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Zk2 -actions with a special fixed point set

by

Pedro L. Q. Pergher (São Carlos) and
Rogério de Oliveira (Três Lagoas)

Abstract. Let Fn be a connected, smooth and closed n-dimensional manifold sat-
isfying the following property: if Nm is any smooth and closed m-dimensional manifold
with m > n and T : Nm → Nm is a smooth involution whose fixed point set is Fn, then
m = 2n. We describe the equivariant cobordism classification of smooth actions (Mm;Φ)
of the group G = Zk2 on closed smooth m-dimensional manifolds M

m for which the fixed
point set of the action is a submanifold Fn with the above property. This generalizes a
result of F. L. Capobianco, who obtained this classification for Fn = RP 2r (P. E. Conner
and E. E. Floyd had previously shown that RP 2r has the property in question). In ad-
dition, we establish some properties concerning these Fn and give some new examples of
these special manifolds.

1. Introduction. Given a connected, smooth and closed n-dimensional
manifold Fn, one has the twist involution t : Fn×Fn → Fn×Fn, t(x, y) =
(y, x), and the identity involution Id : Fn → Fn, Id(x) = x. The fixed
point set of each of these involutions is Fn. We call Fn a manifold with
property H if the only equivariant cobordism classes of involutions fixing Fn

are [Fn × Fn, t] and [Fn, Id].

In [4], C. Kosniowski and R. E. Stong showed that, if (W 2n, T ) is an invo-
lution fixing Fn, then (W 2n, T ) is equivariantly cobordant to (Fn × Fn, t).
In this way, the above concept can be restated in terms of dimensions: Fn has
property H if every involution (Mm, T ) with fixed point set Fn has m = n
or m = 2n. The real, complex and quaternionic even-dimensional projective
spaces RP 2n, CP 2n and HP 2n are examples of manifolds with property H;
also the Cayley projective plane QP 2 has this property (see [9]).

Now consider the group G = Zk2 = Z2 ⊕ · · · ⊕ Z2 (k copies). For each
r with 1 ≤ r ≤ k one may construct a twist action of G on the prod-
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uct (Fn)2
r

= Fn × · · · × Fn (2r factors), which we denote by tkr , in the
following inductive way: considering G as the group generated by k com-
muting involutions T1, . . . , Tk, first set t

1
1 = t : F

n × Fn → Fn × Fn.

Supposing one has constructed tk−1k−1, on (F
n)2

k

= (Fn)2
k−1

× (Fn)2
k−1

let

T1, . . . , Tk−1 act as t
k−1
k−1× t

k−1
k−1 and Tk act by switching (F

n)2
k−1

× (Fn)2
k−1

.

This defines tkk for any k ≥ 1. Finally, we define t
k
r by letting T1, . . . , Tr

act as trr and Tr+1, . . . , Tr act trivially; also we extend this definition to
r = 0 by letting tk0 be the trivial action on F

n. The fixed point set of tkr
is the diagonal copy of Fn. On the other hand, given any G-action (M ;Φ),
Φ = (T1, . . . , Tk), each automorphism σ : G → G yields a new G-action
given by (M ;σ(T1), . . . , σ(Tk)); we denote this action by σ(M ;Φ). In [1],
F. Capobianco proved that every G-action (M ;Φ) fixing RP 2n is cobordant
to σ((RP 2n)2

r

; tkr) for some σ : G→ G and 1 ≤ r ≤ k. The main goal of this
paper is to generalize this result by showing that it is true for any manifold
with property H.
The crucial point of Capobianco’s argument was the following special

property of RP 2n, proved by Stong in [9]: if ηr → RP 2n is an r-dimensional
vector bundle over RP 2n which is the fixed data of an involution, then
r = 2n and the Stiefel–Whitney class of ηr is W (ηr) = (1 + α)2n+1, where
α ∈ H1(RP 2n, Z2) is the generator. In particular, this fact implies that
RP 2n has property H (the same type of argument works for CP 2n, HP 2n

and QP 2). The subtle point of our method is that property H, and not
the above special property of RP 2n, CP 2n, HP 2n and QP 2, determines the
desired result.

Section 2 will study manifolds with property H and give examples of
such manifolds. In Section 3, the proof of the main result will be given; this
result is the following

Theorem. Suppose (M ;Φ), Φ = (T1, . . . , Tk), is a G-action fixing F
n,

where Fn has property H. Then (M ;Φ) is equivariantly cobordant to the
action σ((Fn)2

r

; tkr) for some automorphism σ : G→ G and some 1 ≤ r ≤ k.

2. On manifolds with property H. We begin with some general facts
concerning property H.

Proposition 2.1. If Fn has property H, then Fn is nonbounding.

