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Abstract. For n ≥ 2, the family of rational maps Fλ(z) = zn + λ/zn contains a
countably infinite set of parameter values for which all critical orbits eventually land after
some number κ of iterations on the point at infinity. The Julia sets of such maps are
Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on
their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a
precise count of the number of topological conjugacy classes as a function of n and κ.

1. Introduction. Our goal in this paper is to consider the dynamics of
families of rational maps of the form

Fλ(z) = zn +
λ

zn

where λ 6= 0 is a complex parameter and n ≥ 2. These families have been
shown to have a number of interesting dynamical and topological properties,
including a variety of different ways that Sierpiński curves arise as the Julia
sets for these maps. In this paper we present a dynamic classification of
what we call the escape time Sierpiński curve Julia sets in these families.

To describe these sets, we first compute that each of these maps has
2n “free” simple critical points cλ given by c2nλ = λ, but only two critical
values given by vλ = ±2

√
λ. However, like the well-studied quadratic family

Qc(z) = z2 + c, each map has essentially only one free critical orbit since
the two critical values map to the same point if n is even, while their orbits
are arranged symmetrically with respect to z 7→ −z if n is odd.

As another similarity with the quadratic family, the point at infinity is
a superattracting fixed point for each λ when n > 1, and so it may be the
case that the critical orbits enter the immediate basin of this fixed point. We
denote the immediate basin of attraction of∞ by Bλ. Since 0 is a pole, there
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is a neighborhood of 0 that is mapped into Bλ. Now either this neighborhood
is itself contained in Bλ, or else 0 lies in a disjoint preimage of Bλ, in which
case we denote this preimage by Tλ. In the latter case, note that Fλ maps
Tλ in n-to-1 fashion onto Bλ while Fλ|Bλ is also n-to-1. Hence the only
preimages of Bλ are Bλ itself and Tλ. Thus, the only way a critical orbit can
eventually enter Bλ is by passing through Tλ. For this reason we call Tλ the
trap door . The following Theorem describes the Julia sets that result when
the critical orbits eventually enter Bλ (see [8]):

Theorem (Escaping critical orbits). For the family of functions

Fλ(z) = zn +
λ

zn

with n ≥ 2 and nonzero λ ∈ C, if the critical values lie in some preimage
of Tλ (that is, they escape), then the Julia set is a Sierpiński curve.

We remark that if the critical values lie in Bλ or Tλ, then the Julia sets
are very different topologically. If the critical values lie in Bλ, the Julia set
is a Cantor set; if they lie in Tλ, the Julia set is a Cantor set of simple closed
curves. See [8], [12].

A Sierpiński curve is a planar set that is characterized by the following
five properties: the set is compact, connected, locally connected, nowhere
dense, and all of the complementary domains are bounded by simple closed
curves that are pairwise disjoint. It is known from work of Whyburn [16] that
any two Sierpiński curves are homeomorphic. In fact, they are homeomorphic
to the well-known Sierpiński carpet fractal. Furthermore, it is known [10]
that any homeomorphism between a pair of Sierpiński curves extends to a
homeomorphism defined on the entire Riemann sphere. This implies that if
two Sierpiński curves are already embedded in the complex plane, then one
can speak unambiguously about a homeomorphism between the two being
orientation preserving/reversing. The first example of a Sierpiński curve
Julia set was given by Milnor and Tan Lei [13].

Let J(Fλ) denote the Julia set of Fλ. We call a Julia set for which the
critical orbit eventually escapes to ∞ an escape time Sierpiński curve and
denote by κ = κ(λ) the number of iterations of Fλ that it takes for the
critical orbit to enter the immediate basin of ∞. By the previous theorem,
we thus need κ ≥ 3 for J(Fλ) to be an escape time Sierpiński curve.

It is known [4] that for every n ≥ 2, the set of parameter values λ
for which the critical points escape is an open set with infinitely many
connected components. For example, in Figure 1, we display the parameter
plane for the case n = 2. Each of the bounded grey regions in this figure
contains parameters for which the critical orbits enter Bλ after three or more
iterations and hence the Julia set is a Sierpiński curve. We call these regions
in the parameter plane Sierpiński holes.
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Fig. 1. The parameter plane for the family z2 + λ/z2

In Figure 2 we display the parameter plane for the case n = 3. All of the
bounded grey regions in this case except the small “disk” in the center are
Sierpiński holes. In this picture, the central region is the McMullen domain

Fig. 2. The parameter plane for the family z3 + λ/z3
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(see [6], [12]) i.e., the region where the critical values lie in the trap door so
the Julia set is a Cantor set of simple closed curves. In both of these figures,
the unbounded grey region contains the parameters where the Julia set is a
Cantor set. We call this subset of the parameter plane the escape locus.

