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The return sequence of the Bowen–Series map
for punctured surfaces

by

Manuel Stadlbauer (Göttingen)

Abstract. For a non-compact hyperbolic surface M of finite area, we study a certain
Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first
return map to this section is shown to be pointwise dual ergodic with return sequence
(an) given by

an =
π

4(Area(M) + 2π)
· n

logn
.

We use this result to deduce that the section map itself is rationally ergodic, and that the
geodesic flow associated to M is ergodic with respect to the Liouville measure.

1. Introduction and statement of main results. The coding of the
directed geodesics on a surface M of negative curvature by a finite alphabet
was introduced by Artin and Morse (see [Ar], [Mor1], [Mor2]). An immediate
application of this approach leads to a representation of the geodesic flow on
M as a suspension flow over the two-sided shift (see [Se2]). In this context
several problems of interest arise. The first is to determine whether the shift
is of finite type, which can be done e.g. by giving a geometric construction
of an invertible Markov map such that the geodesic flow is isomorphic to a
suspension over the latter map (see [Se2], [AF]). Furthermore, one may be
interested in the maximal non-invertible factor of this map, its dynamical
properties, and their relation to the dynamics of the geodesic flow on the
given surface.

A fundamental paper in this context is [BS]. There, a non-invertible
Markov map T : ∂H → ∂H is introduced which is orbit equivalent to the
action of the Fuchsian group G on ∂H, where ∂H is the ideal boundary of the
hyperbolic 2-space H and H/G is assumed to have finite hyperbolic area. If
H/G is compact, it is shown that the map T is transitive and has the Rényi
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property, which then implies that T admits an ergodic invariant probabil-
ity measure which is absolutely continuous with respect to the Lebesgue
measure. If H/G is not compact, Bowen and Series prove that a suitably
chosen induced transformation has these properties, which implies that T
itself is ergodic with respect to an infinite invariant measure. Furthermore,
the geodesic flow is shown to be ergodic by using the orbit equivalence of
the actions of T and G.

Later, it was shown in [Se2] that the map T also has the above mentioned
property of being a maximal factor of the first return map to some Poincaré
section for the geodesic flow on H/G. Note that this gives an explicit con-
struction of an invariant measure for T using the flow invariant Liouville
measure on the unit tangent bundle of H/G. Namely, since the Liouville
measure induces an invariant measure for the first return map (see [AK]),
the image measure under the factor map of the latter measure is T -invariant.
By using this construction, this invariant measure was determined explicitly
in [Se1] for the modular group and in [AF] for compact H/G, leading to a
new characterisation of the Gauß measure, and to a proof of the ergodicity
of the geodesic flow, respectively.

In what follows, we refer to the map T as the Bowen–Series map or the
coding map, and a Fuchsian group G is called cocompact , resp. cofinite if
H/G is compact or of finite hyperbolic area.

We first consider the above construction for an arbitrary, cofinite, non-
cocompact Fuchsian group G. In this situation, a result of Tukia (see [Tu])
shows that there exists a fundamental domain for G which is an ideal poly-
gon. It then turns out that the T -invariant measure is infinite (see [BS],
[Se1]). Therefore, we use methods from infinite ergodic theory (see [ADU],
[Aa]) to show that the coding map is pointwise dual ergodic and to deter-
mine the associated return sequence (see [AD]). Then we adapt our methods
to the coding map as introduced in [BS]. Note that this construction applies
to any cofinite group.

More precisely, the paper is organised as follows. In Section 2, we con-
struct a Poincaré section Y for the geodesic flow on H/G, where G is non-
compact and cofinite. Note that the construction of Y relies on the choice
of a fundamental polygon (see [Se1], [AF], [St]) which can be taken to be
an ideal polygon (see [Tu]). This then gives rise to a special flow representa-
tion (Proposition 2.1) of the geodesic flow. Therefore, the Liouville measure
induces a measure m on Y which is invariant under the first return map S
to Y .

In Section 3, the coding map T is introduced and is shown to be a
non-invertible factor of S, that is, there is a surjective map π : Y → ∂H
such that π ◦ S = π ◦ T . Since m is S-invariant, the measure µ := m ◦ π−1

is T -invariant. Moreover, it can be calculated explicitly (see p. 230). Also,
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we conclude that T is a topologically mixing Markov map (Proposition 3.1)
and that S is the natural extension of T (Proposition 3.2). Combining this
result with Corollary 2.2 then shows that T is conservative and ergodic if
and only if the geodesic flow has these properties.

In Section 4, we first show that the measure µ is infinite (Proposition 4.1).
Furthermore, by inducing T on a suitable set A of finite measure we deduce
that TA is an eventually hyperbolic dynamical system which has the Rényi
property (Lemma 4.3). Using this result, we obtain the following result,
where µA is the measure µ restricted to A.

Theorem 1. The induced map TA has the Gibbs–Markov property with
respect to the TA-invariant measure µA.

Note that the Gibbs–Markov property was introduced in [AD], where
a similar result was obtained for a subgroup of the modular group by a
different method. Moreover, recall that the continued fraction map is the
classical example of a map with this property. By combining results from
infinite ergodic theory (see [ADU], [Aa], [Z]) and the measure estimate in
Proposition 4.1 we obtain the main result of this paper.

Theorem 2. The coding map T is conservative and ergodic with respect
to µ. Moreover , for K := π/(4(Area(M) + 2π)), the map T is pointwise
dual ergodic with respect to the return sequence

an = K · n

logn
.

