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Khovanov homology, its definitions and ramifications
by

Oleg Viro (Uppsala and St. Petersburg)

Abstract. Mikhail Khovanov defined, for a diagram of an oriented classical link, a
collection of groups labelled by pairs of integers. These groups were constructed as the
homology groups of certain chain complexes. The Euler characteristics of these complexes
are the coefficients of the Jones polynomial of the link. The original construction is over-
loaded with algebraic details. Most of the specialists use adaptations of it stripped off the
details. The goal of this paper is to overview these adaptations and show how to switch
between them. We also discuss a version of Khovanov homology for framed links and
suggest a new grading for it.

1. Introduction. For a diagram D of an oriented link L, Mikhail Kho-
vanov [7] constructed a collection of groups H"’ (D) such that

K(L)(q) = Z ¢’(~1)" dimg(H" (D) ® Q),

where K(L) is a version of the Jones polynomial of L. These groups are
constructed as homology groups of certain chain complexes.

Khovanov homology has proved to be a powerful and useful tool in low
dimensional topology. Recently Jacob Rasmussen [16] has applied it to prob-
lems of estimating the slice genus of knots and links. He defined a knot in-
variant which gives a lower bound for the slice genus and which, for knots
with only positive crossings, allowed him to find the exact value of the slice
genus. Using this technique, he has found a new proof of the Milnor conjec-
ture on the slice genus of toric knots. This is the first proof which does not
depend on the technique of gauge theory. It is much simpler than all the
previously known proofs.

Khovanov homology is not an isolated phenomenon any more. Since 1999,
when Khovanov [7] discovered it, several similar link homology theories have
been discovered (see [8], [10-12], [15], [3]). Khovanov homology seems to be
the simplest of them.
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318 O. Viro

As Khovanov homology becomes one of the mainstream techniques in
topology, the details of its definition and internal structure deserve a careful
consideration.

The original construction of H%/ (D) is overloaded with algebraic details.
More topologist-friendly versions of this construction were presented by Dror
Bar-Natan [2] and the author [18]. The constructions in [2] and [18] differ
only by inessential details from each other and from the original paper by
Khovanov [7]. One can easily recognize all the details of any of them in the
other one.

Nonetheless, in most of the papers on Khovanov homology, the differ-
ences between [2] and [18] are taken too seriously. In this paper I discuss the
constructions again. I begin with the approach of [18]. Its main idea is to
show how one could invent Khovanov homology starting with the Kauffman
bracket model for the Jones polynomial and a general desire to upgrade (i.e.,
categorify) the Jones polynomial. Then I identify this construction with the
construction of [2] and [7].

The Khovanov homology is closer to the Kauffman bracket, which is an
invariant of non-oriented, but framed links, than to the Jones polynomial,
which is an invariant of oriented, but non-framed links. The corresponding
modification of Khovanov homology is presented in Section 6. This allows
us to write down a categorification of the Kauffman skein relation for the
Kauffman bracket. The skein relation gives rise to a homology sequence.

I am grateful to Jozef Przytycki for his stimulating interest in this paper
and to Alexander Shumakovitch for numerous interesting discussions and
valuable remarks.

2. Preliminary exposition of link matters

2.1. Links, their framings and orientations. Let me recall the basic no-
tions. By a link we mean a smooth closed 1-dimensional submanifold of
R3. Links Lo, Li are called (ambient) isotopic if there exists an isotopy
hy : R3 — R3, ¢ € [0, 1], with hg = id and hy(Lg) = L1. Up to isotopy a link
is characterized by its diagram, i.e., a generic projection of the link to a plane,
decorated at each double point to specify over-crossing and under-crossing
branches. A double point on a link diagram is called a crossing.

By a framing of a link we mean a non-vanishing normal vector field
on the link. We consider framings up to isotopy. A link diagram defines a
class of isotopic framings, which contains both framings annihilated by the
projection and framings whose vectors are projected to non-zero vectors.
The framings of the latter type are called blackboard framings for an obvious
reason.
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For an oriented framed link (i.e., a link with a distinguished framing) the
self-linking number is the linking number between the link and the result of
a small shift of it along the framing.

The self-linking number depends on the orientation: reversing the orien-
tation of a single component of a link changes the self-linking number by
the doubled linking number of the component and its complement. In par-
ticular, in the case of a knot (a one-component link) the self-linking number
does not depend on its orientation. (It depends on the orientation of the
ambient space, which we will assume to be fixed.)

A framing of a knot is characterized by its self-linking number up to
isotopy. Hence the isotopy class of a framing is described by the self-linking
numbers of its components. Thus a framing of a link can be characterized up
to isotopy by assignment of an integer to each connected component of the
link. A framing of a knot with self-linking number n is called an n-framing.

With a crossing point of a diagram of an oriented link we associate the
local writhe number equal to

e +1 if at the point the diagram looks like 2\, and
e —1 if it looks like ).

The sum of the local writhe numbers over all crossing points of a link diagram
D is called the writhe number of D and denoted by w(D).

The writhe number of a link diagram D is equal to the self-linking num-
ber of the corresponding blackboard framing.

Addition of a little kink to a diagram (i.e., the first Reidemeister move)
changes the writhe number by +1. Therefore any framing of a link can be
realized as a blackboard framing: for this one should add an appropriate
number of kinks.

2.2. Jones polynomial and Kauffman bracket. In this paper we will deal
with two polynomial link invariants closely related to each other: the Jones
polynomial V7, and the Kauffman bracket (L). The Jones polynomial is
defined on the set of oriented links, the Kauffman bracket is defined on the
set of framed links.

The Kauffman bracket of a framed link is a Laurent polynomial in A. It
is defined by the following properties:

(1) Normalization. (unknot with O-framing) = 1.

(2) Stabilization. (LIIunknot with O-framing)=(—A%—A~2)(L), where
IT stands for disjoint sum.

