
FUNDAMENTA

MATHEMATICAE

184 (2004)

The colored Jones polynomials of the figure-eight knot and
the volumes of three-manifolds obtained by Dehn surgeries

by

Hitoshi Murakami (Tokyo)

Abstract. I describe how the colored Jones polynomials of the figure-eight knot de-
termine the volumes of the three-manifolds obtained by Dehn surgeries along it, according
to my joint work with Y. Yokota.

1. Introduction. In 1995 R. Kashaev defined a series of complex-valued
link invariants parameterized by a natural number N by using the quantum
dilogarithm [7]; in 1997 he also proposed a conjecture that for any knot
his invariants would give the hyperbolic volume of its complement if it pos-
sesses a complete hyperbolic structure [8]. J. Murakami and I proved that
Kashaev’s invariant parameterized by N is the absolute value of the colored
Jones polynomial associated with the N -dimensional irreducible represen-
tation of sl2(C) evaluated at an Nth root of unity [16]. We also generalized
Kashaev’s conjecture to the following Volume Conjecture.

Conjecture 1.1 (Volume Conjecture [16]). Let K be a knot in S3 and
JN (K; t) its colored Jones polynomial associated with the N -dimensional
irreducible representation of sl2(C). Then

2π lim
N→∞

log |JN (K; exp 2π
√
−1/N)|

N
= v3‖S3 \K‖.

Here ‖S3 \K‖ is the Gromov norm (or simplicial volume) [2]. It is the
sum of the hyperbolic volumes of the hyperbolic pieces of S3 \ K divided
by v3, where v3 is the volume of the ideal regular ideal tetrahedron. So if
S3 \K itself is hyperbolic then v3‖S3 \K‖ is equal to its hyperbolic volume.
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For more information about the volume conjecture and its further gen-
eralizations, see [3, 5, 6, 9, 12, 14, 17, 21, 24–27].

Given a knot and a rational number one can define a closed three-
manifold by Dehn surgery. For an integral Dehn surgery, one can calculate
the Witten–Reshetikhin–Turaev (WRT) invariant as a linear combination
of the colored Jones polynomials of the knot [20, 10]. In [13], I calculated
fake limits (optimistic limits) of the WRT invariants of three-manifolds ob-
tained by integral Dehn surgeries along the figure-eight knot and gave nu-
merical data giving the volumes and the Chern–Simons invariants of the
three-manifolds. This suggests that the colored Jones polynomials of a knot
could give the volumes and the Chern–Simons invariants of three-manifolds
obtained by Dehn surgeries along the knot.

In [15], I calculated the limit of the colored Jones polynomial of the
figure-eight knot evaluated at exp(2πr

√
−1/N) with 5/6 < r < 7/6. It

turned out that it gives the volume of a cone manifold with singularity
along the figure-eight knot. Moreover in [18], Y. Yokota and I proved that
this evaluation gives the volume and the Chern–Simons invariant even when
r is a complex number.

The purpose of this article is to describe the results in [18] with rough
proofs and a short introduction to hyperbolic geometry used there.

Acknowledgments. This article is prepared for the proceedings of the
conference “Knots in Poland 2003” held at the Stefan Banach International
Mathematical Center from 7th to 27th July, 2003. I would like to thank the
organizers and the Banach Center for their hospitality.

Thanks are also due to K. Masuda, who helped me in drawing Figures 20–
26 by using Mathematica.

2. Main results. Let E be the figure-eight knot 41. According to
K. Habiro and T. Le, JN (E; t) can be given as follows [4] (see also [11]):

JN (E; t) =
N−1∑

l=0

l∏

k=1

tN (1− t−N−k)(1− t−N+k).

It is proved in [18] that the asymptotic behavior of JN (E; exp(2πr
√
−1/N))

for large N determines the volume and the Chern–Simons invariant of the
three-manifold obtained from the three-sphere S3 by Dehn surgery along E
parameterized by a complex number r near 1.

Theorem 2.1 ([18]). Put

H(z, w) := Li2(z−1w−1)− Li2(zw−1) + log z logw
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with

Li2(z) := −
z�

0

log(1− w)

w
dz

the dilogarithm function. Then there exists a neighborhood U of 1 ∈ C such
that if r ∈ (U \Q) ∪ {1} then

2πr
√
−1 lim

N→∞
log J(E; exp(2πr

√
−1/N))

N
= H(y, exp(2πr

√
−1)),

where y is the solution to the equation

y + y−1 = exp(2πr
√
−1) + exp(−2πr

√
−1)− 1.

