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Diophantine undecidability for addition and divisibility
in polynomial rings

by

Thanases Pheidas (Heraklion)

Abstract. We prove that the positive-existential theory of addition and divisibility
in a ring of polynomials in two variables A[t1, t2] over an integral domain A is undecidable
and that the universal-existential theory of A[t1] is undecidable.

1. Introduction. Let B be a commutative ring. The relation of divisi-
bility in B, denoted by |, is defined by

x | y if and only if ∃z ∈ B [y = xz].

By (B; +; |;C) we denote B considered as a model of the language L which
contains the symbol + for addition, the relation symbol | for divisibility,
constants for the elements of the subset C of B and, for each element c ∈ C,
a symbol for multiplication by c: x→ cx. A formula of L is existential (resp.
positive-existential) if it is of the form ∃x1, . . . , xn ∈ B[φ(x1, . . . , xn)], where
φ is a quantifier-free formula of L (resp. a positive quantifier-free formula,
i.e. a disjunction of conjunctions of formulas of the form f1(x1, . . . , xn) �
f2(x1, . . . , xn), where � is one of = and |, and f1 and f2 are terms of L). The
positive-existential theory of (B; +; |;C) is the set of all positive-existential
formulas of L which hold true in (B; +; |;C). The ring-theory (resp. positive-
existential ring-theory) of B is the theory of B (resp. positive-existential
theory of B) in the language which extends L by a symbol for multiplication.

Addition and divisibility have been studied for several years. In [17]
J. Robinson proved that the first order theory of addition and divisibility
in the rational integers Z is undecidable. Lipshitz [7] (and, independently,
Bel’tyukov [1]) proved that the existential theory of addition and divisibil-
ity in Z is decidable; the same is true in any ring of algebraic integers of an
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imaginary quadratic number field. Let OK be the ring of algebraic integers
in the number field K. In [6] and [8] Lipshitz proved that if K is neither Q
nor imaginary quadratic then multiplication is positive-existentially defin-
able from addition and divisibility, and thus the positive-existential theory
of addition and divisibility in OK is decidable if and only if the positive ex-
istential ring-theory (also called diophantine theory) of OK is decidable. In
all known cases the diophantine theory of OK is undecidable and it has been
conjectured by Denef and Lipshitz that the same holds true in all OK (this
is the analogue of Hilbert’s tenth problem for the rings OK ; for a survey
see [18], [13] and [14]). Therefore it is expected that the positive-existential
theory of addition and divisibility in any OK is undecidable if K is of degree
other than 1 or 2 over Q.

In [12] it was proved that the existential theory of addition and divis-
ibility in a ring of polynomials F [t] of one variable, over a field F , with
constants for the elements 0, 1, t, is decidable if and only if the existential
ring-theory of F is decidable. In the present article we show that this result
does not extend to polynomials in two variables. In fact, given an inte-
gral domain A, we will reduce the undecidability of the positive-existential
theory of the structure (A[t1, t2]; +; |; {0, 1, t1, t2}) of addition and divisibil-
ity in the ring of polynomials A[t1, t2], with constant symbols for the ele-
ments 0, 1, t1, t2, to the undecidability of the positive-existential theory of
the structure (A[t, t−1]; +; |; {0, 1, t}) of addition and divisibility in A[t, t−1]
with constant symbols for 0, 1, t. We will prove

Theorem 1.1. Let A be an integral domain. Let t be a variable and
A[t] the ring of polynomials of the variable t with coefficients in A. Let
L be the language with symbols for addition and divisibility in A[t, t−1],
with symbols for 0, 1 and t and a symbol for multiplication by t. Write
(A[t, t−1]; +; |; {0, 1, t}) for the structure of A[t, t−1] as a model of L. Then:

(i) The positive-existential theory of (A[t, t−1]; +; |; {0, 1, t}) is undecid-
able.

(ii) If A has characteristic zero and contains the field of rational num-
bers Q then the following are positive-existentially definable in L
over (A[t, t−1]; +; |; {0, 1, t}): (a) the set Z of rational integers and
(b) the graph of multiplication in Z (thus the ring-structure of Z is
positive-existentially definable).

(iii) If A has prime characteristic p > 0 then the following are positive-
existentially definable in L over (A[t, t−1]; +; |; {0, 1, t}): (a) the set
E[t, t−1], where E is the field of elements of A, algebraic over the
field Fp with p elements and (b) the graph of multiplication in
E[t, t−1] (thus the subring E[t, t−1] and its ring-structure are posi-
tive-existentially definable).
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(iv) The positive-existential ring-theory of E[t, t−1] (E is as in (iii)) is
undecidable.

As a consequence we obtain

Corollary 1.1. Let A be as in Theorem 1.1 and let t1 and t2 be distinct
variables. Then the positive-existential theory of the structure (A[t1, t2]; +; |;
{0, 1, t1, t2}) is undecidable.

Proof. The quotient ring A[t1, t2]/(1 − t1t2) (of A[t1, t2] by the ideal
generated by 1 − t1t2) is an integral domain, isomorphic to A[t, t−1] under
the natural extension σ of the map which associates t to t1 and t−1 to t2.
For any x, y ∈ A[t1, t2],

σ(x) divides σ(y) in A[t, t−1] if and only if

∃z ∈ A[t1, t2] [x divides y + z(1− t1t2) in A[t1, t2]].