Proof. This follows from the fact that if Fn bounds, then there are invo-
lutions of every dimension fixing Fn. In fact, consider an (n+1)-dimensional
manifold Wn+1 whose boundary ∂(Wn+1) is Fn. For any natural number
m > 0, formWn+1×Dm with the involution (w, x) 7→ (w,−x), where Dm is
them-dimensional disc. Then ∂(Wn+1×Dm) is a closed (n+m)-dimensional
manifold equipped with an involution whose fixed point set is Fn.
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Proposition 2.2. If Fn has property H, then n is even.

Proof. If n is odd it is known that, since the Euler characteristic of Fn

is zero, the tangent bundle τn → Fn has a section, that is, there is an
(n − 1)-dimensional vector bundle µn−1 → Fn so that τn is equivalent to
µn−1 ⊕ R → Fn, where R → Fn is the one-dimensional trivial bundle (see,
for example, [7]). Since τn → Fn is the fixed data of the twist involution
(Fn × Fn, t), one deduces from the stability property of [3, Theorem 26.4]
that also µn−1 → Fn is the fixed data of an involution.

Remark. Obviously the above argument also serves to show that if Fn

has property H, then the tangent bundle τn → Fn does not have a section.
It is interesting to note that the converse is not true. The essential point
is that τn → Fn, while not having a section itself, may be cobordant to a
bundle over Fn with a section. For example, consider the connected sum
RP 4 # CP 2 = F 4. The Euler characteristic of F 4 is χ(F 4) = χ(RP 4) +
χ(CP 2)−2 = 1+3−2 = 2, thus the tangent bundle τ4 → F 4 does not have
a section. We know that H∗(F 4, Z2) is generated by α ∈ H1(F 4, Z2) and
β ∈ H2(F 4, Z2), with relations α5 = 0, β3 = 0, αβ = 0 and α4 = β2. The
Stiefel–Whitney class of F 4 is W (F 4) = 1 + α + β. Over F 4 there is a real
line bundle λ→ F 4 with W (λ) = 1 + α and a complex line bundle ξ → F 4

with W (ξ) = 1 + β, and one has

W (λ⊕ ξ) = (1 + α)(1 + β) = 1 + α+ β

(since αβ = 0). Thus W (λ⊕ ξ) =W (τ4), and τ4 is cobordant to λ⊕ ξ⊕R.
Then one has an involution (M8, T ) cobordant to (F 4 × F 4, t) with fixed
data λ ⊕ ξ ⊕ R → F 4. It follows that λ ⊕ ξ → F 4 is the fixed data of an
involution and F 4 does not have property H.

Proposition 2.3. Suppose that Fn is the total space of a differentiable

fibering of closed manifolds, where V r is the base space, Ks is the fiber and
π : Fn → V r is the projection map, with r, s > 0. Then Fn does not have
property H.

Proof. Consider E ⊂ Fn × Fn, E = {(x, y) | π(x) = π(y)}. Then E is
a closed (n + s)-dimensional submanifold of Fn × Fn. On E one has the
fiberwise twist involution fixing a diagonal copy of Fn, and since s < n the
result follows.

A consequence of Proposition 2.3 is that property H is not a cobordism
invariant. In fact, CP 2 has propertyH and is cobordant to RP 2×RP 2 which
does not, since it fibers. As another example, consider the 3-dimensional
vector bundle λ ⊕ R2 → RP 2, where λ is the canonical line bundle and
R2 is the trivial 2-dimensional bundle over RP 2. Then the projective space
bundle RP (λ⊕R2) is cobordant to RP 4 (this can be checked by computing
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characteristic numbers) and does not have property H, since it is a fibering.
However, one has

Proposition 2.4. Property H is a homotopy invariant.

Proof. Suppose Fn does not have propertyH and is homotopy equivalent
to V n. Then there exists a vector bundle µr → Fn which is the fixed data of
an involution with r < n. Take a homotopy equivalence f : V n → Fn. Then
the pullback f ∗ (µr) → V n is a vector bundle having the same Whitney
numbers as µr, which implies that f ∗(µr) and µr are cobordant as elements
of the bordism group of closed n-dimensional manifolds with r-dimensional
vector bundles, Nn(BO(r)). It follows that f ∗ (µr) is also the fixed data of
an involution and V n does not have property H.

The following proposition gives the first new examples of manifolds with
property H.

Proposition 2.5. If F 2 is nonbounding then F 2 has property H.

Proof. First we recall the following result of Kosniowski and Stong of
[4]: if an involution (Mm, T ) fixes Fn and m > 2n, then (Mm, T ) bounds
equivariantly. Now if (Mm, T ) fixes the nonbounding F 2, the fixed data of
(Mm, T ) is nonbounding and hence (Mm, T ) is nonbounding. It follows that
m ≤ 4. But from [3] one knows that an involution with codimension one fixed
point set bounds, hence m = 3 is impossible and the result is proved.