Here we choose y so that y = exp(−π
√
−1/3) when r = 1.

Remark 2.2. If r is rational with 5/6 < r < 1 or 1 < r < 7/6, it is
proved that the superior limit is H(y, exp(2πr

√
−1)) but the inferior limit

is 0 (see [15]).

Let u be the complex number near 0 parameterizing hyperbolic struc-
tures of S3 \E described in [19]. (To be more precise, u is the logarithm of
the holonomy of the meridian of the boundary torus of the regular neigh-
borhood of E. We also denote that of the longitude by v. See Section 5 for
details.) It is known [19, 28] that there exists an analytic function of u such
that if u determines a closed three-manifold Eu after adding a geodesic γu
to complete the hyperbolic structure in S3 \ E, then the volume and the
Chern–Simons invariant of Eu can be defined by using the function and
some geometric invariants of γu.

Putting u := 2πr
√
−1− 2π

√
−1, we have the following corollary.

Corollary 2.3. Let Eu be the three-manifold obtained from the figure-
eight knot by Dehn surgery corresponding to u near 0 such that u

π
√−1

/∈ Q.

Then

Vol(Eu) = ImH(y, u) + πReu− Im(uv)

4
− π

2
length(γu),

where length(γu) is the length of γu and y is a solution to the equation
y + y−1 = u+ u−1 − 1.

Remark 2.4. The right hand side is the real part of the following com-
plex-valued function:

H(y, u)√
−1

+ πu− uv

4
√
−1
− π

2
%(γu),

with Re %(γu) = length(γu). It can be shown that its imaginary part defines
the Chern–Simons invariant [18].



272 H. Murakami

3. Outline of the proof of Theorem 2.1. We first note that if t =
exp(2πr

√
−1/N), then

l∏

k=1

(1− t−N±k) = exp

{
N

2π

l∑

k=1

2π

N
log(1−exp(±2πkr

√
−1/N−2πr

√
−1))

}
,

which can be approximated by

exp

{
N

2π

2πl/N�

0

log(1− exp(±sr
√
−1− 2πr

√
−1)) ds

}

for large N , if r is not a rational number. (Note that if r is rational the
product may vanish.) Putting u := exp(±sr

√
−1− 2πr

√
−1), we have

2πl/N�

0

log(1− exp(±sr
√
−1− 2πr

√
−1)) ds

=
±1

r
√
−1

exp(±2πlr
√−1/N−2πr

√−1)�

exp(−2πr
√−1)

log(1− u)

u
du

=
±1

r
√
−1
{Li2(n−1)− Li2(q±ln−1)}.

Here we put n := exp(2πr
√
−1) and q := exp(2πr

√
−1/N).

Therefore for large N ,

JN (E; q) ∼
N−1∑

l=0

qNl exp

{
N

2πr
√
−1

(Li2(n−1)− Li2(qln−1))

}

× exp

{ −N
2πr
√
−1

(Li2(n−1)− Li2(q−ln−1))

}

=
N−1∑

l=0

exp

{
N

2πr
√
−1

(Li2(q−ln−1)−Li2(qln−1) + (log ql)(logn))

}

=
N−1∑

l=0

exp

{
N

2πr
√
−1

H(ql, n)

}
.

Now since the residue around exp(2πl
√
−1/N) of the function 1/(z(1−z−N))

is 1/N , from the residue theorem we have

JN (E; q) ∼ 1 +
N

2π
√
−1

�

C

1

z(1− z−N )
exp

{
N

2πr
√
−1

H(zr, n)

}
dz
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= 1 +
N

2π
√
−1

�

C+

1

z
exp

{
N

2πr
√
−1

H(zr, n)

}
dz

+
N

2π
√
−1

�

C+

1

z(1− z−N)
exp

{
N

2πr
√
−1

(H(zr, n)− 2π
√
−1 log zr)

}
dz

+
N

2π
√
−1

�

C−

1

z(zN − 1)
exp

{
N

2πr
√
−1

(H(zr, n) + 2π
√
−1 log zr)