Hence, if the positive-existential theory of addition and divisibility with con-
stants 0, 1, t1, t2 in A[t1, t2] (i.e. of the structure (A[t1, t2]; +; |; {0, 1, t1, t2}))
were decidable, then the similar problem in A[t, t−1] with constants 0, 1, t
(i.e. the positive-existential theory of (A[t, t−1]; +; |; {0, 1, t})) would also be
decidable, which contradicts Theorem 1.1.

In [3] and [4] J. Denef proved that the diophantine problem in any poly-
nomial ring over an integral domain is undecidable. Corollary 1.1 obviously
gives a stronger result for the case of two or more variables. Besides, our
treatment of addition and divisibility in A[t, t−1] is related to the methods
of Denef in the following way: Consider the equation x2−(t2−1)y2 = 1 over
A[t]. As is proved in [3] and [4], if char(A) 6= 2, then the solutions of this
equation are given by (xn, yn), where xn+dyn = ±(t+d)n and d is a root of
the polynomial X2− (t2− 1). It is easy to show that, in order to prove that
the positive-existential ring-theory of A[t] is undecidable, it suffices to prove
that the positive-existential ring-theory of A[t, d] is undecidable, in the lan-
guage which, besides symbols for addition, multiplication, 0 and 1, contains
also constant-symbols for t and d. Write ε = t+d. Then t = (ε+ε−1)/2 and
d = (ε−ε−1)/2, so if 2 is a unit in A, we have A[t][d] = A[ε, ε−1]. Therefore,
to prove that the diophantine ring-theory of A[t, d] is undecidable, it suf-
fices to show that the positive-existential theory of addition and divisibility
in A[ε, ε−1] is undecidable (in a language which contains a symbol for the
constant ε), which follows from Theorem 1.1.

Some of the ideas of the present article have their origin in the afore-
mentioned papers of Denef and Lipshitz.

P. Pappas proved in [11] that the diophantine theory of the ring A[t, t−1]
is undecidable if char(A) = 0. More results on addition and divisibility can
be found in [2], [5], [9], [15], [16] and [19]. The solution to Hilbert’s tenth
problem was given in [10].
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Theorem 1.1 is proved in Sections 3 (the case of characteristic zero),
4 and 5 (the case of positive characteristic). In Section 6 we prove:

Theorem 1.2. Assume that A is an integral domain containing the quo-
tient field of its prime ring (that is, if A is of zero characteristic then the
field Q of rational numbers is contained in A). Then the universal-existential
theory of addition and divisibility in A[t] is undecidable. In particular the
elementary theory of addition and divisibility in A[t] is undecidable.

We note that our proof of Theorem 1.2 in the case of zero characteristic
actually shows that the positive-existential theory of addition, divisibility
and the relation “x ∈ {tn : n ∈ N}” in A[t] is undecidable (for A as in
Theorem 1.2). An analogous fact does not follow in the case of nonzero
characteristic. We think that in that case the problem may be decidable. If
this turns out to be correct then, by the analogy that often occurs between
the polynomial rings over finite fields and the rational integers, one may
expect that the positive-existential theory of addition, divisibility and the
relation “x is a power of 2” in the rational integers may be decidable; this
is a problem asked by J. Robinson in a letter to L. Lipshitz.

We use the following notation: N = {1, 2, . . .} is the set of natural num-
bers, N0 = N∪{0}, and Z = {0,±1,±2, . . .} is the set of integers. Through-
out this article A is an integral domain of characteristic char(A) (it can be
either 0 or a prime p > 0).

2. Definability in the language of addition and divisibility. We
will work in the structure (A[t, t−1]; +; |; {0, 1, t}) of addition and divisibility
in the ring A[t, t−1] (sometimes called “Laurent polynomials”) with constant
symbols for 0, 1, t. The divisibility relation will be understood in A[t, t−1],
unless stated otherwise. The language L that we will use is the set of sym-
bols L = {+, |, 0, 1, t}, representing the obvious relations, operations and
elements of A[t, t−1] (we will not make the usual distinction between the
symbols of the language and the relations that interpret them because the
distinction will always be clear from the context).

In the following lemma we include the algebraic properties of A[t, t−1]
that we will use. The proofs are easy and are left to the reader.

Lemma 2.1. (i) For any x ∈ A[t, t−1] there is an integer power tn of t
with n ∈ N0 so that tnx ∈ A[t].

(ii) Each element x of A[t, t−1] can be written uniquely as x = tnz,
where n ∈ Z and z ∈ A[t] is not divisible by t in A[t].

(iii) If x, y ∈ A[t] and t does not divide x in A[t] then x | y in A[t, t−1] if
and only if x divides y in A[t].

(iv) All the units in A[t, t−1] are of the form αtn for some n ∈ Z and
some unit α ∈ A.
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(v) If A is a unique factorization domain, then the ring A[t, t−1] is a
unique factorization domain as well.

Lemma 2.2. (i) If n,m ∈ Z then n divides m in Z if and only if
tn − 1 | tm − 1 in A[t, t−1].