We recall that T is called pointwise dual ergodic (see also Section 4.3)
with respect to the return sequence (an) if

1

an

n−1∑

i=0

T̂ if →
�

X

f dµ a.e. as n→∞ ∀f ∈ L1(µ),

where T̂ is the dual of T . Note that the sequence (an) is unique up to
asymptotic equality, that is, T is pointwise dual ergodic with respect to
each sequence (bn) with limn→∞ an/bn = 1. Moreover, the measure µ can
be normalised in the sense that with respect to the measure (1/K)µ, the
map T is pointwise dual ergodic with return sequence (n/logn). However,
this normalisation corresponds to a change of the Riemannian metric on H
and therefore to a change of the sectional curvature of H/G.

In Section 5, the relation of the coding map which is constructed in
Section 3 and the map T introduced in [BS] is discussed. It turns out that
our analysis can be adapted to this more general situation as follows. Using
the above construction of the invariant measure, a slight modification of
Lemma 4.3 gives the following result, where V∗ refers to the set of ideal
vertices of the polygon involved in the construction of T .
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Theorems 3 & 4. Let G be a cofinite group and T the map introduced
in [BS]. Then T is conservative and ergodic with respect to the invariant
measure µ. Moreover , µ is finite if and only if G is cocompact. If G is
not cocompact , then T is pointwise dual ergodic with respect to the return
sequence

an = K · n

logn
,

where K = 1/(4#V∗).

Note that the latter result comprises the assertion of Theorem 2. This
is due to the fact that the hyperbolic area of an ideal polygon P with n
vertices is Area(P ) = π(n− 2).

These results have the following consequences. Since the natural exten-
sion of T is the first return map to a Poincaré section (see Proposition 3.2 for
the construction given here and [Se2], [AF] for the construction in [BS]), the
geodesic flow is isomorphic to a special flow over a conservative and ergodic
section (Proposition 2.1). Hence the classical result of Hopf (see e.g. [Ho])
which states that the geodesic flow on a surface of finite area is conserva-
tive and ergodic with respect to the Liouville measure follows from a result
in [AK]. Furthermore, if the invariant measure for this section is infinite, the
fact that the first return map is conservative implies that SA is well defined
for each subset A of positive measure of the Poincaré section. Hence for A
suitably chosen, the induced map SA : A→ A is the first return map to the
alternative Poincaré section A, and is an ergodic, finite measure preserving
Markov map with respect to a countable partition (see [AD]).

2. The special flow representation. The aim of this section is to
construct a special flow over some measure preserving transformation which
is isomorphic to the geodesic flow on the underlying surface. Recall that the
Poincaré model H of the hyperbolic plane is H := {z ∈ C : |z| < 1}, where
the hyperbolic metric and hyperbolic area are given by

ds(z) =
2|dz|

1− |z|2 and dA(z) =
4dz

(1− |z|2)2
,

respectively. Also recall that an oriented geodesic is an isometry γ : R→ H
and corresponds to a circle segment which is perpendicular to the boundary
at infinity ∂H = S1 at the two endpoints limt→±∞ γ(t). Note that the set
of oriented geodesics corresponds to the unit tangent bundle T 1(H) of H,
where the usual representation of T 1(H) is given by

T 1(H) = {(ξ, η, s) : ξ, η ∈ ∂H, ξ 6= η, s ∈ R}.
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Moreover, the geodesic flow (φt)t∈R on T 1(H) is defined by the canonical
R-action φt : (ξ, η, s) 7→ (ξ, η, s+ t), and the Liouville measure mL given by
dmL = d|ξ|d|η|dt/(|ξ − η|2) is invariant under the action of (φt)t∈R.

Recall that each orientable hyperbolic surface is isometric to the quotient
H/G, where G is a Fuchsian group without torsion. A group G is torsion-free
if there exists no non-trivial element g ∈ G such that gn = id for some n 6= 0.
Furthermore, a group is called a Fuchsian group if G is a discrete subgroup
of the group Iso+(H) of orientation-preserving isometries of (H, s). Also note
that mL is invariant under the usual action of G on T 1(H), and that the
actions of G and (φt)t∈R on T 1(H) commute. These observations give rise
to the definition of the geodesic flow on the quotient T 1(H/G) with respect
to the projected Liouville measure which, for ease of notation, will also be
denoted by mL (see [Ni]).

We will extensively use a specially shaped fundamental polygon for a
given group G. Recall that, in general, the set S of sides of a fundamental
polygon P consists of geodesic segments, geodesic rays and geodesics, and
that the set V of vertices of P is a subset of H. Also, the elements of S are
equivalent in pairs, and for each pair {s, t} the element gs ∈ G is uniquely
determined by gs(s) = t. This gives rise to the following notation. Denote
by s′ the side gs(s) of P . As is easily seen, s′′ = s and gs′ = g−1

s .
So assume that G is a torsion-free, non-cocompact Fuchsian group. In

this situation, a result of Tukia ([Tu, p. 15]) states that there exists a fun-
damental polygon P for G with the following properties. The sides of P are
geodesics. For each s ∈ S, denote by G{s,s′} the subgroup of G generated
by the element gs. Then G is the free product of the groups G{s,s′} for all
pairs {s, s′}.