}
dz,

where C := C+ ∪ C− with

C+ := {z ∈ C | |z| = 1 + ε, π/N ≤ arg z ≤ 2π − π/N}
∪ {t exp(π

√
−1/N) ∈ C | 1− ε ≤ t ≤ 1 + ε}

∪ {t exp(−π
√
−1/N) ∈ C | 1− ε ≤ t ≤ 1 + ε},

C− := {z ∈ C | |z| = 1− ε, π/N ≤ arg z ≤ 2π − π/N}
for small ε > 0. Then by the saddle point method we see that

(3.1)
�

C+

1

z
exp

{
N

2πr
√
−1

H(zr, n)

}
dz ∼ P (N) exp

{
N

2πr
√
−1

H(y, n)

}
,

where P (N) is a function of N that grows polynomially (N →∞) and

y :=
n− 1 + n−1 −

√
(n− 1 + n−1)2 − 4

2
.

Here the square root is chosen so that y = exp(−π
√
−1/3) when n = 1.

Note that y1/r is a solution to ∂H(zr, n)/∂z = 0 since

∂H(zr, n)

∂z
=
r

z
log(n− (zr + z−r) + n−1).

In fact y1/r is the unique maximum of ImH(zr, n) on C+.

Remark 3.1. A discrete version of (3.1) can be understood as follows.

Let us consider the summation
∑b

k=a
1
ke
Nf(k). Suppose that Re f(k) takes

its unique maximum at k = c. Then
∣∣∣∣
∑b

k=a
1
k e

Nf(k)

1
ce
Nf(c)

∣∣∣∣ ≤
|c|
|a| e

N Re(f(a)−f(c)) + · · ·+ |c|
|c− 1| e

N Re(f(c−1)−f(c)) + 1

+
|c|
|c+ 1| e

N Re(f(c+1)−f(c)) + · · ·+ |c||b| e
N Re(f(b)−f(c))

N→∞−−−−→ 1.

Therefore
b∑

k=a

1

k
eNf(k) ∼

N→∞
1

c
eNf(c).
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It can also be proved that

Re

(
H(zr, n)∓ 2π

√
−1 log zr

2πr
√
−1

)
< Re

(
H(y, n)

2πr
√
−1

)

for z ∈ C± if r is near 1. Therefore the absolute value of

�

C±

±1

z(1− z∓N)
exp

{
N

2πr
√
−1

(H(zr, n)∓ 2π
√
−1 log zr)

}
dz

is strictly smaller than that of exp
(

N
2πr
√−1

H(y, n)
)

times Q±(N), where

Q±(N) is a function of N with polynomial growth. So we finally see that

log(JN (E; q))

N
− H(y, n)

2πr
√
−1

= log

(
JN (E; q)

exp
(

N
2πr
√−1

H(y, n)
)
)/
N

∼ log

(
exp

( −N
2πr
√
−1

H(y, n)

)
+

N

2π
√
−1

(P (N) +Q+(N) +Q−(N))

)/
N

N→∞−−−−→ 0.

4. Volume calculation. In this section I will calculate the volume of
the figure-eight knot complement S3 \ E with a (complete or incomplete)
hyperbolic structure.

First note that one can decompose S3 \ E into two hyperbolic ideal
tetrahedra [22, Chapter 1], [23, Example 1.4.8]. Here an ideal tetrahedron is
a tetrahedron without vertices. Let H3 be the three-dimensional hyperbolic
space modeled on the upper half space R3

+ = {(x, y, τ) | x, y, τ ∈ R, τ > 0}
with metric ds2 = (dx2 + dy2 + dτ2)/τ2. Note that in H3, a “flat” plane is
either a (usual Euclidean) plane perpendicular to the xy-plane or an upper
hemisphere centered at a point on the xy-plane, and that a “straight” line
is either a (usual Euclidean) line perpendicular to the xy-plane or an upper
semicircle centered at a point on the xy-plane. The group of isometries of
H3 can be regarded as PSL(2,C), where

(
a b
c d

)
∈ PSL(2,C) acts on H3 as

follows. First
(
a b
c d

)
acts on C or rather its one-point compactification Ĉ by

z 7→ az+b
cz+d . Regarding the xy-plane as C and Ĉ as the boundary of H3, the

action of
(
a b
c d

)
on H3 is the natural (Poincaré) extension.