(ii) If k ∈ Z \ {0} and n ∈ Z then

tkn − 1

tk − 1
≡ n mod (tk − 1).

(iii) If k ∈ Z then

tk − 1

t− 1
≡ 1 mod (t+ 1) if and only if k is odd.

(iv) Let u be a unit in A[t, t−1]. Then ∃n ∈ Z [u = tn] if and only if
t− 1 |u− 1 in A[t, t−1].

Proof. (i) The “only if” part is trivial. We prove the “if” part. For any
n ∈ Z, t−n − 1 = −t−n(tn − 1), hence we assume with no loss of generality
thatm,n ≥ 0. If n = 0 then the result is clear. So let n > 0 and letm = rn+l
with 0 ≤ l < n. Since tn−1 | tm−1, we have tn−1 | (tm−1)−(trn−1)tl = tl−1,
which, by working in A[t] and applying Lemma 2.1(iii), implies that tl = 1,
hence l = 0.

(ii) For n = 0 the result is clear. For n > 0 we have

tkn − 1

tk − 1
= 1 + tk + t2k + · · ·+ t(n−1)k ≡ n mod (tk − 1).

For n < 0 we have

tkn − 1

tk − 1
= −tkn t

−kn − 1

tk − 1
≡ n mod (tk − 1).

(iii) For k > 0 we have

tk − 1

t− 1
= 1 + t+ · · ·+ tk−1 ≡

{
0 mod (t+ 1) if k is even,

1 mod (t+ 1) if k is odd.

The case k ≤ 0 is left to the reader.
(iv) The “only if” part is obvious. We prove the “if” part. By Lemma

2.1(iv), u = αtn for some n ∈ Z and some unit α ∈ A. Since t− 1 |u− 1 =
α(tn−1)+α−1 we have t−1 |α−1 and so, by Lemma 2.1(iii), t−1 divides
α− 1 in A[t], hence α = 1.

For the following lemmas we will be writing expressions of the form u−1,
where u is a term of the language L, as if they were terms of the language.
It is easy to replace those formulas by equivalent L-formulas, which, if the
initial formulas are positive-existential, are positive-existential as well.
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Lemma 2.3. (i) If char(A) 6= 2 and 2 is a unit in A, then for any n ∈ Z,
tn 6= 1 if and only if there is a k ∈ Z and there are a, b ∈ A[t, t−1] such that
the following formula ψ1(tn, tk, a, b) holds true:

tk − 1 | tn − 1 ∧ t2 − 1 | (tk − 1)− (t− 1) ∧ tn − 1 | a ∧
(t− 1)(tk − 1) | b ∧ a+ b = tk − 1

(clearly ψ1(x, y, a, b) is a formula of L).

(ii) If 2 is not a unit in A then for any n ∈ Z, tn 6= 1 if and only if
there is a k ∈ Z and there are a, b ∈ A[t, t−1] such that the following
formula ψ2(tn, tk, a, b) holds true:

(t3 − 1 | t · tk − 1 ∨ t3 − 1 | tk − t) ∧ tk − 1 | tn − 1 ∧
(t− 1)(tk − 1) | a ∧ tk − 1 | b ∧ tn − 1 = tk − 1 + a+ 2b

(clearly ψ2(x, y, a, b) is a formula of L.)
(In the case char(A) = 2, the term 2b is equal to 0 and therefore it
may be deleted).

(iii) For any m,n ∈ Z, m 6= n if and only if there is an r ∈ Z such that
the following formula ψ3(tr, tm, tn) is true:

r 6= 0 ∧ tm − tn | tr − 1.

Proof. (i) For the “if” direction: The relation t2 − 1 | (tk − 1) − (t − 1)

is equivalent to t + 1 | tk−1
t−1 − 1 and this, by Lemma 2.2(iii), implies that k

is odd. Assume that n = 0. Then by the relation tn − 1 | a we have a = 0,
and hence, by the relations (t− 1)(tk − 1) | b and a+ b = tk − 1, we obtain
(t− 1)(tk− 1) | tk− 1. Since k is odd, it is not zero, hence we obtain t− 1 | 1,
so t− 1 is a unit in A[t, t−1], which contradicts Lemma 2.1(iv). Hence n 6= 0
and tn 6= 1.

For the “only if”: Let n = 2sk with k odd. The first two divisibility
relations follow from Lemma 2.2. By Lemma 2.2(ii) we obtain

tn − 1

tk − 1
≡ 2s mod (tk − 1), so

tn − 1

tk − 1
≡ 2s mod (t− 1).

Hence, for some z ∈ A[t, t−1] we have tn−1
tk−1

= z(t − 1) + 2s, so, since 2 is a

unit in A, we have

2−s(tn − 1)− 2−sz(t− 1)(tk − 1) = tk − 1.

Let a = 2−s(tn − 1) and b = −2−sz(t− 1)(tk − 1).
(ii) By Lemma 2.2(ii), the condition t3 − 1 | tk+1 − 1 ∨ t3 − 1 | tk − t is

equivalent to k ≡ 2 or 1 mod 3.
The “if” direction: Assume that the right hand side is true and that n=0.

