
closed smooth (m− n)-dimensional manifold, equipped with the map

(2.5) g̃ε : Cε(f)→ E(f)

which sends (x1, x2) ∈ Cε(f) to ((x1, x2), constant path at f ′1(x1) = f ′2(x2))
and with a stable vector bundle isomorphism

(2.6) gε : TCε(f)⊕ g̃∗ε(pr∗((f ′1 ◦ p1)∗(TN))) ∼= g̃∗ε(pr∗(TM))

(since the normal bundle ν(Cε(f),M) is canonically isomorphic to the
bundle (f ′1 ◦ p1)∗(TN)).

If f is an arbitrary link map, apply this construction to an approximation
of f ′1 × f ′2 which is smooth and transverse to ∆.

In any case the resulting triples (C+, g̃+, g+) and (C−, g̃−, g−) determine
well defined normal bordism classes

(2.7) ω̃+(f), ω̃−(f) ∈ Ωm−n(E(f); ϕ̃)

as in [K5, §4]; here

(2.8) ϕ := (f ′1 ◦ p1)∗(TN)− TM, ϕ̃ := pr∗(ϕ)

are the relevant (virtual) coefficient bundles over M and E(f), respectively.
Clearly we have

(2.9) ω̃(f ′1 ◦ p1, f
′
2 ◦ p2) = ω̃+(f) + ω̃−(f),

where the left hand term is the full coincidence invariant discussed in [K5].
Indeed, all we have done here is to decompose the coincidence locus (f ′1 ×
f ′2)−1(∆) disjointly into its overcrossing and undercrossing parts.

(∗) In [HQ] (and [K5], resp.) this space is denoted by E(f ′1, f
′
2) (and by E(f ′1 ◦ p1,

f ′2 ◦ p2), resp.).
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If we forget the path space aspect of our data and keep track only of the
over- or undercrossing manifolds, together with the way they sit in M and
with their “twisted framings” gε, we obtain the weaker invariants

(2.10) ωε(f) := [Cε, inclusion, gε] = pr∗(ω̃ε(f)) ∈ Ωm+n(M ;ϕ).

Definition 2.11. The link map f is ε-unlinked if

ε(f ′′1 (x1)− f ′′2 (x2)) > 0 for all (x1, x2) ∈M1 ×M2

(compare 2.1) or, equivalently, if the image f1(M1) in N × R lies strictly
above (or below, resp.) f2(M2) with respect to the R-coordinate when ε = +
(or ε = −, resp.).

We say that f is ε-unlinkable if f is link homotopic to an ε-unlinked link
map.

Proposition 2.12. If f is ε-unlinkable, then ω̃ε(f) = 0 and therefore
also ωε(f) = 0.

Proof. If f is ε-unlinked, then Cε(f) = ∅ and hence ω̃ε(f) = 0. Moreover,
recall from [K5, §§3–4] that homotopies of fi, i = 1, 2, induce isomorphisms
of normal bordism groups which are compatible with the full coincidence
invariants ω̃ and—if we are dealing with link homotopies—preserve even
the decomposition ω̃ = ω̃+ + ω̃−.

The methods of Hatcher and Quinn yield the following converse result.

Theorem 2.13. Assume that m1 + 1,m2 ≤ 2n − m1 − m2 − 2 or
m1,m2 + 1 ≤ 2n −m1 −m2 − 2. If after a suitable link homotopy f1 and
f2 project to smooth immersions into N (this holds in particular if M1, M2

and N are stably parallelizable), then for ε = + and ε = − we have the
following : f is ε-unlinkable precisely when ω̃ε(f) = 0.