(3) Kauffman skein relation. (3 ) = A () + A7), where >, )(
and > stand for links defined by their diagrams with blackboard
framing which coincide outside a disk and in the disk look as their
notations.
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The Jones polynomial of an oriented link is a Laurent polynomial in ¢1/2
defined by the following properties:

(1) Normalization. Vipknot = 1.

(2) Stabilization. VI, 11 unknot = (—t1/2 — t_l/Q)VL, where II stands for
disjoint sum.

3) Jones skein relation. t~'V, -tV = (tY2 — =YV, ,, where
N, W and Y ¢ stand for oriented link diagrams coinciding outside
a disk and in the disk looking as their notations.

When one speaks about the Kauffman bracket of a link diagram, this
means the Kauffman bracket of the link represented by the diagram and
equipped with the blackboard framing.

If the link is both oriented and framed, both the Jones polynomial and
Kauffman bracket make sense and each of them can be expressed in terms of
the other and the self-linking number of the framing. Namely, for an oriented
link L with diagram D,

(1) Vi(A™) = (=4) 7 P)(D).

2.3. Kauffman state sum. The Kauffman skein relation applied consec-
utively to all crossings of a link diagram allows one to express the Kauffman
bracket of the diagram as a linear combination of the Kauffman brackets
of collections of circles embedded in the plane. Then the Stabilization and
Normalization properties complete the calculation.

This calculation can be rearranged as follows. The summands in the
Kauffman skein relation correspond to smoothings of the crossing. A smooth-
ing is associated to a marker, which speciﬁes a pair of vertical angles at the
crossing to be joined under the smoothing (see Figure 1).

A K

\744,)7.\_./
AN RN

Fig. 1. Smoothing of a diagram according to markers

Applying the skein relation at all crossings gives rise to a presentation
of (D) as a large sum in which the summands correspond to distributions
of markers over all crossings. Such a distribution of markers is called a state
of the diagram. A state of a diagram defines a smoothing of the diagram: at
each of its double points the marked angles are united in a connected area.

Denote the result of the smoothing by Dg. This is a union of disjoint
circles embedded in the plane. Denote the number of the circles by |s].
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The two terms on the right hand side of the Kauffman skein relation
have different coefficients (A and A~1). The corresponding markers are also
distinct: the one corresponding to the term with coefficient A connects the
verticle angles such that rotation of the upper string towards the lower one
through these angles is counter-clockwise, while for the other the rotation is
clockwise. The markers of the former kind are called positive or A-markers,
those of the latter kind are negative or B-markers. Khovanov [7] calls the
smoothing corresponding to an A-marker a 0-resolution, and the smoothing
corresponding to a B-marker a 1-resolution. Bar-Natan [2] calls them 0-
smoothing and 1-smoothing, respectively. See Figure 2.

>I/ N ‘
AN AN
positive marker negative marker

Fig. 2. Markers

For a state s of a diagram D denote by o(s) the difference between the
numbers of positive and negative markers. The contribution of a state s to
the Kauffman bracket is A7) (=A% — A=2)lsI=1 and

(2) (D)= 3 AT (a2 Ay
states sof D
Together with (1), this gives

(3) VD(A74) — (_A)73w(D) Z Aa(s)(_AQ _ A72)|s|71.
states sof D
2.4. Jones polynomial and Kauffman bracket augmented. The normal-
ization adopted in the classical definitions implies that for the empty link
& the Jones polynomial and the Kauffman bracket are not Laurent poly-
nomials:

1 1
Vo= —m e o @)= g

To turn them into Laurent polynomials, as well as for many other reasons,
the normalization property is modified by requiring that the Jones polyno-
mial and Kauffman bracket of the empty link are 1. This gives rise to a new
version of the Jones polynomial which is equal to the original one multiplied
by —t1/2 — t=1/2 and a new version of the Kauffman bracket which is the
original one multiplied by —A? — A~2. In particular, the new version of the
Jones polynomial of the unknot equals —#1/2 _t=1/2 and the new version of
the Kauffman bracket of the unknot with O-framing equals —A? — A2,

We will call these versions augmented and denote them by Vi, and (L),
respectively.
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The state sum representations (2) and (3) imply

(4) <D> = Z AU(S)(_AQ o A72)|s|’
states s of D
(5) Vp(A™) = (=A) ) 37 A7) (- A2 — A,
states s of D

2.5. Terminological remarks. In the literature one can find several nor-
malizations of both the Jones polynomial and the Kauffman bracket. They
differ by factors and change of variable. The terminology concerning the
Jones polynomial and Kauffman bracket is a bit messy. I will consider here
only issues related directly to the construction of Khovanov homology.

In the paper [2] by Bar-Natan the term Kauffman bracket is used for
another characteristic of a link diagram, which fails to be invariant under
the second Reidemeister move.

This bracket was borrowed from Khovanov’s paper [7], where it was not
named at all, but enjoyed the bracket notation.

Khovanov used the variable ¢ = —A~2. In this variable the Kauffman
bracket is a Laurent polynomial in ¢'/2 with coefficients in the Gaussian
numbers Z[y/—1]. Probably, just to keep the Kauffman bracket a Laurent
polynomial in ¢ with integer coefficients, Khovanov multiplied it by (—q)c/ 2,
where ¢ is the number of crossings in the diagram. This compromised its
invariance under the second Reidemeister move, but the invariance was not
needed.

In Khovanov’s paper [7], the term “Kauffman bracket” was used for a
rescaled version of the Jones polynomial f[L] introduced by Kauffman in [6]
for a short while, just to prove Theorem 2.8 there, which states that f[K]
evaluated at t~1/4 is the Jones polynomial Vi (t) of K.