Now by an isometry, we may assume that any ideal hyperbolic tetra-
hedron can be put so that a vertex is ∞ ∈ Ĉ = ∂H3. (Note that every

vertex of an ideal hyperbolic tetrahedron is on the sphere at infinity Ĉ.)
Then an ideal hyperbolic tetrahedron looks like Figure 1; it is bounded by
three planes perpendicular to the xy-plane and one hemisphere. It can be
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Fig. 1. An ideal hyperbolic tetrahedron.

Fig. 2. Three triangles represent the same ideal hyperbolic tetrahedron.

Fig. 3. Three complex numbers z, z′ := 1 − 1
z
, and z′′ := 1

1−z define the same ideal
hyperbolic tetrahedron.

shown that the isometry class of an ideal hyperbolic tetrahedron is deter-
mined by the similarity class of the triangle appearing in the intersection
of the three planes and a plane parallel to the xy-plane. Putting a triangle
on C so that two vertices are at 0 and 1, and the other at z with Im z > 0,
we see that the isometry classes of ideal hyperbolic tetrahedra are parame-
terized by complex numbers with positive imaginary parts. Note that there
are three ways to parameterize an ideal hyperbolic tetrahedron; z, 1 − 1

z ,

and 1
1−z . See Figure 2, where arg z = α, arg

(
1 − 1

z

)
= β, and arg 1

1−z = γ.

We associate to vertices complex numbers z, z′ := 1 − 1
z , z′′ := 1

1−z as in

Figure 3. We can also associate to three edges of the tetrahedron z, z ′,
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Fig. 4. Two truncated tetrahedra parameterized by z and w. The triangles with labels
a, . . . , h correspond to the removed vertices.

Fig. 5. Glue C and C′. The face D is the
unbounded region.

Fig. 6. Arrange Figure 5.

Fig. 7. Glue B and B′. The triangles c
and f make a tube.

Fig. 8. Arrange Figure 7.

and z′′. By putting other vertices at ∞, we associate to each edge one of
z, z′, or z′′. It can be proved that opposite edges share the same complex
parameter as in Figure 4. See [22, Section 4.1].

We prepare two ideal hyperbolic tetrahedra parameterized by z (with
faces A, B, C, and D) and w (with faces A′, B′, C′, and D′) as in Figure 4.
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Fig. 9. Glue sides of the triangles b and
g to make a tube.

Fig. 10. Divide A (A′, respectively) into
A1 and A2 (A′1 and A′2, respectively).

Fig. 11. Glue A2 and A′2. Fig. 12. Glue sides of d and f . The re-
gions A1 and A′1 become smaller.

Fig. 13. Glue A1 and A′1. Fig. 14. Arrange Figure 13.
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Fig. 15. Arrange Figure 14. Fig. 16. Glue sides of a and h to make
a tube.

Fig. 17. Arrange Figure 16. Fig. 18. Glue D and D′. The result-
ing torus is the boundary of the regular
neighborhood of the figure-eight knot.

We consider the corresponding truncated tetrahedra, where triangles labeled
with a, . . . , h appear. Then glue them so that A is identified with A′, and
so on. See Figures 5–18 to see this gives the figure-eight knot complement.
In these figures dots stand for the vertices corresponding to z or w.

Now the eight triangles corresponding to the eight vertices of the tetra-
hedra make a torus (cusp torus) as in Figure 19.

Since the product of the parameters corresponding to the angles around
a vertex, which correspond to the dihedral angles around an edge in the
tetrahedron decomposition of S3 \ E, should be 1, we have the following
equations:

z′(z′′)2w′(w′′)2 = 1 and z2z′w2w′ = 1,
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Fig. 19. The torus corresponding to
the boundary of the regular neigh-
borhood of the figure-eight knot,
where the thick line indicates the
meridian and the dotted thick line
indicates the longitude. Note that
here we are watching the torus from
outside the figure-eight knot com-
plement.

which is equivalent to the single equation

z′w′ = (1− z′)2(1− w′)2.

Let us introduce a parameter n := w(1 − z). Then z′ and w′ satisfy the
equalities

z′

n
+
n

z′
= n− 1 +

1

n
, nw′ +

1

nw′
= n− 1 +

1

n
.

We put y := n/z′ = 1/(nw′). Then y satisfies

y +
1

y
= n− 1 +

1

n
.