Proof. Our claim is valid for f and ε if and only if it holds for f2qf1 and
−ε (compare the discussion of (4.5) in [K5]). After possibly interchanging f1

and f2 we may therefore assume the first of the above-mentioned inequalities.
Apply the generalized Whitney trick construction of the proof of The-

orem 2.2 in [HQ] to the immersions F1 = Fε (compare 2.14 below, or the
beginning of our introduction) and f2, as well as to a nulbordism of the
over/undercrossing data of Cε ≈ F1 t f2. The resulting deformation will
move F1, f2 to maps F̂1, f̂2 with disjoint images. Since the key steps of the
construction are based on approximations we can make sure that it does
not interfere with F1|(M1 × {0, 1}) and faraway R-levels. Thus f is link
homotopic to f1 q f̂2 and, via F̂1, to an ε-unlinked link map.

Remark 2.14. The previous proof is based on a generally valid alterna-
tive interpretation of our invariants. Let

F1 = (f ′1, F
′′
1 ) : M1 × [0, 1]→ N × R
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be a homotopy which deforms F1(−, 0) = f1 monotonically in the positive
(or negative) R-direction until F1(−, 1)q f2 is ε-unlinked, ε = + (or ε = −,
resp.). Then F1 and f2 define a pair of maps from M1×M2× [0, 1] to N ×R
whose coincidence manifold is essentiallyCε(f), with compatible coincidence
data. Thus the resulting normal bordism class corresponds to εω̃ε(f) via the
isomorphism induced by the projections M × (0, 1) ∼M and N × R ∼ N .

This alternative (“intersection”) approach allows us sometimes to extend
our invariants to link maps into more general target manifolds Q (e.g. if
M1 = Sm1 and πm1(Q) = πm1+1(Q) = 0).

Now consider the special case that N has the form N = N ′ × R. Then
ω̃(f ′1 ◦ p1, f

′
2 ◦ p2) = 0 since the extra R-direction allows us to move f ′1 ◦ p1

and f ′2 ◦ p2 apart. Thus ω̃+(f) = −ω̃−(f) (cf. 2.9). In fact, we can use
the projection along any ray R+ · v in R × R (where v 6= 0) to study the
over/undercrossing behaviour of link maps into N ′ × R× R.

Example 2.15 (Classical link maps). Here Mi = Smi , N = Rn, n > 0,
and f : Sm1 q Sm2 → Rn+1. Because of the linear structure on Rn+1 the
fiber projection pr : E(f) → Sm1 × Sm2 is a homotopy equivalence so that
ω̃+(f) = −ω̃−(f) is precisely as strong as the invariant (cf. 2.10)

ω+(f) ∈ Ωfr
m−n(Sm1 × Sm2) ∼= Ωfr

m−n ⊕Ωfr
m1−n ⊕Ωfr

m2−n.

In this decomposition we use the isomorphism Ωfr
∗ (Smi × X) ∼= Ωfr

∗ (X) ⊕
Ωfr
∗−mi(X) defined by the projection to X and by transverse intersection

with {∗i} ×X; furthermore, ω+(f) corresponds to the triple

(α(f), ω+(f | (Sm1 q {∗2})), ω+(f | ({∗1} q Sm2)))

consisting of the “generalized linking number” α(f) (cf. [K2]) and of the
overcrossing invariants of one sphere with just the base point of the other
sphere.

In the dimension range of Theorem 2.13 the second and third components
of this triple vanish; thus f is ε-unlinkable or, equivalently, link nulhomotopic
precisely if α(f) = 0. Actually, N. Habegger and U. Kaiser [HK] have shown
that the α-invariant classifies f completely up to link homotopy in the more
general range 2(m1 +m2) ≤ 3n− 2; m1,m2 < n. (Compare also [S].)

In contrast to this example we will see below that ω̃ε(f) is often consid-
erably stronger than ωε(f).

3. Nielsen numbers of link maps and other link homotopy in-
variants. In order to get a better understanding of our invariants and of
the groups in which they lie we need to recall a few facts about the Hurewicz
fibration pr : E(f)→M (compare [K5, §2]).

Pick points x0 = (x10, x20) ∈M = M1 ×M2, y0 ∈ N and paths σi in N
joining y0 to f ′i(xi0), i = 1, 2. This choice determines a homotopy equivalence
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between the space Λ(N, y0) of loops in N starting and ending in y0, and the
fiber pr−1(x0) which consists of all paths in N from f ′1(x10) to f ′2(x20). We
compose with the fiber inclusion to obtain

(3.1) incl : Λ(N, y0)→ E(f).