There are several facts known about the properties of the Sierpiński holes
in the parameter plane. The following Theorem was proved in [4] and [14].

Theorem (Structure of Sierpiński holes). There is a unique center of
each Sierpiński hole in the parameter plane, i.e., a parameter for which the
critical orbits all land on ∞ at the escape time iteration κ. Also, there are
exactly (n− 1)(2n)κ−3 Sierpiński holes with escape time κ.

As a consequence, the Julia sets corresponding to parameters drawn from
the same Sierpiński hole are always homeomorphic. So the question is: when
are the two maps corresponding to these parameters topologically conjugate
on their Julia sets? Our first result in this paper is:

Theorem (Escape time conjugacy). Let

Fλ(z) = zn +
λ

zn
and Fµ(z) = zn +

µ

zn

where λ and µ are parameters that lie in Sierpiński holes.

(1) If λ and µ lie in the same Sierpiński hole, then Fλ and Fµ are topo-
logically conjugate on their Julia sets.

(2) If λ and µ lie in Sierpiński holes with different escape times, then
Fλ and Fµ are not topologically conjugate on their Julia sets.

(3) Suppose λ and µ are centers of different Sierpiński holes that have
the same escape time. Let α be a primitive (n − 1)st root of unity.
Then Fλ and Fµ are topologically conjugate on their Julia sets if and
only if , for some integer j,
• µ = α2jλ, or
• µ = α2jλ.
Therefore, if λ and µ are parameters lying in different Sierpiński
holes whose escape times are the same, then Fλ and Fµ are topolog-
ically conjugate on their Julia sets if and only if the centers of these
Sierpiński holes have the above property.

This result allows us to give a precise count of the number of different
conjugacy classes of escape time Sierpiński curves. In Sections 3 and 4 we
shall prove:
Theorem (Number of conjugacy classes). The number of topological

conjugacy classes of escape time Sierpiński curve Julia sets with escape time
κ is given by

(1) (2n)κ−3 if n is odd ;
(2) (2n)κ−3/2 + 2κ−4 if n is even.
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For example, when n = 3, there are exactly 2 · 63 = 432 Sierpiński
holes in this family with escape time 6 and exactly 216 different conjugacy
classes of such maps. Similarly, there are 120,932,352 Sierpiński holes with
escape time 13 and 60,466,176 different conjugacy classes, so clearly there
is a great variety of different dynamical behaviors on these escape time
Sierpiński curve Julia sets.

Remarks. 1. The above count of conjugacy classes may be the first of
its kind. To the best of our knowledge, for quadratic polynomials for which
the critical point is eventually periodic with preperiod m and period k, the
function of m and k giving the number of topological conjugacy classes on
the Julia set is unknown.

2. If λ, µ are centers of Sierpiński holes, then their Julia sets are both
Sierpiński curves and so they are homeomorphic. It would be interesting
to have a classification of such Sierpiński curves up to a quasiconformal
homeomorphism. By a theorem of Bonk ([1, Theorem 7.5]), for any such
J(Fλ), there is a quasiconformal homeomorphism h : J(Fλ) → Yλ, where
Yλ is a Sierpiński curve in the sphere having area zero and whose com-
plementary domains are round disks. A theorem of Bonk, Kleiner, and
Merenkov ([2] and [1, Theorem 7.3]) implies that a quasiconformal map
g : Y → Y ′ between two such round Sierpiński curves is a Möbius trans-
formation. Therefore, the round Sierpiński curve Yλ and the quasiconformal
homeomorphism h are unique, up to Möbius transformations. As of this
writing, we do not have a concrete example of a pair of centers λ, µ corre-
sponding to nonconjugate maps for which we can prove either that J(Fλ)
and J(Fµ) are quasiconformally homeomorphic, or that they are not.

2. Conjugacy results. Our goal in this section is to prove the escape
time conjugacy theorem. Let

Fλ(z) = zn +
λ

zn

with the complex parameter λ 6= 0 and n ≥ 2. Recall that the point at ∞ is
a superattracting fixed point and we have the immediate basin of attraction
of ∞ denoted by Bλ. The origin is also a critical point and a pole, and,
provided that |λ| is small enough, we have the trap door Tλ which surrounds
the origin and is disjoint from Bλ. Each of Bλ and Tλ is an open disk that is
mapped n-to-1 onto Bλ. The other critical points are the free critical points;
they are given by c2nλ = λ. The critical values are given by vλ = ±

√
λ.