Since k ≡ 2 or 1 mod 3 we have k 6= 0. From the relations (t− 1)(tk − 1) | a
and tk−1 | b we infer that there are z, w ∈ A[t, t−1] so that a = (tk−1)(t−1)z



Diophantine undecidability in polynomial rings 211

and b = (tk − 1)w. So the relation tn − 1 = tk − 1 + a + 2b gives 0 =
1 + (t− 1)z + 2w. Hence 0 ≡ 1 + 2w mod (t− 1). The ring A[t, t−1]/(t− 1)
is isomorphic to A through the natural isomorphism and hence the latter
relation implies that 2 is a unit in A, which contradicts our hypothesis.

The “only if” direction: Let n = 3sk with k 6≡ 0 mod 3 (the relations are
meant in Z). Then k ≡ 1 or 2 mod 3, tk − 1 | tn − 1 and

tn − 1

tk − 1
≡ 3s mod (tk − 1), so

tm − 1

tk − 1
≡ 3s mod (t− 1).

So there is a z ∈ A[t, t−1] such that tn−1
tk−1

= 3s + z(t − 1). Write 3s as

3s = 1 + 2w for some suitable w ∈ A. Then
tn − 1

tk − 1
= 1 + z(t− 1) + 2w.

Let a = z(t− 1)(tk − 1) and b = w(tk − 1).
(iii) is trivial.

Lemma 2.4. Assume that A is an integral domain. Then the following
hold in A[t, t−1]:

(i) If m,n, k ∈ Z, mnk 6= 0 and n 6= k then m = n + k if and only if
the following formula τ(tn, tk, tm) is true:

tn − 1 | tm − tk ∧ tm − tk | tn − 1 ∧ tk − 1 | tm − t ∧ tm − tn − 1 | tk − 1

(clearly τ(x, y, z) is a formula of L).
(ii) If m,n 6= 0 and m 6= n then m = −n if and only if

tm − 1 | tn − 1 and tn − 1 | tm − 1.

Proof. (i) The “only if” direction is clear.
We prove the “if” direction: By the relations tn−1 | tm−tk, tm−tk | tn−1

and Lemma 2.2(ii) we find that n |m− k and m− k |n, hence m− k = ±n.
Similarly from tk − 1 | tm − tn and tm − tn | tk − 1 we get m − n = ±k.
If m − k = −n then substituting into the relation m − n = ±k we get
k − 2n = ±k, which gives either n = 0 or n = k, both of which contradict
the hypothesis. Hence m = k + n.

(ii) The “only if” direction is clear. We prove the “if” direction. From
the two divisibilities we see that n |m and m |n, hence m = ±n. Thus, since
m 6= n, we obtain m = −n.

Lemma 2.5. There are positive-existential formulas φ1(x, y, z) and
φ2(x, y, z) of the language L, with free variables x, y and z, such that for
any integral domain A the following holds:

(a) Assume that 2 is a unit in A. Then for any x, y, z ∈ {tn : n ∈ Z} ⊂
A[t, t−1],

φ1(x, y, z) is true in A[t, t−1] if and only if z = x · y.
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(b) Assume that 2 is not a unit in A. Then for any x, y, z ∈ {tn : n ∈ Z}
⊂ A[t, t−1] the following is true:

φ2(x, y, z) is true in A[t, t−1] if and only if z = x · y.
Proof. Define the L-formula θ0(x) by

θ0(x) : x | 1 ∧ t− 1 |x− 1.

By Lemma 2.2(iv), θ0(x) is true if and only if x ∈ {tn : n ∈ Z}.
In what follows we will be writing formulas indexed by i for i = 1, 2. The

index i = 1 will correspond to the case that 2 is a unit in A, and i = 2 to
the case that 2 is not a unit in A.

Define the L-formulas

θi(x) : θ0(x) ∧ ∃w, a, b [θ0(w) ∧ ψi(x,w, a, b)],
where ψ1 and ψ2 are the formulas of Lemma 2.3. By Lemma 2.3 the formula
θi(x) is true if and only if x ∈ {tn : n ∈ Z \ {0}}.

Define the formulas

ζi(x, y) : θ0(x) ∧ θ0(y) ∧ ∃w [θi(w) ∧ x− y |w − 1].

By Lemma 2.3(iii), ζi(x, y) is true if and only if x, y ∈ {tn : n ∈ Z} and
x 6= y.

Define the formulas

ξi(x, y, z) : [θi(x) ∧ θi(y) ∧ θi(z) ∧ ζ(x, y) ∧ τ(x, y, z)],

where τ(x, y, z) is the formula of Lemma 2.4, and

φi(x, y, z) : [θ0(x) ∧ θ0(y) ∧ θ0(z)] ∧
[(x = 1 ∧ y = z) ∨ (y = 1 ∧ x = z) ∨ ξi(x, y, z) ∨ ξi(x, ty, tz)].

It follows from Lemma 2.4 that ξi(x, y, z) holds true if and only if x, y, z ∈
{tn : n ∈ Z \ {0}} and x 6= y and z = x · y. Then the φi have the required
properties (the details are left to the reader).