Proposition 3.2 (cf. [K5, 2.1]). The induced map

incl∗ : π1(N, y0) = π0(Λ(N, y0))→ π0(E(f))

yields a bijection from the so-called Reidemeister set

R :=
π1(N, y0)

σ1∗f ′1∗(π1(M1, x10)) σ2∗f ′2∗(π1(M2, x20))

onto the set of path-components of E(f) (here σi∗ :π1(N, f ′i(xi0))→π1(N, y0)
denotes the obvious isomorphism induced by σi, i = 1, 2).

Thus the rich geometry of E(f) manifests itself already in a possibly very
large number of path-components. However, since the coincidence manifold
Cε is compact, only finitely many path-components A ∈ π0(E(f)) are es-
sential, i.e. the corresponding direct summand

(3.3) ω̃ε,A(f) = [Cε,A(f) := g̃−1(A), g̃|Cε,A(f), g|]
of

(3.4) ω̃ε(f) ∈ Ωm−n(E(f); ϕ̃) =
⊕

A∈π0(E(f))

Ωm−n(A; ϕ̃|A)

is nonzero.
The (nonnegative, integer) Nielsen number

(3.5) Nε(f) := #{A ∈ π0(E(f)) | ω̃ε,A(f) 6= 0}
counts these essential path-components of E(f) (or, equivalently, the es-
sential Reidemeister classes). This is a refinement of the concept of Nielsen
numbers studied in [K5], and we have

N(f ′1 ◦ p1, f
′
2 ◦ p2) ≤ N+(f) +N−(f).

Clearly Nε(f) vanishes if and only if ωε(f) does. In other respects the
Nielsen number is much cruder than the invariant ω̃ε(f) which, however,
has the drawback that it lies in a group which varies with f .

Proposition 3.6. If two link maps are link homotopic, then they have
the same Nielsen numbers.

Proof. According to [K5] (see the discussion of 4.4) any homotopy F

from f to another link map f̂ yields a homotopy equivalence E(f) ∼ E(f̂)
and an isomorphism of normal bordism groups which maps the full coinci-
dence invariant ω̃(f ′1◦p1, f

′
2◦p2) to ω̃(f̂ ′1◦p1, f̂

′
2◦p2). If F is a link homotopy

this isomorphism preserves also the decomposition ω̃ = ω̃+ + ω̃−.
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The Nielsen number Nε(f), ε = + or −, is an example of a link homotopy
invariant extracted from ω̃ε(f) and taking values in a set which is indepen-
dent of f . Another such example is ωε(f) (in the special case where N is
stably parallelizable and hence ϕ = −TM , cf. 2.10 and 2.8). The invariant
αw(f) of Alexander Pilz (cf. [P, 3.9]) can be interpreted as a third such ex-
ample: assume f preserves base points (e.g. fi(xi0) = (y0, (−1)i), i = 1, 2) so
that the contributions ω̃ε,A(f) of the various path-componentsA ∈ π0(E(f))
to ω̃ε(f) (cf. 3.3 and 3.4) can be parametrized by the Reidemeister set R
(cf. 3.2) which remains unchanged by base point preserving homotopies;
then

(3.7) αw(f) = {[C+,A(f)]} ∈
⊕

A∈R
Ωm−n

where Ω∗ stands for framed or (un)oriented bordism according as M1, M2

and N are framed or (un)oriented, respectively. Thus αw(f) neglects e.g.
the map g̃|C+,A(f) but still registers the decomposition of the overcrossing
locus C+(f) into various “Reidemeister (or Nielsen) classes”. If m = n, this
enables A. Pilz to obtain full classification results (cf. [P, 5.4]).

Next we recall a result of Hatcher and Quinn (cf. [HQ, 3.1]) which allows
us sometimes to interpret ω̃ε(f) itself (without any loss of information) as
a link homotopy invariant.

