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Maximal actions of finite 2-groups on
Z2-homology 3-spheres
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Abstract. It is known that a finite 2-group acting on a Z2-homology 3-sphere has at
most ten conjugacy classes of involutions; the action of groups with the maximal number
of conjugacy classes of involutions is strictly related to some questions concerning the
representation of hyperbolic 3-manifolds as 2-fold branched coverings of knots. Using a
low-dimensional approach we classify these maximal actions both from an algebraic and
from a geometrical point of view.

1. Introduction. The 2-fold branched coverings of knots and links are a
class of 3-manifolds that is diffusely studied in low-dimensional topology. In
[R] the following fact is proved: there are at most nine inequivalent knots in
S3 with the same hyperbolic 3-manifold as 2-fold branched covering (for an
alternative proof see [MR]). Both proofs also hold in the more general case
of knots in Z2-homology 3-spheres (i.e. 3-manifolds with the Z2-homology
of the 3-sphere); in this case, the upper bound nine is the best possible (see
[MZ1]). For the classical case of knots in S3 examples of six knots with the
same hyperbolic 2-fold branched covering are known but we suppose that
also for knots in S3 nine is the best possible upper bound.

The 2-fold branched covering of a knot in a Z2-homology 3-sphere is
again a Z2-homology 3-sphere (see [Sa, Sublemma 15.4]) and thus we have a
natural relation between this setting and the classical problem to determine
the finite groups which act on (homology) 3-spheres. In fact the key point
of the proofs in [R] and [MR] is that a finite 2-group acting smoothly and
orientation-preservingly on a Z2-homology 3-sphere has at most ten con-
jugacy classes of involutions, and at most nine classes of involutions with
non-empty fixed-point set. In the following, maximal 2-groups will be the
2-groups acting on Z2-homology 3-spheres and realizing the maximum num-
ber ten of conjugacy classes of involutions.
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The maximal 2-groups and their actions on Z2-homology 3-spheres are
the main subject of this paper; we classify these maximal actions both from
an algebraic and from a geometrical point of view.

First we give an algebraic classification of the maximal 2-groups; each
group in this class is uniquely identified by two integers, the maximal or-
der of an element and the maximal order of an element with non-empty
fixed-point set. To determine the groups we use a direct approach that con-
sists of a mix of 3-dimensional topological methods and elementary group
theory.

The second point in our result is the analysis of the orbifolds that are
quotients of Z2-homology 3-spheres by maximal 2-groups; in particular we
prove that the algebraic structure of the group determines the combinatorial
structure of the singularity graph of the quotient orbifold. The description of
the singularity graphs of the quotient orbifolds seems the most natural way
to describe the relation between different knots with the same hyperbolic
2-fold branched covering (see [MR] and [M]).

As a by-product it turns out that the possible actions are standard: the
maximal 2-groups appear also in the list of the finite subgroups of SO(4) in
[DV] and, if we consider the combinatorial structure of the singularity graph
of the quotient, the action of a maximal 2-group on a generic Z2-homology
3-sphere resembles an orthogonal action (for a discussion about standard
and non-standard actions see [KwS]).

There also exists an alternative approach to determine the maximal 2-
groups acting on Z2-homology 3-spheres. A result in [DoHa] states that any
finite p-group acting on a Zp-homology n-sphere has a representation as a
group of isometries of Sn; this representation preserves the dimension of
the global fixed-point set of any subgroup. Combining this result and the
list of finite subgroups of SO(4) in [DV] we can determine the groups with
ten conjugacy classes. The paper of Dotzel and Hamrick is based on deep
results on transformation groups and in particular on the Borel Formula
(see [Bo]); their result gives a powerful tool that works in a general setting.
In the present paper we prefer to propose a direct and more elementary
approach that gives explicit information about the geometry of the actions
on 3-manifolds and that is more related to the low-dimensional problems
involving actions of maximal 2-groups.

We now present the results of the paper in more detail.
Let (m,n) be a couple of positive integers such that m ≥ n; we denote

by Gm,n the group which has the following presentation:

〈s, t, f, g | s2 = t2 = f2m = g2n = 1, gf = fg, st = ts, tft−1 = f−1,

tgt−1 = g−1, sfs−1 = f, sgs−1 = f2m−ng−1〉.
The group Gm,n is a semidirect product (Z2 × Z2) n (Z2n × Z2m) of the
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normal subgroup generated by f and g with the subgroup generated by t
and s; the involution t acts on Z2n × Z2m by inverting each element.