Note that y, z, w (and so z′, z′′, w′, and w′′) are all functions of n.
We will calculate the volume Vol(n) of the figure-eight knot complement

corresponding to the parameter n. It is well known (see for example [22,
Theorem 7.2.1]) that the volume of the ideal hyperbolic tetrahedron param-
eterized by z is L(arg z)+L(arg z′)+L(arg z′′), where L is the Lobachevsky
function

L(θ) := −
θ�

0

log |2 sinϕ| dϕ.

Therefore we have

Vol(n) = L(arg z)+L(arg z′)+L(arg z′′)+L(argw)+L(argw′)+L(argw′′).

We want to express the right hand side in terms of n and y using log and
Li2. (Note that y is determined by n.)

We use the following two identities:

Im Li2(ζ) = L(arg ζ) + L(arg ζ ′) + L(arg ζ ′′)− log |ζ| arg(1− ζ)

for Im ζ > 0 (see for example [19, p. 324]), and

Li2(ζ) + Li2(ζ−1) +
π2

6
+

1

2
(log(−ζ))2 = 0



280 H. Murakami

for ζ ∈ C \ [1,∞) (see for example [29, p. 134]). Here the branch of log is
assumed to be so that log 1 = 0. Therefore

Vol(n) = Im Li2(z′) + log |z′| arg(1− z′) + Im Li2(w′) + log |w′| arg(1− w′)
= Im Li2(w′) + log |w′| arg(1− w′)− Im Li2(z′−1

)

− log |z′−1| arg(1− z′−1
)

= Im Li2(y−1n−1)− Im Li2(yn−1)

+ log |y−1n−1| arg(1− y−1n−1)− log |yn−1| arg(1− yn−1)

= Im Li2(y−1n−1)− Im Li2(yn−1)

− log |y| arg (1− y−1n−1)(1− yn−1) + log |n| arg
1− yn−1

1− y−1n−1

= Im Li2(y−1n−1)− Im Li2(yn−1)

− log |y| arg (n−1(n+ n−1 − y − y−1)) + log |n| arg
1− yn−1

1− y−1n−1

= Im Li2(y−1n−1)− Im Li2(yn−1) + log |y| argn

+ log |n| arg
1− yn−1

1− y−1n−1
.

Since n is near 1, and y is near exp(−π
√
−1/3), we have

arg
1− yn−1

1− y−1n−1
=





arg y − arg
y − n−1

1− yn−1
if arg

y − n−1

1− yn−1
< 0,

arg y − arg
y − n−1

1− yn−1
+ 2π if arg

y − n−1

1− yn−1
> 0.

We also have
y − n−1

1− yn−1
= z(z − 1)

since

(y − n−1)(1− yn−1) = yn−1.

Putting 


u := log n,

v := 2 log(z(1− z)) = 2 log
−yn−1

(1− yn−1)2
,

we have

(4.1) Vol(n)

=

{
ImH(y, n)− log |n| arg(z(z − 1)), arg(z(z − 1)) < 0,

ImH(y, n)− log |n|(arg(z(z − 1))− 2π), arg(z(z − 1)) > 0,
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=

{
ImH(y, n)− log |n|(arg(z(1− z))− π), arg(z(z − 1)) < 0,

ImH(y, n)− log |n|(arg(z(1− z)) + π − 2π), arg(z(z − 1)) > 0,

= ImH(y, n)− log |n|(arg(z(1− z))− π)

= ImH(y, n) + πReu− 1

2
Reu Im v.

5. Geometric interpretation of the volume formula. In this sec-
tion I will prove Corollary 2.3.

First I describe a geometric interpretation of u and v appearing in (4.1).
See [1, 22] for details.

Let K be a hyperbolic knot in S3, that is, S3 \K has a complete hyper-
bolic structure. We assume that the complement S3 \K is decomposed into
hyperbolic ideal tetrahedra. Note that all the (removed) vertices of these
tetrahedra are identified to the “point at infinity” X. Since the regular
neighborhood of each ideal vertex is homeomorphic to (a triangle)× [0,∞)
(∞ corresponds to the vertex), the regular neighborhood E of X is homeo-
morphic to T × [0,∞) with T a torus. We call E the end of S3 \ E and
T the cusp torus. The torus T has a Euclidean structure coming from the
complete hyperbolic structure in S3 \K. We orient T as in Figure 19, that
is, by using the meridian-longitude pair (µ, λ). If we change the hyperbolic
structure slightly, we get an incomplete hyperbolic structure in S3 \K and
a similarity structure on T .