3. The case of zero characteristic

Lemma 3.1. There are quantifier-free formulas of the language L, φA(x),
with free variable x, and φmult(x, y, z), with free variables x, y and z, such
that for any integral domain A of zero characteristic, the following hold :

(a) For any x ∈ A[t, t−1],

φA(x) is true if and only if x is a unit of A.

(b) For any x, y, z ∈ A,

φmult(x, y, z) is true if and only if z = x · y.
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Proof. Define

φA(x) : x = 1 ∨ [x | 1 ∧ x− 1 | 1].

By Lemma 2.1(iv), φA is a definition of the set of units of A.
Define

φmult(x, y, z) : [t− x | tz − y].

Proof of Theorem 1.1 in the case of zero characteristic. (i) For any f, g ∈
A[t, t−1] we define the relation f ∼ g to mean t − 1 | f − g. Define yn =
(tn − 1)/(t− 1). By Lemma 2.5 the set

D = {y ∈ A[t, t−1] : ∃n ∈ Z [y = yn]}
and the relation x = ynyk (that is, the set {(y, w, y · w) : y, w ∈ D}) are
positive-existentially definable in L over (A[t, t−1]; +; |; {0, 1, t}) and those
definitions are effective. So, given a polynomial P (X1, . . . ,Xs) in the vari-
ables X1, . . . ,Xs with rational integer coefficients, the relation P (Y1, . . . , Ys)
∼ 0 is effectively positive-existentially definable in L over (A[t, t−1]; +; |;
{0, 1, t}).

Given any polynomial P (X1, . . . ,Xs) with rational integer coefficients,
we obviously have

∃X1, . . . ,Xs ∈ Z [P (X1, . . . ,Xs) = 0] if and only if

∃Y1, . . . , Ys ∈ A[t, t−1] [(∧si=1Yi ∈ D) ∧ P (Y1, . . . , Ys) ∼ 0].

This gives an effective interpretation of the positive-existential theory of
the structure (Z; +, ·; 0, 1) (the ring-structure of the rational integers) in the
positive-existential L-theory of the structure (A[t, t−1]; +; |; {0, 1, t}), hence
if the latter were decidable then the former would be decidable as well. This
would contradict Matiyasevich’s Theorem (cf. [10]), which implies that the
positive-existential ring-theory of Z is undecidable. This proves Theorem
1.1(i).

(ii) Clearly, using Lemma 2.2(ii), for any µ ∈ A the following holds:

µ ∈ Z if and only if

there is an x ∈ {tn : n ∈ Z} such that µ ≡ tn−1
t−1 mod (t− 1).

It follows that for any µ ∈ A[t, t−1],

µ ∈ Z if and only if

(µ ∈ A) ∧ ∃x ∈ A[t, t−1] [x | 1 ∧ t− 1 |x− 1 ∧ (t− 1)2 |x− 1− (t− 1)µ].

In the case that A contains the set Q of rational numbers, replace in the last
formula the subformula µ ∈ A by µ = 0 ∨ φA(µ) (φA as in Lemma 3.1) to
obtain a positive-existential definition of Z in L over (A[t, t−1]; +; |; {0, 1, t}).
Then φmult of Lemma 3.1 restricted to Z gives a positive-existential definition
of multiplication in Z.
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4. The case of nonzero characteristic. In this section we will assume
that A is an integral domain of characteristic p > 0, where p is a prime
number. So the field Fp with p elements is a subring of A. We denote by E
the ring of all elements of A which are algebraic over Fp. It is easy to see that
E is a field. We will show that the relation x ∈ E[t, t−1] is positive-existential
in L over (A[t, t−1]; +; |; {0, 1, t}) and that for x, y, z ∈ E[t, t−1] the relation
z = x · y is also positive-existential. It follows that the decision problem for
the positive-existential ring-theory of E[t, t−1] (with constant symbols for
0, 1 and t) can be effectively interpreted in the positive-existential theory
of L over (A[t, t−1]; +; |; {0, 1, t}). In the next section we will show that the
positive-existential ring-theory of E[t, t−1] is undecidable by encoding the
diophantine theory of Z into it, hence proving Theorem 1.1 in the case of
positive characteristic.

Lemma 4.1. If x ∈ A[t, t−1] then x ∈ E[t, t−1] \ {0, 1, t} if and only if

∃n ∈ Z \ {0} [x | tn − 1 ∧ x− 1 | tn − 1 ∧ x− t | tn − 1].

Proof. Recall that all the finite field extensions of Fp are cyclic, of the

form Fpl , the field with pl elements. It follows that any polynomial with
coefficients in a finite extension Fpl which is monic (i.e. with highest degree
coefficient equal to 1) and has only simple zeros, divides (in Fpl [t]) some

polynomial of the form tn+1−t with n ≥ 1. Therefore, any monic polynomial
y ∈ E[t] divides in E[t] some polynomial (tn − t)ps = tnp

s − tps with n ≥ 1.
Conversely, if y ∈ A[t] is monic and y | tm − tn in A[t] with m 6= n, then all
the zeros of y are zeros of tm−tn and are therefore algebraic, hence y ∈ E[t].