If G corresponds to a non-compact surface of finite area, the above result
shows that there exists P whose sides are geodesics. Therefore, since P is of
finite area, P has to be an ideal polygon, that is, P is the (hyperbolically)
convex hull of a finite subset V of ∂H (see Figure 1). Note that this implies
that S is finite. Moreover, by [Be, Theorem 10.5.1], for each fundamental
polygon for G we have #S ≤ 4g + 2n − 2, where g is the genus and n
the number of cusps of H/G. Using the Gauß–Bonnet formula (e.g. [Be,
Theorem 10.4.3]) it is not hard to deduce that this inequality is sharp for
each ideal fundamental polygon. In other words, this choice of P has the
fewest number of sides and therefore gives a minimal set of generators.

In addition, since V ⊂ ∂H, the polygon P gives rise to a partition of ∂H
as follows (see Figure 1). Denote by H(s), for s ∈ S, the open hyperbolic
half-space for which ∂H(s) = s and P ∩H(s) = ∅, and by as ⊂ ∂H the open
interval which is adjacent to H(s). As is easily seen, gs(as) = Int(acs′), where
Int(·) refers to the interior with respect to the topology of ∂H. Furthermore,
as ∩ at = ∅ for all distinct s, t ∈ S and

⋃
s∈S as = ∂H \ V.
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Fig. 1. The first return map S for a free Fuchsian group of first kind

Set

GP := {(ξ, η, t) ∈ T 1(H) : ξ ∈ GV or η ∈ GV}.
Clearly, GP is invariant under the actions of (φt) and G. Moreover, since V is
finite, GP is of Liouville measure zero. Let γξ,η be the oriented geodesic from
η ∈ ∂H to ξ ∈ ∂H, where γξ,η is normalised so that the Euclidean distances
dE(η, γ(0)) and dE(ξ, γ(0)) coincide. Define

Y := {(ξ, η) ∈ ∂H× ∂H : ∃t ∈ R such that (ξ, η, t) /∈ GP and γξ,η(t) ∈ P}.
Furthermore, observe that, for distinct ξ, η ∈ ∂H\V, there exists t ∈ R such
that γξ,η(t) ∈ Int(P ) if and only if there exist distinct s, t ∈ S such that
ξ ∈ as and η ∈ at. Thus,

Y
m
= {(ξ, η) ∈ ∂H× ∂H : ∃s ∈ S such that ξ ∈ as, η /∈ as},

where m is given by dm(ξ, η) = d|ξ|d|η|/(|ξ − η|2) and
m
= denotes equality

up to a set of measure zero. Let

S : Y → Y, S|(as×acs)(ξ, η) = (gsξ, gsη).

Moreover, since we have excluded the set GP , the two maps t±ξ,η : Y → R
defined by

t+ξ,η := sup{t : γξ,η(t) ∈ P} ≤ ∞, t−ξ,η := inf{t : γξ,η(t) ∈ P} ≥ −∞
satisfy |t±ξ,η(ξ, η)| <∞ for all (ξ, η) ∈ Y .

Recall that (see [AK]) the special flow (Yh,Bh,m × λ, (ϕYht )t∈R) over
S : (Y,B,m)→ (Y,B,m) with height function h(ξ, η) := t+ξ,η− t−ξ,η is defined
by

Yh := {(ξ, η, θ) : (ξ, η) ∈ Y, 0 ≤ y < h((ξ, η)},
ϕYht (ξ, η, θ) := (Sn(ξ, η), θ + t− hn(x)),
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where n ∈ Z is such that hn(ξ, η) ≤ θ + t < hn+1(ξ, η) for

hn(ξ, η) :=





0, n = 0,∑n−1
k=0 h(T k(ξ, η)), n ≥ 1,

−∑−1
k=n hk(T

k(ξ, η)), n < 0.

Here, m × λ is the product measure of m and the Lebesgue measure λ
restricted to the Borel σ-field Bh of Yh.

In this context, S is also referred to as the first return map to the
Poincaré section Y . Note that, by the results of [AK], the measure m is

S-invariant if and only if m × λ is invariant under (ϕYht )t∈R, and that S is

ergodic and conservative if and only if (ϕYht )t∈R is ergodic and conservative.

Proposition 2.1. The geodesic flow (T 1(H/G),B,mL, (φt)) is measure

theoretically isomorphic to the special flow (Yh,Bh,m× λ, (ϕYht )).

Proof. We only give the sketch of the proof since similar arguments can
be found in [Se1] and [AF]. As is easily seen, the set Y is a fundamental
domain for the action of G on T 1(H) \ GP , where

Y := {(ξ, η, t) ∈ Y × R : t−ξ,η ≤ θ < t+ξ,η}.
In addition, for g ∈ G we have gY ∩ Y = ∅ if and only if g = id. Hence by
the product structure of mL and the flow invariance of GP we find that the
geodesic flow (φt) on T 1(H/G) with respect to the Liouville measure and the
flow (ψt) on Y with respect to m× λ are measure theoretically isomorphic,
where ψt(ξ, η, θ) = G(φt(ξ, η, θ)) ∩ Y.

Moreover, observe that gs(ξ, η, t
+
ξ,η) = (gsξ, gsη, t

−
gsξ,gsη

) for ξ ∈ as. This

essentially gives the assertion.

Note that h ∈ L1(Y,m), since
�

Y

h dm = mL(T 1(H/G)) = Area(H/G).

Furthermore, since the Liouville measure is flow-invariant we immediately
obtain the following.

Corollary 2.2. The map S : Y → Y is the first return map of the
Poincaré section Y . Moreover , the measure m is S-invariant , and S is con-
servative and ergodic if and only if the geodesic flow is conservative and
ergodic.