Kauffman in [6] surely did not use the words “Kauffman bracket”, but he
used the term “bracket polynomial” for a polynomial characteristic of a link
diagram and denoted it with brackets. The name of Kauffman bracket was
then commonly accepted for this polynomial. This is what we call Kauffman
bracket.

There is nothing wrong in modifying polynomial characteristics of link
diagrams according to current needs, provided this does not lead to confu-
sion. I suggest following the original terminology as closely as possible, up
to notations of indeterminates in the polynomials.

3. Preliminary reflections on categorifications. We are not going
to discuss the general idea of categorification. Instead, let us concentrate on
classical non-trivial examples, which are most instructive for our purposes.



Khovanov homology 323

3.1. Classical examples of categorification. A classical example of cat-
egorification is the invention of homology groups. Homology groups cate-
gorify the Euler characteristic. The process of categorification took quite a
long time and efforts of excellent mathematicians such as Betti, Riemann,
Poincaré, Vietoris and Emmi Noether. One can hope to find an inspiration
in this example.

The homology groups H,(X) of a space X categorify the Euler charac-
teristic x(X) in the sense that

dim X
(6) V) = 3~k Ho(X).

n=0
Formula (6) means that the Euler characteristic characterizes numerically
the size of the homology groups. So, if we begin with the Euler character-
istic, the homology groups provide an answer to the question: “What does
the Euler characteristic count?”, or, more accurately: “What is an algebraic
invariant of a topological space such that the size of this invariant is char-
acterized by the Euler characteristic?”

The Euler characteristic of, say, a polyhedron X can be defined by

(7) x(X) = > (=1t

simplices s of
atriangulation of X

This is a version of the well known formula

dim X
(8) N = 3 (<)),

n=0
where ¢,(X) is the number of n-dimensional simplices in a triangulation
of X. So, the Euler characteristic counts simplices taking into account the
parity of their dimensions. However, the numbers ¢, (X) depend on trian-
gulation, while x(X) does not.

The homology groups H,(X) do not depend on triangulation. To con-
struct them, one can first construct the chain groups C,(X). Recall that
Cr(X) is a free abelian group generated by n-dimensional simplices of some
fixed triangulation of X . This simple formal action seems to be a step in the
right direction. Indeed,

dim X
(9) VX) = 37 (1) tk Cu(X),

n=0
because ¢, (X ) = rk C,,(X). However, the groups Cp,(X) depend not only on
X, but on the choice of the triangulation.

A crucial step is to pass from chains to homology classes. One needs to
find boundary operators 9y, : Cp,(X) — C,—1(X) such that the compositions
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On—100, would be trivial and the homology groups H,,(X) = Ker 9,,/Im 0,41
would not depend on the triangulation. As soon as this is achieved, we are

done, since for any complex C' = {Cy — Cny_1 — -+ — Cp} of abelian
groups,

N N

D (=1)"rtk Ho(C) = Y (—=1)"1k C.

n=0 n=0

The advantages of homology groups over the Euler characteristic are well
known. Homology groups certainly contain much more information about
the space than the Euler characteristic. But the functorial nature of ho-
mology is even more important. Continuous maps between spaces induce
homomorphisms between their homology groups. Without homology groups
very little can be said about continuous maps in terms of just Euler charac-
teristics.

3.2. Non-uniqueness of categorification. A categorification of the Euler
characteristic is not unique. For example, one can consider homology groups
with coefficients in a field F'. Ranks of groups should then be replaced by
dimensions over F', so formula (6) turns into

dim X
(10) X(X) = > (—1)"dimp Hy(X; F).

n=0

Even more categorifications of x(X) can be obtained by cheap tricks. For
example, one can change the indices (dimensions) of the homology groups
preserving only their parity. Or one can choose any finite sequence of finitely
generated abelian groups Ay, with >, (=1)*rk Ay = 1 and put H'(X) =
D..(Ar ® H,_(X)). Obviously, x(X) =, (—=1)"rk HA(X).

3.3. How should a categorification of a polynomial link invariant look
like?. We are going to categorify the augmented Jones polynomial and the
augmented Kauffman bracket. Both are Laurent polynomials in one variable
over Z. A Laurent polynomial in one variable is nothing but a sequence of
its coefficients.

One may expect that under categorification, each coefficient, being a
numerical invariant of a link, gives rise to a sequence of abelian groups.
Therefore a categorification of the whole polynomial should look like a col-
lection of abelian groups indexed by pairs of numbers. Say, a categorification
of the augmented Jones polynomial is expected to be a collection of abelian
groups H%(L) such that Vj (t) = Zi’j(—l)itj rk H% (L).

Instead of a polyhedron, we now have to deal with a link. Triangulation
that served a combinatorial presentation of a polyhedron, is replaced by a
link diagram.
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The Kauffman state sum representation (5) of the Jones polynomial looks
similar to the formula (7) for the Euler characteristic in terms of numbers
of simplices. To make it a true counterpart of (7), each homogeneous com-
ponent of the right hand side of (5) should be represented as an alternating
sum of ranks of groups for a sequence of abelian groups. Then the groups
next to each other in this sequence should be related by homomorphisms,
transforming the sequence into a chain complex whose homology groups do
not change under Reidemeister moves.

We are going to realize this program.

4. From Kauffman bracket to Khovanov chains

4.1. Normalization problem: homology for the unknot. Since categorifi-
cation is not unique, we should feel free to impose additional restrictions, a
sort of normalization, on H®/(L).

The normalization property of the augmented Jones polynomial states
that for the unknot it equals —¢t%/2 — ¢t~1/2. Thus

P 0 otherwise.

There is no aesthetically obvious choice for H*7(unknot) to satisfy this re-
striction. One of the simplest choices is H/ = Z if i = 1 and j = +1/2,
and H"/ = 0 otherwise. However, there are other possibilities, which are,
maybe, not worse, if not better than this one. Say, non-trivial groups may
appear at i =1,j=1/2and i = -1, j = —1/2.