The “only if” part of the conclusion follows from the above observations
and Lemma 2.1(iii). We prove the “if” part. By Lemma 2.1(i) write x = t−rz
for some z ∈ A[t] which is not divisible by t and some r ∈ Z. We assume
without loss of generality that n > 0 (replacing n by −n if necessary). It
suffices to show that z ∈ E[t]. Let a be the leading coefficient of z. Assume
that r ≥ 0. The divisibilities of the right hand side of the equivalence of the
lemma imply z | tn − 1, z − tr | tn − 1 and z − tr+1 | tn − 1. It follows from
the observations of the preceding paragraph and the first of the divisibilities
that (1/a)z ∈ E[t]. By a similar argument applied to the second divisibility,
if n > r we obtain (1/a)(z − tr) ∈ E[t] and if n < r we obtain z − tr ∈ E[t];
in both of these cases it is clear that 1/a, z ∈ E[t]. If n = r then the third
divisibility gives z − tr+1 ∈ E[t], hence also z ∈ E[t]. If r < 0 then the
first divisibility implies (1/a)x ∈ E[t] and the second divisibility implies
(1/a)(x− 1) ∈ E[t], so 1/a ∈ E and x ∈ E[t].

Lemma 4.2. (i) For any x, y, z ∈ A[t, t−1] we have:

[x, y, z ∈ E[t, t−1] \ {0, 1, t} and z = x · y] if and only if

∃n ∈ Z \ {0} [x | tn − 1 ∧ x− 1 | tn − 1 ∧ x− t | tn − 1 ∧
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y | tn − 1 ∧ y − 1 | tn − 1 ∧ y − t | tn − 1 ∧
z | tn − 1 ∧ z − 1 | tn − 1 ∧ z − t | tn − 1 ∧
t7n − x | yt7n − z].

(ii) The sets E[t, t−1] and {(x, y, z) : x, y, z ∈ E[t, t−1] ∧ z = x · y} are
positive-existential in L over (A[t, t−1]; +; |; {0, 1, t}).

Proof. (i) The necessity of the right hand side condition follows from
Lemmas 2.1(iii) and 4.1. We prove the sufficiency. The fact that x, y, z ∈
E[t, t−1] \ {0, 1, t} follows from Lemma 4.1. Let x = tmx′, y = tky′ and
z = trz′ for some m,k, r ∈ Z and some x′, y′, z′ ∈ E[t] such that the constant
terms of x′, y′ and z′ are nonzero. Assume that n ∈ Z is such that the
conditions of the right hand side formula hold. Let |n| be the absolute value

of n. The relations x | tn−1 and x−1 | tn−1 imply x | t|n|−1 and x−1 | t|n|−1
over E[t, t−1].

We claim that deg(x′), |m| ≤ |n| (deg(x′) is the degree of x′). Assume

first that m ≥ 0. Then x ∈ E[t], the divisibilities x | t|n|−1 and x−1 | t|n|−1
imply that deg(x) ≤ |n| (since at least one of x, x−1 has a nonzero constant
term and by Lemma 2.1(iii) the corresponding divisibility holds over E[t] as

well), hence m ≤ |n|. Now assume that m < 0. The divisibility x−1 | t|n|−1
implies x′−t−m | t|n|−1 and x′−t−m has a nonzero constant term, therefore

by Lemma 2.1(iii), x′ and x′ − t−m divide t|n| − 1 in E[t]. In particular
deg(x′),deg(x′ − t−m) ≤ |n|, thus |m| ≤ |n|. So the claim has been proved.
Similarly we have deg(y′), |k|,deg(z′), |r| ≤ |n|.

From the relation t7n − x | yt7n − z we obtain t7n − x | yx− z, and hence
t7n − x | y′x′tm+k − z′tr. Let

v =

{
t7n−m − x′ if 7n−m ≥ 0,

1− tm−7nx′ if 7n−m < 0.

Then v ∈ E[t] and since deg(x′), |m| ≤ |n|, in both cases v has nonzero
constant term and deg(v) ≥ 6|n|. Let

w =

{
y′x′tm+k−r − z′ if m+ k − r ≥ 0,

y′x′ − z′tr−m−k if m+ k − r < 0.

Then obviously w ∈ E[t] and deg(w) ≤ 5|n|. Clearly v divides w in E[t] (by
Lemma 2.1(iii)). Therefore, since deg(v) ≥ 6|n| > 5|n| ≥ deg(w) (we took
into account that n 6= 0), it follows that w = 0. So y′x′tm+k−r − z′ = 0, and
thus z = y · x.

(ii) First, we recall from Lemma 2.5 that the set {tn : n ∈ Z \ {0}}
is positive-existentially definable, say by the formula θ(x) (the reader may
observe that in the terminology of the proof of Lemma 2.5 this is θ2). Then,
by Lemma 4.1, the formula
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ε(x) : x = 0∨x = 1∨x = 1∨∃u [θ(u)∧x |u−1∧x−1 |u−1∧x− t |u−1]

is a definition of E[t, t−1] in A[t, t−1].
We now produce a positive-existential definition in L of multiplication

in E[t, t−1]. Recall from Lemma 2.5 that multiplication restricted to the
subset {tn : n ∈ Z} of A[t, t−1] is positive-existentially definable, say by the
formula φ(x, y, z) (meaning z = x · y). So the set {(tn, t7n) : n ∈ Z \ {0}} is
positive-existentially definable, say by the formula χ(x, y).