3. The coding map. The coding map is an endomorphism defined on
∂H which is defined piecewise by a set of generators given by a fundamental
polygon. Note that

α := {as : s ∈ S}
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is a partition of ∂H up to a set of Lebesgue measure zero. The map T :
∂H→ ∂H is now defined by

T |as := gs|as ,
where as is an arbitrary atom of α. Observe that pr1◦S = T ◦pr1, where pr1

is the projection onto the first coordinate. Hence T is a factor of S and the
measure µ := m ◦ pr−1 is T -invariant. Moreover, for a countable collection
{βi : i ∈ I} of partitions, denote by

∨
i∈I βi the common refinement of the

βi (i ∈ I). Let

αn+1 :=

n∨

i=0

T−iα.

Proposition 3.1. The coding map T is a topologically mixing Markov
map with respect to the partition α and the measure µ (and with respect to
the Lebesgue measure).

Proof. T restricted to an element of α is a Möbius transformation,
whence T |as is injective. Moreover, since T |as = gs|as , we have T (as) =
(as′)

c mod µ. To verify the Markov property it remains to show that
σ(
∨∞
i=0 T

−iα) = B mod µ.
As is easily seen, the inverse branches of T correspond to elements of the

group G. Hence any element of αn corresponds to a side of a copy of P under
an element of G. Note that, since the tessellation GP is locally finite, the
Euclidean distances of the endpoints of the sides of gnP tend to zero, where
gn is a sequence of distinct elements in G. This gives the Markov property
with respect to α.

In order to complete the proof, it remains to show that T is topologically
mixing, which is equivalent to the aperiodicity of the underlying incidence
graph (see [Aa, §4.2]). Recall that the set of vertices of this graph consists of
the elements of α, and that the set of (directed) edges consists of the pairs
(a, b) with T (a) ⊃ b mod µ. Since T (a) ⊃ b is equivalent to b 6= a′ there
are edge cycles ((a0, a1), (a1, a2), . . . , (ak−1, ak), (ak, a0)) of arbitrary length
for all a = a0. Hence the incidence graph is aperiodic and T is topologically
mixing.

The Markov property now allows us to introduce the following notions.
A word (s1 . . . sn) is called admissible whenever si 6= s′i+1 for 1 ≤ i < n
(which is equivalent to T (asi) ⊃ asi+1). Note that each admissible word
ω = (s1 . . . sn) defines an element [ω] of αn by

[ω] := {ξ ∈ ∂H : T i(ξ) ∈ asi for all 0 ≤ i < n− 1}.
Moreover, if gω = gsn · · · gs1 ∈ G, then Tn|[ω] : ω → T ([as1 ]) is injective and
Tn|[ω] = gω. This gives the following well known relation between admissible
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words and inverse branches of T : for D(νω) := Tn([ω]) the map

νω : D(νω)→ [ω], νω := g−1
ω |Tn([ω]),

satisfies

Tn ◦ νω|D(νω) = id|D(νω).

We are now in a position to show that the first return map S also has
the Markov property. Recall that S is the natural extension of T if pr1 ◦S =

T ◦pr1, m◦π−1 = µ, and
∨∞
n=1 S

npr−1
1 B∂H

m
= BY , where B∂H and BY denote

the respective σ-fields of Borel subsets (see e.g. [Aa]).

Proposition 3.2. The map (Y,BY ,m, S) is the natural extension of
(∂H,B∂H, µ, T ).

Proof. Assume that (s1 . . . sm) is an admissible word and that 0<n<m.
Then

Sn ◦ pr−1
1 [s1 . . . sm] = gs1...sn([s1 . . . sm])× gs1...sn([s1]c)

= [sn+1 . . . sm]× (gs′1 · · · gs′n)−1T ([s′1])

= [sn+1 . . . sm]× νs′1...s′nT ([s′1])

= [sn+1 . . . sm]× [s′1 . . . s
′
n].

As α is a generating partition with respect to T the last equality proves that
the Borel subsets of Y are generated by

∨

m>n>0

Sn ◦ pr−1
1 (αm).

By definition of T and µ the other two criteria are satisfied and hence the
assertion is proven.

The following corollary is an immediate consequence of the latter propo-
sition.

Corollary 3.3. The first return map S has the Markov property with
respect to the partition {as × at : s, t ∈ S, s 6= t} of Y .

4. Ergodic properties of the coding map. By Proposition 3.1 the
map T is a measure preserving Markov map with respect to a partition
with finitely many atoms. However, the fact that H/G is a surface with
cusps implies that there exist indifferent periodic orbits of T . This then will
give rise to the observation that µ is an infinite measure (see [BS], [Se1]),
and therefore we will describe the dynamical behaviour of T in terms of
infinite ergodic theory (see [Th], [ADU], [Aa]).

Denote by U := {z ∈ C : =z > 0} the upper half-space model of the hy-
perbolic plane. Recall that the Liouville measure mL on T 1(U) = {(ξ, η, t) :
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ξ, η ∈ R ∪ {∞}, ξ 6= η, t ∈ R} is given by

dmL =
2dξdηds

(ξ − η)2
.

Hence, the invariant measure m for the first return map S with respect to
U is given by

dm =
2dξdη

(ξ − η)2
,

and as in the Poincaré model, the invariant measure µ for T is the image
measure of the projection onto the first coordinate. We now consider an
arbitrary atom as of α and assume without loss of generality that as = (a,∞)
for some a ∈ R. Hence, for each measurable set A ⊂ as, we have

(1) µ(A× acs) =
�

A×acs

2 dξ dη

(ξ − η)2
=

�

A

( �

acs

2 dη

(ξ − η)2

)
dξ.