Let D : T̃ → C be the developing map, where T̃ is the universal cover
of T , which is homeomorphic to R2. Geometrically D can be described as
follows. Note that T is decomposed into triangles each of which is determined
up to similarity. Cut T into a quadrilateral S consisting of triangles. Map
each triangle in S into C preserving the similarity structure so that the edges
fit in C. Then the image D(S) of S is defined as a polygon with four sides
corresponding to the four sides of S. Noting that each pair of opposite sides
can be identified by a similarity transformation, we can paste copies of D(S)

side by side on C, defining D : T̃ → C.

Example 5.1. Let us consider the case when K is the figure-eight knot.
Figures 20–23 show an example when the translations of D(S) give a tiling
of C\{0}. Figures 24 and 25 show another example of such a case. Figure 26
shows an example when translations of D(S) are dense.

We also denote by D : Ẽ → H3 the developing map from the universal
cover of E , which is homeomorphic to R2× [0,∞), where the point at infinity
X is sent to ∞.

We assume that T has a similarity structure. Let Sim(R2) be the group
of similarity transformations of R2, which is equal to the group of affine
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Fig. 20. D(S) of the (3,−2)-Dehn surgery along the figure-eight knot. Here a dot indicates
0 ∈ C.

Fig. 21. The arrow indicates δ(µ)δ(λ)−1. Note that δ(µ)3δ(λ)−2 is the rotation by 2π.

Fig. 22. Copies of D(S) define a tiling of C∗.
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Fig. 23. Fundamental domains of Figure 22.

Fig. 24. D(S) of the (6, 0)-Dehn surgery along the figure-eight knot. A dot indicates 0 ∈ C.

transformations of C. Then the holonomy H : π1(T ) → Sim(R2) is defined

as follows. An element η ∈ π1(T ) acts on T̃ as a covering transformation
ση. We define H(η) so that D ◦ ση = H(η) ◦ D holds. By changing the
developing map by a translation if necessary, we may assume that H(η)
fixes {0,∞} ∈ C for any η ∈ π1(T ) since π1(T ) is abelian. Then H(η) acts
on C as

H(η)(z) = δ(η)z.

Note that δ : π1(T )→ C∗ (:= C \ {0}) is a homomorphism.
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Fig. 25. Copies of D(S) for the (6, 0)-Dehn surgery along the figure-eight knot.

Fig. 26. Copies of D(S) corresponding to irrational p/q.

The Poincaré extension of the holonomy H(η) to H3 is given by

H(η)(z, τ) = (δ(η)z, |δ(η)|τ).

Therefore we can choose E so that the image of the developing map D(Ẽ) is
a cone C centered at the τ -axis minus the axis:

D(Ẽ) = C := {(z, τ) | τ ≥ c|z|, z 6= 0} (c > 0).

Example 5.2. We describe δ in the case of the figure-eight knot. The
meridian µ and the longitude λ are indicated by the solid arrow and the
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dotted arrow respectively in Figure 19. Note that we view the torus from
the outside of the knot complement.

Fig. 27. The meridian µ is indicated by the arrow.

Then δ(µ) can be read as follows. In Figure 27, multiplying
−−→
BA by z−1

we get
−−→
BD and multiplying

−−→
BD by w′′ we get

−−→
CD. Since δ(µ) takes

−−→
BA to−−→

CD,

δ(µ) = z−1w′′ = z−1(1− w)−1 = w(1− z).

Similarly from Figure 19, the longitude is the arrow along the right side of
the left picture, which equals the right side of the right picture and twice
the meridian. Therefore

δ(λ) = w′(z′′)−1w′′(z′)−1w′(z′′)−1w′′(z′)−1 × δ(µ)2

= (w′)2(w′′)2(z′)−2(z′′)−2w2(1− z)2

=
(1− w−1)2(1− z)4w2

(1− w)2(1− z−1)2
= z2(1− z)2.

Hence we have

u = log δ(µ), v = log δ(λ).