Proposition 3.8. Assume that M1 and M2 are (m− n+ 1)-connected.
Then the map incl (cf. 3.1), together with a choice of an orientation of ϕ at
x0, induces an isomorphism

incl∗ : Ωfr
m−n(Λ(N, y0))

∼=−→Ωm−n(E(f); ϕ̃).

The framed bordism class

incl−1
∗ (ω̃ε(f)) ∈ Ωfr

m−n(Λ(N, y0)), ε = + or −,
is invariant under base point preserving link homotopies.

Proof. Our choices (including those which are incorporated in 3.1) in-
duce isomorphisms

Ωfr
m−n(Λ(N, y0)) ∼= Ωfr

m−n(pr−1(x0)) ∼= Ωm−n(pr−1(x0); ϕ̃|)
and so does the fiber inclusion; this follows via a cell-by-cell argument ap-
plied to (projected) maps into M .

Similarly if F is a base point preserving link homotopy, the (generic)
coincidence manifold Cε(F ) ⊂ M × I can be retracted to {x0} × I and
hence yields the required bordism in the fiber pr−1(x0) ∼ Λ(N, y0).

Remark 3.9. If n > 0, then every (free) link homotopy class can be
represented by a base point preserving link map f (i.e. f1(x01) 6= f2(x02)
are fixed preassigned points in N × R).
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If two such link maps f and f̂ are related by a free link homotopy F ,
then we deduce (under the assumptions of Proposition 3.8 and provided
m1,m2 ≤ n− 2) that

incl−1
∗ (ω̃ε(f̂)) = sign(τ1) · sign(τ2) · c(τ1, τ2)∗(incl−1

∗ (ω̃ε(f))),

where τi = F ′i (x0i,−) denotes the loop traced out inN during the homotopy,
i = 1, 2, and the self-homotopy equivalence c(τ1, τ2) of Λ(N, y0) is defined
by

c(τ1, τ2)(%) = σ1τ
−1
1 σ−1

1 %σ2τ2σ
−1
2 , % ∈ Λ(N, y0);

moreover, sign(τi) equals +1 or −1 according as τi preserves the orientation
of N or not.

4. Products of spheres. In this section we consider the special case

N = (S1)q × S2 × · · · × Srl = (S1)q ×N ′,
where

N ′ =
l∏

i=1

Sri , 2 ≤ r1 ≤ r2 ≤ · · · ≤ rl, 1 ≤ l <∞,

denotes the subproduct formed by the simply connected factor spheres. Pick
base points ∗1 = 1 ∈ S1; ∗ri ∈ Sri , i = 1, . . . , l; y′0 = (∗r1 , . . . , ∗rl) ∈ N ′ and
y0 = (1, . . . , 1, y′0) ∈ N . In view of Proposition 3.8 the following sample
calculation frequently determines the group in which our ω̃-invariants lie.

Theorem 4.1. There are canonical isomorphisms of Ωfr
∗ -modules

Ωfr
∗ (Λ(N, y0)) ∼=

⊕

j∈Zq
Ωfr
∗ (Λ(N ′, y′0))

and
h =

⊕
hk : Ωfr

∗ (Λ(N ′, y′0))
∼=−→
⊕

k∈Nl
Ωfr
∗−d(k),

where d(k) :=
∑l
i=1 ki(ri − 1) for k = (k1, . . . , kl) ∈ Nl and N denotes the

set of natural numbers including 0.

Thus the Pontryagin–Thom isomorphism Ωfr
∗ ∼= πS∗ makes the framed

bordism groups of the loop space of N accessible to standard methods of
stable homotopy theory.

Proof. Consider Zq as a discrete topological subspace of Rq and apply
the exponential map Rq → (S1)q to the straight path in Rq joining 0 to any
point in Zq. This yields the homotopy equivalences Zq ∼ Λ((S1)q) and

Λ(N, y0) ∼ Zq × Λ(N ′, y′0)

as well as the first isomorphism claimed above.
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The second isomorphism generalizes a geometric construction which was
discussed in detail in [K5] and which is closely related to James–Hopf in-
variants.