Let ω be a primitive 2nth root of unity. Then the Julia set of Fλ, denoted
by J(Fλ), is symmetric under the map z 7→ ωz. To see this, note that

Fλ(ωz) = ωnzn +
λ

ωnzn
= −Fλ(z).
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Thus, if n is even, F 2
λ (ωz) = F 2

λ (z), where F 2
λ = Fλ ◦ Fλ; if n is odd, the

orbits of Fλ(ωz) and Fλ(z) are symmetric under z 7→ −z. Note that this
also implies that the orbits of the second images of the free critical points
are either the same or symmetric under z 7→ −z and so all the free critical
orbits have the same fate.

We now turn to the conjugacy properties of Fλ. Suppose Fλ is conjugate
to Fµ on C via a Möbius transformation h. Since h must map the superat-
tracting fixed point at ∞ to itself and the pole at 0 to itself, it follows that
h is of the form h(z) = ωz for some ω ∈ C. Then, if ωFλ(z) = Fµ(ωz), we
must have

ωzn +
ωλ

zn
= ωnzn +

µ

ωnzn
.

It follows that ωn = ω so that ωn−1 = 1. Also, we must have ωλ = µ/ωn, so
that µ = ω2λ. Thus any map of the form Fα2jλ is Möbius conjugate to Fλ
when α is a primitive (n − 1)st root of unity and j is an integer. If n is
even, it follows that Fλ is Möbius conjugate to Fαjλ for each integer j. If
n is odd, then the parameters α2jλ all have conjugate dynamics. Similarly,
the parameters α2j+1λ have conjugate dynamics, but Fα2jλ is not Möbius
conjugate to Fα2k+1λ for any j and k. As an example, when n = 3, as shown
in Figure 2, there are two large Mandelbrot sets along the real axis. When
λ lies in the main cardioid of the Mandelbrot set on the right, Fλ has two
attracting fixed points. Three of the free critical points are attracted to one
of these fixed points, while the other three are attracted to the other fixed
point. In the main cardioid in the Mandelbrot set on the left, the map F−λ
now has an attracting two-cycle that attracts all of the critical points. Hence
Fλ and F−λ = Fαλ are not conjugate.

There is a second natural conjugacy in these families. We have

Fλ(z) = zn +
λ

zd
= zn +

λ

zd
= Fλ(z),

so Fλ is conjugate to Fλ via z 7→ z. Combining these two facts, we have:

Proposition. Fλ is conjugate to Fµ via

(1) a Möbius transformation if and only if µ = α2jλ where αn−1 = 1;
(2) an anti-Möbius transformation if and only if µ = α2jλ where

αn−1 = 1.

We now turn to the proof of the Escape Time Conjugacy Theorem.
Suppose λ belongs to a Sierpiński hole. By a result of McMullen (Corol-

lary 3.6 in [12]; see also [11]), Fλ is conjugate on its Julia set to a unique
critically finite map Fλ0 where Fλ and Fλ0 lie in the same Sierpiński hole.
This proves part (1).

To prove part (2), note that any topological conjugacy h : J(Fλ) →
J(Fµ) must send ∂Bλ to ∂Bµ, since Bλ and Bµ are the unique forward-



Julia sets 187

invariant Fatou components of Fλ and Fµ. Define the “escape time” of a
Fatou component boundary C to be the number of iterations required to
reach the boundary of the basin of infinity. The escape time of C and of h(C)
are the same, and the escape time κ(λ) of any map Fλ, defined in terms of
critical points, is the same as the escape time of the boundary of the Fatou
component containing any critical point cλ. The set of such boundary curves
C surrounding critical points is dynamically distinguished, since these are
precisely the boundary curves eventually mapping by degree two onto the
boundary of Tλ. Hence, the escape time is a topological conjugacy invariant,
proving (2).

We now prove (3). Suppose Fλ and Fµ are escape time Sierpiński maps
which are conjugate on their Julia sets via a homeomorphism h. By part (1),
we may, and do, assume that these maps are critically finite.

Suppose first that h is orientation preserving. We now modify h off the
Julia set to obtain a conjugacy on the whole sphere. As pointed out earlier,
the conjugacy h must send ∂Bλ to ∂Bµ. The map h extends to a homeo-
morphism defined on the entire sphere; see [10].

