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Abstract. We consider actions of automorphism groups of free groups by semisimple
isometries on complete CAT(0) spaces. If n ≥ 4 then each of the Nielsen generators
of Aut(Fn) has a fixed point. If n = 3 then either each of the Nielsen generators has
a fixed point, or else they are hyperbolic and each Nielsen-generated Z4 ⊂ Aut(F3) leaves
invariant an isometrically embedded copy of Euclidean 3-space E3 ↪→ X on which it acts
as a discrete group of translations with the rhombic dodecahedron as a Dirichlet domain.
An abundance of actions of the second kind is described.

Constraints on maps from Aut(Fn) to mapping class groups and linear groups are ob-
tained. If n ≥ 2 then neither Aut(Fn) nor Out(Fn) is the fundamental group of a compact
Kähler manifold.

1. Introduction. This article is part of a project to understand the
ways in which mapping class groups and automorphism groups of free groups
can act on CAT(0) spaces. Here we focus mainly (but not exclusively) on
actions that are by semisimple isometries. This includes all cellular actions
on polyhedral complexes with only finitely many isometry types of cells [3].

The action of Aut(Fn) on the abelianisation of Fn gives an epimorphism
Aut(Fn)→ GL(n,Z). The inverse image of SL(n,Z) is generated by Nielsen
transformations, which are the obvious lifts of the elementary matrices: fix-
ing a basis {a1, . . . , an} for Fn, one defines the left Nielsen transformations
λij by [ai 7→ ajai, ak 7→ ak (k 6= i)] and the right Nielsen transformations
ρij by [ai 7→ aiaj , ak 7→ ak (k 6= i)].

Semisimple isometries of CAT(0) spaces divide into elliptics (those with
fixed points) and hyperbolics (those that have a non-trivial axis of trans-
lation). Conjugate isometries are of the same type. The Nielsen transfor-
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mations are all conjugate in Aut(Fn), so the semisimple actions of Aut(Fn)
on CAT(0) spaces divide into two classes: those where the Nielsen trans-
formations act as hyperbolic isometries and those where they act as elliptic
isometries. We shall prove that if n ≥ 4 then there are no actions of the for-
mer type. The proof (which establishes something more—Proposition 3.2)
is based on an idea of Gersten [12].

Theorem 1.1. If n ≥ 4, then each Nielsen transformation in Aut(Fn)
fixes a point whenever Aut(Fn) acts by semisimple isometries on a complete
CAT(0) space.

If the dimension of the CAT(0) space is sufficiently small, one can pro-
mote the existence of fixed points for the individual Nielsen transforma-
tions to a fixed point for the whole group—see [2], [5]. And by consider-
ing induced actions one can extend Theorem 1.1 to finite-index subgroups
Γ < Aut(Fn): any power of a Nielsen transformation that lies in Γ fixes
a point whenever Γ acts by semisimple isometries on a complete CAT(0)
space (see Section 2.1). In particular, if λpij ∈ Γ then λpij must have finite
order in H1(Γ,Z); for if not then there would be a homomorphism Γ → Z
mapping λpij non-trivially.

Despite recent progress in the understanding of maps between auto-
morphism groups of free groups and mapping class groups, many issues
remain unresolved. For example, it is unknown whether every homomor-
phism from Aut(Fn) to a mapping class group has to have finite image if
n ≥ 4. Closed surfaces of negative Euler characteristic admit semisimple ac-
tions on complete CAT(0) spaces where the elliptic isometries are the roots
of multi-twists [4, Theorem A], so Theorem 1.1 constrains putative maps
Aut(Fn)→ Mod(S).

Corollary 1.2. If n ≥ 4 and Γ < Aut(Fn) is a subgroup of finite
index, then every homomorphism from Γ to a mapping class group sends
powers of Nielsen transformations to roots of (possibly trivial) multi-twists.