Observe that Proposition 2.5 gives examples not homotopy equivalent to
RP 2. Other new examples will be obtained with the following

Proposition 2.6. Suppose F 2n is nonbounding and Hj(F 2n, Z2) = 0
for 0 < j < n. Then F 2n has property H.

Proof. If (Mm, T ) fixes F 2n and ηr → F 2n is the normal bundle of F 2n

in Mm, then by the argument used in the proof of Proposition 2.5 one has
r ≤ 2n. Hence we must show that 0 < r < 2n is impossible. We need
the following fact, which follows from Conner–Floyd’s exact sequence of [3,
28.1]: if µr →W is an r-dimensional vector bundle over a nonbounding and
closed manifold W which is cobordant to the trivial r-dimensional bundle
over W , then µr cannot be the fixed data of an involution. If 0 < r < n,
the hypothesis says that the Stiefel–Whitney class of ηr is W (ηr) = 1 and
thus ηr is cobordant to the trivial r-dimensional bundle over F 2n. Hence
we can assume n ≤ r < 2n. By Poincaré duality, Hj(F 2n, Z2) = 0 for
n < j < 2n, thus the Stiefel–Whitney classes of ηr and F 2n can be written
as W (ηr) = 1 + un, W (F

2n) = 1 + wn + w2n. Also the Wu class of F
2n can
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be written as V (F 2n) = 1 + vn, and if Sq is the Steenrod operation one has

Sq(V (F 2n)) = 1 + vn +

n∑

i=1

Sqi(vn) = 1 + vn + Sq
n(vn) = 1 + vn + v

2
n.

From Sq(V (F 2n)) = W (F 2n) one then gets vn = wn and w2n = v
2
n = w

2
n.

Since F 2n does not bound, in particular one has w2n = w
2
n 6= 0. Our objective

is to prove that ηr is cobordant to the r-dimensional trivial vector bundle
over F 2n. To do this, it suffices to show that every Whitney number of ηr

involving classes of ηr vanishes. But the only such number which can be
nonzero is

wnun[F
2n] = vnun[F

2n] = Sqn(un)[F
2n] = u2n[F

2n].

Denote by λ → RP (ηr) the usual line bundle over the projective space
bundle RP (ηr), and write W (λ) = 1 + c. Since ηr → F 2n is the fixed
data of an involution, λ → RP (ηr) bounds as an element of the bor-
dism group of manifolds with line bundles, N2n+r−1(BO(1)). It follows that
c2n+r−1[RP (ηr)] = 0. Denoting by

W (ηr) =
1

W (ηr)
= 1 + un + u2n

the dual Stiefel–Whitney class of ηr, one infers from [2] that c2n+r−1[RP (ηr)]
= u2n[F

2n]. But
1

W (ηr)
=

1

1 + un
= 1 + un + u

2
n,

which means that u2n = u
2
n and u

2
n = 0.

For example, simply connected nonbounding 4-dimensional manifolds
satisfy the hypotheses of Proposition 2.6. In particular, for every k ≥ 1, the
connected sum of CP 2 and k copies of S2 × S2,

CP 2 # (S2 × S2) # · · ·# (S2 × S2),

has this property, and the same is valid for HP 2#(S4×S4)# · · ·#(S4×S4)
and QP 2#(S8×S8)# · · ·#(S8×S8). Observe that these examples are not
homotopy equivalent to the known examples CP 2, HP 2 and QP 2. For an
8-dimensional nonboundingM8 with H1(M8, Z2) = 0 and H

2(M8, Z2) = 0,
the result is also valid. In fact, in this case any vector bundle ν → M8

has w3(ν) = 0 and w5(ν) = 0, so the argument is the same. For example,
besides S4 × S4, we may add handles S3 × S5 to HP 2. In the same way, a
16-dimensional nonbounding M16 with Hj(M16, Z2) = 0 for 1 ≤ j ≤ 4 has
property H, which allows one to add handles S5×S11, S6×S10 and S7×S9

to QP 2.

Remark. Proposition 2.6 does not give examples of manifolds with
property H in dimensions different from 2, 4, 8 and 16. This follows from
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the fact that if F 2n has Hj(F 2n, Z2) = 0 for 0 < j < n and n 6= 1, 2, 4
and 8, then F 2n bounds. In fact, from the proof of Proposition 2.6 one
sees that F 2n is nonbounding if and only if w2n(F

2n), which is equal to
w2n(F

2n) = Sqn(wn)(F
2n), is different from zero. But Sqn is decomposable

through the Adem relations for n 6= 2s, and is decomposable in terms of
secondary operations for n = 2s ≥ 16.

Remark. Proposition 2.5 says that any 2-dimensional nonbounding
manifold has property H. Now every nonbounding M2 is an RP 2 with
handles, that is, RP 2 # (S1 × S1) # · · · # (S1 × S1). This suggests con-
sidering, as in the above examples,

F 2n = RP 2n # (Sn × Sn) # · · ·# (Sn × Sn) (k copies of Sn × Sn).

