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Embedding properties of endomorphism semigroups
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Abstract. Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation
monoid over a set Ω, and by SubV (resp., EndV ) the collection of all subspaces (resp.,
endomorphisms) of a vector space V . We prove various results that imply the following:

(1) If cardΩ ≥ 2, then Self Ω has a semigroup embedding into the dual of Self Γ iff
cardΓ ≥ 2cardΩ . In particular, if Ω has at least two elements, then there exists
no semigroup embedding from Self Ω into the dual of PSelf Ω.

(2) If V is infinite-dimensional, then there is no embedding from (SubV,+) into
(SubV,∩) and no embedding from (EndV, ◦) into its dual semigroup.

(3) Let F be an algebra freely generated by an infinite subset Ω. If F has fewer
than 2cardΩ operations, then EndF has no semigroup embedding into its dual.
The bound 2cardΩ is optimal.

(4) Let F be a free left module over a left ℵ1-noetherian ring (i.e., a ring without
strictly increasing chains, of length ℵ1, of left ideals). Then EndF has no semi-
group embedding into its dual.

(1) and (2) above solve questions proposed by G. M. Bergman and B. M. Schein. We also
formalize our results in the setting of algebras endowed with a notion of independence (in
particular, independence algebras).

1. Introduction. A (partial) function on a set Ω is a map from a sub-
set of Ω to Ω. The composition g ◦ f of partial functions f , g on Ω is
a partial function, with domain the set of all x in the domain of f such
that f(x) belongs to the domain of g. The set PSelf Ω of all partial func-
tions on Ω is a monoid under composition. Denote by Self Ω the submonoid
of PSelf Ω consisting of all endomaps of Ω. The dual Sop of a semigroup
(resp., monoid) S with multiplication · is defined as the semigroup (resp.,
monoid) with the same underlying set as S and the multiplication ∗ defined
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by the rule x ∗ y = y · x for all x, y ∈ S. A dual automorphism (resp., a dual
embedding) of S is an isomorphism (resp., embedding) from S to Sop.

In the present paper, we solve the following three questions:

Question 1. Suppose that Ω is infinite. Does Self Ω have a dual embed-
ding?

Question 2. Suppose that Ω is infinite. Does PSelf Ω have a dual em-
bedding?

Question 3. Does the endomorphism monoid of an infinite-dimensional
vector space have a dual embedding?

Question 1 originates in an earlier version of a preprint by George Berg-
man [3] and Questions 1 and 2 were proposed by Boris Schein in September
2006 while he gave a course on semigroups at the Center of Algebra of the
University of Lisbon. After learning some of the results of the present paper,
proved by the second author, that implied a negative answer to Question 1,
Bergman changed [3] and subsequently asked Question 3. This question was
solved by the second author as well. The original solution of Question 1 was
obtained via an analogue of Theorem 3.1 but with a non-optimal bound; in
our present formulation, the optimal bound 2cardΩ is proved. Furthermore,
the similarity of the methods used in the (negative) solutions of all these
questions lead us to the investigation of more general classes of algebras
where similar negative results would hold, for example M -acts or modules.

The road to the latter goal is opened as follows. As both Self Ω and EndV
are endomorphism monoids of universal algebras, we may wish to identify
more general classes of universal algebras whose endomorphism monoids can-
not be embedded into their dual. In particular, this is the case for the free
objects in any nontrivial variety with small enough similarity type (The-
orem 6.1), but not necessarily for all free M -acts for suitable monoids M
(Theorem 6.2). In Section 8, we introduce a rather large class of algebras
whose endomorphism monoids cannot be embedded into their dual, called
SC-ranked algebras (Definition 8.4 and Corollary 8.6). These algebras arise
from the study of algebras endowed with a notion of independence (see Sec-
tion 7). This gives, for example, new results about M -acts for monoids M
without large left divisibility antichains (Theorem 9.1), in particular for G-
sets (Corollary 9.5), but also for modules over rings satisfying weak noethe-
rianity conditions (Corollary 10.7).

Denote by SubV (resp., EndV ) the collection of all subspaces (resp.,
endomorphisms) of a vector space V . Our results imply the following:

• (cf. Corollary 3.8) Let Ω and Γ be sets with cardΩ ≥ 2. Then Self Ω
has a semigroup embedding into (Self Γ )op iff cardΓ ≥ 2cardΩ.
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• (cf. Theorems 4.4 and 5.1) Let V and W be right vector spaces over
division rings K and F , respectively , with V infinite-dimensional. If
there exists an embedding either from (SubV,+) to (SubW,∩) or from
(EndV, ◦) to (EndW, ◦)op, then dimW ≥ (cardK)dimV .
• (cf. Theorems 6.1 and 6.2) Let V be a variety of algebras, not all re-
duced to a singleton, in a similarity type Σ, and let Ω be an infinite
set. If cardΣ < 2cardΩ, then the endomorphism semigroup of the free
algebra on Ω in V has no dual embedding. The cardinality bound 2cardΩ

is optimal , even for M -acts for a suitably chosen monoid M .
• (cf. Theorem 10.7) Let F be a free left module over a ring in which
there is no strictly increasing ℵ1-sequence of left ideals. Then the semi-
group EndF has no dual embedding.

In Section 11, we formulate a few concluding remarks and open problems.

2. Basic concepts. For a nonzero cardinal κ, we put κ− 1 = card(Ω \
{p}) for any set Ω of cardinality κ and any p ∈ Ω (so κ− 1 = κ in case κ is
infinite). We denote by P(Ω) the powerset of a set Ω, and by [Ω]<ω the set
of all finite subsets of Ω. We put

Ker f = {(x, y) ∈ Ω ×Ω | f(x) = f(y)} for any function f with domain Ω.

We also denote by rng f the range of f . We denote the partial operation of
disjoint union by t.

We denote by EqΩ the lattice of all equivalence relations on Ω under
inclusion, and by [x]θ the θ-class of any element x ∈ Ω, for each θ ∈ EqΩ.
We put

Eq≤2Ω = {θ ∈ EqΩ | card(Ω/θ) ≤ 2},
Eq2Ω = {θ ∈ EqΩ | card(Ω/θ) = 2},

EqfinΩ = {θ ∈ EqΩ | Ω/θ is finite}.
The monoid Self Ω has the following subsets, the first three of which are also
subsemigroups:

SymΩ = {f ∈ Self Ω | f is bijective},
Self≤2Ω = {f ∈ Self Ω | card(rng f) ≤ 2},
SelffinΩ = {f ∈ Self Ω | rng f is finite},
Self2Ω = {f ∈ Self Ω | card(rng f) = 2}.

We put ker f = f−1{0} (the usual kernel of f) for any homomorphism f
of abelian groups. For a right vector space V over a division ring K, we
denote by Subfin V (resp., Subfin V ) the sublattice of SubV consisting of
all finite-dimensional (resp., finite-codimensional) subspaces of V . Further-
more, we denote by Endfin V the semigroup of all endomorphisms with finite-
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dimensional range of V . In particular, the elements of Subfin V are exactly
the kernels of the elements of Endfin V .