In the list of finite subgroups of the orthogonal group SO(4) in [DV]
this group is presented as a central product of two quaternion groups. Note
that SO(4) is isomorphic to S3 ×Z2 S

3, the central product of two copies of
the unit quaternions. Consider Q2a = 〈x, y | x2 = y2a−2

, xyx−1 = y−1〉, the
quaternion group of order 2a; each quaternion group has a unique central
involution and we denote by Q2a ×Z2 Q2b ⊂ S3 ×Z2 S

3 the central product
of Q2a and Q2b with the two central involutions identified. Thus we have
verified that Gm,n is isomorphic to Q2m+1 ×Z2 Q2n+2 .

If m > n there are ten conjugacy classes of involutions (fewer if m = n)
and the greatest order of an element of Gm,n is 2m (see Section 2); this last
fact also implies that these groups are non-isomorphic for different couples
of integers.

Suppose now that Gm,n acts smoothly on a Z2-homology 3-sphere. Then
we prove in Section 2 that the central involution of Gm,n acts freely and the
other involutions of the group have non-empty fixed-point set; the greatest
order of an element with non-empty fixed-point set is 2n.

The main result of the paper is the following.

Theorem 1. Let M be a Z2-homology 3-sphere and S a finite 2-group of
orientation-preserving diffeomorphisms acting on M . Suppose that S has the
maximal number ten of conjugacy classes of involutions. Then the following
hold.

(i) There is a unique couple of integers m > n > 0 such that S is
isomorphic to Gm,n, where 2n is the greatest order of an element
with non-empty fixed-point set.

(ii) The underlying topological space of the quotient orbifold M/S is a
Z2-homology 3-sphere. If S is isomorphic to Gn+1,n the singularity
graph of M/S has the combinatorial type of the graph I in Figure 1
(the Kuratowski graph); if S is isomorphic to Gm,n with m > n+ 1
the singularity graph of M/S has the combinatorial type of the graph
II in Figure 1. In any case the singularity graph of M/S has one edge
with singularity index 2n and the other edges with singularity index
two.

(Kuratowski graph)

Graph I Graph II

Fig. 1
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We remark that the minimum order of a maximal 2-group is 32; there
is only one group with this order, which is G2,1. This is the group studied
in [MZ1] where it is used to prove the existence of nine inequivalent knots
in integer homology 3-spheres with the same hyperbolic 2-fold branched
covering. Also for the successive order 64 there is only one group, which
is G3,1. In general for each order 2a the number of groups is equal to the
integer part of (a− 3)/2.

In the following theorem we collect the main applications of Theorem 1
to 2-fold branched coverings of knots.

Theorem 2. (i) Let M be a hyperbolic 3-manifold which is the 2-fold
branched covering of q ≥ 1 inequivalent knots in (possibly different)
Z2-homology 3-spheres; then M is a Z2-homology 3-sphere. If q as-
sumes the maximal possible value nine, then the Sylow 2-subgroup of
the orientation-preserving isometry group of M is one of the groups
Gm,n; if all the nine knots are knots in S3 the Sylow 2-subgroup is
one of the groups Gm,1. The nine knots correspond to the nine edges
of the singularity graph of the quotient orbifold M/Gm,n which is
combinatorially equivalent to one of the graphs in Figure 1.

(ii) Each group Gm,n acts on a hyperbolic homology 3-sphere M such
that Gm,n coincides with the orientation-preserving isometry group
of M , and consequently M is the 2-fold branched covering of nine
inequivalent knots in homology 3-spheres.

Theorem 2 is obtained by combining Theorem 1 with some other results.
Part (i) follows from Theorem 1 and the Orbifold Geometrization Theorem
([BP]) which implies that, if the 2-fold branched covering of a knot is a
hyperbolic 3-manifold M , then the covering involution is conjugate to an
isometry (and then also to an element in the Sylow 2-subgroup of the isom-
etry group of M). We consider in (i) also the case of knots in S3. In general
if M is the hyperbolic 2-fold branched covering of nine knots and the Sy-
low 2-subgroup of the isometry group of M is Gm,n, one of the nine knots
admits a symmetry of order 2n−1 that fixes pointwise the knot; then if the
nine knots are all in S3, by the positive solution of the Smith Conjecture
[MoBa], we obtain n = 1. An action of Gm,n on a hyperbolic homology
3-sphere can be obtained from the standard orthogonal action of Gm,n on
S3 by applying Kawauchi’s imitation theory ([K1], [K2]); see [MZ1] for a
similar application.