Given a framed bordism class ν of Λ(N ′, y′0), consider the adjoint

v = (v1, . . . , vl) : (V × R ∪ {∞},∞)→ (N ′ = Sr1 × . . .× Srl , y′0)

of a generic representative. Then for i = 1, . . . , l the inverse image Wi :=
v−1
i (∗′i) of a point ∗′i 6= ∗ri in Sri is a smoothly embedded framed submani-

fold of V × R. As in [K5, §8] (see also [KS]) we may even assume that this
embedding projects to a generic framed (ri−1)-codimensional immersion e′i
into V . Its ki-fold self-intersection yields a ki(ri − 1)-codimensional immer-
sion ekii which is again framed since the intersection branches are ordered
by the R-component of the embedding Wi ⊂ V × R.

Now for k = (k1, . . . , kl) ∈ Nl define hk(ν) to be the framed bordism class
of the transverse intersection of the immersions ek1

1 , . . . , e
kl
l in V . A straight-

forward generalization of the proofs in [K5, §8] (where the case l = 1 was
discussed) shows that hk is well defined and h =

⊕
hk is bijective.

Remark 4.2. The theorem above leads to an interpretation in terms of
Laurent polynominals:

Ωfr
∗ (Λ(N, y0)) ∼=

⊕

(j1,...,jq)∈Zq
Ωfr
∗ (Λ(N ′, y′0))Xj1

1 · · ·Xjq
q

= Ωfr
∗ (Λ(N ′, y′0))[X±1

1 , . . . ,X±1
q ].

Expressed in this language the operation c(τ1, τ2)∗ discussed in Remark 3.9
amounts just to multiplication by a fixed monomial Xj1

1 · · ·X
jq
q . Thus we

conclude (under the assumptions of Proposition 3.8 and provided m1,m2 ≤
n−2) that incl−1

∗ (ω̃ε(f)), considered up to multiplication by such monomials,
is invariant under base point free link homotopies.

(Note the analogy to Alexander polynomials.)

5. Spherical link maps. In this section we discuss the case where Mi

is the sphere Smi , equipped with a base point x0i, i = 1, 2. Also choose base
points y01 6= y02 and y0 in N and paths σ1 and σ2 in N joining y0 to y01

and y02, respectively. Let BLMm1,m2(N × R) denote the set of base point
preserving link homotopy classes of base point preserving link maps

f = f1 q f2 : Sm1 q Sm2 → N × R
(i.e. fi(x0i) = (y0i, 0)), and define

(5.1) BLM(i) := {[f ] ∈ BLMm1,m2(N × R) | 0 = [fi] ∈ πmi(N × R)},
i = 1, 2.
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Assume 1 ≤ m1,m2 ≤ n − 2 throughout this section. Then link maps
as well as link homotopies can be deformed until the ith component avoids
{y0i±1} × R ⊂ N × R, i = 1, 2. Thus we can add two link maps f and f̂ by
“stacking them on top of each other” with respect to the height given by the
R-component in N×R: shift the link map f̂ in the positive R-direction until
it is entirely above f and join base points along {y0i} × R. The resulting
addition makes BLMm1,m2(N × R) into a semigroup with null element.

According to Proposition 3.8 our choices determine isomorphisms allow-
ing us to identify our ω̃-invariants with elements in a fixed group which
does not vary with f any more (for a more explicit description see the proof
below). This greatly simplifies statements about link homotopy invariance,
additivity, value sets etc.

Proposition 5.2. Assume that 1 ≤ m1,m2 ≤ n − 2. Then for ε = +
and ε = − the ω̃ε-obstruction determines a well defined map

ω̃ε : BLMm1,m2(N × R)→ Ωfr
m−n(Λ(N, y0)).