Then H∗(F 2n, Z2) is isomorphic to H
∗(RP 2n, Z2) except in dimension n,

where we have added cohomology classes ai, bi ∈ Hn(F 2n, Z2), 1 ≤ i ≤ k,
with each aibi being the nonzero element of H

2n(F 2n, Z2). The Stiefel–
Whitney class of F 2n is still W (F 2n) = (1+α)2n+1, where α ∈ H1(F 2n, Z2)
is the generator coming from RP 2n. If (Mm, T ) fixes F 2n and ηm−2n → F 2n

is the normal bundle, with W (ηm−2n) = 1+u1+u2+ · · ·, then u2s is a mul-
tiple of α2

s

except possibly in dimension n. If n is not a power of 2, then this
shows that u2s is a multiple of α

2s for each s ≥ 0 and soW (ηm−2n) = (1+α)t

for some t. Summarizing, one has an involution (Mm, T ) fixing ηm−2n → F 2n

with W (F 2n) = (1 + α)2n+1 and W (ηm−2n) = (1 + α)t; this is exactly the
situation used in the proof of [3, 27.7] (which established that RP 2r has
property H), which gives m− 2n = 0 or 2n. Thus F 2n has property H if n
is not a power of 2.

3. Proof of the main theorem. First we need some preliminaries
about G-actions, where G = Zk2 . Given a G-action (M ;Φ), Φ = (T1, . . . , Tk),
the fixed point set of Φ, F , is a disjoint union of closed submanifolds of
M . The normal bundle of F in M , η, decomposes under the action of G
into the Whitney sum of subbundles on which G acts as one of the irre-
ducible (nontrivial) real representations. These irreducible and nontrivial
representations of G are all one-dimensional and can be described by homo-
morphisms ̺ : G→ Z2 = {+1,−1} which are onto, and G acts on the reals
so that g ∈ G acts as multiplication by ̺(g). In other words,

η =
⊕

̺

ε̺,

where ε̺ is the subbundle of η on which G acts in the fibers as ̺, that is,
where each Tj acts as multiplication by ̺(Tj), and where the sum excludes
the trivial homomorphism 1 ∈ Hom(G,Z2). Alternatively, ε̺ is the normal
bundle of F in the fixed point set FH of the subgroup H = ker(̺). Set
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P = Hom(G,Z2) − {1}; then the fixed data of (M ;Φ) is (F, {ε̺}̺∈P), a
closed manifold (the fixed point set) and a list of 2k − 1 vector bundles over
it indexed by P. Each s-dimensional component of (F, {ε̺}̺∈P) can be con-
sidered as an element of Ns(

∏
̺∈P BO(n̺)), the bordism of s-dimensional

manifolds with a map into a product of classifying spaces BO(n̺) for n̺-
dimensional vector bundles, where n̺ denotes the dimension of ε̺ over the
component (this is the simultaneous cobordism between lists of vector bun-
dles: if P is any finite set, two lists (indexed by P) of vector bundles over
closed n-dimensional manifolds, (Fn, {ε̺}̺∈P) and (V

n, {µ̺}̺∈P), are simul-
taneously cobordant if there exists an (n + 1)-dimensional manifold Wn+1

with boundary ∂(Wn+1) = Fn ∪ V n (disjoint union) and a list of vector
bundles over Wn+1, (Wn+1, {η̺}̺∈P), so that each η̺ restricted to F

n ∪V n

is equivalent to ε̺ ∪ µ̺). According to [8], the equivariant cobordism class
of (M ;Φ) is determined by the cobordism class of (F, {ε̺}̺∈P).

For example, the fixed data of the twist G-action ((Fn)2
r

; tkr ) described
in Section 1 is (F, {ε̺}̺∈P), where F = Fn and {ε̺}̺∈P consists of 2r − 1
copies of the tangent bundle τ → Fn and 2k − 2r copies of the zero bundle
0→ Fn. More precisely, ε̺ = τ when ̺(Ti) = 1 for all i ≥ r+ 1, and ε̺ = 0
for the remaining ̺ ∈ P.

Remark. For every automorphism σ : G → G, σ((Fn)2
k

; tkk) is cobor-

dant to ((Fn)2
k

; tkk). However, if r < k, then σ((F
n)2

r

; tkr ) may or not be
cobordant to ((Fn)2

r

; tkr ). If (F
n, {ε̺}) and (Fn, {µ̺}) are, respectively, the

fixed data of ((Fn)2
r

; tkr ) and σ((F
n)2

r

; tkr), these actions are cobordant if
and only if ε̺ = µ̺ for every ̺ ∈ P. Let H ⊂ G be the subgroup of G
generated by Tr+1, . . . , Tk. By the above description of the fixed data of
((Fn)2

r

; tkr ) and the fact that σ(H) = H if and only if

{̺ ∈ P | ̺(Ti) = 1 for all i ≥ r + 1}

= {̺ ∈ P | ̺(σ(Ti)) = 1 for all i ≥ r + 1},

one concludes that ((Fn)2
r

; tkr) and σ((F
n)2

r

; tkr ) are cobordant if and only
if σ(H) = H. For example, write ((Fn)4; t42) = ((F

n)4;T1, T2, T3, T4). Then
((Fn)4; t42) and ((F

n)4;T2T3, T1T2, T4, T3) are cobordant, while ((F
n)4; t42)

and ((Fn)4;T2, T1T3, T3, T1T4) are not cobordant.