2. Preliminaries. In this section we present some preliminary results
about finite groups acting on 3-manifolds; we also consider some elemen-
tary properties of the groups Gm,n and of their actions on Z2-homology
3-spheres.
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Proposition 1 follows from classical Smith theory (see [Br] for a review
of this theory).

Proposition 1. Let f be a periodic orientation-preserving diffeomor-
phism of a Z2-homology 3-sphere whose period is a power of two. Then the
fixed-point set of f is connected , that is, empty or a simple closed curve.

Let K be a simple closed curve in a closed 3-manifold and I a group of
orientation-preserving diffeomorphisms that fixes K setwise. The elements
of I induce on K reflections (strong inversions) or rotations; if an element
of I induces on K a reflection we call it a K-reflection; otherwise we call it
a K-rotation.

Proposition 2. Let I be a finite group of orientation-preserving dif-
feomorphisms of a closed orientable 3-manifold which map a given simple
closed curve K to itself. Then I is isomorphic to a subgroup of a semidirect
product Z2 n (Zn × Zm) for some non-negative integers n and m, where Z2

operates on the normal subgroup Zn × Zm by sending each element to its
inverse.

Proof. Since I is a finite group we can assume that I acts by isometries
for some Riemannian metric of M . The simple closed curve K has an I-
invariant tubular neighborhood in M (see [Br, p. 306, Theorem 2.2]); we
can faithfully represent I as a group of isometries of the standard solid torus
S1×D2 which fixes setwise the core γ = S1×0 of the torus. The subgroup of
γ-rotations is abelian: it contains the cyclic subgroup of all elements fixing γ
pointwise, with cyclic factor group acting faithfully by rotations on γ. The
subgroup of γ-rotations has index 1 or 2. In the latter case I contains a
γ-reflection and any reflection acts on the normal subgroup of γ-rotations
by inverting each element. This finishes the proof.

Proposition 3 ([MZ2, Proposition 4]). Let I be a group isomorphic to
Z2×Z2 of orientation-preserving diffeomorphisms acting on a Z2-homology
3-sphere. Then either I has two global fixed points or I contains exactly one
involution acting freely.

Next we present some facts about the structure of Gm,n, where m and
n are integers such that m > n > 0.

We consider the presentation of Gm,n given in the Introduction. We note
that f and g generate an abelian and normal subgroup A that is isomorphic
to Z2m × Z2n ; the involution t acts on A by inverting each element. The
group Gm,n is a semidirect product of the normal subgroup A with the
subgroup generated by t and s; the latter is isomorphic to Z2 × Z2.

Starting from the presentation we can compute the conjugacy classes of
involutions contained in Gm,n; we have exactly ten classes:
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C1 = {f2m−1}, C2 = {g2n−1
, sg2n−1

s−1 =g2n−1
f2m−1},

C3 = {tfαgβ | α odd and β even}, C4 = {tfαgβ | α odd and β odd},
C5 = {tfαgβ | α even and β even}, C6 = {tfαgβ | α even and β odd},
C7 = {sg−αfα2m−n−1 | α odd}, C8 = {sg−αfα2m−n−1 | α even},
C9 = {stfα | α even}, C10 = {stfα | α odd}.

With a similar calculation we also see that the elements of maximal order
are in A and have order 2m; this implies that no two groups of this family
are isomorphic for different couples of integers.

We now suppose that the group Gm,n acts smoothly and orientation-
preservingly on a Z2-homology 3-sphere. We note that the involution f 2m−1

is central in Gm,n; it acts freely, since otherwise Gm,n fixes the non-empty
fixed-point set of f2m−1

and Proposition 2 applies. All the other involutions
commute with f2m−1

and by Proposition 3 they have non-empty fixed-point
set. Thus we have nine conjugacy classes of involutions with non-empty
fixed-point set.