3. Embeddings between semigroups of endomaps. For any f ∈
Self Ω, denote by f−1 the endomap of the powerset P(Ω) that sends every
subset ofΩ to its inverse image under f . The assignment Self Ω → Self P(Ω),
f 7→ f−1, defines a monoid embedding from Self Ω into (Self P(Ω))op. More-
over, both Self 1 and Self ∅ are the one-element monoid, which is self-dual.
For larger sets the following theorem says that the assignment f 7→ f−1

described above is optimal in terms of size.

Theorem 3.1. Let Ω and Γ be sets with cardΩ ≥ 2. If there exists a
semigroup embedding from Self≤2Ω into (Self Γ )op, then cardΓ ≥ 2cardΩ.

We prove Theorem 3.1 in a series of lemmas. Assuming an embedding
from Self≤2Ω into (Self Γ )op, Lemma 3.3 is used to associate the kernel of
a function in Self≤2Ω with the range of its image under the embedding.
As any two distinct members of Eq2Ω join to give the coarse equivalence
relation in an “effective” way (Lemma 3.2), this will give, in Lemma 3.5, a
partition of a suitable subset of Γ with many classes. Proving that each of
these classes has at least two elements is the object of Lemmas 3.6 and 3.7;
this will give the final estimate.

Lemma 3.2. Let α and β be distinct elements in Eq2Ω. Then there are
idempotent maps f, g ∈ Self2Ω such that Ker f = α, Ker g = β, and f ◦ g is
constant.

Proof. As α 6= β, we can write Ω/α = {A0, A1} and Ω/β = {B0, B1}
with both A0 ∩B0 and A0 ∩B1 nonempty. Pick bi ∈ A0 ∩Bi for i ∈ {0, 1},
and pick a ∈ A1. Define idempotent endomaps f and g of Ω by the rule

f(x) =
{
b0 (x ∈ A0),
a (x ∈ A1),

g(x) =
{
b0 (x ∈ B0),
b1 (x ∈ B1),

for all x ∈ Ω.

Then Ker f = α, Ker g = β, and f ◦g is the constant function with value b0.

Now let ε : Self≤2Ω ↪→ (Self Γ )op be a semigroup embedding.

Lemma 3.3. Ker f ⊆ Ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈
Self≤2Ω.

Proof. There exists h ∈ Self≤2Ω such that g = h ◦ f . Thus ε(g) =
ε(f) ◦ ε(h) and the conclusion follows.

Lemma 3.3 makes it possible to define a map

µ : Eq≤2Ω → P(Γ ) \ {∅}
by the rule µ(Ker f) = rng ε(f) for each f ∈ Self≤2Ω.

Lemma 3.4. α ⊆ β iff µ(β) ⊆ µ(α), for all α, β ∈ Eq≤2Ω.
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Proof. The direction from the left to the right (i.e., the map µ is antitone)
follows from Lemma 3.3. Now assume that µ(β) ⊆ µ(α). There are idem-
potent f, g ∈ Self≤2Ω such that α = Ker f and β = Ker g. As rng ε(g) ⊆
rng ε(f) and ε(f) is idempotent, ε(f) ◦ ε(g) = ε(g), that is, ε(g ◦ f) = ε(g);
thus, as ε is one-to-one, g ◦ f = g, and therefore Ker f ⊆ Ker g.

Let 1 = Ω ×Ω denote the coarse equivalence relation on Ω.

Lemma 3.5. µ(α) ∩ µ(β) = µ(1) for all distinct α, β ∈ Eq2Ω.

Proof. It follows from Lemma 3.2 that there are idempotent f, g ∈ Self Ω
such that Ker f = α, Ker g = β, and f ◦ g is constant.

Let x ∈ µ(α) ∩ µ(β). This means that x belongs to both rng ε(f) and
rng ε(g); hence, as both ε(f) and ε(g) are idempotent, it is fixed by both
these maps; hence it is fixed by their composite, ε(g)◦ ε(f) = ε(f ◦ g); hence
it lies in the range of that composite, which, as f ◦ g is a constant function,
is µ(1).

So we have proved that µ(α)∩µ(β) is contained in µ(1). As the converse
follows from Lemma 3.3, the conclusion follows.

Denote by kx the constant function on Ω with value x, for each x ∈ Ω.
Hence µ(1) = rng ε(kx).

Lemma 3.6. The set µ(1) has at least two elements.

Proof. Otherwise, µ(1) = {z} for some z ∈ Γ , and so ε(kx) is the con-
stant function on Γ with value z, for each x ∈ Ω. As ε is one-to-one, this
implies that Ω has at most one element, a contradiction.

Lemma 3.7. The set rng ε(e) \ µ(1) has at least two elements for each
idempotent e ∈ Self2Ω.

Proof. Let rng e = {x, y}. It follows from Lemmas 3.3 and 3.4 that
rng ε(e) properly contains µ(1). Suppose that rng ε(e) \ µ(1) = {t} for
some t ∈ Γ .

For a and b in a semigroup S, let a ∼ b if there are x1, x2, y1, y2 ∈ S
such that a = x1b = bx2 and b = y1a = ay2. It is obvious that if S is a
subsemigroup of Self Ω, then a ∼ b implies that a and b have the same kernel
and the same range. Furthermore, in case S = Self≤2Ω, it is easy to verify
that the converse holds (first treat left and right divisibility separately, then
join the two results). In addition, a ∼ b in Self≤2Ω implies that ε(a) ∼ ε(b)
in Self Γ .

We shall apply this to the maps e and f = (x y) ◦ e (where, as said
above, {x, y} = rng e). Observe that f2 = e and e ∼ f ; hence ε(f)2 = ε(e)
and ε(e) ∼ ε(f), so Ker ε(e) = Ker ε(f) and rng ε(e) = rng ε(f). We shall
evaluate the map ε(f) on each Ker ε(e)-class, that is, on each class of the
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decomposition

(3.1) Γ =
⊔

v∈rng ε(e)

[v]Ker ε(e) =
⊔

v∈µ(1)

[v]Ker ε(e) t [t]Ker ε(e).

From µ(1) = rng ε(kx) and kx ◦ g = kx it follows that ε(g) ◦ ε(kx) = ε(kx)
for each g ∈ Self≤2Ω, thus ε(g) fixes all the elements of µ(1); we shall
use this in the two cases g = e and g = f . As [v]Ker ε(e) = [v]Ker ε(f) for
each v ∈ µ(1), it follows that each element of that class is sent to v by both
maps ε(e) and ε(f); hence ε(e) and ε(f) agree on

⊔
v∈µ(1)[v]Ker ε(e). As the

maps ε(e) and ε(f) have the same kernel and the same range, they also agree
on [t]Ker ε(e). Therefore, ε(e) = ε(f), and thus e = f , a contradiction.