4.2. Khovanov’s change of variable. Maybe, this ambiguity was the
point which forced Khovanov to change variable in the augmented Jones
polynomial. He replaced ¢ with ¢ = —t'/2. Following Khovanov, let us de-
note by K (L) the polynomial in ¢ obtained in this way. It is defined by the
following properties:

(1) Normalization. K (unknot) = q + ¢~ .
(2) Stabilization. K(L 1T unknot) = (¢ + ¢ 1)K (L).
(3) Skein relation. ¢ *K(%' ) — *K(') = (¢ —q) KO {).
Now the simplest possibility for the value of categorification of K on the
unknot is obvious:
b _ {Z if i =0and j =1,
0 otherwise.

As we have chosen to categorify K (L) instead of 17,;, we want to find,
for each link L, a collection of abelian groups H"(L) such that K(L) =
>-i;(=1)'¢ tk H"I(L). (We have switched to Khovanov’s notation, because
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now we are really talking about the homology groups H*/ he has con-
structed.)

4.3. Enhanced states. The Kauffman state sum (5) for the augmented
Jones polynomial of a framed link L presented by a link diagram D with
blackboard framing turns into

(11)  K(L)(¢) = Z (—1)WD)=o())/2(BuD)=0()/2 (4 4 g~ 18],
states s of D

The summands on the right hand side of (11) correspond to states of
the diagram. Hence each summand has a geometric meaning. Unfortunately,
each of them contributes to several monomials of K (L), and therefore it
should contribute to several homology groups. Therefore states cannot be
considered as true counterparts of simplices from the categorification of the
Euler characteristic considered in 3.1. We need to invent refinements of states
which would contribute monomials.

The most obvious straightforward way to refine the states is to open
brackets in (q + q_1)|5| and associate the monomials to some geometric ob-
jects.

The smoothened diagram D, consists of |s| connected components. So,
one can associate each factor ¢ + ¢! of (¢ + qil)‘s‘ with one of the compo-
nents. A monomial of the sum obtained by opening brackets in the product
corresponds to a choice of ¢ or ¢~ ! in each of the factors. This gives rise to
the following definition.

By an enhanced state S of a link diagram D we shall mean a collection
of markers constituting a usual Kauffman state s of D enhanced by an
assignment of a plus or minus sign to each of the circles of Dg. (Recall that
Dy is obtained by smoothing D according to all markers of s.)

For an enhanced state S of an oriented link diagram D denote by 7(S5)
the difference between the numbers of pluses and minuses assigned to the
circles of D;. Observe that for any state s of D,

(12) q(3w(D)—a(s))/2(q + q—1)|s| — Z q(Bw(D)—a(s)+27(S))/2

enhanced states S
enhancing s

Put (1)

. 3w(D) —o(s) +27(S

j(5) = D)= ol £ 2r(S)
Observe that both o(s) and w(D) are congruent modulo 2 to the number of
crossing points. Therefore j(.5) is an integer. Substituting (12) to (11), we

(') In [18] the formula for j(S) was slightly different: j(S) = 3 (3w (D) —o(s) —27(5)).
This was caused by the opposite value of the sign of the circles in D;. In [18] the change
of Kauffman’s variable A to Khovanov’s variable ¢ = —A~2 was made after the definition
of 7(95).
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get
(13) K(L)(q) = 3 (—1)@(D) o ()/243(S).
enhanced states S of D

4.4. Khovanov chain groups. Denote a free abelian group generated by
the enhanced states of a link diagram D by C(D). Denote by C’/(D) the
subgroup of C(D) generated by the enhanced states S of D with j(S) = j.
Thus C(D) is a Z-graded free abelian group:

D)=ci(D
JEZ.
For an enhanced state S belonging to a state s of a link diagram D, put
w(D) —a(s)
2

Denote by C*/(D) the subgroup of C7(D) generated by the enhanced states
S with i(S) = i. Notice that it follows from (13) that

(14) Z Z YirkCH (D).

j=—00 i=—00

i(S) =

4.5. Linguistic differences to Bar-Natan’s formalism. Enhancements of
states replace other notions, which appeared to be central in Khovanov’s
construction [7] and its presentation by Bar-Natan [2]. We consider a smaller
set of notions than in Bar-Natan’s paper [2].

Briefly, graded groups are used extensively at intermediate stages of the
construction in [7] and [2].

The states of a link diagram D with n crossings correspond to the vertices
of the n-dimensional cube. To define this correspondence, one has to fix a
(total) order of crossings and associate to a state s an n-vector (g1, ...,¢&,),
where ¢; = 0 if the marker of s at the ith crossing is positive, and ¢; = 1
otherwise.

With every vertex a € {0, 1}" of the n-dimensional cube (i.e., with every
state s of D) Bar-Natan associated (?) a graded free abelian group V. In
our terms, V, is a free abelian group generated by the enhancements of the
state s corresponding to a € {0,1}". The grading in V, is defined by the
numbers ¢(.5) introduced above, in 4.4, for each enhancement S of s. The
homogeneous component of V,, of degree i is the subgroup generated by the
enhanced states S with i(S) = i.

(2) Bar-Natan wrote about graded vector spaces, but mentioned in a footnote: “every-
thing that we do works just fine (with some linguistic differences) over Z”. We switch
tacitly back to abelian groups, i.e., modules over Z, but in the next section we will switch
for a short while to vector spaces over Zs.



328 O. Viro

The original construction of V,, runs through several steps with more
algebraic details, which are useful in what follows.

First, Bar-Natan introduced a free abelian group V' of rank 2 with genera-
tors v1. They are of degrees £1 respectively. This turns V into a graded group:
V = Vi1 & V_1, where V4, is the subgroup of V generated by v.