3. Proof of Theorem 1(i). We start from a review of some results
of [R] pointing out some properties we can deduce for the maximal case of
ten conjugacy classes. Then we characterize a subgroup of index two and we
analyze the possible action of S on this subgroup by conjugation; finally we
deduce that the only possible case is Gm,n.

3.0. A review of the results of [R]. In [R] the following result is proved.

Proposition 4. Let M be a Z2-homology 3-sphere and S a finite 2-
group of orientation-preserving diffeomorphisms of M . Then one of the fol-
lowing cases occurs.

• The group S is cyclic, dihedral of order at least 16, quasidihedral or a
quaternion group, and the unique central involution acts freely.
• The group S contains, with index at most two, the centralizer CSh

of an involution h with non-empty fixed-point set. The group CSh is
a subgroup of a semidirect product Z2 n (Z2n × Z2m) for some non-
negative integers n and m, where Z2 acts on Z2n × Z2m by inverting
each element.

Now we suppose that S contains exactly ten conjugacy classes of invo-
lutions.

There are fewer than three conjugacy classes of involutions in the groups
appearing in the first case of Proposition 4, so we consider only groups of
the second type. We consider Fix(h), the fixed-point set of h, and we denote



Actions on homology spheres 211

by A the subgroup of Fix(h)-rotations in CSh. By Proposition 2 we know
that A is an abelian group of rank at most two.

From the proof of Theorem 1 in [R] we deduce that, if S has ten conjugacy
classes of involutions, then it has the following properties.

1. The subgroup A has rank two.
2. The subgroup A has index four in S and S = stA∪sA∪ tA∪A, where
t is a Fix(h)-reflection and s is an involution not in CSh.

3. The involution shs is the only Fix(h)-rotation of order two with non-
empty fixed-point set that is different from h.

4. Each conjugacy class of involutions is contained in one of the four
cosets of A; in particular two classes must be contained in A, four
classes in tA and two classes in each of stA and sA.

3.1. The structure of A. Since A is abelian of rank two, we suppose that
A = Z2n × Z2m , with n and m integers such that m ≥ n > 0.

A is normal. By the previous considerations, elements conjugate to in-
volutions of A are in A; moreover all elements in CSh with order strictly
greater than two are in A. These facts imply that A is normal in S.

Fixed-point sets of elements of A and generators of A. By Proposition
3 the subgroup A contains exactly two distinct involutions with non-empty
fixed-point set, h and h′ = shs. We denote by K (resp. K ′) the fixed-point
set of h (resp. h′); the simple closed curves K and K ′ are disjoint. Since
h′ = shs we have K = sK ′. Any element of A with non-empty fixed-point
set fixes pointwise either K or K ′, otherwise we can obtain an involution
with non-empty fixed-point set distinct from K and K ′. We let B and B′

be the cyclic subgroups of A fixing pointwise K and K ′ respectively; B and
B′ are disjoint because they have distinct fixed-point sets. It is easy to see
that sB′s = B and so the orders of B and B′ are equal. We denote by g
a generator of B, by g′ the element sgs that is a generator of B′, and by
F the subgroup of A generated by all elements with non-empty fixed-point
set; in particular, F is generated by g and g′.

We prove that A/F is a cyclic group. Consider the quotient orbifold
M/F . It can be seen as the double quotient (M/B)/(F/B) and both B and
F/B act with non-empty global fixed-point set; so the underlying topological
space of M/F is a Z2-homology sphere. The set A−F contains only elements
acting freely on M , thus the group A projects to a group isomorphic to A/F
composed of diffeomorphisms that act freely on M/F . By Proposition 3 the
group A/F is cyclic. This implies that the order of g is 2n.

We consider an element f of maximal order 2m. The diffeomorphism f
fixes both K and K ′ and we suppose that f acts with order 2φ and 2ψ

respectively on K and K ′. By Proposition 1 either φ or ψ is equal to m,
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where 2m is the order of f . Since sK = K ′, s inverts the roles of K and K ′

and sfs acts with order 2φ on K ′ and 2ψ on K. Replacing f with fsfs if
necessary, we can suppose that f acts with order 2m both on K and K ′; in
particular all the non-trivial elements that are powers of f act freely on M .
Thus the cyclic group generated by f is disjoint from B and the subgroup
A is generated by f and g.