Hence,

(2)
dµ

dη
(ξ) =

a�

−∞

2 dη

(ξ − η)2
= 2

1

η − a dη for all ξ ∈ as,

and µ is an infinite measure which is equivalent to the Lebesgue measure
on R.

4.1. The wandering rate. The wandering rate of a set A of finite mea-
sure with respect to a measure preserving transformation is given by the
asymptotic type of µ(

⋃n
i=1 T

−i(A)) as n→∞. Note that T is conservative
if µ(∂U \ ⋃∞i=1 T

−i(A)) = 0. To construct a set with this property the in-
different periodic orbits of T have to be characterised. Recall the definition
of a cycle for an ideal vertex of a fundamental polygon P for the group G.
Assume that, for ideal vertices v1, . . . , vn ∈ ∂H, sides s1, . . . , sn ∈ S, and
boundary identifications gs1 , . . . , gsn , the following holds, where the indices
are taken mod n:

• gsi(vi) = vi+1 for 0 < i ≤ n,
• vi is adjacent to si and vi+1 is adjacent to gsi(si) for all 0 < i ≤ n.

If n is minimal with respect to these properties, then (v1, . . . , vn) is referred
to as a vertex cycle of v1. For the case of a cofinite group, it is well known
that each ideal vertex v of P is contained in a vertex cycle. Moreover, for the
associated boundary identifications gs1 , . . . , gsn , we find that gsn ·gsn−1 · · · gs1
is a parabolic transformation with fixed point v.

Let N be the least common multiple of the lengths of all vertex cycles.
Hence each ideal vertex v is a parabolic fixed point of TN , where TN |[w] is

the continuous extension of TN to [w] ∈ αN . As is easily seen, if (s1, . . . , sn)
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is the cycle of sides associated to v, then

U(v) := [s1 . . . sn . . . s1 . . . sn]︸ ︷︷ ︸
N/n times

∪ [s′n . . . s
′
1 . . . s

′
n . . . s

′
1]︸ ︷︷ ︸

N/n times

∪{v}

is a neighbourhood of v. Define

w(v) := [s1 . . . sn . . . s1 . . . sn]︸ ︷︷ ︸
N/n times

,

w′(v) := [s′n . . . s
′
1 . . . s

′
n . . . s

′
1]︸ ︷︷ ︸

N/n times

.

Since w(v)w(v) is admissible, we have

n⋃

i=1

T−iN ([w(v)])c = [w(v) . . . w(v)︸ ︷︷ ︸
n+1 times

]c.

For A := (
⋃
v∈V U(v))c this gives

n⋃

i=0

T−iNA
µ
=

n⋃

i=0

T−iN
(⋃

v∈V
([w(v)] ∪ [w′(v)])

)c

=
(⋃

v∈V
[w(v) . . . w(v)︸ ︷︷ ︸

n+1 times

] ∪ [w′(v) . . . w′(v)︸ ︷︷ ︸
n+1 times

]
)c
.

Without loss of generality, assume that v = ∞ and TN |[w(v)](z) = z − 1.
Then there exist a, b ∈ R, b < a, such that w(v) = (a,∞) and (b,∞) = [s],
where [s] ∈ α is the atom in α such that w(v) ⊂ [s]. We now have

µ([w(v)] \ [w(v) . . . w(v)︸ ︷︷ ︸
n times

]) = µ((a, a+ n]) =

a+n�

a

2

x− b dx

= 2(log(a+ n− b)− log(a− b)))
and so

µ([w(v)] \ [

n times︷ ︸︸ ︷
w(v) . . . w(v)])

logn
n→∞−−→ 2.

This implies that µ(A) < ∞, and that for the wandering rate of A with
respect to TN , we have

µ(
⋃n
i=0 T

−iNA)

logn
n→∞−−→ 4#V,

where #V denotes the cardinality of V. Since µ({⋃ni=0 T
−iA}i∈N) increases

monotonically, we have the following.
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Proposition 4.1.

µ(
⋃n
i=0 T

−iA)

logn
n→∞−−→ 4#V.

In addition, since (a, a+n]
n→∞−−→ (a,∞), we have µ(∂U\⋃∞i=1 T

−i(A)) = 0.

Proposition 4.2. The first return map TA : A→ A is well defined and
preserves the finite measure µ restricted to A. Furthermore, TA and T are
conservative.

Proof. As µ(∂U \ ⋃∞i=1 T
−i(A)) = 0, TA is defined almost everywhere.

As µ(A) is finite, TA preserves a finite measure and hence is conservative.
By standard arguments T has to be conservative as well.

4.2. Distortion properties. In order to derive distortion properties like
the Rényi or Gibbs property for the induced transformation TB for some
measurable set B of finite measure, recall the following. For each Möbius
transformation g which does not fix ∞ there exists a unique circle Ig, the
isometric circle, on which g acts as a Euclidean isometry. If g is in particular
an isometry of the Poincaré model and g(0) 6= 0 then there exists a reflection
τ in a straight line through the origin such that g = τσ, where σ is the
inversion in Ig. In addition, Ig is perpendicular to S1 and hence corresponds
to a geodesic (see [Ra, §4.3]).

Denote by mg the centre and by rg the radius of Ig. Since Ig is per-
pendicular to S1, we have |mg|2 = r2

g + 1. The inversion σ in Ig is given
by

σ(z) =
mgz − |mg|2 + r2

g

z − a =
mgz − 1

z −mg
.