Pick an element ∞ ∈ Ω and set Ω∗ = Ω \ {∞}. We put

(3.2) θZ = {(x, y) ∈ Ω ×Ω | x ∈ Z ⇔ y ∈ Z} for each Z ⊆ Ω.
If Z belongs to P(Ω) \ {∅, Ω}, then the equivalence relation θZ has exactly
the two classes Z and Ω \ Z. This holds, in particular, for each nonempty
subset Z of Ω∗. In addition, θX and θY are distinct elements in Eq2Ω for
all distinct nonempty subsets X and Y of Ω∗, so, by Lemma 3.5, we get
µ(θX) ∩ µ(θY ) = µ(1). Furthermore, it follows from Lemma 3.4 that µ(θX)
properly contains µ(1), and so the family (µ(θX)\µ(1) | X ∈ P(Ω∗)\{∅}) is
a partition of some subset of Γ . In particular, by using Lemmas 3.6 and 3.7,
we obtain

cardΓ ≥ cardµ(1)+ 2 · card(P(Ω∗) \ {∅}) ≥ 2+2 · (2cardΩ−1− 1) = 2cardΩ.

This concludes the proof of Theorem 3.1.

Corollary 3.8. Let Ω and Γ be sets with cardΩ ≥ 2. Then the follow-
ing are equivalent:

(i) There exists a semigroup embedding from Self≤2Ω into (Self Γ )op.
(ii) There exists a monoid embedding from Self Ω into (Self Γ )op.
(iii) cardΓ ≥ 2cardΩ.

Proof. (ii)⇒(i) is trivial, and (i)⇒(iii) follows from Theorem 3.1. Finally,
we observed (iii)⇒(ii) at the beginning of Section 3.

As PSelf Ω embeds into Self(Ω ∪ {∞}) (for any element ∞ /∈ Ω) and,
in case cardΩ ≥ 2, the inequality 2cardΩ > cardΩ + 1 holds, the following
corollary answers simultaneously Questions 1 and 2 in the negative.

Corollary 3.9. There is no semigroup embedding from Self Ω into
(PSelf Ω)op for any set Ω with at least two elements.

4. Subspace lattices of vector spaces. The central idea of the present
section is to study how large a set I can be if the semilattice ([I]<ω,∩) embeds
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into various semilattices obtained from a vector space, and then to apply this
to embeddability problems of subspace posets.

We start with an easy result.

Proposition 4.1. For a set I and a right vector space V over a division
ring K, the following are equivalent:

(i) ([I]<ω,∪,∩, ∅) embeds into (Subfin V,+,∩, {0});
(ii) ([I]<ω,∩) embeds into (SubV,∩);
(iii) card I ≤ dimV .

Proof. (i)⇒(ii) is trivial.
Suppose that (ii) holds via an embedding ϕ : ([I]<ω,∩) ↪→ (SubV,∩),

and pick ei ∈ ϕ({i})\ϕ(∅) for any i ∈ I. If J is a finite subset of I, i ∈ I \J ,
and ei is a linear combination of {ej | j ∈ J}, then ei belongs to ϕ({i}) ∩
ϕ(J) = ϕ(∅), a contradiction; hence (ei | i ∈ I) is linearly independent, and
so card I ≤ dimV .

Finally, suppose that (iii) holds. There exists a linearly independent fam-
ily (ei | i ∈ I) of elements in V . Define ϕ(X) as the span of {ei | i ∈ X},
for every X ∈ [I]<ω. Then ϕ is an embedding from ([I]<ω,∪,∩, ∅) into
(Subfin V,+,∩, {0}).

For embeddability of [I]<ω into (SubV,+), we will need further results
about the dimension of dual spaces. It is an old but nontrivial result that the
dual V ∗ (i.e., the space of all linear functionals) of an infinite-dimensional
vector space V is never isomorphic to V . This follows immediately from the
following sharp estimate of the dimension of the dual space (which is a left
vector space) given in the Proposition on page 19 in [2, Section II.2].

Theorem 4.2 (R. Baer, 1952). Let V be a right vector space over a
division ring K.

(i) If V is finite-dimensional , then dimV ∗ = dimV .
(ii) If V is infinite-dimensional , then dimV ∗ = (cardK)dimV .

Strictly speaking, the result above is stated in [2] for a vector space over
a field, but the proof presented there does not make any use of the commu-
tativity of K so we state the result for division rings. Also, we emphasize
that this proof is nonconstructive, in particular it uses Zorn’s lemma. Of
course, replacing “right” by “left” in the statement of Theorem 4.2 gives an
equivalent result.

By using Baer’s theorem together with some elementary linear algebra,
we obtain the following result.

Proposition 4.3. For a set I and an infinite-dimensional right vector
space V over a division ring K, the following are equivalent:

(i) ([I]<ω,∪,∩, ∅) embeds into (Subfin V,∩,+, V );
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(ii) ([I]<ω,∩) embeds into (SubV,+);
(iii) card I ≤ (cardK)dimV .

Proof. (i)⇒(ii) is trivial.
Suppose that (ii) holds. To every subspace X of V we can associate its

orthogonal X⊥ = {f ∈ V ∗ | (∀x ∈ X)(f(x) = 0)}, and the assignment X 7→
X⊥ defines an embedding from (SubV,+) into (SubV ∗,∩). It follows that
([I]<ω,∩) embeds into (SubV ∗,∩). Therefore, by applying Proposition 4.1
to the left K-vector space V ∗, we conclude, using Theorem 4.2, that card I ≤
dimV ∗ = (cardK)dimV .

Finally, suppose that (iii) holds. By Theorem 4.2, there exists a linearly
independent family (`i | i ∈ I) in V ∗ (indexed by I). We put ϕ(X) =⋂
i∈X ker `i for every X ∈ [I]<ω (with the convention that ϕ(∅) = V ). It

is obvious that ϕ is a homomorphism from ([I]<ω,∪, ∅) to (Subfin V,∩, V ).
For every finite subset X of I, if the linear map `X : V → KX , v 7→

(`i(v) | i ∈ X), were not surjective, then its image would be contained in
the kernel of a nonzero linear functional on KX , which would contradict the
linear independence of the `is; hence `X is surjective. As ker `X = ϕ(X), it
follows that

(4.1) codimϕ(X) = dimKX = cardX.

Therefore, ϕ embeds ([I]<ω,⊆) into (Subfin V,⊇).
Finally, let X and Y be finite subsets of I. We apply the codimension

formula to the subspaces ϕ(X) and ϕ(Y ), so

codim(ϕ(X) + ϕ(Y )) + codim(ϕ(X) ∩ ϕ(Y )) = codimϕ(X) + codimϕ(Y ).

As ϕ(X) ∩ ϕ(Y ) = ϕ(X ∪ Y ), an application of (4.1) yields

codim(ϕ(X) + ϕ(Y )) = cardX + cardY − card(X ∪ Y )
= card(X ∩ Y ) = codimϕ(X ∩ Y ).