The integer m is strictly greater than n. We note that if F = A then
the action by conjugation of s on A is determined; by a computation similar
to that which will be presented in 3.3, we can prove that in this case we
cannot obtain ten conjugacy classes of involutions. Thus we can suppose
that m > n.

The action of generators of A on K and K ′. Any element of A fixes
setwise K (the fixed-point set of g) and K ′ (the fixed-point set of g′ = sgs).
We fix a point P0 of K and denote by Q0 the point of K ′ that coincides
with s(P0). We consider the orbit of P0 under the action of f . We fix an
orientation on K; this gives an order to the points of the orbit; denote them
by {P0, P1, . . . , P2m−1} according to this order. We fix on K ′ the orientation
induced from K by s and we denote the points of the orbit of Q0 under f
by {Q0, Q1, . . . , Q2m−1}, respecting the order induced by this orientation.
In particular, since s is a diffeomorphism we have s(Pi) = Qi. Replacing f
with a power of f we can suppose that f(P0) = P1. We denote by a the odd
integer such that f(Q0) = Qa.

We note that by the proof of Proposition 2 the action on K and K ′ can
locally be considered standard; in particular the orbit of Q0 under g is a
subset of the orbit of Q0 under f , and the orbit of P0 under g′ (= sgs) is a
subset of the orbit of P0 under f . We can also suppose, replacing g with a
power of g, that g(Q0) = Q2m−n ; then g′(P0) = P2m−n . Finally, replacing f
with fgφ for some φ we can suppose that 0 < a < 2m−n.

3.2. The action of s on A by conjugation. We first consider the element
sfs. We know that it maps Q0 to Q1 and P0 to Pa.

By Proposition 1 the elements of A are completely determined by their
action on K and K ′, and we obtain

sfs = fagµ,

where µ is an integer such that

a2 + µ2m−n = 1 mod 2m;

so there exists an integer α such that

(∗) a2 − 1 = (a− 1)(a+ 1) = α2m − µ2m−n.

We also consider the element f 2m−n that maps P0 to P2m−n and Q0 to
Qa2m−n mod 2m and we obtain the following relations:
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f2m−n = g′ga, sgs = g′ = f2m−ng−a.

If a = 1 we find that µ = α2n and consequently

sfs = f, sgs = f2m−ng−1.

In this case the action of s on A by conjugation is completely determined.
We now suppose that a > 1; since we can suppose 0 < a < 2m−n we have

m − n > 1. In this case there exists an odd integer β (with 2m−n−1 − 1 ≥
β ≥ 1) and an integer δ (with m− n− 1 ≥ δ ≥ 1) such that

a− 1 = β2δ.

First we suppose that δ > 1; in this case from (∗) we obtain

β(β2δ−1 + 1)2δ+1 = α2m − µ2m−n.

Since β2δ−1 +1 is odd we see that 2m−n divides 2δ+1 and in particular from
the inequality m−n− 1 ≥ δ we find that δ = m− n− 1 and β = 1. Finally,
we conclude that µ = −1− 2m−n−2 + α2n and s acts by conjugation in the
following way:

sfs = f2m−n−1+1g−1−2m−n−2
, sgs = f2m−ng−2m−n−1−1.

Now, we suppose that δ = 1; in this case (∗) yields

4β(β + 1) = α2m − µ2m−n.

Thus 2m−n−2 divides β+1 and since 2m−n−1−1 ≥ β we have two possibili-
ties: either β = 2m−n−1−1 or β = 2m−n−2−1 and respectively a = 2m−n−1
or a = 2m−n−1 − 1. In the first case we can replace f with fg−1 and g with
g−1 to obtain

sfs = f−1, sgs = f−2m−ng.

If we suppose that a = 2m−n−1 − 1 we obtain µ = 1 − 2m−n−2 + α2n and
finally

sfs = f2m−n−1−1g1−2m−n−2
, sgs = f2m−ng−2m−n−1+1.

Altogether, the four possibilities are:

(I) sfs = f, sgs = f2m−ng−1;

(II) sfs = f−1, sgs = f−2m−ng,

(III) sfs = f2m−n−1+1g−1−2m−n−2
, sgs = f2m−ng−2m−n−1−1;

(IV) sfs = f2m−n−1−1g1−2m−n−2
, sgs = f2m−ng−2m−n−1+1.