We shall prove in Theorem 7.1 that this corollary fails for Γ = Aut(F3).
Theorem 1.1 fails even more starkly when n = 3. The key difference in the
case n = 3 lies in an observation from the work of Grunewald and Lubotzky
[13] on linear representations of Aut(Fn). They proved that Out(F3) has
a subgroup of finite index that maps onto a non-abelian free group. This
gives rise to an abundance of semisimple actions of Aut(F3) and Out(F3)
in which the Nielsen transformations act hyperbolically, as we shall explain
in Section 6. But across this enormous range of actions there is a striking
geometric feature that remains constant. This concerns the way in which
abelian subgroups of maximal rank generated by Nielsen transformations
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act. Each such subgroup is conjugate (1) to Λ := 〈λ21, ρ21, λ31, ρ31〉 ∼= Z4;
we call it a Nielsen Z4.

The rhombic dodecahedron is the Catalan solid that is dual to the Archi-
medean cuboctahedron; it is described in more detail in Section 4. Notice
that in the following theorem no assumption is made about the discreteness
of the action.

Theorem 1.3. Whenever Aut(F3) acts by semisimple isometries on a
complete CAT(0) space X, either each Nielsen transformation fixes a point,
or else each Nielsen Z4 ⊂ Aut(F3) leaves invariant an isometrically embed-
ded 3-flat E3 ↪→ X on which it acts as a discrete group of translations with
Dirichlet domain a rhombic dodecahedron.

When n ≥ 6 one can sharpen Theorem 1.1 by proving that in any action
of Aut(Fn) by isometries on a complete CAT(0) space the Nielsen trans-
formations have zero translation length, i.e. they are either elliptic or neu-
tral parabolic. Actions of the second type arise from linear representations
Aut(Fn) → GL(d,R) via the action of GL(d,R) on its symmetric space.
The fact that Nielsen transformations must act as neutral parabolics im-
poses constraints on the representation theory of Aut(Fn) that supplement
[10] and [16]. In Section 9 we explain how the rigidity of the standard linear
representation [10] can be combined with Simpson’s results [17] to prove:

Theorem 1.4. If n ≥ 2, then neither Aut(Fn) nor Out(Fn) is the fun-
damental group of a compact Kähler manifold.

2. Isometries of CAT(0) spaces and centralizers. Our basic refer-
ence for CAT(0) spaces and their isometries is [6]. Let X be a complete
CAT(0) space. The translation length of an isometry γ ∈ Isom(X) is ‖γ‖ :=
inf{d(x, γ.x) | x ∈ X}, and we let Min(γ) := {x ∈ X | d(x, γ.x) = ‖γ‖}. An
isometry is termed semisimple if Min(γ) is non-empty. Semisimple isometries
divide into elliptics (when ‖γ‖ = 0) and hyperbolics (‖γ‖ > 0). Isometries
for which Min(γ) = ∅ are termed parabolic (neutral or non-neutral [ballistic]
according to whether ‖γ‖ = 0 or not).

The following basic result is proved on page 231 of [6].

Proposition 2.1. If γ is hyperbolic, then Min(γ) splits isometrically as
Y × R, where γ acts trivially on the first factor and as (t 7→ t + ‖γ‖) on
the second factor. If α ∈ Isom(X) commutes with γ, then it leaves Min(γ)
invariant, preserves its splitting, and acts by translation on the second factor.

We also need the following form of the Flat Torus Theorem [6, p. 254].
A k-flat is an isometrically embedded copy of k-dimensional Euclidean space.

(1) Aut(F3) has virtual cohomological dimension 4, so there is no free abelian subgroup
of greater rank, but there is one other type of Z4, as explained on page 1710 of [11].
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Flat Torus Theorem. Whenever Zr acts by semisimple isometries
on a complete CAT(0) space X, it leaves invariant a k-flat E ↪→ X (for
some k ≤ r) on which it acts by translations. If γ ∈ Zr acts hyperbolically
on X, then γ|E is a translation of length ‖γ‖.

Notation. Let γ and δ be commuting hyperbolic isometries. We write
γ ⊥ δ if at some (hence any) point x ∈ Min(γ)∩Min(δ) the axes of γ and δ
through x are orthogonal. Equivalently, the action of δ on the second factor
of Min(γ) = Y × R is trivial.

We write ZG(S) for the centralizer of a set S in a group G. We write
H1(G) for the abelianisation of G and [G,G] for the commutator subgroup.