By the graded rank of a graded abelian group W = €, W,,, with homo-
geneous components Wy, we mean the power series qrk W = 3" ¢ rk W,,.
For example, qrkV = ¢ + ¢~ .

From our perspective, vy and v_ are the two enhancements of a state s
with |s| = 1. In general, to construct V,, Bar-Natan [2] (following Khovanov
[7]) takes the |s|th tensor power of V' and shifts the grading appropriately.

The |s|th tensor power V®lsl is generated by v, ® -+ @ Vs, where

6; = +. Obviously, qrk V!5l = (¢ + ¢~ 1)I*l. The g-rank of V,, has to be the
contribution of the state s to K(L), that is, qrk V,, = ¢®w(P)=7())/2(4 4
q*1)|s|. The group V&l is turned into V,, just by shifting the grading by
(Bw(D) — o (s))/2.

Let us introduce a notation for the shifting. Let -{l} denote the de-
gree shift operation: for W = €, W,,, set W{l},, = W,,,_; and W{l} =
@®,, W{l}m, so that qrk W{l} = ¢' qrk W. With this notation,

Vo = (VEF){Bw(D) — a(s))/2}.

Let us associate factors of V®Isl = V @ ... ® V with components of Dj.
Each of the standard generators of V!5l is associated with an enhancement
of s in the obvious way: a generator vs, ® --- ® Vs, corresponds to the
enhancement of s in which the ith component of Dy is equipped with sign 9;.

5. From chains to homology. Let D be a diagram of an oriented
link L. In [7] Khovanov defined a differential of bidegree (1,0) in C%(D)
and proved that the corresponding homology groups H®/ (D) depend, up to
isomorphism, only on L.

Khovanov’s description of the differential is made somewhat complicated
by several auxiliary algebraic constructions. We consider here a simplified
version, first over Zs.

An impatient (or lazy) topologist tends to consider homology with coef-
ficients in Zs instead of the full-fledged homology with integer coefficients.
This is a decent way to make a rewarding part of job. Its result is an indis-
pensible step towards constructing the homology with integer coefficients,
but all difficulties related to signs are delayed.

In the case of Khovanov homology restricting ourselves to considerations
modulo 2 we do not even miss our goal to categorify K(L). Indeed, the
homology groups of C(D;Zy) = C(D) ® Zy denoted by H"(D;Zs) already
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categorify K (L) in the sense that

K(L) =3 (=1)'¢’ dimg, " (D; Zs).
i,

5.1. Incidence numbers modulo 2. To define the differential do of
C(D;Zs), we just describe the matrix elements for dy. In the context of chain
complexes the matrix elements are traditionally called incidence numbers.

The group C/(D; Zs) is generated by S® 1, where S runs over enhanced
states of D with i(5) =i and j(5) = j. We will denote S ® 1 by S, as this
causes no confusion and simplifies notation.

For enhanced states S and T, denote their incidence number modulo 2
by (S : T)y. Then for an enhanced state S,

dy(S) = > (S:T)T.
enhanced statesT'
The incidence number (S : T); is a function of the pair of enhanced states
S and T, which are generators of C*/(D; Zs) and C*T1J(D; Zs), respectively.

5.2. Restrictions on pairs of incident enhanced states. Enhanced states
with a non-zero incidence number are said to be incident to each other. Pairs
of incident states satisfy natural restrictions. Surprisingly, these restrictions
give an exact description of the set of incident states: each pair of enhanced
states which is not eliminated by the restrictions consists of incident states.

5.2.A. If S and T are enhanced states with (S : T)a # 0, then j(T) =
J(S) and i(T) = i(S) + 1.

Proof. This restriction emerges from our desire to have a differential of
bidegree (1,0). Thus the differential preserves j and increases ¢ by one. m

5.2.B. COROLLARY. If S and T are enhanced states with (S : T)a # 0,
then o(T) = o(S) — 2.

Proof. Recall that i(S) = (w(D) — o(S))/2. Therefore i(T) = i(S) + 1
implies 0(T") = o(S) — 2. In other words, the number of negative markers of
T is one greater than the number of negative markers of S. =

It is natural to enforce this numerical restriction in the following way:

5.2.C. ASSUMPTION ON INCIDENT STATES. The incidence number
(S : T)o is zero unless the markers of S and T differ at only one cross-
ing point of D, and at this crossing the marker of S is positive, and that of
T 1s negative.

The crossing where the markers of S and T satisfying 5.2.C differ is
called the changing crossing of S and T' and denoted by z(S,T).
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Fig. 3. Incident enhanced states. The dotted arcs show how fragments of Dg or Dy are
connected in the whole Dg or Dt

P
NG

\
1
)

\

Since the markers differ at exactly one crossing, D is obtained from Dg
by a single Morse modification of index 1. Since the Morse modification is
embedded in the plane, it respects the orientations of Dg and D7 induced
from the domains bounded by Dg and Dy in the plane. Hence |S|—|T| = £1.
In other words, Dt is obtained from Dg either by joining two circles or by
splitting a circle of Dg into two circles.

Here is the next natural restriction on incident enhanced states:

5.2.D. ASSUMPTION ON INCIDENT ENHANCEMENTS. FEnhanced states S
and T are not incident unless the common components of Dg and Dt have
the same signs in S and T'.

5.2.E. COROLLARY (3). If S and T are enhanced states with (S : T)2
# 0, then 7(T) = 7(5) — 1.

Proof. Indeed, j(T') = j(S) by 5.2.A, and o(T') = o(S) — 2 by 5.2.B.
Hence
3w(D) —o(T) + 27(T)

2
) 3w(D) —o(S)+27(5)  3w(D)—o(S)—2+27(5)

Now we can list all situations satisfying these restrictions (see Figure 3):

5.2.F. COROLLARY. Let S and T be enhanced states with (S : T)9 # 0.