We will study the completion E of E . Note that since D(Ẽ) is C, a cone

minus the axis, its completion D(Ẽ) is the whole cone C.
As in the case of the figure-eight knot (Example 5.2) we put

u := log δ(µ), v := log δ(λ).

Let p and q be the unique real solution to the equation

pu+ qv = 2π
√
−1.

Note that it is equivalent to the following system of equations:
{
pReu+ qRe v = 0,

p Imu+ q Im v = 2π.

Suppose first that p/q is irrational. In this case the set

(5.1) {|δ(µ)|a|δ(λ)|b | a, b ∈ Z}
is dense in R+ := {τ ∈ R | τ > 0}, since aReu + bRe v can be arbitrarily
close to 0. Considering the geodesic in H3 starting at the point δ(µ)aδ(λ)b ∈
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C∗ and going along the semicircle centered at 0 and perpendicular to the
xy-plane, we can associate each point in

(5.2) {δ(µ)aδ(λ)b | a, b ∈ Z}
with a limit point on the τ -axis. If we regard the lattice (5.2) as the vertices
of “quadrilaterals”, copies of D(S)s, the points in (5.2) are identified in T
and the associated limit points (5.1) are dense in R+. So we see that E is the
one-point completion of E . Note that in this case the completion of S3 \K
is not a manifold. See Figure 26 for the figure-eight knot case.

Next we assume that p/q is rational. Let p′ and q′ be coprime integers
such that p/q = p′/q′. Then there exist integers s and t satisfying tp′ −
sq′ = −1. Now we see that the subgroup (additively) generated by u and
v is the same as the subgroup generated by p′u + q′v and su + tv. Putting
d = p/p′ = q/q′, we have

p′u+ q′v =
pu+ qv

d
=

2π
√
−1

d
.

So Image δ is generated by δ(µ)sδ(λ)t and the 2π/d-rotation.
Therefore we can assume that a “fundamental domain” of the developing

image of the cusp torus is a sector of an annulus between the circles centered
at the origin with radii 1 and |exp(su+ tv)|, and with central angle 2π/d.

Let us consider examples for the figure-eight knot case.

Example 5.3. (1) Consider the case (p, q) = (3,−2) (Figures 20–23). In
this case (s, t) = (1,−1) and so Image(log δ) is generated by 3u−2v and u−v.
We calculate by using Mathematica u = −0.723043 . . .+

√
−1 · 0.179545 . . .

and v = −1.08456 . . .−
√
−1 · 2.87228 . . . . Therefore 3u− 2v = 2π

√
−1 and

u − v = 0.361522 . . . +
√
−1 · 3.05182 . . . and so Image δ is generated by

exp(u − v) = −1.42973 . . . +
√
−1 · 0.128696 . . . . Note that | exp(u − v)| =

1.43551 . . . and arg exp(u− v) = 2π · 0.485712 . . . .
(2) Let (p, q) = (6, 0) (Figures 24 and 25). Then u = 2π

√
−1/6 and v =

− log(7 + 4
√

3). Therefore Image δ is generated by enlargement by 7 + 4
√

3
and rotation by 2π/6.

We will calculate |exp(su+ tv)| = exp(sReu+ tRe v). Since
(
p

q

)
=

1

Reu Im v − ImuRe v

(
Im v −Re v

− Imu Reu

)(
0

2π

)
,

we have

sReu+ tRe v =
s

p′
(p′Reu+ q′Re v)− Re v

p′
= −dRe v

p

=
d(Reu Im v − ImuRe v)

2π
= −d Im(uv)

2π
.
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Remark 5.4. We have chosen the signs of s and t as above since − Imuv
> 0. The reason is as follows.

By a translation we assume that H(µ) and H(λ) fix two points ζ and∞
in Ĉ, that is, {

H(µ) : z 7→ δ(µ)z + ζ(1− δ(µ)),

H(λ) : z 7→ δ(λ)z + ζ(1− δ(λ)).