Let ω0(x, y, z) be the formula

(x = 0) ∧ z = 0) ∨ (x = 1 ∧ z = y) ∨ (x = t ∧ z = ty).

Define the formula ω(x, y, z, u, v, w) by

ω(x, y, z, u, v, w) : ω0(x, y, z)∨ [ε(x)∧ ε(y)∧ ε(z)∧ θ(u)∧ θ(v) ∧χ(u, v) ∧
x |u− 1∧ x− 1 |u− 1∧ x− t |u− 1∧ y |u− 1∧ y− 1 |u− 1∧ y− t |u− 1 ∧

z |u− 1 ∧ z − 1 |u− 1 ∧ z − t |u− 1 ∧ v − x |w − z].

Then, by (i), whenever w = y · v, the formula ω(x, y, z, u, v, w) is true if and
only if (x, y, z ∈ E[t, t−1] and u, v ∈ {tn : n ∈ Z \ {0}} and v = u7 and
z = x · y). Hence the L-formula

ω1(x, y, z) : ∃u, v, w [θ(y) ∧ φ(y, v, w) ∧ ω(x, y, z, u, v, w)]

is a definition of the set

{(x, y, z) : x, y, z ∈ E[t, t−1] ∧ y ∈ {tn : n ∈ Z} \ {0} ∧ z = x · y},
and

∃u, v, w [ω1(y, v, w) ∧ ω(x, y, z, u, v, w)]

is a definition of the set {(x, y, z) : x, y, z ∈ E[t, t−1] ∧ z = x · y}.

5. The positive-existential theory of E[t, t−1] and the case of pos-
itive characteristic. In this section we prove that the positive-existential
ring-theory of E[t, t−1] is undecidable. In the light of the results of the
previous section this implies the undecidability of the positive-existential
L-theory of (A[t, t−1]; +; |; {0, 1, t}), that is, Theorem 1.1(i) in the case of
positive characteristic.

Lemma 5.1. (i) Assume that char(E) = p 6= 2. Then for any m,n ∈ Z
with m,n 6= 0 we have:

∃y ∈ E[t, t−1]

[
t2mn − 1

t2n − 1
= ±y2

]

if and only if

∃s ∈ N0 [m = ±ps].
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(ii) If char(E) = 2 then for any m,n ∈ Z with m,n 6= 0 we have:

∃y ∈ E[t, t−1]

[
t3mn − 1

t3n − 1
= y3 ∨ (t3mn − 1)(t3n − 1) = y3

]

if and only if

∃s ∈ N0 [m = ±2s].

(iii) For any tm, tn ∈ E[t, t−1], the relation ∃s ∈ N0 [m = ±psn] is
positive-existential in L over (A[t, t−1]; +; |; {0, 1, t}).

Proof. (i) Observe that for l ∈ Z,

tp
sl − 1

tl − 1
= ((tl − 1)(ps−1)/2)2.

Assume that m = psh and n = prj with h, j ∈ Z not divisible by p, and
s, r ∈ N0. Then (t2mn − 1)/(t2hj − 1) and (t2n − 1)/(t2j − 1) are squares in
E[t, t−1]. Therefore (t2mn− 1)/(t2n− 1) is a square in E[t, t−1] if and only if
(t2hj−1)/(t2j−1) is a square. Since t2hj−1 = −t2hj(t−2hj−1) we find that
(t2mn − 1)/(t2n − 1) is of the form ±y2 for some y ∈ E[t, t−1] if and only if
(t2|hj|− 1)/(t2|j|− 1) is of the same form. Now observe that the polynomials

t|2hj| − 1 and t|2j| − 1 have only simple zeros (they have no common zeros
with their derivatives), hence (t2|hj|− 1)/(t2|j|− 1) is of the form ±y2 if and
only if |h| = 1.

(ii) For l ∈ Z,

t4
sl − 1

tl − 1
= ((tl − 1)(4s−1)/3)3, (t2·4

sl − 1)(tl − 1) = ((tl − 1)(2·4s+1)/3)3

and (4s−1)/3, (2 ·4s+ 1)/3 ∈ Z. We distinguish cases according to whether
the order of m at the prime 2 is even or odd. The rest is similar to (i) and
is left to the reader.

(iii) follows from (i), (ii) and Lemma 4.2 (to express ∃y ∈ E[t, t−1]
[x = y2]).

Proof of Theorem 1.1 in the case of characteristic p > 0. We will prove
first (iv), and then (iii) and (i). Let |Z denote divisibility in the integers and
define |p as follows: For m,n ∈ Z,

m |p n if and only if ∃s ∈ Z+ [m = ±psn].

We will interpret effectively the positive-existential theory of the model
(Z; +; |Z ; |p; {0, 1}) in the positive-existential ring-theory of E[t, t−1]. We
consider the powers of t in E[t, t−1] as representing the rational integers,
i.e. for m ∈ Z, tm represents m. Under this correspondence we want to
show that for m,n, k ∈ Z, the relations m = n + k, m |Z n and m |p n are
positive-existential in the ring E[t, t−1]. Hence, if the positive-existential
ring-theory of E[t, t−1] were decidable, the positive-existential theory of
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(Z; +; |Z ; |p; {0, 1}) would be decidable as well. But the latter is undecidable
as is proved in [4]. The fact that the relation m |Z n is positive-existential
in the ring-theory of E[t, t−1] under the stated correspondence is given by
Lemma 2.2(i); the analogous facts for + and |p are given by Lemmas 2.5
and 5.1, respectively. This proves Theorem 1.1(iv).