Hence, for D(·) being the derivative of a holomorphic function, we have

|Dg(z)| =
∣∣∣∣

r2
g

|z −mg|2
∣∣∣∣, |D2g(z)| =

∣∣∣∣
2r2
g

(z −mg)3

∣∣∣∣.

If ψg is the repelling (resp. indifferent) fixed point of the hyperbolic (resp.
parabolic) transformation g then |g′(z)| ≤ 1 if and only if |z − mg| ≤ rg.
Thus |ψg −mg| ≤ rg. Furthermore,

∣∣∣∣
D2g(z)

(Dg(z))2

∣∣∣∣ = 2
|z −mg|

r2
g

.(3)

Recall that any Möbius transformation leaves invariant the cross ratio
[u, v, x, y], where u, v, x, y are four different points in C∪{∞} and the cross
ratio is given by

[u, v, x, y] :=
|u− x| |u− v|
|u− v| |x− y| .
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Lemma 4.3. With respect to the disc model , for each measurable B with
d(B,V) > ε for some ε > 0 (e.g. B = A as in Proposition 4.2), there exists
0 < C <∞ such that , for all n ∈ N and for Lebesgue-a.e. z with T n(z) ∈ B,

∣∣∣∣
D2Tn(z)

(DTn(z))2

∣∣∣∣ < C.

Proof. Fix ω = (s1 . . . sn) ∈ αn. Then Tn|[ω] = gω = g. Assume that ηg
is an element of the isometric circle Ig of g with centre mg and radius rg.
Since g(Ig) = Ig−1 it follows that rg = rg−1 and mg−1 = g(∞). Hence

|mg − z|
rg

[mg, ηg, z,∞] = [g(mg), g(ηg), g(z), g(∞)],

which implies
|mg − z|
|mg − ηg|

=
|mg−1 − g(ηg)|
|mg−1 − g(z)|

and so

|mg − z|
rg

=
rg

|mg−1 − g(z)| .

Therefore, by (3), ∣∣∣∣
D2g(z)

(Dg(z))2

∣∣∣∣ =
2

|mg−1 − g(z)| .

Hence it remains to derive an estimate of |mg−1 − g(z)| from below for all
ω and z with z ∈ B ∩ [ω] and T n(z) ∈ B.

} }

}
}

ns’

} }

}
}

ns’

ns’a

ns’a
g  (z)ωg  (z)ω

ε ε

ε
ε

z

ε ε

ε
ε

z

[ω]

[ω]

Fig. 2. The two cases s1 6= s′n resp. s1 = s′n

Case 1: Assume that s1 6= s′n. Then [ω] ⊂ T n[ω] = g([ω])
µ
= [s′n]c. Fix

z ∈ [ω]∩B with g(z) ∈ B. By the intermediate value theorem for continuous
functions it follows that Clos([ω]) contains a fixed point of g. By the same
argument Clos([s′n]) = g([ω])c contains a fixed point of g−1. Clearly, the
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latter is a repelling or indifferent fixed point of g−1. Hence ψg−1 ∈ Clos([s′n]).
Since g(z) ∈ (as′n)c∩B and d(B,V) > ε, the inequality |ψg−1−mg−1 | ≤ rg−1

implies that |mg−1 − g(z)| ≥ ε − rg−1 . Now assume that (g1, g2, . . .) is a
sequence of distinct elements of G. Then by Theorem 3.3.7 in [Ka], rgk → 0
as k →∞. Hence ∣∣∣∣

D2g(z)

(Dg(z))2

∣∣∣∣ =
2

|mg−1 − g(z)| ≤
4

ε

for at most finitely many g ∈ G.

Case 2: Assume that s1 = s′n. In this case [ω] and g([ω]) are disjoint.
Hence neither [ω] nor g([ω]) contain any fixed point of g−1. Hence by the
same arguments as above for z ∈ B with g(z) ∈ B, we have

∣∣∣∣
D2g(z)

(Dg(z))2

∣∣∣∣ =
2

|mg−1 − g(z)| ≤
4

ε

for at most finitely many g ∈ G.

Recall that the set A of Proposition 4.2 is defined by

A = ∂H \
⋃

v∈V
U(v) = ∂H \

⋃

v∈V
([w(v)] ∪ [w′(v)]),

where N is the least common multiple of the lengths of the edge cycles.
Define α̃ :=

⋃∞
n=0 α

n. We now introduce the following two partitions of ∂H:

β∗ := {a ∈ αN : a 6= [w(v)], a 6= [w′(v)] ∀v ∈ V},
β := {b ∈ α̃ : ∃a1, a2 ∈ β∗ such that b ⊂ a1, TA(b) = a2,

TA : b→ a2 is injective}.
By definition, TA(b) ∈ β∗ for all b ∈ β. Since β∗ is a finite partition of A
there exists a constant C > 0 such that λ(TA(b)) > C for all b ∈ β, or
in other words, TA has the big image property with respect to β and the
Lebesgue measure λ restricted to A.

Proposition 4.4. (A,B, λ, TA, β) is a topologically mixing Markov map
which is eventually expanding (i.e. there are Λ > 1 and n0 ∈ N such that
|DTnA(z)| > Λ for all n > n0 and λ-a.e. z ∈ ∂H). Furthermore, TA has the
Rényi property , i.e. there is C > 0 such that∣∣∣∣

D2TnA(z)

(DTnA(z))2

∣∣∣∣ < C for all n ∈ N and for Lebesgue-a.e. z.