Let (M ;Φ) be a G-action with fixed data (F, {ε̺}̺∈P), and let Ω be a
subgroup of Hom(G,Z2). Our first step will be to show that the part of the
fixed data of (M ;Φ) given by (F, {ε̺}̺∈Ω∩P) can be realized as the fixed
data of some subgroup H ⊂ G acting (by restriction) on the fixed point set
of the restriction of Φ to some appropriate subgroup K ⊂ G.

First note that there exists a subgroup H ⊂ G so that the restriction
Hom(G,Z2) → Hom(H,Z2) maps Ω isomorphically onto Hom(H,Z2). In
fact, consider the natural isomorphism G → Hom(Hom(G,Z2), Z2) given
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by T 7→ ϕT , where ϕT (̺) = ̺(T ) for any ̺ ∈ Hom(G,Z2). Choose a ba-
sis (̺1, . . . , ̺t, ξ1, . . . , ξk−t) for Hom(G,Z2) so that (̺1, . . . , ̺t) is a basis
for Ω, and consider the basis (T1, . . . , Tt, S1, . . . , Sk−t) for G which corre-
sponds to the dual basis (̺∗1, . . . , ̺

∗
t , ξ
∗
1 , . . . , ξ

∗
k−t) of Hom(Hom(G,Z2), Z2)

under the above isomorphism. Evidently, the basis (̺1, . . . , ̺t, ξ1, . . . , ξk−t)
is dual to (T1, . . . , Tt, S1, . . . , Sk−t). Set H = 〈T1, . . . , Tt〉. Since ̺i(Tj) = −1
if i = j and ̺i(Tj) = 1 if i 6= j, it follows that (̺1|H , . . . , ̺t|H) is a ba-
sis for Hom(H,Z2), and thus the restriction maps Ω isomorphically onto
Hom(H,Z2). Now set K = 〈S1, . . . , Sk−t〉, FK = the fixed point set of K
and Ψ = the restriction of Φ to H × FK . One then has the following

Lemma 3.1. The fixed data of the H-action (FK ;Ψ) is (F, {µ̺′}̺′∈P ′),
where for each ̺′ ∈ P ′ = Hom(H,Z2)−{1} one has µ̺′ = ε̺, where ̺ is the
unique element of Ω ∩ P with ̺|H = ̺

′. In other words, the fixed data of H
acting on the fixed point set of K is F with the subbundles ε̺, ̺ ∈ Ω ∩ P,
and in terms of P ′ = Hom(H,Z2)−{1}, these subbundles are indexed under
the restriction Ω ∩ P → P ′.

Proof. The inverse of the restriction Ω → Hom(H,Z2) is the isomor-
phism Hom(H,Z2) → Ω given by ̺′ 7→ ̺, where ̺|H = ̺

′ and ̺ is the
trivial homomorphism on K. The fixed point set of (FK ;Ψ) is F , and if
(F, {µ̺′}̺′∈P ′) is the fixed data, each µ̺′ is equal to ε̺ for some ̺ ∈ P.
Thus, to complete the argument, it suffices to show that, if µ̺′ = ε̺, then
̺|H = ̺

′ and ̺ is the trivial homomorphism on K.

Take T ∈ H. Then T acts on µ̺′ as ̺
′(T ), and since µ̺′ = ε̺, also T

acts on µ̺′ as ̺(T ). Hence ̺(T ) = ̺
′(T ) and ̺|H = ̺

′. Now take T ∈ K.
Note that µ̺′ is a subbundle of the normal bundle of F in FK , which is the
fixed point set of K. Thus T acts on µ̺′ identically. Since µ̺′ = ε̺ and T
acts on ε̺ as ̺(T ), we conclude that ̺(T ) = 1, which gives the result.