3.3. The action of s by conjugation on K-reflections. With the notation
introduced for A we see that the four conjugacy classes of involutions in tA
are the following:
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{tfψgφ | ψ even, φ even}; {tfψgφ | ψ odd, φ odd};
{tfψgφ | ψ even, φ odd}; {tfψgφ | ψ odd, φ even}.

The involution s acts by conjugation on the set of conjugacy classes in tA;
if we want to get the maximal number of conjugacy classes, the action of s
must be trivial. In particular sts = tfλgω with λ and ω even. Moreover if we
consider stfs we see that cases III and IV cannot occur with ten conjugacy
classes when m− n > 2. If m− n = 2 case IV coincides with case I and, for
case III, we can replace f with fg−1 obtaining the same presentation as in
case II; thus we can consider only cases I and II.

Let us consider case I and analyze the exponents λ and ω. From the
equality

t = sstss = stfλgωs = tf2λ+ω2m−n

we deduce that there exists an integer γ such that

2λ+ ω2m−n = γ2m.

If γ is even we can replace t with tgω/2 and if γ is odd we can replace t with
tg(ω/2)+2n−1

; in any case we obtain sts = t and so S is isomorphic to Gm,n.
Finally, consider case II and in particular the following equality:

t = sstss = stfλgωs = tf−ω2m−ng2ω.

It implies that −ω2m−n is divisible by 2m; then ω is a multiple of 2n and
sts = tfλ. Replacing t with tfλ/2 (λ is even) we obtain sts = t. This
relation implies that (st)2 = 1, (st)t(st) = t, (st)f(st) = f and (st)g(st) =
f2m−ng−1. Interchanging the roles of s and st we conclude that also in this
case S is isomorphic to Gm,n.

Thus we have proved that S is always isomorphic to Gm,n; at this point
it is easy to see that all elements with non-empty fixed-point set and of
order strictly greater than two are in A, and we conclude that 2n is the
greatest order of an element that does not act freely. This finishes the proof
of Theorem 1(i).

4. Proof of Theorem 1(ii). In this section we consider the action of
groups with ten conjugacy classes of involutions on Z2-homology 3-spheres;
let M be a Z2-homology 3-sphere and S a group of orientation-preserving
diffeomorphisms of M isomorphic to Gm,n. We are interested in the combi-
natorial type of the singularity graph of the quotient M/S.

We recall some basic facts about the singularity graphs of orientable 3-
orbifolds. In this case we consider a generalized definition of graphs because
in general the singular set of an orbifold is a disjoint union of trivalent graphs
and knots. We consider the knots as edges with no endpoint; moreover in
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these graphs we can find edges with two coinciding endpoints and multiple
edges (these are different edges that join the same two vertices).

We also remark that a diffeomorphism of finite order that fixes setwise
one edge with two vertices of a singularity graph either exchanges the two
endpoints and fixes a single internal point of the edge, or fixes pointwise the
whole edge.

In the proof of Theorem 1(ii) we refer to two particular graphs: theta
curves and tetrahedral graphs (see Figure 2). A theta curve is a graph with
two vertices and three edges such that all three edges join the two vertices.
A tetrahedral graph is a complete graph with four vertices (that is, a graph
with four vertices and six edges such that each edge joins a different couple
of vertices).

Theta curve Tetrahedral graph

Fig. 2

Proposition 5. Let M be a Z2-homology 3-sphere and S a finite 2-
group of orientation-preserving diffeomorphisms acting on M . Then the
number of conjugacy classes of involutions with non-empty fixed-point set
in S is equal to the number of edges in the singularity graph of the quotient
orbifold M/S.

Proof. It is clear that the projections of the fixed-point sets of two in-
volutions that are conjugate in S coincide in M/S. Thus to each conjugacy
class of involutions we can associate a subset of the singularity graph of
M/S, namely the projection of the fixed-point set of any of the involutions
contained in the conjugacy class.

By Proposition 1 the fixed-point set of an involution that does not act
freely is a simple closed curve; thus its projection to M/S is homeomorphic
to S1 or to an interval [0, 1], and the projection is a connected union of
edges.