Lemma 2.2. Suppose that Γ acts by isometries on a complete CAT(0)
space X and that γ, δ ∈ Γ are commuting hyperbolic isometries.

(1) The natural map 〈γ〉 → H1(ZΓ (γ)) is injective.
(2) If δ ∈ [ZΓ (γ), ZΓ (γ)], then γ ⊥ δ.
(3) If there exists g ∈ ZΓ (γ) such that g−1δ−1g = δ then γ ⊥ δ.
Proof. The action of Z(γ) on the second factor of Min(γ) = Y ×R ⊂ X

is by translations. The group of all such translations is torsion-free and
abelian, and the image of γ is non-trivial. This proves (i) and (ii), and (iii)
is a special case of (ii) since δ2 = g−1δ−1gδ ∈ [ZΓ (γ), ZΓ (γ)] and any axis
for δ is an axis for δ2.

2.1. Induced actions. Let G be a group and let H ⊂ G be a subgroup
of index d. Just as one induces an n-dimensional linear representation of H
to obtain an nd-dimensional representation of G, one can induce an action of
H by isometries of a metric space X to obtain an action of G by isometries
on Xd (with the product metric). One way to view this induction (following
[9, p. 35]) is to identify Xd with the space of H-equivariant maps f : G→ X
with the action (g.f)(γ) = f(γg−1).

The following lemma is covered in [6, pp. 231–232].

Lemma 2.3. Suppose H has index d in G and that H acts by isometries
on a complete CAT(0) space X. If gp ∈ H acts as a hyperbolic isometry,
where p is a non-zero integer, then g acts hyperbolically in the induced action
of G on Xd.

One can also express induction in its group-theoretic form, the wreath
product. Recall that AoB is the semidirect product W = Bn

⊕
b∈B Ab, where

the Ab are isomorphic copies of A permuted by left translation.
⊕

b∈B Ab
is called the base of the wreath product. If B is finite and A acts on X by
isometries, then there is an obvious action of W by isometries on XB, with
B permuting the factors and Ab acting as A in the b-coordinate and trivially
in the others. The induction described above is then just a manifestation of
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the following standard lemma. To avoid complications we assume that H is
normal in G.

Lemma 2.4. If H is normal in G and φ : H → Q is a homomor-
phism, then there is a homomorphism Φ : G → Q o (G/H) so that Φ(H) ⊂⊕

x∈G/H Qx and for all h ∈ H the coordinate of Φ(h) in Q1 is φ(h).

3. Automorphisms that cannot act hyperbolically

Conventions. Throughout this article, Fn denotes a free group of
rank n. We work with the left action of Aut(Fn) on Fn and the commu-
tator convention [α, β] = αβα−1β−1. (So [α, β] is the automorphism “β−1,
followed by α−1, . . . ”.) We write adγ to denote the inner automorphism
x 7→ γxγ−1 (so adγδ = adγ ◦ adδ). Note that φ adγ φ−1 = adφ(γ).

The following lemma is a variation on the argument that Gersten [12]
used to show that Aut(Fn) cannot act properly and cocompactly on a
CAT(0) space if n ≥ 3 (cf. [6, p. 253]).

Lemma 3.1. Let Gp,q = 〈α, β, γ, t | [t, α], tβt−1 = βαp, tγt−1 = γαq〉,
where p and q are non-zero integers. If p 6= q, then α fixes a point whenever
Gp,q acts by semisimple isometries on a complete CAT(0) space.

Proof. Suppose Gp,q acts semisimply on a complete CAT(0) space X.
Note that β conjugates t to αpt and γ conjugates t to αqt, so ‖t‖ = ‖αpt‖
= ‖αqt‖. Thus if t is elliptic then αpt is elliptic, hence αp = (αpt)t−1 as
a product of commuting elliptics is elliptic, and therefore α is elliptic.

If t is hyperbolic, then by the Flat Torus Theorem, A = 〈α, t〉 would act
by translations on a geodesic line or Euclidean plane E in Min(t) ∩Min(α)
with t, tαp, tαq all acting as translations of length ‖t‖. But the images of any
point e ∈ E under these three translations are collinear. This is incompatible
with the fact that they are equidistant from e unless we are in the degenerate
situation where the points coincide, i.e. α is acting trivially on E and hence
is elliptic.