Remark. Suppose (F, {ε̺}̺∈P) is the fixed data of a G-action (M ;Φ).
Denote by A the set of vector bundles over F which lie in {ε̺}. Then
(F, {ε̺}) gives a map θ : P → A, and if σ : G → G is an automorphism,
σ(M ;Φ) gives rise to a new map P → A which is θ composed with some
bijection P → P. We note that not every bijection P → P gives a map
P → A derived from some automorphism G → G, since the number of
such bijections may be greater than the number of bases of G. In particular,
we cannot in principle guarantee that all such maps P → A come from
G-actions. This is not the case, however, when G = Z22 ; if (F ; {ε̺1 , ε̺2 , ε̺3})
is a fixed data with a map P = {̺1, ̺2, ̺3} → A, then all the other possible
maps P → A come from Z22 -actions, since they are derived from automor-
phisms Z22 → Z

2
2 . Therefore the next lemma is independent of the map

P → A.
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Lemma 3.2. Suppose Fn is a nonbounding , connected and closed n-
dimensional manifold. Let η be any p-dimensional vector bundle over Fn

(p > 0) and µ an n-dimensional vector bundle over Fn cobordant to the
tangent bundle τ → Fn. Denote by 0 the zero bundle over Fn. Then
(Fn; {η, µ, 0}) cannot be the fixed data of a Z22 -action.

Proof. If ε1, ε2, ε3 are three vector bundles over F
n and (Fn; {ε1, ε2, ε3})

is the fixed data of a Z22 -action, then the argument outlined in [5, Section 3;
pp. 88–90] (or in [6, Section 2; pp. 107–108]) shows that (RP (ε1);λ, ε2 ⊕
(ε3 ⊗ λ)), the projective space bundle of ε1 with its standard line bundle
λ→ RP (ε1) and the bundle ε2 ⊕ (ε3 ⊗ λ)→ RP (ε1), bounds as an element
of the bordism group Nn+s1−1(BO(1) × BO(s2 + s3)); here, si = dim(εi)
and we are suppressing bundle maps. In particular, if we suppose by con-
tradiction that (Fn; {η, µ, 0}) is the fixed data of a Z22 -action, by taking
ε1 = η, ε2 = µ and ε3 = 0, one sees that (RP (η);λ, µ) bounds as an element
of Nn+p−1(BO(1) × BO(n)). Since Fn is nonbounding, there is a Stiefel–
Whitney number wi1(τ) · · ·wir(τ)[F

n] which is nonzero. Since µ is cobordant
to τ , wi1(µ) · · ·wir(µ)[F

n] is also nonzero. SetW (λ) = 1+c; it is known that
H∗(RP (η), Z2) is the free H

∗(Fn, Z2)-module on 1, c, c
2, . . . , cp−1. There-

fore cp−1wi1(µ) · · ·wir(µ) is the nonzero class of H
n+p−1(RP (η), Z2). Since

cp−1wi1(µ) · · ·wir(µ)[RP (η)] is a characteristic number of (RP (η);λ, µ), this
gives a contradiction.

Lemma 3.3. Let (Mm;Φ) be a G-action (G = Zk2 ) with fixed point set
Fn being a connected n-dimensional submanifold , and with m = 2kn. Then

(Mm;Φ) is equivariantly cobordant to ((Fn)2
k

; tkk).

Proof. This is the main result of [6].

Now we have in hand the necessary tools to prove our main result. Sup-
pose that (Mm;Φ), Φ = (T1, . . . , Tk), is a G-action fixing F

n, where Fn

has property H. As stated in the introduction, our aim is to prove that
(Mm;Φ) is equivariantly cobordant to σ((Fn)2

r

; tkr) for some automorphism
σ : G→ G and some 1 ≤ r ≤ k. The essential point is that Lemmas 3.1 and
3.2 allow us to find a special subgroup H ⊂ G so that Lemma 3.3 can be
applied to the restriction of Φ to H ×Mm. Let (Fn, {ε̺}̺∈P) be the fixed
data of Φ.

Lemma 3.4. For each ̺ ∈ P, ε̺ is either cobordant to the tangent bundle
τ → Fn or cobordant to the zero bundle 0→ Fn; in particular , m = pn for
some 1 ≤ p ≤ 2k (note that p − 1 is the number of bundles cobordant to
τ → Fn).

Proof. For each ̺ ∈ P, let V̺ be the component of the fixed point set
of the subgroup ker(̺) containing Fn, and set n̺ = dim(V̺). Taking T ∈
G − ker(̺), one finds that (V̺, T ) is an involution fixing Fn. Since Fn has



106 P. L. Q. Pergher and R. de Oliveira

property H, n̺ = 0 or 2n. If n̺ = 0, then (V̺, T ) = (Fn, Id) and ε̺ is
the zero bundle 0 → Fn. If n̺ = 2n, then by the result of C. Kosniowski
and R. E. Stong of [4] cited in the introduction, (V̺, T ) is cobordant to
(Fn × Fn, t) and ε̺ → Fn is cobordant to the tangent bundle τ → Fn.