(1) If |T| = |S| — 1 and both joining circles of Dg are positive then the
resulting circle of T should be positive.

(2) If |T| = |S| — 1 and the joining circles of Dg have different signs
then the resulting circle of T should be negative.

(3) This statement differs from the corresponding statement in [18] due to the differ-
ence in the sign of 7.
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(3) If |T| = |S| + 1 and the splitting circle of Dg is negative then both
of the circles of Dr obtained from it should be negative.

(4) If |T| = |S|+ 1 and the splitting circle of Dg is positive then the
circles of Dy obtained from it should be of different signs. m

5.3. Differential modulo 2. Define dy : C%(D;Zs) — C*™59(D;Zs) by
assuming (S : T)2 = 1 in each of the cases listed in 5.2.F and shown in
Figure 3.

Another, more algebraic, description can be found in [7] and [2]. The
graded space P, ; C%(D;Zs) can be identified with

D ve ZQ)®S{M}

2
states sof D

(see Section 4.4). The factors in each summand are associated with con-
nected components of Dg. The signs on the components are associated with
the generators of the corresponding factor. Figure 3 turns into a description
of two maps. The left hand side of Figure 3 describes a multiplication

V4 Q@U_ — U_, Vy Uy — Uy,
m:VeV-V m: * - - -
Vo ®@Up —v—, V- Qv_+—0,

and the right hand side a comultiplication
Vg = Uy QU +v_ @ vg,

Vo — U_ QU_.

AV -VRYV, A:{

Of course, these are the restrictions described in the preceding section that
shape m and A.

5.3.A. THEOREM. dy is a differential (i.e., d3 = 0).

Proof. This can be proven as certain identities relating the multiplica-
tion m and comultiplication A using the algebraic reformulation above (see
[7]). These identities are: commutativity and associativity of m, cocommu-
tativity and coassociativity of A, and the identity Aom = (m®id)o(id®A).
However, the proof would involve checking numerous identities which were
left as an exercise to the reader both in [7] and [2]. The algebraic refor-
mulation helps only in naming the identities. A direct check involving only
incidence numbers takes two pages, and we present it.

Since d3(S) = >orpu(S ¢ T)2(T = U)oU, it is sufficient to prove that
Y>op(S :T)o(T : U)y = 0 for each enhanced state U. A state U for which
this sum is not empty differs from S by two markers. We can localize the
problem by smoothing according to the common markers of S and T, and
forgetting those components of the result which do not pass through the
marked crossings. At most three components of Dg are left.
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Up to homeomorphism, only five possible pictures can appear:

(1) Dg consists of three components and Dy is connected, so the com-
ponents of Dg are united by two Morse modifications:

000 - 0G0
CYORICDY

(2) Dg is connected and Dy consists of three connected components, so
Dg splits by two consecutive Morse modifications:

CBO GO0
Y 00 -000

(3) Both Dg and Dy are connected, so Dg splits by a Morse modi-
fication into two components, which are united by another Morse
modification:

(D -CD
“p D -

(4) Both Dg and Dy consist of two components; the first Morse modifi-
cation unites the components of Dg, and the second splits the result:

OGO - 000
(5) Both Dg and Dy consist of two connected components; the first
Morse modification splits one of the components of Dg and then

the second unites the other original component with one of the new
components:

- U
® ot

In each of these cases the order of the Morse modifications can be reversed.

OO

X0
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Then one can take into account enhancements, that is, the signs of the
components obtained after the first Morse modification. One has to check
that for any S and T the total number of ways to get 1" from S is even. All the

possible distributions of signs on the pictures above such that enhancement
states connected with an arrow are adjacent are shown below:

QOO -OCO+ OO - OCO+
+COO-CCD  -COO-CCO

OO0 -OCO- OO0 -OCO-
"GOO -G +COO -GSO

CXO0 - 00 C%@+C%Qi@
@%C%D@E@%@ OCO -0
C%@C%)I@ O -0
OCD-000 OGO -000
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- @)
@-ap  a@-ap

- @-
aD-ap  ap-ap

We see that if an enhanced state S can be connected to an enhanced
state T" by a chain of two adjacencies, there are an even number of such
chains. =

5.4. Upgrading to integer coefficients. To pass to integer coefficients, one
can use the following three special properties of the adjacency of enhanced
states.

5.4.A. For any pair of enhanced states S and T with (S : T)2 = 1, there
1s exactly one crossing at which the markers of S and T differ, and at this
crossing the marker of S is positive.

Recall that for enhanced states S, T" with (S : T)2 = 1, the crossing
at which the markers of S and T differ is called the changing crossing and
denoted by z(S,T).

54.B. If (S:T)2=(T:U)y =1 then x(S,T) # «(T,U).

Indeed, in T the marker at x(S,T) is negative, while the marker at
z(T,U) is positive.

5.4.C. For each pair of enhanced states S, U such that there exists an
enhanced state T with (S : T)2 = (T : U)2 = 1, on the set of such T the
changing crossing x(S,T) takes two different values for an equal number
of times.

These three properties of adjacency of enhanced states are analogous to
the properties of adjacency for faces of a simplex. To use them, there are
two standard ways, which are equivalent to each other.

First, one can order the crossings and define (S : T') as (—1)", where n
is the number of negative markers in S at crossings with numbers greater



Khovanov homology 335

than x(S,T). An obvious disadvantage of this approach is that it requires a
proof of independence of homology from the ordering of the crossings.

Another approach is to define orientation of enhanced states and then
define the incidence numbers for oriented enhanced states. By an orientation
of an enhanced state we will mean a (linear) ordering of all negative markers
considered up to even permutation. Orientations which differ by odd per-
mutations are considered opposite. Orientations of enhanced states can be
thought of as yet another enhancement of states, which allows one to define
appropriate signs of adjacency indices. However, this enhancement does not
increase the number of generators for the chain groups, since the same en-
hanced states with opposite orientations as chains differ by multiplication
by —1.