Proof. Clearly, β is a Markov partition and TA is topologically mixing.
Since the Rényi property follows immediately from Lemma 4.3, it remains to
show that TA is eventually expanding. Moreover, the Rényi property gives
rise to an estimate of the diameter of an element b ∈ βn. By a straightforward
calculation (which can be found e.g. in [Aa, p. 145]) there is M > 0 such
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that, if νb denotes the inverse branch of TA on b ∈ βn for arbitrary n ∈ N,
then

exp(−M)
λ(b)

λ(TA(b))
≤ |ν ′b(z)| ≤ exp(M)

λ(b)

λ(TA(b))
.

Since sup{λ(b) : b ∈ βn} tends to zero as n → ∞ and since β has the big
image property, it follows that TA is eventually expanding.

From a general point of view, a distortion property is a feature of the mul-
tiplicative variation of the Radon–Nikodym derivative ν ′ω := d(µ ◦ νω)/dµ,
where νω : D(νω)→ [ω] is the inverse branch determined by the admissible
word ω. Define

β̃+ := {a ∈ β̃ : µ(a) > 0}, where β̃ :=
∞⋃

n=0

βn.

Recall that the Markov map (X,B, µ, T, β) has the Gibbs property if there

are C > 1 and 0 < r < 1 such that gr(C, T )
µ
= β̃+, where

gr(C, T )

:=

{
a ∈ β̃+ :

∣∣∣∣ log
v′a(x)

v′a(y)

∣∣∣∣ ≤ Crt(x,y) for µ× µ-a.e. (x, y) ∈ (D(va))
2

}
.

Here t :
⋃
a,b∈β a× b→ N ∪ {0} is defined by

t(x, y) := min{n ≥ 0 : T nx ∈ a ∈ α, Tny ∈ b ∈ α, a 6= b}.

Theorem 1. Let A be defined as in Proposition 4.1. Then TA has the
Gibbs property with respect to µA, where µA is the measure µ restricted to A.

Proof. Combining the observations that TA has the Rényi property and
that TA is eventually expanding, it immediately follows that TA has the
Gibbs property with respect to λ (for details see for instance [Aa, Proposi-
tion 4.3.3]). Moreover, a straightforward calculation shows that log(dµ/dλ)
is a bounded, continuous function on A. Hence it is Lipschitz continuous
on A, which implies by Proposition 4.7.1 of [Aa] that TA also has the Gibbs
property with respect to the invariant measure µ.

4.3. Ergodic properties of the coding map. By a result of Aaronson,
Denker and Urbański (see [ADU, Theorem 3.2] and [Aa, Theorem 4.4.7]),
a topologically mixing, conservative Gibbs–Markov map is exact. Thus by
Propositions 4.2, 4.4 and Theorem 1, TA is exact (and hence ergodic). Since
TA is conservative, the map T is exact (and ergodic) as well. For systems of
this type there is a further classification (see [Aa]).

A conservative, ergodic, measure preserving transformation T of (X,B, µ)
is called rationally ergodic if there is a set A ∈ B with 0 < µ(A) <∞ and a
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constant M > 0 such that

�

A

( n−1∑

i=0

1A ◦ T i
)2
dµ ≤M

( �

A

n−1∑

i=0

1A ◦ T i dµ
)2

∀n ≥ 1.(4)

Furthermore, there is a sequence (an), an ↗ ∞, associated to T such that
for a set A which satisfies (4), we have

1

an

n−1∑

i=0

µ(B ∩ T−iC)
n→∞−−→ m(B)m(C) ∀B,C ∈ B ∩A.

This sequence is unique up to asymptotic equality and is called the return
sequence of T .

A stronger ergodic property of T is defined via the transfer operator

T̂ : L1(µ)→ L1(µ) given by
�

X

T̂ f · g dµ =
�

X

f · g ◦ T dµ ∀f ∈ L1(µ), g ∈ L∞(µ).

Namely, a conservative, ergodic, measure preserving transformation T is
pointwise dual ergodic if there is a sequence (bn), bn ↗∞, such that

1

bn

n−1∑

i=0

T̂ if →
�

X

f dµ a.e. as n→∞ ∀f ∈ L1(X).

Any pointwise dual ergodic transformation is rationally ergodic and the
sequences (an) and (bn) coincide up to asymptotic equality (see [Aa, Propo-
sition 3.7.1]). Therefore (bn) is also referred to as the return sequence of T .

Theorem 2. Let G be a cofinite Fuchsian group which is not cocompact.
Then the coding map T is pointwise dual ergodic with respect to µ. The return
sequence (an) of T is given by

an =
π

4(Area(H/G) + 2π)
· n

logn
.

Proof. Since TA has the Gibbs–Markov property, Theorem 4.8.1 in [Aa]
shows that T is pointwise dual ergodic and A is a Darling–Kac set, that is,
there exists a sequence (an), an ↗∞, such that

1

an

n−1∑

i=0

T̂ i1A → µ(A) almost uniformly on A.

Hence the Chacon–Ornstein theorem implies that (an) is a return sequence
for T . Furthermore, since the wandering rate LA(n) of A is proportional to
logn (Proposition 4.1), LA(n) is regularly varying at ∞ with index α = 0.
Using Proposition 3.8.7 of [Aa], we obtain

an ∼
1

Γ (2− α)Γ (1 + α)
· n

LA(n)
=

n

logn
· 1

4#V .
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Since Area(P ) = (#V − 2)π, the return sequence is given by

an =
π

4(Area(H/G) + 2π)
· n

log n
.