For the next lemma it is convenient to work with a basis {a0, . . . , an}
for Fn+1, setting Fn = 〈a1, . . . , an〉, and for each w ∈ Fn defining Rw ∈
Aut(Fn+1) by Rw(a0) = a0w and Rw(ai) = ai for i > 0.

As Rai is a Nielsen transformation, the following proposition implies
Theorem 1.1.

Proposition 3.2. If w ∈ Fn lies in a free factor of rank n − 2, then
Rw fixes a point whenever Aut(Fn+1) acts by semisimple isometries on a
complete CAT(0) space.

Proof. Without loss of generality we may assume that w∈〈a1, . . . , an−2〉.
Let p 6= q be non-zero integers and let T ∈ Aut(Fn+1) be the automor-
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phism defined by T (an−1) = an−1w
p, T (an) = anw

q and T (ai) = ai for
i = 0, . . . , n − 2. An elementary calculation shows that the assignment
[α 7→ Rw, β 7→ Ran−1 , γ 7→ Ran , t 7→ T ] respects the defining rela-
tions of the group Gp,q of Lemma 3.1 and hence defines a homomorphism
Gp,q → Aut(Fn+1). Thus any action of Aut(Fn+1) by semisimple isometries
on a complete CAT(0) space gives rise to an action of Gp,q, and Lemma 3.1
tells us that Rw, the image of α ∈ Gp,q, must act elliptically.

Our interest in the following lemma lies with the case n = 3.

Lemma 3.3. Let n ≥ 3. Whenever Aut(Fn) acts by semisimple isome-
tries on a complete CAT(0) space, the inner automorphisms corresponding
to primitive elements are elliptic.

Proof. If n ≥ 4, then the preceding proposition implies that the right
Nielsen transformations ρij are elliptic, hence so are their conjugates λij . The
inner automorphism corresponding to a primitive element, say a1 from the
basis {a1, . . . , an}, is a composition of commuting Nielsen transformations:
ada1 = (λ−1

21 ρ21) . . . (λ−1
n1 ρn1), and a product of commuting elliptic isometries

is elliptic.
When n = 3 the Nielsen transformations need not be elliptic, so we

require a different argument. Let {a, b, c} be a basis for F3 and let τ ∈
Aut(F3) be the automorphism [a 7→ a, b 7→ bap, c 7→ caq]. The assign-
ment [α 7→ ada, β 7→ adb, γ 7→ adc, t 7→ τ ] defines a homomorphism
Gp,q → Aut(F3) sending α to ada, so Lemma 3.1 implies that ada must be
elliptic.

Remark 3.4. The maps Gp,q → Aut(Fn+1) and Gp,q → Aut(F3) used
in the preceding proofs are injective, but since we do not need this fact we
omit the proof.

4. The rhombic dodecahedron. The rhombic dodecahedron is one of
the Catalan solids; it is dual to the Archimedean solid known as the cuboc-
tahedron. It has fourteen vertices and twelve faces. The faces are rhombi
whose diagonals have lengths in the ratio 1 :

√
2.

Consider the standard tiling of R3 by unit cubes and fix a vertex u.
The rhombic dodecahedron can be constructed as the convex hull of the
endpoints of the six edges incident at u together with the centres of the
eight cubes incident at u. In other words, it is the Voronŏı cell for the
face-centred cubic lattice (and therefore occurs naturally in many crystal
formations).

It follows from this description that the rhombic dodecahedron is a
Dirichlet domain for the free abelian group of rank 3 that translates R3

by integer vectors (a, b, c) with a + b + c even. This is the group generated
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by the edge-vectors of an octahedron dual to a cube with edge-length 2. For
our purposes, it is convenient to rephrase this as follows.

Lemma 4.1. Let A ⊂ R3 be the Z-module generated by unit vectors
u1, u2, v1, v2. If

(1) u1 + u2 = v1 + v2,
(2) u1 ⊥ u2 and v1 ⊥ v2, and
(3) (u1 − u2) ⊥ (v1 − v2),

then A is discrete and {x | ‖x‖ ≤ ‖x − a‖ for all a ∈ A} is a rhombic
dodecahedron.