Lemmas 4.1 and 4.2 show that the set E[t, t−1] and the graph of multipli-
cation in it are positive-existential in L over (A[t, t−1]; +; |; {0, 1, t}), hence
(iii) and (i) follow.

6. The universal-existential theory. We will investigate the univer-
sal-existential theory of A[t], where A is an integral domain and t a variable.
Observe that for any x ∈ A[t] we have:

x is a power of t different from 1 if and only if

t |x ∧ t− 1 |x− 1 ∧ ∀z [z - 1 ∧ z |x→ t | z].

So we have a universal definition of the relation

P (x) : ‘x is a power of t’.

We intend to show that, under the assumption of Theorem 1.2, the
positive-existential theory of A[t] with the structure (A[t]; +; |;P ; {0, 1, t})
of addition, divisibility and the relation P (i.e. as a model of the language
L ∪ {P}) is undecidable.

Assume first that char(A) = 0 and Q ⊂ A. Then the set U of invertible
elements of A is existentially definable by

u ∈ U if and only if u | 1 in A[t].

The following lemmas follow easily from the considerations of Section 2.

Lemma 6.1. For any x ∈ A[t] we have:

x ∈ Z if and only if

x = 0 ∨ (x | 1 ∧ ∃z, w ∈ A[t] [P (z) ∧ (t− 1)x = z − 1− (t− 1)2w]).

Lemma 6.2. If x, y, z ∈ A then

z = x · y if and only if t− x | ty − z.
Proof of Theorem 1.2 in the case of characteristic zero. It follows from

the previous two lemmas that Z and multiplication in Z are existentially
definable in A[t] with the structure of addition, divisibility and P . Thus
we can effectively interpret the positive-existential ring-theory of Z in the
universal-existential theory of (A[t]; +; |; {0, 1, t}. Hence, since the former is
undecidable (a consequence of the negative answer to Hilbert’s tenth prob-
lem, cf. [10]) the latter is undecidable as well.

Assume now that char(A) > 0.
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The following lemmas are analogous to Lemmas 2.4, 4.1 and 4.2, respec-
tively; their proofs are very similar and are left to the reader.

Lemma 6.3. If char(A) > 0, the following holds in A[t]:

tm = tntk if and only if

∀z [¬t | z ∧ z | tm − tk → z | tn − 1] ∧ [tn − 1 | tm − tk].
Lemma 6.4. Assume that char(A) > 0. Let E denote the field of elements

of A, algebraic over the prime subfield. Then for any x ∈ A[t] we have:

x ∈ E[t] if and only if [x = 0 ∨ x = 1 ∨ x = t] ∨
∃n,m ∈ N [tn 6= tm ∧ x | tn − tm ∧ x− 1 | tn − tm ∧ x− t | tn − tm].

Lemma 6.5. Assume that char(A) > 0 and let E be as in the previous
lemma. If x, y, z ∈ E[t] and x, y, z 6= 0, 1, t then

z = x · y if and only if

∃n,m, k ∈ N [x | tn − tm ∧ x− 1 | tn − tm ∧ x− t | tn − tm ∧
y | tn − tm ∧ y − 1 | tn − tm ∧ y − t | tn − tm ∧
z|tn − tm ∧ z − 1 | tn − tm ∧ z − t | tn − tm ∧

x− t7k | yt7k − z ∧ tm+n = tk ∧ tm 6= tn].

Proof of Theorem 1.2 in the case of positive characteristic. From the last
three lemmas we obtain a positive-existential definition of E[t] and of the
graph of multiplication in E[t], in the structure (A[t]; +; |;P ; {0, 1, t}), hence
also a universal-existential definition in the structure (A[t]; +; |; {0, 1, t}) of
addition and divisibility in A[t]. Therefore we obtain an effective interpre-
tation of the positive-existential ring-theory of E[t] in both the positive-
existential theory of (A[t]; +; |;P ; {0, 1, t}) and the universal-existential the-
ory of (A[t]; +; |; {0, 1, t}). By the results of [4], the positive-existential ring-
theory of E[t] is undecidable. It follows that both the positive-existential the-
ory of (A[t]; +; |;P ; {0, 1, t}) and the universal-existential theory of (A[t]; +;
|; {0, 1, t}) are undecidable.

Notice that the existential definition of tm = tntk which was given in
Lemma 2.5 does not work in A[t] because t is not a unit; we substituted it
by the universal-existential definition of Lemma 6.3. As we commented in
the introduction this has a consequence that we cannot prove undecidabil-
ity of the positive-existential theory of A[t] with the structure of addition,
divisibility and the relation P . So we ask:

Question 6.1. Is the positive-existential theory of the structure (Fp[t];
+; |;P ; {0, 1, t}) decidable (also with Fp replaced by any integral domain A
of positive characteristic which has a decidable existential theory)?
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