Corollary 4.5. The first return map S is rationally ergodic with return
sequence (an).

Proof. By the last theorem, T is rationally ergodic. The assertion follows
from the fact that S is the natural extension of T (see Proposition 3.2). We
note that no invertible transformation can be pointwise dual ergodic.

5. A different choice of the fundamental domain. The construc-
tion of the coding map T presented here relies on the choice of a specially
shaped fundamental polygon. Namely, we use the fact that for a cofinite
Fuchsian group G with parabolic elements there exists a fundamental poly-
gon P such that P is an ideal polygon, that is, all vertices of P are contained
in ∂H. This shape of P then immediately implies that the section (Y, S) has
the Markov property and that the invariant measure induced by the Liouville
measure is infinite. Moreover, the combinatorial structure of the canonical
factor T is less complicated than that of the map introduced in [BS].

Recall that in [BS], the construction of the coding map T relies on the
choice of a fundamental polygon which satisfies the so-called even corner
property or net condition. Namely, a fundamental domain P for a given
group G has the even corner property if G(∂P ) is the union of geodesics.
Note that such a P exists for any cofinite Fuchsian group G (see [BS]),
and that the class of ideal polygons is included in the class of fundamental
polygons with that property.

Moreover, by a result of [Se2] the first return map of the Poincaré section
{(ξ, η) : ∃t ∈ R such that γξ,η(t) ∈ P} is conjugate to a Markov map S acting
on some subset Y of ∂H × ∂H. Combining the fact that the conjugating
map is piecewise defined via elements of G and that the measure m given
by dm(ξ, η) = d|ξ|d|η|/|ξ− η|2 is invariant under the action of Iso+(H), one
clearly deduces that (Y,B,m|Y , S) is a measure preserving Markov map.
Due to the construction of Y it follows immediately that m(Y ) is infinite if
and only if there are some vertices of P in ∂H, which is equivalent to the
non-compactness of H/G.

Following [BS], [Se1] and [AF] one infers that the canonical non-invertible
factor (∂H,B, µ, T ) is a topologically mixing, measure preserving Markov
map, where µ is the image measure of the factor map as in Proposition 3.1.
Recall that this factor is defined as follows.

Let the sides S = {s1, . . . , sk} of P be labelled in anticlockwise order
and denote by γ(i), for si ∈ S, the geodesic containing si. Furthermore, let
Pi, Qi be the elements of ∂H such that {Pi, Qi} is the set of endpoints of
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a(γ(i)), and Pi comes before Qi in anticlockwise order. Now T : ∂H → ∂H
is partially defined as follows (see Figure 3):

x 7→ gsi(x) for x ∈ [Pi, Pi+1), i = 1, . . . , k−1, x 7→ gsk(x) for x ∈ [Pk, P1).

Pi−1

Pi+1

Pi
si

gi

sj

Qi+1

Pj

Qj−1

Pj+1

Qj

g  (Q   )           i                i+1

g (Q     )i       i+1

g (P   )i     i−1

Fig. 3. The Bowen–Series construction

We are now in a position to adapt our analysis to this situation. For si ∈
S with endpoints in H, gi(Pi−1) and gi(Qi+1) lie in the interval [Qj−1, Pj+1],
where j is given by gi(si) = sj and the indices are taken modulo k = #S
(see Figure 3). For a cocompact group G the proof of Lemma 4.3 can now
be easily adapted as follows.

If Tn|[ω] = g|[ω] for some interval [ω] ⊂ ∂H and g ∈ G such that [ω] ⊂
Tn([ω]) then by the last observation the repelling fixed point mg−1 of g−1 is
in [Qj−1, Pj+1] for some j ∈ {1, . . . , k}. Hence, for ε := min{|Qj−1 − Pj+1| :
j ∈ {1, . . . , k}}, the same arguments as in the first case of the proof of
Lemma 4.3 yield |D2g(z)/(Dg(z))2| < 4/ε for all z ∈ [ω]. If [ω] 6⊂ T n([ω]),
a similar argument applies.

Following the arguments of Sections 4.2 and 4.3 we deduce the following
well known result (see [BS], [AF]).

Theorem 3. Let G be a cocompact Fuchsian group. Then the map T is
an ergodic, measure preserving Gibbs–Markov map with respect to the finite
measure µ.

Note that in this case the finiteness and invariance of µ immediately
imply that T is conservative. So assume from now on that µ is infinite or
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equivalently that G is not cocompact. In this situation the conservativity of
T can be deduced as in Proposition 4.2 from the existence of a set A of finite
measure such that

⋃∞
i=1 T

−i(A) = ∂H mod µ. Moreover, the wandering rate
can be specified precisely as in Proposition 4.1. Namely, for A bounded away
from the set of ideal vertices V∗ ⊂ ∂H of P we have

µ(
⋃n
i=0 T

−iA)

logn
n→∞−−→ 4#V∗.

By using the above observation the analogue of Lemma 4.3 can be easily
obtained in this situation. Hence, by the arguments of Sections 4.2 and 4.3,
we obtain the following analogue of Theorem 2.

Theorem 4. Let G be a cofinite Fuchsian group which is not cocompact.
Then the map T is an ergodic, conservative, measure preserving Markov map
with respect to the infinite measure µ. Moreover , T is pointwise dual ergodic
and the associated return sequence is given by

an =
n

logn
· 1

4#V∗ .
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