Remark 4.2. Note that the conclusion of the lemma includes the obser-
vation that A is not contained in a plane. Thus one cannot find such vectors
u1, u2, v1, v2 in Rd for d < 3.

Proposition 4.3. Let Γ be a group. Suppose that α1, α2, β1, β2 commute
and are conjugate in Γ . Let A = 〈α1, α2, β1, β2〉 and suppose that

(i) α1α2 = β1β2,
(ii) α1 ∈ [ZΓ (α2), ZΓ (α2)] and β1 ∈ [ZΓ (β2), ZΓ (β2)], and

(iii) there exists γ ∈ ZΓ (α1α
−1
2 ) with γ−1(β1β

−1
2 )γ = β2β

−1
1 .

Then, whenever Γ acts by semisimple isometries on a complete CAT(0)
space X, either A fixes a point, or A leaves invariant an isometrically em-
bedded 3-flat E3 ↪→ X, acting properly and cocompactly on it by isometries,
with Dirichlet domain a rhombic dodecahedron.

Proof. Since the given generators of A are all conjugate, either all are
elliptic or all are hyperbolic. If they are elliptic, then they have a common
fixed point, since they commute. If they are hyperbolic, then by the Flat
Torus Theorem, A leaves invariant a k-flat E ⊂ X, with k ≤ 3, and acts on
it by translations; since the ai and bi are hyperbolic, they act non-trivially
on E, and since they are conjugate in Γ , their translation lengths are equal.
Let ui (resp. vi) be the translation vector of αi|E (resp. βi|E). According to
Lemma 2.2, condition (ii) implies that u1 ⊥ u2 and v1 ⊥ v2, and condition
(iii) implies that (u1 − u2) ⊥ (v1 − v2). Lemma 4.1 (with the remark that
follows it) completes the proof.

Remark 4.4. The above proposition admits obvious variations in which
conditions (ii) and (iii) are altered to allow parts (2) and (3) of Lemma 2.2
to be applied in different combinations.

5. The shape of Nielsen-hyperbolic actions of Aut(F3). The free
abelian subgroups of Aut(F3) have rank at most 4 (the virtual cohomolo-
gical dimension of Aut(F3)). Each Nielsen Z4 is conjugate to Λ = 〈λ21, ρ21,
λ31, ρ31〉. Let ε3 denote the involution a3 ↔ a−1

3 .
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Proposition 4.3 applies directly to the image of Λ in Out(F3).

Lemma 5.1. In Γ = Out(F3), the elements α1 := λ−1
21 , α2 := ρ21, β1 :=

ρ−1
31 , β2 := λ31 and γ := ε3 satisfy the conditions of Proposition 4.3.

Proof. In Out(F3) we have ada1 = λ−1
21 ρ21λ

−1
31 ρ31 = 1, so α1α2 = β1β2.

A direct calculation yields the well-known relation [λ−1
23 , λ

−1
31 ] = λ−1

21 , and
both λ23, λ31 commute with ρ21. Thus λ21 lies in the commutator subgroup
of Z(ρ21). Likewise, [ρ−1

23 , ρ
−1
31 ] = ρ−1

21 implies that ρ21 is in the commuta-
tor subgroup of Z(λ21). Conjugation by ε3 leaves λ21 and ρ21 fixed while
interchanging ρ−1

31 and λ31.

Proposition 4.3 does not apply directly to Λ ⊂ Aut(F3) but the difficulty
is a minor one.

Proof of Theorem 1.3. Suppose that Aut(F3) is acting by isometries on
a complete CAT(0) space X with the Nielsen moves λij acting as hyperbolic
isometries. According to the Flat Torus Theorem, Λ ∼= Z4 leaves invariant a
k-flat E ⊂ X on which it acts by translations, with the generators λij and ρij
(which are conjugate in Out(F3)) acting non-trivially by translations of the
same length. Lemma 3.3 tells us that ada1 = λ−1

21 ρ21λ
−1
31 ρ31 acts elliptically

on X and hence trivially on E. Replacing E by the convex hull of a Λ-orbit,
we may assume that it has dimension at most 3.