Now we suppose that the projections of the fixed-point sets of two dis-
tinct involutions h and h′ contain a common edge e. Consider the preimages
of e in Fix(h) and Fix(h′). They have the same projection in M/S, so there
exists g ∈ S that maps an arc of Fix(h) to an arc of Fix(h′); by Proposi-
tions 1 and 2 this implies that ghg−1 = h′. Thus, if the projections of the
fixed-point sets of two distinct involutions contain a common edge, the two
involutions are conjugate.
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Finally, we prove that the image of an involution with non-empty fixed-
point set contains exactly one edge. Let h be such an involution. By the
properties of 2-groups we can consider a subnormal series

H0 = {Id} ⊂ H1 = {h, Id} ⊂ H2 ⊂ · · · ⊂ Hn = S

such that the factor groups are cyclic of order two. We can factorize the quo-
tient M/S by successive quotients M/Hi using the fact that Hi+1 projects
to an involution of M/Hi. In the first quotient the image of Fix(h) is a knot
that is a single edge with no endpoint; the quotient of a single edge by an
involution remains a single edge (whatever the number of endpoints) and
thus in the final quotient M/S the projection of Fix(h) remains a single
edge.

This finishes the proof of the proposition.

Proof of Theorem 1(ii). For elements of S, we use the same notations as
in Section 3.

If S is isomorphic to Gn+1,n, then the singularity graph of M/S is of
type I (Kuratowski graph) with one edge of singularity index 2n and the
others of singularity index two; the underlying topological space of M/S is
a Z2-homology sphere.

We obtain the quotient M/S as the final output of a series of successive
quotients that corresponds to a subnormal series of S.

We remark that, even if the action of a diffeomorphism on the singularity
graph of an orbifold is determined by a combinatorial point of view, the
combinatorial type of the singularity graph of the quotient orbifold in general
is not determined and it depends on the topological situation. The idea is to
avoid ambiguous cases and to choose quotients such that the “combinatorial”
action determines the combinatorial type of the singularity graph in the
quotient orbifold.

We recall that the quotient of a Z2-homology sphere by an involution
with non-empty fixed-point set is again a Z2-homology sphere; we use this
fact at each step to prove that all the quotient orbifolds of the series have as
underlying topological space a Z2-homology sphere. During the construction
we shall also frequently use Proposition 1 without further mention.

The series of quotients we construct is represented in Figure 3.
First we consider the cyclic subgroup H0 of order 2n generated by g (in

Section 3 we call this group B and it is one of the maximal subgroups with
non-empty fixed-point set contained in A, the subgroup of K-rotations).
The singularity graph of O0 = M/H0 is a knot with singularity index 2n at
each point.

We recall that t is a Fix(g)-reflection and t normalizes H0; the projection
t̄ of t to O0 is a strong reflection of the singularity graph of O0. We define H1
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Fig. 3

to be the subgroup of S generated by H0 and t, and consider the quotient
orbifold O1 = M/H1; it corresponds to the quotient of O0 by t̄, and its
singularity graph is a theta curve with one edge of singularity index 2n and
the other two edges of singularity index two.

The next group H2 is generated by H1 and (sgs)2n−1
; the latter involu-

tion has non-empty fixed-point set and commutes with each element of H1.
These facts imply that the projection of (sgs)2n−1

to O1 has non-empty
fixed-point set and it fixes setwise all edges of the singularity graph. The
only possibility is that the projection of (sgs)2n−1

acts as a strong reflection
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of the theta curve (i.e. it fixes setwise each edge and exchanges the two ver-
tices), and the singularity graph of M/H2 is a tetrahedral graph with one
edge of singularity index 2n and the others of singularity index two.

At this point if n = 1 we go directly to the final step, otherwise we have to
insert in the series n−1 steps to arrive at the final one. We define iteratively
for i = 3, . . . , n + 1 the subgroup Hi generated by Hi−1 and (sgs)2n−i+1

;
we note that each Hi−1 has index two in Hi and for each i the element
(sgs)2n−i+1

fixes pointwise the same simple closed curve. We consider the
quotient M/H3; the projection of (sgs)2n−2

to O2 fixes pointwise the edge
of the singularity graph of O2 that corresponds to the fixed-point set of
(sgs)2n−1

. The only possibility is that the projection of (sgs)2n−2
to O2 fixes

two vertices of the graph and the corresponding edge, and inverts the other
two vertices. The singularity graph of M/H3 is a tetrahedral graph with one
edge of singularity index 2n, one edge of singularity index 4, and the others
of singularity index two. We repeat the same argument for each Hi until we
get the quotient M/Hn+1; the singularity graph of On+1 = M/Hn+1 is a
tetrahedral graph with two (non-adjacent) edges of singularity index 2n and
the others of singularity index two.