As ϕ(X ∩ Y ) is finite-codimensional and contains ϕ(X) + ϕ(Y ), it follows
that ϕ(X) + ϕ(Y ) = ϕ(X ∩ Y ). Therefore, ϕ is as desired.

We obtain the following theorem.

Theorem 4.4. Let V and W be right vector spaces over division rings K
and F respectively , with V infinite-dimensional. If there exists an embedding
from (Subfin V,+) into (SubW,∩), then dimW ≥ (cardK)dimV .

TakingW = V ∗ and sending every subspaceX of V to its orthogonalX⊥,
we see that the bound (cardK)dimV is optimal.

Proof. Put κ = (cardK)dimV . It follows from Proposition 4.3 that
([κ]<ω,∩) embeds into (Subfin V,+). Hence, by assumption, ([κ]<ω,∩) em-
beds into (SubW,∩), which, by Proposition 4.1, implies that κ ≤ dimW .
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Corollary 4.5. Let V be an infinite-dimensional vector space over any
division ring. Then there is no embedding from (Subfin V,+) into (SubV,∩).

Remark 4.6. The statement obtained by exchanging ∩ and + in Corol-
lary 4.5 does not hold as a rule. Indeed, let V be an infinite-dimensional
vector space, say with basis I, over a division ring F , and assume that
cardF ≤ card I. Now SubV is a meet-subsemilattice of (P(V ),∩), which
(using complementation) is isomorphic to (P(V ),∪), which (as cardV =
card I) is isomorphic to (P(I),∪), which embeds into (SubV,+) (to each
subset of I associate its span in V ); so (SubV,∩) embeds into (SubV,+).

5. Endomorphism monoids of vector spaces. Let V be an infinite-
dimensional vector space, with basis I, over a division ring F . Assume, in
addition, that cardF < 2card I . If EndV embeds into (EndV )op, then, as
Self I embeds into EndV and EndV is a submonoid of Self V , it follows from
Corollary 3.8 that 2card I ≤ cardV , a contradiction as cardV = cardF +
card I < 2card I (see also the proof of Theorem 6.1). In the present section
we shall get rid of the cardinality assumption cardF < 2card I . The special
algebraic properties of vector spaces used here will be further amplified from
Section 7 on, giving, for instance, related results for G-sets (Corollary 9.5)
and modules over noetherian rings (Corollary 10.7).

Theorem 5.1. Let V and W be infinite-dimensional vector spaces over
division rings K and F , respectively. If there exists a semigroup embedding
from Endfin V into (EndW )op, then dimW ≥ (cardK)dimV .

Taking W = V ∗ and sending every endomorphism to its transpose, we
see that the bound (cardK)dimV is optimal.

Denote our semigroup embedding by ε : Endfin V ↪→ (EndW )op. We start
as in the proof of Theorem 3.1.

Lemma 5.2. ker f ⊆ ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈
Endfin V .

Proof. There exists h ∈ Endfin V such that g = h ◦ f . Thus ε(g) =
ε(f) ◦ ε(h) and the conclusion follows.

Lemma 5.2 makes it possible to define a map µ : Subfin V → SubW by
the rule µ(ker f) = rng ε(f) for each f ∈ Endfin V .

Lemma 5.3. X ⊆ Y iff µ(Y ) ⊆ µ(X), for all X,Y ∈ Subfin V .

Proof. The direction from left to right follows from Lemma 5.2. Now
assume that µ(Y ) ⊆ µ(X). There are idempotent f, g ∈ Endfin V such that
X = ker f and Y = ker g. As rng ε(g) ⊆ rng ε(f) and ε(f) is idempotent,
ε(f) ◦ ε(g) = ε(g), that is, ε(g ◦ f) = ε(g), and thus, as ε is one-to-one,
g ◦ f = g, which yields ker f ⊆ ker g.
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Lemma 5.4. µ(X + Y ) = µ(X) ∩ µ(Y ) for all X,Y ∈ Subfin V .

Proof. Put Z = X ∩ Y and let X ′, Y ′, T be subspaces of V such that
X = Z ⊕ X ′, Y = Z ⊕ Y ′, and (X + Y ) ⊕ T = V . It follows that V =
Z ⊕X ′ ⊕ Y ′ ⊕ T . Let f and g denote the projections of V onto Y ′ ⊕ T and
X ′ ⊕ T respectively, with kernels X and Y respectively. Then g ◦ f is the
projection of V onto T with kernel X + Y .

Let x ∈ µ(X) ∩ µ(Y ). This means that x belongs to both rng ε(f)
and rng ε(g); hence, as both ε(f) and ε(g) are idempotent, it is fixed by
both these maps; hence it is fixed by their composite, ε(f) ◦ ε(g) = ε(g ◦ f);
hence it lies in the range of that composite, which, as ker(g ◦ f) = X + Y ,
is µ(X + Y ).

We have proved that µ(X) ∩ µ(Y ) is contained in µ(X + Y ). As the
converse follows from Lemma 5.2, the conclusion follows.

Now Theorem 5.1 follows immediately from Theorem 4.4.
Observe the contrast with the case where V is finite-dimensional and K

is commutative: in this case, V is isomorphic to its dual vector space V ∗, and
transposition defines an isomorphism from EndV onto EndV ∗.

Corollary 5.5. Let V be an infinite-dimensional vector space over any
division ring. Then there is no semigroup embedding from Endfin V into
(EndV )op.

Corollary 5.6. Let Ω be an infinite set and let V be a vector space
over a division ring. If SelffinΩ has a semigroup embedding into (EndV )op,
then dimV ≥ 2cardΩ.

Proof. Denote by F2 the two-element field. Apply Theorem 5.1 for V
being the F2-vector space (F2)(Ω) with basis Ω, and W = V . We find that
if there exists a semigroup embedding from Endfin((F2)(Ω)) into (EndV )op,
then dimV ≥ 2cardΩ. Now observe that as F2 is finite, Endfin((F2)(Ω)) is a
subsemigroup of Selffin((F2)(Ω)). As Ω and (F2)(Ω) have the same cardinality,
our result follows.

6. Endomorphism monoids of free algebras. Most popular varieties
of algebras have a finite similarity type (i.e., set of fundamental operations).
Our next result deals with the embeddability problem for such varieties (and
some more). For a variety V of algebras, we shall denote by FV(X) the free
algebra on X in V. We say that V is trivial if the universe of any member
of V is a singleton.

Theorem 6.1. Let V be a nontrivial variety of algebras with similarity
type Σ. Then for every infinite set Ω such that cardΣ < 2cardΩ there is no
semigroup embedding from End FV(Ω) into (End FV(Ω))op.
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Proof. Suppose that there is such an embedding. As V is nontrivial and
every endomap of Ω extends to a unique endomorphism of FV(Ω), Self Ω
embeds into End FV(Ω). As the latter is a submonoid of Self FV(Ω), we see
that Self Ω embeds into (Self FV(Ω))op, so that card FV(Ω) ≥ 2cardΩ by
Theorem 3.1. However, card FV(Ω) ≤ cardΩ + cardΣ + ℵ0 < 2cardΩ, a
contradiction.