If p = 1, Φ is the trivial G-action, that is, Φ = tk0; in this case one
has only zero bundles. If p = 2k, then m = 2kn and Lemma 3.3 says in
this case that (Mm;Φ) is cobordant to ((Fn)2

k

; tkk) (which is cobordant to

σ((Fn)2
k

; tkk) for any automorphism σ : G → G); in this case, one has only
bundles cobordant to the tangent bundle τ → Fn. Therefore we can assume
1 < p < 2k, which means that the two possible cobordism types of bundles
occur. To ease the notation, write ε̺ ≡ τ when ε̺ is cobordant to τ .

Lemma 3.5. Let Ω be the subset of Hom(G,Z2) given by

Ω = {1} ∪ {̺ ∈ P | ε̺ ≡ τ}.

Then Ω is a subgroup of Hom(G,Z2). In particular , the number of bundles
ε̺ with ε̺ ≡ τ is 2r − 1 for some 1 ≤ r ≤ k− 1 (r is the dimension of Ω as
Z2-vector space); that is, p = 2

r and m = 2rn.

Proof. Take ̺1, ̺2 ∈ Ω. Then {1, ̺1, ̺2, ̺1̺2} is a subgroup of
Hom(G,Z2). By Lemma 3.1, there exist subgroups H,K ⊂ G with H iso-
morphic to Z22 and G = H ⊕ K, so that the fixed data of the Z

2
2 -action

obtained by letting H act on the fixed set of K is (Fn; {ε̺1 , ε̺2 , ε̺1̺2}).
Since ε̺1 ≡ τ and ε̺2 ≡ τ , Lemma 3.2 shows that ε̺1̺2 ≡ τ , and Ω is a
subgroup of Hom(G,Z2).

Now we can complete the argument. The desired special subgroupH ⊂ G
to which Lemma 3.3 will be applied is any subgroup of G which corresponds
to Ω = {1} ∪ {̺ ∈ P | ε̺ ≡ τ} through Lemma 3.1. First note that Lemma
3.5 indicates a similarity between the fixed data of Φ and an action of type
σ((Fn)2

r

; tkr ). We call attention, however, to the following subtle point: one
has a list {ε̺}̺∈Ω∩P with each ε̺ being individually cobordant to τ , but this
list might not be simultaneously cobordant to the list {µ̺}̺∈Ω∩P with each
µ̺ being equal to τ , and the desired result requires simultaneous cobordism
(this obstacle does not appear when Fn = RP 2s, since W (ε̺) = (1+α)

2s+1

automatically yields the simultaneous cobordism in this case). In the final
remark of the paper we present an example illustrating this situation.
Fortunately, the essence of this point is bypassed already by Lemma

3.3. In fact, by Lemma 3.1, there exist subgroups H,K ⊂ G, with H iso-
morphic to Zr2 and G = H ⊕ K, so that the fixed data of H acting on
the fixed set FK of K is (F

n, {ε̺}̺∈Ω∩P). More precisely, and in terms of
P ′ = Hom(H,Z2) − {1}, this fixed data is (Fn, {µ̺′}̺′∈P ′), where for each
̺′ ∈ P ′ one has µ̺′ = ε̺, with ̺|H = ̺

′ and ̺|K = the trivial homomorphism.
In particular, dim(FK) = 2

rn = dim(Mm), and thus FK is the component
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of Mm containing Fn (note that each T ∈ K acts on Mm trivially). Since
(Mm−FK , Φ) is a G-action without fixed points, the main result of [8] says
that (Mm − FK , Φ) bounds as a manifold with G-action. Thus we can sup-
pose, without loss of generality, that FK = M

m. Then one has an action
(Mm;Φ|H×Mm) with H isomorphic to Z

r
2 and m = 2

rn; by Lemma 3.3,

this action is equivariantly cobordant to ((Fn)2
r

; trr). In particular, the list
{ε̺}̺∈Ω∩P is simultaneously cobordant to the list {µ̺}̺∈Ω∩P with each µ̺
being equal to τ .

Now choose a basis (T ′1, . . . , T
′
r, T
′′
r+1, . . . , T

′′
k ) for G so that (T

′
1, . . . , T

′
r) is

a basis forH and (T ′′r+1, . . . , T
′′
k ) is a basis forK. Consider the automorphism

ϕ : G → G where ϕ(Ti) = T ′i if 1 ≤ i ≤ r and ϕ(Ti) = T
′′
i if r < i ≤ k,

and the G-action ϕ(Mm;Φ). To describe the fixed data of this action, note
that if ̺ ∈ P is the trivial homomorphism on K, then ̺ ∈ Ω and thus
ε̺ ≡ τ ; otherwise, ̺ 6∈ Ω, which means that ε̺ is the zero bundle. Since the
list {ε̺}̺∈Ω∩P is simultaneously cobordant to the list {µ̺}̺∈Ω∩P , the fixed
data of ϕ(Mm;Φ) is then simultaneously cobordant to the list {ε̺}̺∈P given
by ε̺ = τ when ̺ is the trivial homomorphism on K and ε̺ = 0 otherwise.
But then ϕ(Mm;Φ) is equivariantly cobordant to ((Fn)2

r

; tkr ) and (M
m;Φ)

is equivariantly cobordant to σ((Fn)2
r

; tkr ), where σ = ϕ
−1.