The calculations in the proof of Lemma 5.1 allow us to apply Lemma 2.2:
as in the proof of Proposition 4.3, the translation vectors of λ21|E , ρ21|E ,
λ31|E , ρ31|E satisfy the conditions of Lemma 4.1. Hence E has dimension 3
(Remark 4.2), the action of Λ/〈ada1〉 is proper and cocompact, and a Dirich-
let domain for the action is a rhombic dodecahedron.

6. An abundance of actions when n = 3. Let Γ be an arbitrary
finitely generated group. In this section we shall assign to each action of
Γ on a CAT(0) space X actions of Aut(F3) and Out(F3) on the Cartesian
product of finitely many copies of X. The assignment is such that if the
generators of Γ act as hyperbolic isometries, then the induced actions of
Aut(F3) and Out(F3) will be Nielsen-hyperbolic.

The heart of the construction is the following proposition. Here, as usual,
Fk denotes the free group of rank k.

Proposition 6.1. For each positive integer k, there exists a subgroup
of finite index Hk ⊂ Out(F3) and a surjective homomorphism πk : Hk → Fk
such that Fk is generated by the images of powers of conjugates of the Nielsen
transformations λij.

Proof. Fix a basis {a1, a2, a3} for F3. We first construct a map from
a subgroup of finite index in Out(F3) to a free group of rank 2 so that
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the image is generated by powers of λ12 and λ21. This map is based on a
construction of Grunewald and Lubotzky [13] (cf. [7, Qu. 9]).

Regard F3 as the fundamental group of a graph R with one vertex.
The loops of length one are labelled {a1, a2, a3}. Consider the 2-sheeted
covering R̂ → R with fundamental group 〈a1, a2, a

2
3, a3a1a

−1
3 , a3a2a

−1
3 〉 and

let G ⊂ Aut(F3) be the stabilizer of this subgroup.
G acts on H1(R̂,Q) leaving invariant the eigenspaces of the involu-

tion that generates the Galois group of the covering. The eigenspace corre-
sponding to the eigenvalue −1 is two-dimensional with basis {a1− a3a1a

−1
3 ,

a2 − a3a2a
−1
3 }. The action of G with respect to this basis gives an epimor-

phism G→ GL(2,Z). By replacing G with a subgroup of finite index one can
ensure that the inner automorphisms in G act trivially on H1(R̂,Q) (because
Inn(Fn) ∩G has finite image in GL(2,Z), which is virtually torsion-free). If
Q is the image of G in Out(F3), then we have a map µ : Q → GL(2,Z)
whose image is of finite index.

Since GL(2,Z) has a free subgroup of finite index, by passing to a further
subgroup if necessary we may assume that µ(Q) is free. We choose p so
that λp12, λ

p
21 ∈ Q. The images of µ(λ12) and µ(λ21) generate a subgroup of

finite index in GL(2,Z), so the subgroup L2 generated by a := µ(λp12) and
b := µ(λp21) is free of rank 2. Applying Marshall Hall’s theorem, we pass to a
subgroup of finite index in µ(Q) that retracts onto L2. Let H2 be the inverse
image of this subgroup in Q and let π : H2 → L2 be its surjection to L2.

In L2 = 〈a, b〉 one has the subgroup Lk of index k − 1 with basis
{aiba−i, ak−1 | i = 0, . . . , k − 2}; this is free of rank k and is generated
by conjugates of powers of a and b. Thus it suffices to take Hk = π−1(Lk).

6.1. Induced actions. Let Γ be a group and let ψ : Fr → Γ be an
epimorphism. Suppose that Γ acts by isometries on a complete CAT(0)
space X. By composing ψ with the map Hr → Fr constructed in the pre-
ceding proposition, we obtain a surjection Hr → Γ sending powers of certain
Nielsen transformations to generators of Γ . And by inducing the action we
obtain an action of Aut(F3) on a product of finitely many copies of X. If
the action of Γ on X is by hyperbolic isometries, then the Nielsen transfor-
mations act as hyperbolic isometries in this induced action.