Observe that Theorem 6.1 covers most examples of algebras provided in
[4, Section 2.1].

Our next result will show that the bound cardΣ < 2cardΩ in Theorem 6.1
is optimal. For a monoid M , an M -act is a nonempty set X endowed with a
mapM×X → X, (α, x) 7→ α·x, such that 1·x = x and α·(β ·x) = (αβ)·x for
all α, β ∈M and all x ∈ X. Hence the similarity type ofM -acts consists of a
collection, indexed by M , of unary operation symbols. Furthermore, the free
M -act on a set Ω, denoted by FM (Ω), can be identified withM×Ω, endowed
with the “inclusion” map Ω ↪→ M × Ω, p 7→ (1, p), and the multiplication
defined by α · (β, p) = (αβ, p).

For any set Ω, we shall consider the monoid RelΩ of all binary relations
on Ω, endowed with the composition operation defined by

(6.1) α ◦ β = {(x, y) ∈ Ω ×Ω | (∃z ∈ Ω)((x, z) ∈ β and (z, y) ∈ α)}

for all α, β ∈ RelΩ. The right hand side of (6.1) is often denoted by β ◦ α,
but this conflicts with the notation g ◦ f for composition of functions, where
every function is identified with its graph; as both composition operations
will be needed in the proof, we choose to identify them. This should not
cause much confusion as the monoid RelΩ is self-dual, that is, it has a dual
automorphism. The latter is the transposition map α 7→ α−1, where

α−1 = {(x, y) ∈ Ω ×Ω | (y, x) ∈ α} for any α ∈ RelΩ.

Theorem 6.2. Let Ω be an infinite set and put M = RelΩ. Then the
monoid EndFM (Ω) has a dual embedding.

Proof. The strategy of the proof will be the following:

(i) we prove that for every monoid M and every infinite set Ω, the
monoidMop embeds in End FM (Ω); thereforeM ↪→(End FM (Ω))op;

(ii) in case M = RelΩ, we prove that End FM (Ω) ↪→M ;
(iii) items (i) and (ii) imply that End FM (Ω) ↪→ (End FM (Ω))op.

We start with any monoidM . We put x ·y = (x(p) · y(p) | p ∈ Ω) for any
x, y ∈ MΩ, and we endow E(M) = (Self Ω) ×MΩ with the multiplication
given by

(α, x) · (β, y) = (αβ, y · (x ◦ β)) for all (α, x), (β, y) ∈ E(M).
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Each (α, x) ∈ E(M) defines an endomorphism f(α,x) of FM (Ω) = M ×Ω by
the rule

f(α,x)(t, p) = (t · x(p), α(p)) for each (t, p) ∈M ×Ω.
It is straightforward to verify that the assignment (α, x) 7→ f(α,x) defines an
isomorphism from (E(M), ·) onto (End FM (Ω), ◦). Furthermore,

(6.2) Mop has a monoid embedding into End FM (Ω),

namely the assignment x 7→ (idΩ, kx), where kx denotes the constant func-
tion on Ω with value x (as in Section 3).

Now we specialize to M = RelΩ. Let ∞ be an object outside Ω and put
Ω = Ω ∪ {∞}. With every α ∈ RelΩ we associate the binary relation α =
α ∪ {(∞,∞)}. It is obvious that the assignment α 7→ α defines a monoid
embedding from RelΩ into RelΩ.

For each (α, x) ∈ E(M), we define the binary relation η(α, x) on Ω ×Ω
by

η(α, x) = {((p0, q0), (p1, q1)) ∈ (Ω ×Ω)2 | p1 = α(p0) and (q1, q0) ∈ x(p0)}.
It is straightforward to verify that η defines a monoid embedding from E(M)
into Rel(Ω × Ω). (That η is one-to-one follows from our precaution of hav-
ing replaced Ω by Ω in the definition of η; indeed, as the binary relation
x(p0) always contains the pair (∞,∞), η(α, x) determines the pair (α, x).)
As Rel(Ω×Ω) is isomorphic to RelΩ (use any bijection from Ω×Ω onto Ω)
and by (6.2), it follows from the self-duality of RelΩ that the monoids RelΩ
and End FM (Ω) embed into each other. As M = RelΩ is self-dual, the con-
clusion follows.

As shown by Corollary 9.5 below, Theorem 6.2 cannot be extended to
G-sets (i.e., G-acts) for groups G. See also Problem 3.

7. C-, S-, and M-independent subsets in algebras. We first re-
call some general notation and terminology. For an algebra A (that is, a
nonempty set endowed with a collection of finitary operations), we denote
by SubA (resp., EndA) the collection of all subuniverses (resp., endomor-
phisms) of A. We also denote by 〈X〉 the subuniverse of A generated by a
subset X of A; in case X = {x1, . . . , xn}, we shall write 〈x1, . . . , xn〉 instead
of 〈{x1, . . . , xn}〉. We shall also put X ∨ Y = 〈X ∪ Y 〉 for all X,Y ∈ SubA.
A subset I of A is said to be

• C-independent if x /∈ 〈I \ {x}〉 for all x ∈ I;
• M-independent if every map from I to A can be extended to some

homomorphism from 〈I〉 to A.
• S-independent if every map from I to I can be extended to some ho-

momorphism from 〈I〉 to A.
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In these definitions, C stands for closure, as the definition of C-independence
relies upon a closure operator; M stands for Marczewski who introduced M-
independence in [14]; S stands for Świerczkowski who introduced this notion
in [22].

Say that a subset I of A is nondegenerate if I ∩ 〈∅〉 = ∅. The following
result, with straightforward proof, shows that aside from degenerate cases,
M-independence implies S-independence implies C-independence. (None of
the converses holds as a rule [10].)

Proposition 7.1. Let I be a subset in an algebra A. The following as-
sertions hold:

(i) I is S-independent degenerate iff I is a singleton contained in 〈∅〉.
(ii) I is M-independent degenerate iff I = A = 〈∅〉 is a singleton.
(iii) If I is M-independent , then I is S-independent.
(iv) If I is S-independent nondegenerate, then I is C-independent.

The following result generalizes the main part of Proposition 4.1. It re-
lates the existence of large either S-independent or C-independent subsets of
an algebra A and the existence of meet-embeddings of large [I]<ω into the
subuniverse lattice of A.

Proposition 7.2. The following statements hold for every algebra A
and every set I:

(i) If I is a nondegenerate S-independent subset of A, then ([I]<ω,∪,∩)
embeds into (SubA,∨,∩).

(ii) If ([I]<ω,∩) embeds into (SubA,∩), then A has a C-independent
subset X such that card I ≤ cardX.