For enhanced states S and T with (S : T)2 = 1 oriented by linear
orderings of their negative markers such that the orderings coincide on the
common markers followed by the changing crossing in the ordering for T,
define (S : T) = 1.

One can easily check that if the orientations of all enhanced states are
defined by the orderings of negative markers induced by a linear order of all
crossings then this definition of (S : T') gives the same value as the definition
of (S :T) above.

5.4.D. THEOREM. The homomorphism d : C4J(D) — C**4I(D) defined
by d(S) = >.7(S : T)T satisfies d* = 0.

Proof. Clearly, d?(S) = >ur(S:T)(T : U)Us; this is identically zero by
5.4.A-5.4.C and the definition of (S : 7). m

5.5. Invariance under Reidemeister moves. Of course, the most funda-
mental property of the Khovanov homology groups is their invariance under
Reidemeister moves. An explicit construction of chain maps inducing the
corresponding isomorphisms can be found in paper [4] by Magnus Jacobs-
son. The same paper also contains an explicit description of the chain maps
induced by a link cobordism.

One may wish a little bit more detailed information. Namely, the chain
maps induced by a Reidemeister move are homotopy equivalences. Thus,
there exist chain homotopy maps relating compositions of these maps with
the identity maps. Below this is done for the case of first Reidemeister moves.

We have to distinguish two kinds of first Reidemeister moves: left-twisted

D 2 \p and right-twisted D - /\O

5.6. Left-twisted first Reidemeister move. The Khovanov complex of the
diagram obtained by a left-twisted first Reidemeister move splits as a direct
sum of two subcomplexes,
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(15) c(\p)z

Here for the subcomplexes we use notation similar to the one used

in skein relations. Namely, C (% )@ \>:J)r \>)> denotes the

subcomplex generated (as a collection of groups) by all enhanced states
which near the newborn crossing look as shown inside the parentheses.

C (—>I©_ , —>>IQ — 4>Q > denotes the subcomplex generated by all en-

hanced states which near the newborn crossing look as —> , and dif-
ferences of two enhanced states which near the newborn crossing look as
\ N\ : : . o .

— and —+ while outside of the neighborhood coincide with each
%9 %Q; g

other.
The first summand on the right hand side of (15) is isomorphic to a
Khovanov complex of the diagram before the move. The isomorphism

(Yo o) ¢(0)

is defined by the formulas

The second summand on the right hand side of (15) is contractible,

as this is a cone over its subcomplex C ( >>:@<)F , >>@) ) Thus, the sub-
\ \ \ _ '

lexC (Mo, Mo - + deformation retract of the whol

complex ()IQ_ >@ )I@_)lsa eformation retract of the whole

c <\/Q> The retraction p : C <\/Q> ~c <—>©_ _>9 _ +>Q> is

The homotopy connecting in o p to the identity, that is, a map h :
C(%}) — C<>}> such that doh+ hod = id — in o p, is defined
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- Y9 -

Here we assume that the orientations of the enhanced states are defined by
some order of crossings, in which the newborn crossing is the last one.

by the formulas

5.7. Right-twisted first Reidemeister move. The Khovanov complex of
the diagram obtained by a right-twisted first Reidemeister move splits as a
direct sum of two subcomplexes, too:

17 ¢ (X)) -

/

The first summand on the right hand side of (17) is isomorphic to the
Khovanov complex of the diagram before the move. The isomorphism

(99 D0 )~¢( D)

is defined by the formulas

Yo D -

The second summand on the right hand side of ( is contractible,

as this is a cone over its subcomplex C <—D>IQ N@ N@ ) Thus,

the subcomplex C | + , — is a deformation retract of the whole
pe ¢ (Dig- o)

C (k}) The retraction p : C (k}) —C <—D>IQ , —>IQ ) is defined by

the formulas
Dig = Dig.

g - Dl
Do~ - 219,
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The homotopy connecting in o p to the identity, that is, a map h :

C (X}) — C (Y}) such that d o h + hod = id—in o p, is defined

/ /
by the formulas
Do 39 - .

5.8. Enhanced states with polynomial coefficients. Khovanov construc-
ted not only the groups H%/, but also the graded modules H® over the
ring Z[c] of polynomials with integer coefficients in variable ¢ of degree 2.
The grading is a representation of H* as a direct sum of abelian subgroups
H% such that multiplication by ¢ in H' gives rise to a homomorphism
H4 — Hi’j+2.

To construct the homology groups H®J/, we define the corresponding
complex of graded Z|c]-modules C?. The module C? is the sum of its sub-
groups C*7. The group C*7 is generated by the formal products ¢*S, where
k>0 and S is an oriented enhanced state with i(S) = ¢ and j(5) = j — 2k.

The differential is defined in almost the same way as above. The states
which were adjacent above are adjacent here, as are their products by the
same power of c. Products of oriented enhanced states by different powers of
¢ are not adjacent, apart from the following situations: c**17T is adjacent to
¢k S if the markers of S and T differ exactly at one point, where the marker
of S is positive and that of T" negative, the signs of S and T on the common
circles of Dg and Dy are the same, |T'| = |S| + 1, the splitting circle of Dg
is negative, and the circles of D7 obtained from it are positive; see Figure 4,
where this situation is shown symbolically in the style of Figure 3.

//‘—\\‘ \_/

>\/< 7 \/

o 7N\
Fig. 4

Each group C% is finitely generated, but there are infinitely many non-
trivial groups. The groups H*? with fixed ¢ and sufficiently large j are iso-
morphic to each other.