7. Homomorphisms from Out(F3) to mapping class groups. We
saw in the introduction that when n ≥ 4, any homomorphism from Aut(Fn)
to a mapping class group must send Nielsen transformations to roots of
multi-twists. We also noted that no homomorphisms with infinite image are
known to exist. The situation for n = 3 is completely different. Let Sg be
the closed surface of genus g and let Mod(Sg) be its mapping class group.
Let Mod(Sg,1) be the mapping class group of the genus g surface with one
boundary component.
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Theorem 7.1. For certain positive integers g, there exist homomor-
phisms Out(F3) → Mod(Sg) sending Nielsen transformations to elements
of infinite order that are not roots of multi-twists.

I do not know the value of the least integer g for which there is such a
homomorphism (and likewise for Aut(F3)).

Proposition 7.2. For all positive integers h and all non-trivial finite
groups G, there exist integers g for which there is an injective homomorphism
Mod(Sh,1) oG→ Mod(Sg).

Proof. Every finite group has a faithful realisation as a group of symme-
tries of a closed hyperbolic surface (and therefore embeds in the mapping
class group of that surface). We realise G on the surface Y and equivariantly
delete an open disc about each point in a free orbit. We then glue a copy of
Sh,1 to each of the resulting boundary components and extend the action of
G in the obvious manner. Let Sg be the resulting surface.

Corresponding to each of the attached copies of Sh,1 there is an injec-
tive homomorphism Mod(Sh,1) → Mod(Sg) obtained by extending homeo-
morphisms to be the identity on the complement of the attached copy of
Sh,1. (The extension respects isotopy classes.) Thus we obtain |G| com-
muting copies {Mγ | γ ∈ G} of Mod(Sh,1) in Mod(Sg). The action of
G ⊂ Mod(Sg) by conjugation permutes the Mγ , and the canonical map
Gn

⊕
γ∈GMγ → Mod(Sg) is injective.

Proof of Theorem 7.1. Let Fr be a free group of rank r that maps onto
Γ = Mod(Sh,1) sending at least one basis element, say a1, to an element
of infinite order ψ ∈ Γ that is not a root of a multi-twist. Proposition 6.1
provides a normal subgroup of finite index Hr ⊂ Out(F3) that maps onto
Fr sending a power of a Nielsen transformation, say λp, to a1. Thus we
obtain a homomorphism Hr → Γ sending λp to ψ. We replace Hr with
a subgroup of finite index that is normal in Out(F3) (with quotient Ω, say)
and consider the induced homomorphism Out(F3)→ Γ oΩ as in Lemma 2.4.
As in Proposition 7.2, this wreath product acts on a closed surface Sg. By
construction, a non-zero power of λp acts on one of the subsurfaces Sh,1 as
a non-zero power of ψ and hence the image of λ in Mod(Sg) is not a root of
a multi-twist.

8. Nielsen generators are not ballistic if n ≥ 6

Lemma 8.1. Let λ ∈ Aut(Fn) be a Nielsen transformation and let Z be
its centralizer. If n ≥ 6, then [λ] = 0 in H1(Z,Z).

Proof. For any n ≥ 2 one can realise λ as a Dehn twist δ about a non-
separating curve on a compact orientable surface S that has genus bn/2c and
Euler characterisic 1−n. More precisely, taking a basepoint on the boundary
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of S, there is an isomorphism (2) from π1S to Fn that induces a homomor-
phism from the mapping class group Mod(S) to Aut(Fn) sending δ to λ.

Let C(δ) be the centraliser of δ in Mod(S). The map from 〈δ〉 = 〈λ〉
to H1(Z,Z) factors through H1(C(δ),Z), so it is enough to prove that δ
has trivial image in H1(C(δ),Z). If δ is the twist in a loop c, then C(δ)
is the image of the natural map to Mod(S) of the mapping class group of
the surface S′ obtained by cutting S open along c. Thus it is enough to
prove that in a surface S′ of genus at least 2, the Dehn twist in any loop c
parallel to a boundary curve is trivial in Mod(S′). This can be seen using
the lantern relation [15]. In more detail, the lantern relation involves seven
loops on a 4-holed sphere; if we embed the 4-holed sphere in S′ so that one
of the loops is sent to c and the remaining six loops are non-separating, then
the relation takes the form δ0δ1δ2δ3 = δ4δ5δ6, where δ0 is the twist in c and
the remaining δi are positive twists in non-separating loops. The twists in
any two non-separating loops are conjugate in Mod(S′), hence equal (to τ
say) in H1(Mod(S′),Z). So in H1 the above relation becomes δ0τ3 = τ3.