For all [f ], [f̂ ] ∈ BLMm1,m2(N × R) we have

ω̃+([f ] + [f̂ ]) = ω̃+([f ]) + ω̃+([f̂ ]) + ω̃(f ′1 ◦ p1, f̂
′
2 ◦ p2),

ω̃−([f ] + [f̂ ]) = ω̃−([f ]) + ω̃−([f̂ ]) + ω̃(f̂ ′1 ◦ p1, f
′
2 ◦ p2),

where the last summand denotes the coincidence invariant (compare 2.9 and
[K5, 4.4] and 2.4) of the indicated projections to N .

In particular , ω̃ε|BLM(i) is a homomorphism of semigroups; its image
is a group and is invariant under both the left and the right action of π1(N)
on Ωfr

m−n(Λ(N, y0)), i = 1, 2.

Proof. Let us first specify a representative g̃ε : Cε(f)→ Ωm−n(Λ(N, y0))
of ω̃ε(f). Since m−n+1 < mi the projection of Cε(f) ⊂ Sm1 ×Sm2 to Smi

generically avoids the (antipodal) point −x0i and hence allows a retraction
%i in Smi to the base point x0i, i = 1, 2. For any x ∈ Cε(f) the loop g̃ε(x)
can then be described as the composite of paths

y0
σ1−→ y01

f ′1(%1(x,−))−1

−−−−−−−−→ f ′1(x) = f ′2(x)
f ′2%2(x,−)−−−−−→ y02

σ−1
2−→ y0.

If we compose f with a base point preserving reflection r of Sm1 or Sm2

we change the framing of Cε(f) and its location in Sm1 × Sm2 but not the
homotopy class of g̃ε. Thus

(5.3) ω̃ε(f1 ◦ r q f2) = ω̃ε(f1 q f2 ◦ r) = −ω̃ε(f).

If τi is a loop in N starting and ending at x0i (and generically avoiding
fi±1) and we use it to modify fi via the standard operation, we conclude
for the resulting link map that

(5.4) ω̃ε(τ1∗(f1)q τ2∗(f2)) = ±(σ1τ
−1
1 σ−1

1 )ω̃ε(f)(σ2τ2σ
−1
2 ).
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Finally note that the overcrossing locus Cε(f + f̂ ) consists of Cε(f) ∪
Cε(f̂ ) and of the full coincidence locus of (f ′1, f̂

′
2). The proposition follows.

Next consider the invariant

˜̃ωε : BLMm1,m2(N × R)→ Ωfr
m−n(Λ(N, y0))×

2⊕

i=1

πmi(N, y0i)

which enriches ω̃ε(f) by the homotopy classes [f ′1] and [f ′2] of the component
maps f1 and f2 of f . In view of 2.9, ˜̃ω+ determines ˜̃ω−.

Corollary 5.5. For both ε = + and ε = − we have

˜̃ωε(BLMm1,m2(N × R)) = ω̃ε(BLM(1) ∩ BLM(2))×
2⊕

i=1

πmi(N, y0i)

(compare 5.1).

Proof. Given i = 1, 2, let

ci : πmi(N, y0i) ∼= πmi(N − {y0i±1}, y0i)→ BLM(i)

be defined by adding the constant map with value y0i±1 ∈ N = N × {0} ⊂
N × R. Then we have the bijection

(5.6) (BLM(1) ∩ BLM(2))×
2⊕

i=1

πmi(N, y0i)→ BLMm1,m2(N × R),

(f, [f̂1], [f̂2]) 7→ c2([f̂2])+f+c1([f̂1]). Here the order of summation is chosen
in such a way that according to 5.2 the sum has the same ω̃+-value as f .
The corollary follows.

Proof of Theorem 1.1 of the introduction. Clearly the assertion holds if
m1 = 0.

Thus assume that m1 ≥ 1. Then also m1,m2 ≤ n − 2. In view of the
decomposition 5.6 we have to prove our claim only for f, f̂ ∈ BLM(1) ∩
BLM(2) with ω̃+(f)= ω̃+(f̂). Put (−f̂) := f̂1 ◦ rqf̂2 (cf. 5.3). Then according
to 5.2 we have

ω̃+(f + (−f̂ )) = ω̃+(f)− ω̃+(f̂ ) = 0.