Remark. Let (M,T ) be an involution. For each r with 1 ≤ r ≤ k, one

may form a Zk2 -action Φ = (T1, T2, . . . , Tk) on the product M
2r−1 by letting

T1 = T and letting (T2, . . . , Tk) be the twist Z
k−1
2
-action tk−1r−1 . Denote this

action by Γ kr (M,T ). Note that if (F × F, t) is the twist involution, then
Γ kr (F × F, t) = (F

2r ; tkr ). Also if (M,T ) and (V, S) are Z2-cobordant, then
Γ kr (M,T ) and Γ

k
r (V, S) are Z

k
2 -cobordant (it suffices to look at the fixed

data of Γ kr (M,T ): if η → F is the fixed data of (M,T ), then the fixed point
set of Γ kr (M,T ) is also F and the fixed data consists of 2

r−1 copies of η,
2r−1 − 1 copies of the tangent bundle over F and 2k − 2r zero bundles).

Now suppose that Fn has propertyH, and let (M2n, T ) be any involution
fixing Fn. Then (M2n, T ) is equivariantly cobordant to the twist involution
(Fn × Fn, t), and thus σΓ kr (M

2n, T ) is equivariantly cobordant to

σΓ kr (F
n × Fn, t) = σ((Fn)2

r

; tkr )

for every automorphism σ : Zk2 → Z
k
2 , k ≥ 1 and 1 ≤ r ≤ k. In this way,

every Zk2 -action fixing F
n is equivariantly cobordant to σΓ kr (M

2n, T ) for
some automorphism σ : G → G and some 1 ≤ r ≤ k. For example, every
Zk2 -action fixing RP 2n is equivariantly cobordant to σΓ kr (CP

2n, c) for some
automorphism σ : G → G and some 1 ≤ r ≤ k, where c means complex
conjugation on homogeneous coordinates.

Still in this context, let Fn ⊂ Rm be a smooth and closed n-dimensional
manifold Fn which is a real algebraic variety, and where Rm is a suitable
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euclidean real m-dimensional space. Let M2n ⊂ Cm be the corresponding
complex algebraic variety, with real dimension 2n. Then M2n is invariant
under the complex conjugation c on Cm, and the fixed point set of the
involution (M2n, c) is Fn. Thus if Fn has property H, then every Zk2 -action
fixing Fn is equivariantly cobordant to σΓ kr (M

2n, c) for some automorphism
σ : G→ G and some 1 ≤ r ≤ k.
We thank the referee for having inspired this remark.

Remark. Consider F 4 = CP 2 # (S2 × S2) = CP 2 # (CP 1 ×CP 1). We
have seen that F 4 has property H. The algebra H∗(F 4, Z2) is generated by
α, β, γ ∈ H2(F 4, Z2) with α2 = βγ being the nonzero element of H4(F 4, Z2)
and αβ = αγ = β2 = γ2 = 0. The Stiefel–Whitney class of F 4 is W (F 4) =
1 + α+ α2. Denote by ξ1 → CP 1 × CP 1 the pullback of the usual complex
line bundle over CP 1 under the first projection, and by R2 → CP 1 × CP 1

the trivial 2-dimensional bundle over CP 1 × CP 1. Then over F 4 one has
a 4-dimensional bundle µ4 → F 4 given by forming the connected sum of
the tangent bundle τ(CP 2) → CP 2 and ξ1 ⊕ R2 → CP 1 × CP 1. One has
W (µ4) = 1 + (α+ β) + α2, and computing characteristic numbers it is easy
to see that µ4 is cobordant to the tangent bundle τ(F 4)→ F 4.
Similarly one has a 4-dimensional bundle η4 → F 4 given by forming the

connected sum of τ(CP 2) and R2⊕ξ2 → CP 1×CP 1, where ξ2 is the pullback
of the usual complex line bundle over CP 1 under the second projection.
One has W (η4) = 1 + (α + γ) + α2, and in the same way η4 is cobordant
to τ(F 4). However, there is no simultaneous cobordism of (F 4;µ4, η4) with
(F 4; τ(F 4), τ(F 4)). In fact, w2(µ

4)w2(η
4) = (α + β)(α + γ) = α2 + βγ = 0

and w2(τ(F
4))w2(τ(F

4)) = αα = α2. This obviously extends to CP 2 #
(CP 1 × CP 1) # · · · # (CP 1 × CP 1) to get any number of bundles. It also
works for RP 2#(RP 1×RP 1)# · · ·#(RP 1×RP 1), HP 2#(HP 1×HP 1)#
· · ·# (HP 1 ×HP 1) and QP 2 # (QP 1 ×QP 1) # · · ·# (QP 1 ×QP 1).
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