Let ∆ denote the open unit disk in C. By Böttcher’s Theorem, there
exist Riemann maps φλ, φµ, unique up to rotation by an (n − 1)st root of
unity, φλ : (∆, 0)→ (Bλ,∞) and φµ : (∆, 0)→ (Bµ,∞), conjugating Fλ|Bλ
and Fµ|Bµ to z 7→ zn. Then H = (φµ)−1 ◦ h ◦ φλ conjugates zn on ∂∆
to itself, so H(z) = τz where τn−1 = 1. Therefore H extends to a map
H : (∆, 0) → (∆, 0) such that φµ ◦ H ◦ φ−1

λ is an extension of h over Bλ
conjugating Fλ|Bλ to Fµ|Bµ. We now assume that h has been so extended.
Since Fλ and Fµ are topologically conjugate on their Julia sets, they are
conjugate on the grand orbit of the boundary of the basin of infinity. An
easy pullback argument (using induction and the fact that the escape times
are the same) shows that for every N ∈ N, there is a further continuous
extension hN of h to a conjugacy such that

hN : J(Fλ) ∪
N⋃
j=0

F−jλ (Bλ)→ J(Fµ) ∪
N⋃
j=0

F−jµ (Bµ)

and such that hN = hN−1 on the domain of hN−1. The sequence of maps hN ,
N ∈ N, converges since, by local connectivity of the Sierpiński curve, the
diameters of the complementary domains must tend to zero. Therefore Fλ
and Fµ are critically finite maps that are topologically conjugate on the
entire Riemann sphere. The uniqueness conclusion of Thurston’s Theorem
(see [9, Theorem 1]) implies that Fλ and Fµ are Möbius conjugate. Since h
must take ∞ to ∞ and 0 to 0, the conjugating map must be of the form
h(z) = βz for some β ∈ C. Then, as we showed in the above Proposition,
β must be an (n− 1)st root of unity and µ = β2jλ for some j ∈ Z.
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Now suppose that h is orientation reversing. We know that Fλ and Fλ are
conjugate by the orientation reversing map z 7→ z and that λ is the center
of a Sierpiński hole. By the above, the only maps that are conjugate to Fλ
via an orientation preserving map are those of the form Fα2jλ. Therefore
these are the only maps that can be conjugate to Fλ by an orientation
reversing conjugacy. This completes the proof of the Escape Time Conjugacy
Theorem.

3. Conjugacy classes. In this section we compute the number of dis-
tinct topological conjugacy classes of escape time Sierpiński curve maps. To
do this, it suffices to count the number of centers of the Sierpiński holes that
are conjugate either by Möbius transformations or by complex conjugation.

We first assume that n is odd. In this case it is known that there are
no Sierpiński holes that meet the real axis in the parameter plane. Indeed,
when λ is real, only the following situations occur:

1. vλ lies in Tλ, so λ is in the McMullen domain;
2. vλ lies in Bλ, so λ lies in the Cantor set locus;
3. the orbit of vλ is bounded and λ lies in one of the two Mandelbrot

sets flanking the origin and straddling the real axis.

See [5] for a proof, and see Figure 2 for a picture of these regions in the
parameter plane when n = 3.

As a consequence, if λ lies at the center of a Sierpiński hole, then λ
cannot be real. Therefore the other centers of Sierpiński holes with conjugate
dynamics are those given by parameters of the form α2jλ and α2jλ where
j ∈ Z. Since α is an (n−1)st root of unity and n is odd, it follows that there
are exactly n − 1 maps (including Fλ) with conjugate dynamics. Thus, by
the Structure Theorem, the number of distinct conjugacy classes of escape
time κ Sierpiński curve maps when n is odd is (2n)κ−3.

Now we consider the case where n is even. We shall show that the num-
ber of distinct conjugacy classes of escape time Sierpiński curve maps with
escape time κ is given by (2n)κ−3/2 + 2κ−4. The difference in this case is
that there now are centers of the Sierpiński holes lying along the negative
real axis in the parameter plane. There are no such holes along the positive
real axis since, when λ ∈ R+, we have Fλ(x) > 0 when x > 0. Since λ > 0,
there is a critical point on R+. Therefore the critical point on the real axis
can never map onto 0.

Lemma. If |λ| ≤ 2 and |z| ≥ 2, then z ∈ Bλ.

Proof. For all |z| ≥ 2 we have

|Fλ(z)| ≥ |z|n − |λ|
|z|n

> |z|n − 2
|z|n
≥ |z|n − 1

2n−1
> |z|
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since n ≥ 2. Thus |Fλ(z)| > |z| ≥ 2 and, inductively, |F k(z)| > |F k−1
λ (z)|

for all k. Hence F kλ (z) → ∞ for all z with |z| ≥ 2. Therefore all points in
the region |z| ≥ 2 lie in Bλ.

Proposition. If |λ| ≥ 2, then λ lies in the escape locus.