Thus it follows from Theorem 2.13 that f + (−f̂ ) (and similarly (−f̂ ) + f̂ )
is link nulhomotopic. Therefore

f ∼ f + ((−f̂ ) + f̂ ) ∼ (f + (−f̂ )) + f̂ ∼ f̂ .
Finally, we discuss a simple construction which produces many link maps

with interesting ω̃±-invariants.
Consider the case where N = N1×N2 is the product of two manifolds of

dimensions n1, n2 ≥ 1. Then the base points take the form y0i = (y1
0i, y

2
0i),

i = 1, 2, and we may assume that y1
01 6= y1

02 and y2
01 6= y2

02.
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Also consider the link map

(5.7) e = e1 q e2 : Sn1 qN2 → N × R
formed by the embedding

e2 : N2
∼= {y1

02} ×N2 × {0} ⊂ N × R
and by a meridian (of radius %, say) which is based at (y01, 0) and which lies
in N1 × {y2

01} × R (so that (y1
02, y

2
01) is the only over/undercrossing point).

Note that e1 can be contracted within a normal ball of e2 with center at
(y1

02, y
2
01, 0).

Thus composition with e yields a map

(5.8) πm1(Sn1)× πm2(N2)→ BLM(1)

(compare 5.1). Moreover the inclusion e′2 induces a monomorphism

e′2∗ : Ωfr
∗ (Λ(N2, y

2
02))→ Ωfr

∗ (Λ(N, y0)).

Proposition 5.9. Assume 1 ≤ m1,m2 ≤ n1 + n2 − 2. Then for all
[f1] ∈ πm1(Sn1), [f2] ∈ πm2(N2) and for both ε = + and ε = − we have

ω̃ε(e1 ◦ f1 q e2 ◦ f2) = ±deg(f1) · e′2∗(d̃eg(f2)),

where the degrees

deg(f1) := ω(f1, ∗) ∈ Ωfr
m1−n1

,

d̃eg(f2) := ω̃(f2, y
2
01) ∈ Ωfr

m2−n2
(Λ(N2, y

2
02))

measure coincidences with the indicated constant maps (as in [K5, 1.11, 1.12,
and 7.5]).

Proof. Define L1 := f−1
1 ({(y1

02,−ε%)}) and L2 := f−1
2 ({y2

01}). Then the
over/undercrossing locus is

Cε = L1 × L2 ⊂ Sm1 × Sm2 .

The corresponding loops are described as in the proof of Proposition 5.2:
apply fi to the paths resulting from a contraction of Li, i = 1, 2. Since f1 is
nulhomotopic, the framed manifold L1 is equipped with a trivial map and
contributes to ω̃ε only via the Ωfr

∗ -module structure on Ωfr
∗ (Λ(N, y0)).

Often it is convenient to identify the framed bordism ring Ωfr
∗ with the

stable homotopy ring πS∗ of spheres via the Pontryagin–Thom isomorphism.
Then deg(f1) corresponds to the stable Freudenthal suspension ±E∞([f1]).

Corollary 5.10. For both ε = + and ε = − the value set ω̃ε(BLM(1))
(cf. 5.1 and 5.2) contains at least the subgroup generated by the set

E∞(πm1(Sn1)) · e′2∗(d̃eg(πm2(N2))) ⊂ Ωfr
m−n(Λ(N, y0))

and by the left and right group action of π1(N, y0).
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This follows from Propositions 5.2 and 5.9.

Example 5.11 (Spherical link maps into products of spheres). Let

N = (S1)q × S2 × . . .× Srl
be as in Section 4. Given 1 ≤ i ≤ l, let N2 and N1 be the ith higher-
dimensional sphere Sri (i.e. ri ≥ 2) and the product of the remaining factors,
resp. Also recall from Theorem 1.14 in [K5] that d̃eg(πm2(Sri)) corresponds
to the image of the total stabilized James–Hopf invariant homomorphism

Γi =
⊕

k≥0

E∞ ◦ γk+1 : πm2(Sri)→
⊕

k≥0

πSm2−ri−k(ri−1).