5.9. Lee’s differentials. In [14] Eun Soo Lee defined a differential @ of
bidegree (1,4) in the Khovanov complex. The corresponding adjacency of
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enhanced states is shown in Figure 5. She proved that @ induces a homol-
ogy operation in the Khovanov homology groups, and using this operation,

established a conjecture on Khovanov homology of alternating knots formu-
lated by Bar-Natan, Garoufalidis and Khovanov.

I/ \ \\ ,/,\/\\‘ \ :
N N\ \_/Jr\\_/ / _\J

Fig. 5. Lee’s differential &

\
\
I
-

N

5.10. Reduced Khovanov homology. As observed by Khovanov [9], a cat-
egorification of the original, non-augmented, Jones polynomial can be ob-
tained from the Khovanov complex by reduction. Again, Khovanov’s de-
scription uses a bit more algebra than needed.

Here is a simplified version. I have learnt it from Alexander Shumakovitch
(see [17]).

The reduced Khovanov chain complex is defined for a link diagram D
with a base point dy chosen on an arc of D. B

To construct it, first consider a subcomplex C(D,dy) of C(D) generated
by enhanced states S such that the sign of the component of Dg containing
dp is —. The choice of — is not accidental. With — replaced by -+ it would
not be a subcomplex.

The Euler characteristic of C(D,dp), that is, Zid(—l)iqj rk C (D, dy),
equals )

L K(D)= 5
q+q “ +1

This is not # K(D), which is the polynomial obtained from the Jones

K(D).

polynomial Vp(t) by the substitution ¢ = —t'/2. To fix this mismatch, we
shift C(D, dy) appropriately: let C(D, dg) be C(D, do){1}. Denote the homo-
logy groups of C(D, dg) by H* (D, dp).

Up to isomorphism, the groups H*/ (D, dy) depend only on the isotopy
type of the oriented link with the marked component containing dj.

The groups H*/ (D, dp) really depend on the component of the link con-
taining dg. The simplest example for which different base components give
rise to non-isomorphic reduced Khovanov homology groups is a disjoint sum
of the unknot and a trefoil knot.

6. Khovanov homology of framed links. In my preprint [18], I sug-
gested a shifting turning the Khovanov homology of an oriented diagram
into a categorification of the Kauffman bracket. For a link diagram D it
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gives a bigraded collection of homology groups H; j(D) such that
(D)(A) = (-1)!72A7 vk Hy 4(D).
1,J
The shifting depends on the writhe number, and hence on orientation, while
the groups do not depend on orientation, but depend on framing.

My choice of the grading was not satisfactory, and many people suggested
to change it. Below I make another choice.

6.1. Framed Khovanov homology. Recall that the Kauffman bracket of
a link diagram D is given by the following state sum formula:

(D) = Z AU(S)(_AQ _ A—Q)Isl - Z (_1)\S\Aa(5)—2T(5)_
states enhanced states
sof D Sof D
Observe that |S| = 7(S) (mod 2), and hence
<D> — Z (_1)T(S)AO’(S)—2T(5).
enhanced states
Sof D

For an enhanced state S of a link diagram D, put
p(S) =7(5),  a(S) = o(5) —27(9).
If the link is oriented, and hence w(D) makes sense, then
p(S) =j(S) —w(D) —i(S),  q(5) = 3w(D) - 2;(5).
In terms of p(S) and ¢(5), the Kauffman bracket is expressed as follows:

(D) = Z (—1)P(S) ga(5),

enhanced states
Sof D

Denote the free abelian group generated by the enhanced states S of D
with p(S) = p and ¢(S) = g by Cp (D). If one orients the link, the Khovanov
chain groups C*/(D) appear, and

Cpqy(D) = C(w(D)—q—2p)/27(3w(D)—q)/2(D).

Under this identification, the differentials of the Khovanov complex turn
into differentials
d: Cpq(D) — Cp—1,4(D)

(the construction of the differentials does not involve the orientation of the
link, hence it does not matter which orientation is used). Denote the homol-
ogy group of the complex obtained by H) ,(D).

6.2. Skein homology sequence. Recall that the Kauffman bracket satis-
fies the following Kauffman skein relation:

(X)) =400 +47(X),
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where Y, ) (and > stand for link diagrams which coincide outside a disk
and in the disk look as their notations.
Let us categorify this skein relation. Consider the map

o CP,Q(X) - p,q—l(X)

which sends an enhanced state S of X to the enhanced state of X smooth-

ing along which coincides with the smoothing of > along S and the signs
of the ovals are also the same. The collection of these maps is a chain ho-
momorphism, that is, they commute with d. Indeed, the incidence numbers
are the same for an enhanced Kauffman state of > and its images in >,
and the latter cannot contain in the boundary a state with positive marker
at c.

Now consider the map

B Cp,q(X) - p,q71(> <)

which sends each enhanced state with negative marker at ¢ to 0 and each
enhanced state with positive marker at ¢ to the enhanced state of ) ( with the
same smoothing and signs of the ovals. This is again a chain homomorphism.

The homomorphisms « and 3 form a short exact sequence of complexes:

0 — Cen(X) - Conaa(X) -5 ConaD Q) — 0

It induces a collection of long homology sequences:

i) Hp,q(X) = p,qfl(X) ﬂ—’ p,q72(> <) i)

(18)
3] N B 1?)

— Hp1,,(X) = Hp-14-1(X) — Hp-14-200() —
A special case of this sequence, which relates the groups of a connected sum
and disjoint sum of knots, can be found in Section 7.4 of Khovanov’s paper
[7]. This special case is the only one which can be formulated for the original
version of homology depending on orientations of links.

The sequence (18) proved to be useful for calculation of Khovanov ho-
mology. For instance, it was used in [13] and [1].

I have not been able to categorify the Jones skein relation which involves
the Jones polynomial of oriented links. The Jones skein relation can be
deduced from a couple of Kauffman skein relations. However this algebraic
manipulation seems to have no categorification.
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