Proposition 8.2. Suppose n ≥ 6. Whenever Aut(Fn) acts by isometries
on a complete CAT(0) space, the Nielsen generators λij and ρij have zero
translation length (i.e. they are either elliptic or neutral parabolics).

Proof. A lemma of Karlsson and Margulis [14] can be used to show that
if an isometry γ of a complete CAT(0) space has positive translation length
then γ must have infinite order in the abelianisation of its centraliser (cf. the
proof of [4, Theorem 1]). Lemma 8.1 completes the proof.

This result places constraints on the representation theory of Aut(Fn).
I shall return to this point in another article but note one example here for
illustrative purposes.

Corollary 8.3. Let λ ∈ Aut(Fn) be a Nielsen transformation and let
Φ : Aut(Fn) → SL(d,R) be an arbitrary representation. If n ≥ 6, then the
eigenvalues of Φ(λ) all have modulus 1.

Proof. The symmetric space SL(d,R)/SO(d,R) is non-positively curved
and the action of M ∈ SL(d,R) has positive translation length if M has an
eigenvalue of modulus greater than 1 (equivalently, the hyperbolic compo-
nent in its Jordan decomposition is non-trivial).

(2) A 1-holed torus T is the regular neighbourhood of the union Y of two simple loops
that intersect once; orient them, label them a1, a2 and join their intersection point to
the basepoint by an arc that does not intersect the loops; the automorphism of π1T ∼= F2

induced by the Dehn twist in a1 is easily seen to be one of λ±1
21 or ρ±1

21 (the four possibilities
corresponding to the choices of orientation for the loops). For n > 2, one attaches a suitable
surface to T along an arc in its boundary that includes the basepoint and one extends
{a1, a2} to a basis for π1 where the remaining basis loops lie in the attached surface.
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9. Aut(Fn) and Out(Fn) are not Kähler groups. One can deduce
from Corollary 8.3 that the standard representation Aut(Fn) → GL(n,Z)
(given by the action of Aut(Fn) on H1(Fn,Z)) cannot be deformed locally
to anything but a conjugate representation. A stronger result was proved by
Dyer and Formanek [10] (see also [16, Theorem 1.2]): every representation
Aut(Fn) → GL(n,C) factors through the standard representation. Using
Proposition 3.1 of [8] one can extend the proof in [16] to cover the unique
index-2 subgroup SAut(Fn) ⊂ Aut(Fn).

Every finitely presented group is the fundamental group of a closed sym-
plectic manifold and of a closed complex manifold, but not every finitely
presented group is a Kähler group, i.e. the fundamental group of a closed
Kähler manifold (see [1] for context and references). We want to prove that
Aut(Fn) and Out(Fn) are not Kähler groups.

A Kähler group cannot split over a finite group as an amalgamated free
product or HNN extension, it cannot have a subgroup of finite index that
has odd first Betti number, and it cannot be an extension of a group with
infinitely many ends by a finitely generated group. This last condition covers
Aut(F2) and Out(F2). But if n ≥ 3 then Aut(Fn) has property FA and it
seems likely (but is unproved) that all of its subgroups of finite index have
finite abelianisation. There is, however, a more subtle obstruction coming
from Simpson’s work on non-abelian Hodge theory that one can use to show
that Aut(Fn) and Out(Fn) are not Kähler.

Simpson [17] proves that if a group Γ admits a representation ρ : Γ →
GL(n,C) with image SL(n,Z), where n ≥ 3, and if this representation can-
not be deformed locally into a non-conjugate representation, then Γ is not
Kähler. In more detail, if Γ were Kähler then the real Zariski closure of
ρ(Γ ) would be a group of Hodge type [17, Lemma 4.4], but SL(n,R) is not
of Hodge type (n ≥ 3)—see [17, pp. 50–51]. We noted above that the stan-
dard representation of SAut(Fn) is rigid. And a finite index subgroup of
a Kähler group is (obviously) a Kähler group.
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