Therefore the vertices of the developing image of a fundamental “quadrilat-
eral” are S := 1, T := δ(µ) + ζ(1− δ(µ)), U := δ(µ)δ(λ) + ζ(1− δ(µ)δ(λ)),
and V := δ(λ) + ζ(1− δ(λ)). Now we consider the limit when the similarity
structure goes to a Euclidean structure, that is, both δ(µ) and δ(λ) go to 1.
Since the element of PSL(2,C) corresponding to a Euclidean structure has

only one fixed point in Ĉ, we also take the limit ζ → ∞ so that the fixed
point is ∞. Then
−→
SV
−→
ST

=
δ(λ) + ζ(1− δ(λ))

δ(µ) + ζ(1− δ(µ))

ζ→∞−−−→ 1− δ(λ)

1− δ(µ)

δ(µ)→1, δ(λ)→1−−−−−−−−−−→ log δ(λ)

log δ(µ)
=
v

u
.

Let S, T, U, and V approach S0, T0, U0, and V0 respectively. Since we have

chosen the orientation of the cusp torus so that
−−−→
S0V0/

−−−→
S0T0 is represented

by a complex number with positive imaginary part, we have

Imuv = Im
u

v
|v|2 < 0.

Now we consider the completion of E . We again assume that H(η) (η ∈
π1(T )) acts on C∗ as z 7→ δ(η)z (z ∈ C∗). Then this action can be extended
to H3 \ τ -axis = C∗ × R+ as H(η) : (z, τ) 7→ (δ(η)z, |δ(η)|τ). Therefore we
have 




H(µp
′
λq
′
) : (z, τ) 7→

(
exp

(
2π
√
−1

d

)
z, τ

)
,

H(µsλt) : (z, τ) 7→
(
δ(µ)sδ(λ)tz, exp

(−d Im(uv)

2π

)
τ

)
.

If d = 1, then we may assume that a “fundamental domain” for E is the
truncated cone minus the τ -axis:{

(z, τ)

∣∣∣∣ 1 ≤ τ ≤ exp

(− Im(uv)

2π

)
, τ ≥ c|z|, z 6= 0

}
.

Then the completion E is just the whole truncated cone with top and bottom
identified. Topologically it is homeomorphic to a solid torus D2 × S1. The
added axis becomes a loop γu with length

exp(− 1
2π

Im(uv))�

1

dτ

τ
= − 1

2π
Im(uv).
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Therefore S3 \E with incomplete hyperbolic structure defined by u = expn
is completed by adding a geodesic loop γu with length − 1

2π Im(uv). This is

nothing but the (p, q)-Dehn surgery of S3 along the knot K, since the loop
represented by pu+ qv becomes null-homotopic.

So if d = 1, we have

Vol(n) = ImH(y, n) + πReu− 1

2
Reu Im v

= ImH(y, n) + πReu− 1

4
Im(uv)− π

2
length(γu).

Recalling that n = exp(2πr
√
−1) and u = log n, this completes the proof of

Corollary 2.3. (Recall also that we take the branch of log so that logn = 0
when n = 1.)

Remark 5.5. If d > 1, a “fundamental domain” for E is a sector of the
truncated cone minus the τ -axis:{

(z, τ)

∣∣∣∣ 1 ≤ τ ≤ exp

(−d
2π

Im(uv)

)
, τ ≥ c|z|, z 6= 0, 0 ≤ arg z ≤ 2π

d

}
.

So the completion E is topologically a solid torus, but geometrically it has
a singularity along the added loop, called cone-singularity with cone-angle
2π/d.
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Sūrikaisekikenkyūsho Kōkyūroku 1172 (2000), 70–79.

[14] —, Kashaev’s invariant and the volume of a hyperbolic knot after Y. Yokota, in:
Physics and Combinatorics 1999 (Nagoya), World Sci., River Edge, NJ, 2001, 244–
272.

[15] —, Some limits of the colored Jones polynomials of the figure-eight knot, Kyungpook
Math. J. 44 (2004), 369–383, arXiv:math.GT/0308002.

[16] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial
volume of a knot, Acta Math. 186 (2001), 85–104.

[17] H. Murakami, J. Murakami, M. Okamoto, T. Takata, and Y. Yokota, Kashaev’s
conjecture and the Chern–Simons invariants of knots and links, Experiment. Math.
11 (2002), 427–435.

[18] H. Murakami and Y. Yokota, The colored Jones polynomials of the figure-eight knot
and its Dehn surgery spaces, arXiv:math.GT/0401084.

[19] W. D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24
(1985), 307–332.

[20] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials
and quantum groups, Invent. Math. 103 (1991), 547–597.

[21] D. Thurston, Hyperbolic volume and the Jones polynomial, lecture notes, École d’été
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