Proof. (i) Let I be a nondegenerate S-independent subset of A. We shall
prove that ([I]<ω,∪,∩) embeds into (SubA,∨,∩). If I = ∅ then the result
is trivial. Suppose that I = {p}. As I is nondegenerate, p /∈ 〈∅〉, thus 〈∅〉 is
strictly contained in 〈p〉, and the result follows.

Suppose from now on that I has at least two elements. We define a map
ϕ : [I]<ω → SubA by setting

(7.1) ϕ(∅) =
⋂

(〈p〉 | p ∈ I),

while ϕ(X) = 〈X〉 for any nonempty X ∈ [I]<ω. It is obvious that ϕ is
a join-homomorphism from [I]<ω to SubA. Suppose that ϕ(X) ⊆ ϕ(Y )
for some X,Y ∈ [I]<ω, and let p ∈ X \ Y . Suppose first that Y = ∅.
As X ⊆ ϕ(X) ⊆ ϕ(Y ) = ϕ(∅) and by (7.1), we deduce that p ∈ 〈q〉 for
each q ∈ I, thus, as I is C-independent (cf. Proposition 7.1), I = {p},
a contradiction. Suppose now that Y is nonempty. Let q ∈ I. As I is S-
independent, there exists an endomorphism f of 〈I〉 such that f(p) = q and
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f�Y = idY . From X ⊆ ϕ(X) ⊆ ϕ(Y ) = 〈Y 〉 it follows that p ∈ 〈Y 〉, hence
q = f(p) = p, so I = {p}, a contradiction.

Therefore, ϕ is a join-embedding.
Now let X,Y ∈ [I]<ω. We shall prove that ϕ(X) ∩ ϕ(Y ) ⊆ ϕ(X ∩ Y ).

Let a ∈ ϕ(X) ∩ ϕ(Y ). Fix one-to-one enumerations

X \ Y = {x0, . . . , xk−1},
Y \X = {y0, . . . , yl−1},
X ∩ Y = {z0, . . . , zn−1}.

There are terms s and t such that

(7.2) a = s(x0, . . . , xk−1, z0, . . . , zn−1) = t(y0, . . . , yl−1, z0, . . . , zn−1).

Suppose first that X ∩ Y 6= ∅, so n > 0. As I is S-independent, there exists
an endomorphism f of 〈I〉 that fixes all yis and all zis such that f(xi) = z0

for each i < k. From the second equality in (7.2) it follows that f(a) = a,
hence, by the first equality in (7.2),

a = f(a) = s(z0, . . . , z0︸ ︷︷ ︸
k times

, z0, . . . , zn−1) ∈ ϕ(X ∩ Y ).

Now assume that X ∩ Y = ∅. By applying the case above to X ∪ {p} and
Y ∪ {p}, we find that a ∈ ϕ({p}) = 〈p〉 for each p ∈ I. Hence, by (7.1), a
belongs to ϕ(∅).

In any case, a ∈ ϕ(X ∩ Y ), and so ϕ is a meet-homomorphism.
(ii) Let ϕ : ([I]<ω,∩) ↪→ (SubA,∩) be an embedding, and pick ei ∈

ϕ({i}) \ ϕ(∅) for any i ∈ I. If i, i0, . . . , in−1 are distinct indices in I and
ei belongs to 〈ei0 , . . . , ein−1〉, then it belongs to ϕ({i})∩ϕ({i0, . . . , in−1}) =
ϕ(∅), a contradiction. Therefore, the family (ei | i ∈ I) is C-independent.

On the other hand, by mimicking the arguments used in the proofs of
earlier results, we obtain the following set of results.

Proposition 7.3. Let A be an algebra, let Ω be an infinite set , and
let V be an infinite-dimensional right vector space over a division ring K.
Put κ = (cardK)dimV and λ = 2cardΩ. Then the following statements hold:

(i) If Endfin V has a semigroup embedding into (EndA)op, then
(Subfin V,+) embeds into (SubA,∩).

(ii) If (Subfin V,+) embeds into (SubA,∩), then ([κ]<ω,∩) embeds into
(SubA,∩).

(iii) If SelffinΩ has a semigroup embedding into (EndA)op, then ([λ]<ω,∩)
embeds into (SubA,∩).

Proof. (i) Let ε : Endfin V ↪→ (EndA)op be a semigroup embedding. As
in the proof of Theorem 5.1, we can construct a map µ : Subfin V → SubA
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by the rule µ(ker f) = rng ε(f) for each f ∈ Endfin V . As in the proof of
Theorem 5.1, µ is an embedding from (Subfin V,+) into (SubA,∩).

(ii) It follows fromProposition 4.3 that ([κ]<ω,∩) embeds into (Subfin V,+),
thus into (SubA,∩).

(iii) As in the proof of Corollary 5.6, there exists a semigroup embedding
from Endfin((F2)(Ω)) into SelffinΩ, and hence into (EndA)op. The conclusion
then follows from (i) and (ii) above.

8. Embedding endomorphism semigroups of SC-ranked alge-
bras. In the present section we shall indicate how certain results of Sec-
tions 4 and 5 can be extended to more general objects, which we shall call
SC-ranked algebras.

We start by recalling the following result.

Lemma 8.1 ([18, p. 50, Exercise 6]). For an algebra A, the following
conditions are equivalent:

(1) for every subset X of A and all elements u, v of A, if u ∈ 〈X ∪ {v}〉
and u /∈ 〈X〉, then v ∈ 〈X ∪ {u}〉;

(2) for every subset X of A and every element u ∈ A, if X is C-
independent and u /∈ 〈X〉, then X ∪ {u} is C-independent ;

(3) for every subset X of A, if Y is a maximal C-independent subset of
X, then 〈X〉 = 〈Y 〉;

(4) for all subsets X,Y of A with Y ⊆ X, if Y is C-independent , then
there is a C-independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.

An algebra A is said to be a matroid algebra if it satisfies one (and hence
all) of the equivalent conditions of Lemma 8.1.

Definition 8.2. For T ∈ {M, S,C}, a T-basis of an algebra A is a T-
independent generating subset of A. We say that A is a T-algebra if it has a
T-basis.

Clearly every free algebra is an M-algebra, thus an S-algebra.

Definition 8.3. For T,Q ∈ {M, S,C}, a TQ-algebra is an algebra in
which the notions of T-independence and Q-independence coincide.

The MC-algebras appear in the literature as v∗∗-algebras (see [21, 27]).
Every absolutely free algebra is an MC-algebra (see [27] for this and many
other examples).

A matroid MC-algebra is said to be an independence algebra. These al-
gebras attracted the attention of experts in universal algebra (they were
originally called v∗-algebras; see [1, 14–17, 19–21, 23–25, 27] and [10] for
hundreds of references on the topic), logic (e.g. [8, 9, 28, 29]) and semigroup
theory (e.g. [6, 7, 11]). Familiar examples of independence algebras are sets,
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free G-sets (for a group G) and vector spaces (see [5, 27]). Observe that
independence algebras are MC-algebras and the latter are SC-algebras.