Proof. Suppose that |z| ≥ |2
√
λ|. Then we have

|Fλ(z)| ≥ |z|n − |λ|
|z|n
≥ |z|n − |λ|

2n|
√
λ|n
≥ |z|n − 1

2n2n/2−1
≥ |z|n − 1

4
> |z|

since |z| ≥ |2
√
λ| ≥ 2

√
2 and n ≥ 2. Hence all such z lie in Bλ and, in

particular, vλ ∈ Bλ. Thus, by the Escape Theorem, λ lies in the escape
locus.

Let us assume for the remainder of this section that λ 6∈ R+ and |λ| ≤ 2.
Recall that the critical points of Fλ are given by cλ where c2nλ = λ. Since
λ 6∈ R+, there is a unique critical point of Fλ that lies in the sector 0 <
Arg z < π/n. Call this critical point c0 = c0(λ). Let cj = cj(λ) be the
critical point given by exp(jπi/n)c0, so c2n−1 lies in the sector given by
−π/n < Arg z < 0.

Let νj = νj(λ) denote the ray given by tcj where t > 0; each νj is called
a critical point ray. Let ζ±λ (t) = ±2t

√
λ for t ≥ 1, so the ζ±λ (t) are straight

rays that extend from the two critical values ±2
√
λ to∞. We call these rays

the critical value rays. Since Fλ(tcλ) =
√
λ (tn + t−n) where t > 0, it follows

that Fλ maps νj(λ) in two-to-one fashion (except at cj) over one of the two
critical value rays.

Now consider the open region I0 = I0(λ) defined as follows. By the
lemma, the circle r = 4 lies in Bλ and, moreover, the critical values lie
inside this circle. Hence the preimage of this circle consists of a pair of
simple closed curves, γin and γout, where γin lies strictly inside γout. Each
of these curves is mapped n-to-1 onto r = 4. Since each of the critical value
rays meets r = 4 in exactly one point, it follows that each of the critical
point rays meets γin and γout in one point as well.

We let I0 be the open region that meets R+ and is bounded by the critical
point rays ν0 and ν2n−1 and by the portions of the curves γin and γout lying
between these rays. Also, let I1 = I1(λ) = −I0. Note that the straight line
boundaries of I1 lie in νn−1 and νn. See Figure 3.

Proposition. Suppose |λ| ≤ 2 and λ 6∈ R+. Then Fλ maps I0 and I1
one-to-one onto a region that contains the set I0 ∪ I1 in its interior.

Proof. Let vλ denote the critical value that lies in the upper half-plane.
Then, since 0 < Arg λ < 2π, we first have

Arg c0(λ) =
1

2n
Arg λ <

1
2

Arg λ = Arg vλ.
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vλ
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Fig. 3. I0 and I1 and their image under Fλ, which is the interior of r = 4 minus the
two segments connecting this circle to the critical values. Pictured is the case n = 2. The
region I2 will be defined in Section 4.

We also have
n− 1
n

Arg λ <
n− 1
n

2π,

from which it follows that

Arg vλ =
1
2

Arg λ <
1

2n
Arg λ+

n− 1
n

π = Arg cn−1(λ).

As a consequence, the critical value ray in the upper half-plane always lies in
the region between the critical point rays ν0 and νn−1. Similarly, the critical
value ray in the lower half-plane always lies between the critical point rays
νn and ν2n−1.

Finally, the curve γout is mapped in one-to-one fashion onto the semicir-
cular portion of r = 4 that connects the two critical value rays and lies to
the right of these rays, while γin is mapped similarly to the opposite side of
r = 4. Therefore, Fλ maps I0 univalently onto the region |z| < 4 minus the
portions of the critical value rays lying in this disk. Hence Fλ(I0) contains
both I0(λ) and I1(λ) in its interior as long as λ 6∈ R+ and |λ| ≤ 2. By
symmetry, the same is true for Fλ(I1).

As a consequence of this Proposition, there are unique points in I0 and I1
that are mapped to 0 by Fλ. Furthermore, there is an open set I00 ⊂ I0
having the property that Fλ maps I00 univalently onto I0 and another set
I01 ⊂ I0 that is mapped univalently onto I1. Similarly, there are subsets I10

and I11 of I1 that are mapped univalently onto I0 and I1 respectively. Hence
there is a unique point in each of these four sets that is mapped to 0 by F 2

λ .
Inductively, given a sequence S of j + 1 0’s and 1’s, S = s0s1 . . . sj , there
is a subset Is0...sj of Is0 that is mapped univalently onto Isj by F jλ . Hence
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there is a unique point in this set that is mapped to 0 by F j+1
λ . We call this

point xSλ . Note that the orbit of xSλ passes through the Isk in the exact order
determined by the sequence S before landing on 0.