Thus according to Corollary 5.10 at least all the elements of the subgroup

(5.12)
⊕

j∈Zq
E∞(πm1(Sn−ri)) · Γi(πm2(Sri))

of
Ωfr
m−n(Λ(N, y0)) ∼=

⊕

j∈Zq

⊕

k∈Nl
πSm−n−d(k)

(cf. Theorem 4.1) occur as values of our invariants ω̃+ and ω̃− for suitable
link maps, i = 1, . . . , l.

Special case 5.11a: N = S2×S3, m1 = m2 = 3. Here ω̃+ and ω̃− take
values in

Ωfr
1 (ΛN) ∼= Ωfr

1 (ΛS2)
∼=−→
h
Ωfr

1 ⊕Ωfr
0 = Z2 ⊕ Z

(cf. 4.1). If we pick N2 = S2 and N1 = S3 we see that

(1, 1) = (E∞,Hopf invariant)(Hopf map) = Γ1 (Hopf map)

corresponds to a value of ω̃±; if we pick N2 = S3, N1 = S2 we obtain
the same for (1 = E∞(Hopf map), 0). Thus the invariant ω̃± (even when
restricted to BLM(i), i = 1 or 2, cf. 5.1) assumes all possible values in its
target group.

Both the invariant ω+ (cf. 2.10) and the Pilz invariant αw (cf. 3.7) cap-
ture only the Z2-component of ω̃+, i.e. the framed bordism class of the
overcrossing locus C+ (without any nontrivial map into a target space or
any nontrivial decomposition into Nielsen classes).

Special case 5.11b: N = (S1)3 × S2, m1 = m2 = 3. By Theorem
4.1 the target group of ω̃± is as stated in Example 1.3 of the introduction.
Moreover, every element (1, 1)j, j ∈ Z3, lies in ω̃±(BLM(i)), i = 1, 2 (cf. 5.1,
5.2, and 5.11a). So also does (1, 0)j , j ∈ Z3. Indeed, the Fenn–Rolfsen link
map fFR : S2 q S2 → R4 (cf. [FR]) can be suspended with respect to each
component to yield a link map Σ1(Σ2(fFR)) : S3qS3 → R6 with nontrivial
α-invariant (cf. e.g. [K2, 2.1, 2.10, and 4.8]); included in a small ball in N×R
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and connected to the base points in a suitable way this yields a link map in
BLM(1) ∩ BLM(2) with the desired ω̃±-value. Thus

ω̃ε(BLM(i)) =
⊕

j∈Z3

(Z2 ⊕ Z)

for every combination of i = 1, 2 and ε = + or −.
In this special case the Pilz invariant αw ∈

⊕
Z2 is obtained by project-

ing to the Z2-factors. It is much stronger here than the invariant ω+ ∈ Z2
∼=

Ωfr
1
∼= Ωfr

1 (S3 × S3) which measures just the framed bordism class of the
overcrossing locus without retaining its Nielsen decomposition.

On the other hand in some situations Nielsen decompositions are irrele-
vant and ω+ captures more information than the Pilz invariant αw.

Example 5.13. Given an integer s ≥ 1, equip Ss = ∂(Bs+1) with the
boundary framing inherited from the (s+ 1)-ball and consider the link map

f = f1 q f2 : S3 × Ss q S3 → S2 × S3 × R
defined by f1(x1, x2) := ((Hopf map)(x1), ∗S3 , 0) for (x1, x2) ∈ S3 × Ss and
f2(x) := (∗S2 , x, 1) for x ∈ S3. Then αw(f) = 0 while ω+(f) is nontrivial.
Indeed, the coincidence locus C+ = S1 × Ss is framed nullbordant, but

ω+(f) = [C+, g+, g+] ∈ Ωfr
s+1(S3 × Ss × S3).

projects to
(0, 1) ∈ Ωfr

s+1(Ss) ∼= Ωfr
s+1 ⊕Ωfr

1

(compare 2.15).
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