Definition 8.4. An algebra A is said to be SC-ranked if it has an S-
basis Ω such that cardX ≤ cardΩ for each C-independent subset X of A.
The cardinality of Ω is said to be the rank of A, and denoted by RankA.

By Lemma 8.1(4), every matroid S-algebra A is an SC-ranked algebra.
Observe that RankA is then the cardinality of any C-basis of A.

It should be observed that not every SC-algebra contains a C-independent
generating set (see the example following the proof of Theorem 4 in [12,
Section 32]).

Theorem 8.5. Let A and B be SC-ranked algebras with RankA infi-
nite. If there exists a semigroup embedding from EndA into (EndB)op, then
RankB ≥ 2RankA.

Proof. Let X be an S-basis of A. Then SelffinX embeds into SelfX,
which (as X is an S-basis) embeds into EndA, which embeds into (EndB)op.
Therefore, by Proposition 7.3(iii) combined with Proposition 7.2(ii), there
exists a C-independent set Y ⊆ B with cardY ≥ 2cardX . As B is SC-ranked,
cardY ≤ RankB and the result follows.

Corollary 8.6. For SC-ranked algebras A, B such that RankA ≥
RankB ≥ ℵ0, there is no semigroup embedding from EndA into (EndB)op.
In particular , the semigroup EndA has no dual embedding.

In particular, Corollary 8.6 applies to independence algebras.
The classification problem of all MC-algebras is open since the mid

sixties. As Grätzer says, “There are some results on [the classification of
MC-algebras, that is] v∗∗-algebras; but the problem is far from settled” [12,
p. 205]. Likewise, SC-ranked algebras are not classified; in fact, the require-
ment to be SC-ranked seems so weak that it seems unlikely that this could
ever be done. For example, Theorems 9.1 and 10.6 give us, respectively, a
characterization of SC-ranked free M -acts (for monoids M) and a sufficient
condition for a free module to be SC-ranked, in terms of an antichain con-
dition of the left divisibility relation on the monoid, and a noetherianity
condition on the ring, respectively. The corresponding classes of monoids, or
rings, are so large that they are certainly beyond the reach of any classifica-
tion.

Another point is that in order to obtain results such as Theorem 8.5,
the statement, for an algebra A, to be SC-ranked, is a compromise between
conciseness and generality. In particular, it can be further weakened (e.g.,
by using meet-embeddings of semilattices [I]<ω into subuniverse lattices),
and it seems likely that more algebras satisfy the possible weakenings of
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SC-rankedness, although it is unclear whether there is any “natural” such
example.

In Sections 9 and 10, we shall illustrate the notion of SC-rankedness on
M -acts and modules.

9. SC-ranked freeM-acts. In the present section, we shall characterize
SC-ranked free M -acts (cf. Section 6).

In any monoid M , we define preorderings Eleft and Eright by the rule

u Eleft v ⇔ (∃t)(v = tu), u Eright v ⇔ (∃t)(v = ut), for all u, v ∈M.

We say that M is left uniserial if Eleft is a total preordering, that is, for any
elements u, v ∈M , either u Eleft v or v Eleft u. This occurs, in particular, in
the somehow degenerate case where M is a group.

Theorem 9.1. Let M be a monoid and let Ω be a nonempty set. Then
FM (Ω) is SC-ranked iff either Ω is finite and M is left uniserial , or Ω is
infinite and every Eleft-antichain of M has at most cardΩ elements.

Proof. We shall repeatedly use the easily verified fact that the C-inde-
pendent subsets of FM (Ω) are exactly the subsets Y such that Y · p−1 =
{u ∈M | u · p ∈ Y } is a Eleft-antichain for every p ∈ Ω. Observe also that Ω
is an M-basis, thus an S-basis, of FM (Ω).

Suppose first that M has a Eleft-antichain U such that cardΩ < cardU .
Pick p ∈ Ω. Observe that U · p = {u · p | u ∈ U} is a C-independent subset
of FM (Ω) of cardinality greater than cardΩ. As Ω is an S-basis of FM (Ω),
it follows that FM (Ω) is not SC-ranked.

Now suppose that M is not left uniserial and Ω is finite. Let u, v ∈ M
be Eleft-incomparable. Then the subset {u · p | p ∈ Ω} ∪ {v · p | p ∈ Ω} is a
C-independent subset of FM (Ω) with cardinality 2 · cardΩ, so again FM (Ω)
is not SC-ranked.

If M is left uniserial, then the C-independent subsets of FM (Ω) are ex-
actly the subsets of the form {f(p) · p | p ∈ X} for a subset X of Ω and
a map f : X → M . Hence every C-independent subset has at most cardΩ
elements, and so FM (Ω) is SC-ranked.

Finally assume that Ω is infinite and that every Eleft-antichain of M has
cardinality at most cardΩ. For every C-independent subset Y of FM (Ω)
and every p ∈ Ω, the subset Y · p−1 is a Eleft-antichain of M , thus it has
cardinality below cardΩ; hence, as Ω is infinite, cardY ≤ cardΩ. Therefore,
FM (Ω) is SC-ranked.

As an immediate consequence of Corollary 8.6 and Theorem 9.1, we ob-
serve the following.
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Corollary 9.2. Let M be a monoid and let Ω be an infinite set. If
every Eleft-antichain of M has at most cardΩ elements, then the semigroup
End FM (Ω) has no dual embedding.

Observe that FM (Ω) is almost never a matroid algebra:

Proposition 9.3. Let M be a monoid and let Ω be a nonempty set.
Then FM (Ω) is a matroid algebra iff M is a group.

Proof. If M is a group, then it is straightforward to verify that FM (Ω)
satisfies condition (1) of Lemma 8.1, so it is a matroid algebra.

Conversely, suppose that FM (Ω) is a matroid algebra. Let u ∈ M and
pick p ∈ Ω. From u ·p ∈ 〈1 · p〉\〈∅〉 and the matroid condition it follows that
1 · p ∈ 〈u · p〉, that is, u is left invertible in M . As this holds for all u ∈ M ,
M is a group.

The following result gives us a wide range of MC-algebras that are usually
not SC-ranked. Denote by X∗ the free monoid on X, for any set X.

Proposition 9.4. Let Ω and X be sets, with Ω nonempty. Then FX∗(Ω)
is both an M-algebra and an MC-algebra.