Remark. Standard arguments from complex dynamics can be used to
show that there is an Fλ-invariant Cantor set contained inside I0∪I1. This is
the beginning of the construction of Cantor necklaces in both the dynamical
and the parameter planes (see [7]). However, we will not make use of this
concept in this paper.

Our goal now is to prove that, given any finite sequence S = s0 . . . sj ,
there is a unique parameter λS ∈ R− for which the critical orbits all land
on xSλS at the second iteration, and hence F j+3

λS
(cλS ) = 0. It turns out that

the proof of this when n = 2 is very different from the cases where n is
greater than 2. One reason for this is the absence of a McMullen domain in
the parameter plane when n = 2, but there are other reasons that we will
discuss in the next section. Therefore, for the remainder of this section, we
will further assume that n ≥ 4 (and even).

Proposition. Suppose n ≥ 4 is even. If |λ| ≤ 0.01, then λ lies in the
McMullen domain.

Proof. Recall that the McMullen domain is an open disk that surrounds
the origin in the parameter plane. Recall also that the critical values are
given by vλ = ±2

√
λ. If |λ| ≤ 0.01, then

|Fλ(±2
√
λ)| ≥ |λ|

2n|
√
λ|n
− 2n|

√
λ|n ≥ 1

2n|λ|(n−2)/2
− (0.2)n

≥ 1
2n(0.1)n−2

− 2n(0.1)n =
5n−2

4
− (0.2)n > 2.

By the Lemma, for each λ with |λ| ≤ 0.01, Fλ(vλ) lies in Bλ. We claim that
vλ lies in Tλ. To see this, let z lie on the circle of radius |λ|1/2n centered at
the origin. Then

|Fλ(z)| ≤ 2|λ|1/2 < |λ|1/2n

since |λ| ≤ 0.01. Hence the circle of radius |λ|1/2n is mapped strictly inside
itself and so this circle does not lie in Bλ. Moreover, vλ lies inside this circle.
It then follows that vλ must lie in Tλ. By the Escape Theorem, each λ with
0 < |λ| ≤ 0.01 therefore lies in the McMullen domain.

Still assuming that n ≥ 4 is even, let W denote the set of parameters
that satisfy

1. (n− 2)π/(n− 1) < Arg λ < nπ/(n− 1);
2. 0.01 < |λ| < 2
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Fig. 4. The region W in the parameter plane when n = 4

(see Figure 4). We shall henceforth restrict our attention to parameters
in W (note that W contains the portion of R− between −2 and −0.01). Let
G :W → C be given by

G(λ) = F 2
λ (cλ) = 2nλn/2 +

1
2nλ(n−2)/2

.

Note that, since n is even, all of the critical points of Fλ land on the same
point after two iterations of Fλ, so G(λ) is well defined and analytic on W.
Also, define

I =
⋃
λ∈W

(I0(λ) ∪ I1(λ)).

Proposition. If n ≥ 4 is even, the map G takes W univalently onto
an open set that completely contains the closure of I.

Proof. A computation shows that G has n− 1 critical points given by(
n− 2
4nn

)1/(n−1)

.

One of these critical points lies on the straight ray whose argument is given
by (n − 2)π/(n − 1). Call this critical point ξ. There is another critical
point, ξ, on the ray given by Arg λ = nπ/(n − 1). Note that these critical
points lie on the straight line boundaries of W. We call the ray given by
Arg λ = (n− 2)π/(n− 1) the upper ray bounding W, while the ray given by
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Arg λ = nπ/(n−1) is the lower ray bounding W. Then another computation
shows that the upper ray bounding W is mapped by G to the ray with
argument

− π

2(n− 1)
+
n− 1

2
π

while the lower ray bounding W is mapped to the ray with argument
π

2(n− 1)
+
n+ 1

2
π.

Indeed, G maps the upper ray two-to-one (except at ξ) onto the portion
of its image ray extending from G(ξ) to ∞, and G maps the lower ray in
similar fashion onto the portion of its image ray extending from G(ξ) to ∞.

Note that the arguments of these two image rays sum to nπ so these
image rays are the negatives of each other. Let X be the pair of sectors in
C given by

π

2
− π

2(n− 1)
≤ |Arg z| ≤ π

2
+

π

2(n− 1)
.

Then, by the above, the images under G of the upper and lower bounding
rays of W lie on the boundaries of X.

Now recall that I0(λ) is bounded by the critical point rays ν0(λ) and
ν2n−1(λ). Therefore I0 is contained in the region

−π
n
<

1
2n

Arg λ− π

2n
< Arg z <

1
2n

Arg λ <
π

n
.