Now we consider the final step. The subgroup Hn+1 is normal in S with
index four and factor group isomorphic to Z2 × Z2, thus S projects to a
group S of diffeomorphisms of On+1 isomorphic to Z2 × Z2.

By a combinatorial point of view we have four different possibilities. For
three of them we have two involutions that fix pointwise one edge; for these
cases it is easy to see that the final singularity graph we obtain is again a
tetrahedral graph and these possibilities are excluded by Proposition 5. So
the only possibility is that each involution of S̄ fixes setwise two non-adjacent
edges, exchanging their endpoints.

In Figure 3 the axes of two involutions of S appear explicitly; these axes
meet the “horizontal” and the “vertical” edges of the tetrahedral graph.
The axis of the third involution in S is perpendicular to the plane of the
page; this axis meets the “diagonal” edges of the tetrahedral graph. We infer
that the projection to M/S of the fixed-point sets of the elements in S is
a theta curve; the fixed-point set of each element projects to one edge. The
remaining part of the singularity graph of M/S is given by the projection
of the singularity graph of On+1. The four vertices of the tetrahedral graph
project to a single one (marked by a small black disk in Figure 3). The
six edges of the tetrahedral graph project pairwise to three edges; each of
them meets one different edge of the theta curve in an internal point (the
intersection points are marked by crosses in Figure 3). We can conclude that
the singularity graph in the quotient M/S has to be of type I; one edge has
singularity index 2n and the others have index two.
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If S is isomorphic to Gn+k,n with k > 1, then the singularity graph
of M/S is of type II with one edge of singularity index 2n and the others
of singularity index two; the underlying topological space of M/S is a Z2-
homology sphere.

We prove this by induction on k. If k = 2 we consider the subgroup H
of S generated by t, s, g, and f 2; H has index two and is isomorphic to
Gn+1,n. The orbifold M/H has a singularity graph of combinatorial type I
and S projects to an involution f̄ that has non-empty fixed-point set because
elements with non-empty fixed-point set are contained in the coset fH (e.g.
tf). This implies that the underlying topological space of M/S is a Z2-
homology sphere. Moreover by Proposition 5 the singularity graph of M/S
has nine edges and a combinatorial analysis of all possibilities shows that
the singularity graph of M/S is of type II with one edge of singularity index
2n and the others of singularity index 2 (a graphical representation of the
quotient is given in Figure 4).

≅ ≅

Fig. 4

Now we suppose that the assertion holds for k and we prove it for k+ 1.
We consider the subgroup H of S generated by t, s, g, and f 2; H has
index two and is isomorphic to Gn+k,n. The situation is the same as in the
case of k = 2 with the only difference that the singularity graph of M/H
is of type II. We denote by f the involution that is the projection of S
to M/H. Since f has non-empty fixed-point set the underlying topological
space of M/S is a Z2-homology sphere. A combinatorial analysis yields two
possibilities for the action of f̄ such that the singularity graph of M/S has
nine edges (see Figure 5).

Fig. 5

We want to prove that the second possibility cannot occur (in the second
case the combinatorial action does not determine the combinatorial type of



220 M. Mecchia

the singularity graph of the quotient orbifold). It is easy to see that the only
elements with non-empty fixed-point set and with order strictly greater than
two are in A (in S−A there are either involutions or elements acting freely);
moreover, in A, elements with non-empty fixed-point set have order at most
2n and lie either in the group generated by g or in the group generated
by sgs. Since g and sgs are conjugate their fixed-point sets project to the
same edge of singularity index 2n (see Proposition 5). In the second case in
Figure 5 the involution f fixes setwise one edge, and so the singularity graph
of M/S contains either two edges with singularity index strictly greater
than two, or one edge with singularity index 2n+1; in any case we get a
contradiction. So we are in the first situation presented in Figure 5 and
the combinatorial type of the singularity graph of M/S is determined: the
graph is of type II with one edge of singularity index 2n and the others of
singularity index two.
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