Proof. As Ω is an M-basis of FX∗(Ω), the latter is an M-algebra.
Now let Y be a C-independent subset of FX∗(Ω). This means that Y ·p−1

is a Eleft-antichain of X∗ for each p ∈ Ω. Now let f : Y → FX∗(Ω) be any
mapping. Consider pairs (t0, y0) and (t1, y1) in X∗×Y such that t0y0 = t1y1.
This means that there are p ∈ Ω and u0, u1 ∈ X∗ such that y0 = u0 · p,
y1 = u1 ·p, and t0u0 = t1u1. AsX∗ is the free monoid onX, either t1 Eright t0
or t0 Eright t1; suppose, for example, that the first case holds, so t0 = t1w
for some w ∈ X∗. From t1wu0 = t0u0 = t1u1 it follows that wu0 = u1, thus
u0 Eleft u1, hence, as Y · p−1 is a Eleft-antichain, u0 = u1, and so y0 = y1

and t0 = t1. Therefore, there exists a unique map f : 〈Y 〉 → FX∗(Ω) such
that f(t · y) = t · f(y) for each (t, y) ∈ X∗ × Y . Clearly, f is a morphism,
and so FX∗(Ω) is an MC-algebra.

Observe that X is a Eleft-antichain of X∗. Hence, by Theorem 9.1, if
cardX > cardΩ, then FX∗(Ω) is not SC-ranked, although, by Proposi-
tion 9.4, it is both an M-algebra and an MC-algebra.

As a particular case of Corollary 9.2, we obtain

Corollary 9.5. Let Ω be an infinite set and let G be a group. Then
End FG(Ω) has no dual embedding.

Corollary 9.5 does not extend to M -acts (for a monoid M ; see Theo-
rem 6.2).

10. SC-ranked free modules and κ-noetherianity. In this section,
all modules will be left modules over (unital, associative) rings.
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Definition 10.1. Let κ be a regular cardinal. A module M is κ-noe-
therian if every increasing κ-sequence of submodules of M is eventually con-
stant.

In particular, M is noetherian iff it is ℵ0-noetherian. For a regular cardi-
nal κ, M is κ-noetherian iff there is no strictly increasing κ-sequence of sub-
modules of M . Hence, if κ < λ are regular cardinals and M is κ-noetherian,
then M is also λ-noetherian.

C-independent subsets and κ-noetherian modules are related as follows.

Lemma 10.2. Let κ be a regular cardinal. If a module M is κ-noetherian,
then every C-independent subset of M has cardinality smaller than κ.

Proof. Suppose that there exists a C-independent subset {xξ | ξ < κ}
ofM , where ξ 7→ xξ is one-to-one. The family (Xα | α < κ), where Xα is the
submodule generated by {xξ | ξ < α}, is a strictly increasing κ-sequence of
submodules of M , a contradiction.

Lemma 10.3. Let κ be a regular cardinal and let M be a module. Then
any finite sum of κ-noetherian submodules of M is κ-noetherian.

Proof. As the proof of the (classical) result that the sum of two noethe-
rian modules is noetherian (i.e., the case where κ = ℵ0), see, for example,
the Corollary in [13, Section VI.1].

Lemma 10.4. Let κ be a regular cardinal , let M be a module, and let
(Mi | i ∈ I) be a family of κ-noetherian submodules of M such that card I
< κ. Then the sum

∑
i∈IMi is κ-noetherian.

Proof. We put MJ =
∑

i∈JMi for each J ⊆ I. Let (Xξ | ξ < κ) be an
increasing κ-sequence of submodules of MI . For every J ∈ [I]<ω, it follows
from Lemma 10.3 that there exists αJ < κ such thatXξ∩MJ = XαJ∩MJ for
each ξ ≥ αJ . As κ is regular and greater than card([I]<ω), the supremum α =∨

(αJ | J ∈ [I]<ω) is smaller than κ. Observe that Xξ = Xα for each ξ ≥ α.

We shall use the standard convention to denote by RR the ring R viewed
as a left module over itself, for any ring R. For a regular cardinal κ, we say
that R is left κ-noetherian if the module RR is κ-noetherian.

For a moduleM and a setΩ, we denote byM (Ω) the module of all families
(xp | p ∈ Ω) ∈MΩ such that {p ∈ Ω | xp 6= 0} is finite. In particular, RR(Ω)

is the free left R-module on Ω.
We denote by κ+ the successor cardinal of a cardinal κ.

Proposition 10.5. Let Ω be an infinite set and let R be a left (cardΩ)+-
noetherian ring. Then the free module RR

(Ω) is SC-ranked.

This makes it possible to produce many SC-ranked modules.
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Theorem 10.6. Let κ be an infinite cardinal and let R be a left κ+-
noetherian ring. Then the free left module RR

(Ω) is SC-ranked for every
set Ω such that cardΩ ≥ κ.

Proof. Put λ = cardΩ. Of course, Ω is an S-basis of RR
(Ω). As, by

Lemma 10.4, RR(Ω) is a λ+-noetherian left module, it follows from Lemma
10.2 that every C-independent subset of RR(Ω) has cardinality at most λ.

By using Corollary 8.6, we obtain the following result.

Corollary 10.7. Let R be a left ℵ1-noetherian ring. Then the free mod-
ule RR(Ω) is SC-ranked for every infinite set Ω. Consequently , the semigroup
End(RR(Ω)) has no dual embedding.

In particular, Corollary 10.7 applies to the case where the ring R is left
noetherian.

11. Open problems. We observed in Remark 4.6 that whenever V is an
infinite-dimensional vector space over a division ring F such that cardF ≤
dimV , there exists an embedding from (SubV,∩) into (SubV,+). We do
not know whether the cardinality restriction is necessary.

Problem 1. Let V be an infinite-dimensional vector space over a divi-
sion ring F such that dimV <cardF . Does (SubV,∩) embed into (SubV,+)?

In Theorem 6.2, we show that the endomorphism monoid of a freeM -act,
for a monoid M , may embed into its dual. We do not know if this can also
happen for modules:

Problem 2. Are there a unital ring R and a free left module F of infinite
rank over R such that EndF embeds into its dual?

Problem 3. Does there exist a nontrivial variety V of algebras such that
End FV(ω) has a dual automorphism?

By Theorem 6.1, the similarity type of any variety V solving Problem 3
should have cardinality at least 2ℵ0 . For a partial positive result, we refer to
Theorem 6.2.

K. Urbanik introduces in [26] a subclass of the class of MC-algebras,
called there v∗-algebras. He also classifies these algebras in terms of modules
and transformation semigroups.

Not every v∗-algebra has a C-basis. For example, denote by Z(2) the
valuation ring of all rational numbers with odd denominator; then the field Q
of all rational numbers, viewed as a Z(2)-module, is a v∗-algebra (cf. [26,
Section 3]). However, for any nonzero rational numbers a and b, either a/b
or b/a belongs to Z(2), thus any C-independent subset of Q has at most one
element. Since Q is not a finitely generated Z(2)-module, it has no C-basis.



Embedding properties of endomorphism semigroups 145

Problem 4. Let A be a v∗-algebra with an infinite S-basis. Can EndA
be embedded into its dual?

By Corollary 8.6, Problem 4 would have a negative answer if we could
prove that every v∗-algebra with an infinite S-basis is also SC-ranked. How-
ever, we do not know this either.
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