But we have
π

2
− π

2(n− 1)
>
π

n
and −π

2
+

π

2(n− 1)
< −π

n
,

so it follows that the images of the upper and lower bounding rays of W are
a bounded distance away from

⋃
λ I0(λ). In a similar fashion, these images

are bounded away from
⋃
λ I1(λ) as well.

Finally, since G(λ) ≈ 2nλn/2 on the circle |λ| = 2, it follows easily that
G maps this portion of the boundary of W one-to-one to a nearly circular
curve that lies well outside the circle of radius 2 and connects the images of
the upper and lower bounding rays in the portion of the plane to the right
of these rays. Similarly, G maps the circular boundary given by |λ| = 0.01
onto a nearly circular curve that again lies outside the circle of radius 2 and
also connects the images of the upper and lower bounding rays, but this
time in the region to the left of these rays. As a consequence, G maps W
univalently over a set that strictly contains the closure of I.

Note that the above result implies that there is a unique parameter
λ0 ∈ W for which G(λ0) = 0, i.e., λ0 is the center of a Sierpiński hole with
escape time 3. In fact, solving G(λ) = 0 shows that there are n − 1 such
centers of Sierpiński holes in C, namely those given by λn−1 = −1/4n. Here,
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λ0 is the center of the Sierpiński hole that lies in R−, and all of these other
maps are conjugate to Fλ0 via a Möbius transformation of the form z 7→ αjz
where αn−1 = 1.

Proposition. For each itinerary S = s0 . . . sj , there is a unique param-
eter λS for which each of the critical points lands on xSλ after two iterations.
Moreover , λS ∈ R−.

Proof. Fix an itinerary S = s0 . . . sj . We have two maps defined on W.
The first is the map λ 7→ xSλ and the second is λ 7→ G(λ). Both of these
maps are analytic functions defined on W. Moreover, G is invertible and
G(W) contains the closure of I, so we can consider the map P : W → W
given by P (λ) = G−1(xSλ). Since xSλ lies in a compact subset of G(W), it
follows from the Schwarz Lemma that P has a unique fixed point λS in W.
This fixed point is a parameter for which G(λS) = xSλS , i.e., F k+3

λS
(cλS ) = 0

and the second iterate of cλS is a point that travels around I0 and I1 with
the required itinerary before landing on 0.

We claim that λS ∈ R−. To see this, note first that G(λ) is real when
λ ∈ R−. A straightforward computation then shows that G takes the interval
[−2,−0.01) in one-to-one fashion onto a line that contains the interval [−2, 2]
in its interior. Now when λ is real, xSλ is also real. Hence the map G−1(xSλ)
must have at least one fixed point in [−2, 0.01]. But, from the above, we
know that this must then be the unique fixed point of P .

We now compute the number of centers of Sierpiński holes that have
conjugate dynamics when n > 2 is even. For each itinerary s0 . . . sk−1, there
is a unique λ ∈ R− for which the critical orbits land on 0 at iteration k+ 2,
so λ is the center of a Sierpiński hole of escape time k + 3. These are the
only real parameters with this property.

Since n is even, there are a total of n− 1 conjugate parameters for each
of these maps, so we have exactly 2k(n−1) parameters that are in conjugacy
classes containing a real parameter. Thus the number of parameters that do
not have this property is (2n)k(n − 1) − 2k(n − 1). Each of these maps is
conjugate to exactly 2(n− 1) other such maps, including itself, so there are
(2n)k/2 − 2k−1 such “complex” conjugacy classes and 2k “real” conjugacy
classes. Altogether, this gives

(2n)k/2 + 2k−1

conjugacy classes of maps with escape time k + 3, or equivalently,

(2n)κ−3/2 + 2κ−4

conjugacy classes with escape time κ.
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4. The case n = 2. We finally turn to the case where n = 2, i.e., to the
map

Fλ(z) = z2 +
λ

z2
.

One difference between this case and the previous ones is that there is no
McMullen domain in the parameter plane for these maps. Indeed, we have
G(λ) = Fλ(vλ) = 4λ + 1/4 so Fλ(vλ) → 1/4 as λ → 0 (as opposed to
Fλ(vλ)→∞ when n ≥ 3). Therefore vλ never lies in Tλ in this case. In fact,
it is known that, in any neighborhood of the origin in the λ-plane, there
are infinitely many different Sierpiński holes (see [3]). See Figure 5 for a
magnification of the parameter plane near λ = 0.

Fig. 5. The region −0.03 ≤ x, y ≤ 0.03 in the parameter plane when n = 2. The origin is
at the tip of the “tail” of the distorted Mandelbrot set on the right.

In this case we may still define the regions I0(λ) and I1(λ), and we have
Fλ(Ij) ⊃ I0 ∪ I1 as before. Since there is no McMullen domain, the region
W in the parameter plane must now extend to 0, so we now let

W = {λ | 0 < |λ| < 2, 0 < Arg λ < 2π}.
The major problem that arises when attempting to count the number of

different conjugacy classes is that, since G(λ) = 4λ + 1/4, G(W) no longer
properly contains I0(λ). However, G(W) is the disk of radius 8 about 1/4
minus the line segment [0.25, 8.25] in R+, so we do have G(W) ⊃ I1(λ) for
each λ ∈ W. Hence, if S = s0 . . . sk−1 is an itinerary for which s0 = 1, then
the above proof shows that there is a unique λS as before.
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Let S = s0 . . . sk−1 where s0 = 0. Let I2 = I2(λ) be the region in the
dynamical plane bounded by the curves γin and γout and also lying in the
sector

1
2n

Arg λ = Arg c0 < Arg z < Arg c1 =
1

2n
Arg λ+

π

2
,

so I2(λ) is an open region lying between I0 and I1 in the upper half plane
(see Figure 3).

Note that Fλ takes I2 one-to-one onto the exact same region as Fλ maps
I0 and I1. Hence Fλ(I2) ⊃ I0 ∪ I1 for each λ. Thus there is a unique point
pSλ lying in I2 and having the property that Fλ(pSλ) = xSλ for each λ ∈ W.
Thus F k+1

λ (pSλ) = 0.
Instead of the map G, let us now consider the map H : W → C given

by H(λ) = 2
√
λ where Im

√
λ > 0, so H(λ) is the critical value of Fλ that

lies in the upper half-plane. As in the case of G, the map H is analytic and
univalent on W.

Proposition. H(W) contains I2(λ) for each λ ∈ W.

Proof. Since I2(λ) and H(W) are contained in the upper half-plane, we
need only show that H maps the outer boundary of W outside γout. To see
this, suppose that |λ| = 2 so that |vλ| = 2

√
2. If |z| = 2

√
2, then we have

|Fλ(z)| ≥ |z|2 − |λ|
|z|2

= 8− 1
4
> 4.

Consequently, Fλ(z) lies outside r = 4. Therefore z lies outside γout and so
the image of the outer boundary of W under H lies outside γout.

We claim that there is a unique parameter λS in W such that H(λS)
= pSλ . As before, we shall show that λ 7→ H−1(pSλ) has a unique fixed point
λS in W and that λS ∈ R−. The problem here is that, unlike the previous
case, H(W) does not properly contain the closure of

⋃
λ(I2(λ)), so it is not

immediately clear that this map has a fixed point in W.
To show that there is indeed a fixed point, we return to the map G.

Fix an itinerary s0 . . . sk−1 that begins with a certain number of 0’s, say
s0 = · · · = sj = 0 with 0 < j ≤ k − 1, but either sj+1 = 1 or else j = k − 1.
As in the previous case, we can produce an interval Is0...sk−1

whose points
move through the interval (0, 2] ⊂ R+ in the prescribed fashion before being
mapped at iteration k over all of [−2, 2]. But when λ ∈ [−2, 0), G(λ) only
covers [−7.75, 0.25). However, for λ close to 0, Fλ is close to x 7→ x2 except
in some small neighborhood of 0. Under x 7→ x2, any point close to x = 1/4
remains in (0, 1/4] for all iterations. Hence, given any ε > 0, we may choose
λ ∈ R− small enough so that every point in the interval (1/4 − ε, 1/4) has
itinerary that begins with s0 = · · · = sj+1 = 0 under each Fλ. That is,
each point in this interval remains in R+ for at least j + 1 iterations. By
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choosing λ even smaller, we may assume that G(λ) also lies in the interval
(1/4− ε, 1/4).

Now consider the point xSλ as defined earlier. This point has itinerary
that begins with only j + 1 0’s. The (j + 1)st entry in the itinerary may be
1 or the point may land on the origin at the corresponding iteration, but
sj+1 6= 0. Hence xSλ does not lie in the interval (1/4− ε, 1/4). Therefore xSλ
lies to the left of G(λ) when λ is close enough to 0. But when λ < −1/16, we
have G(λ) < 0, so xSλ lies to the right of G(λ). Hence, by continuity, there
must be at least one parameter for which G(λ) = xSλ . For this parameter, we
therefore have H(λ) = pSλ where Fλ(pSλ) = xSλ . This then produces a fixed
point for the map H−1(pSλ). The rest of the proof then follows immediately
from the Schwarz Lemma.
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