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α-Properness and Axiom AbyTetsuya Ishiu (Lawrene, KS)
Abstrat. We show that under ZFC, for every indeomposable ordinal α < ω1, thereexists a poset whih is β-proper for every β < α but not α-proper. It is also shown that aposet is foring equivalent to a poset satisfying Axiom A if and only if it is α-proper forevery α < ω1.0. Introdution. The notion of proper foring was introdued by She-lah in [12℄. He proved several very important results about this notion. Forexample, he showed that every proper poset preserves ℵ1, and propernessis preserved by ountable support iteration. These are important theoremsand indeed plenty of foring arguments rely on them.Shelah also introdued α-properness in the same book. It is de�ned forevery ountable ordinal α as a strengthening of properness; see De�nition 1.2.This notion is used to establish further preservation theorems. For instane,Shelah gave a su�ient ondition for a ountable iteration to add no newreals, whih requires a stronger property than properness and adding no newreals. Suh an iteration is an e�etive tool to show the onsisteny of variouspriniples with CH.When Γ is some property of posets, let MA(Γ ) denote Martin's Axiom forall posets with Γ . For example, MA() means the usual Martin's Axiom,and MA(proper) means the proper foring axiom, whih is often denoted by

PFA. In [13℄, Shelah onstruted a model of MA(ω-proper) + ¬PFA. Thekey tool in his argument was a lub guessing sequene on ω1, de�ned inDe�nition 3.1. It was onsidered by Nyikos in [11℄ and has several applia-tions to general topology (see e.g. [6℄). Its generalization to larger ardinalswas �rst onsidered by Shelah and has been very fruitfully used in manyarguments inluding pf theory. One of the most signi�ant properties oflub guessing sequenes on a regular ardinal larger than ω1 is their exis-tene under ZFC. However, a lub guessing sequene on ω1 does not exist2000 Mathematis Subjet Classi�ation: Primary 03E40; Seondary 03E35.Key words and phrases: α-properness, lub guessing sequene, Axiom A.[25℄



26 T. Ishiuunder PFA. Shelah showed that a lub guessing sequene on ω1 with a er-tain property is preserved by ω-proper foring, whih shows the di�erenebetween MA(ω-proper) and PFA.Extending this result, Shelah mentioned the following fats in [13, pp.838�839℄.Fat 0.1. Let α be an indeomposable ordinal.(i) If ~C = 〈Cγ : γ < ω1 and α divides γ〉 is a fully lub guessingsequene suh that eah Cγ has order type α and for every ξ < ω1,
{Cγ ∩ ξ : γ < ω1 and α divides γ} is ountable, then ~C is preservedby every α-proper poset.(ii) If β is an indeomposable ordinal larger than α and ~C = 〈Cγ : γ < ω1and β divides γ〉 is a fully lub guessing sequene with ot(Cγ) = β,then there exists an α-proper poset P whih destroys ~C, i.e. P foresthat ~C is not a fully lub guessing sequene.By the same argument, we an show that for every indeomposable

α < ω1, if there exists a fully lub guessing sequene ~C = 〈Cγ : γ ∈ ω1∩Lim〉suh that for a lub subset of γ, α divides ot(Cγ), then there exists a <α-proper poset whih destroys ~C and hene is not α-proper.However, it was not known whether the existene of suh a poset an beshown from ZFC for every indeomposable α < ω1. One of the proper posetswhih destroy lub guessing sequenes is Baumgartner's poset to shoot alub with �nite onditions. It is well known as an example of a proper posetwhih is not ω-proper. In Setion 2, we shall extend this fat by proving thefollowing theorem.Theorem A. If α is a ountable indeomposable ordinal , then thereexists a poset whih is <α-proper but not α-proper.In Setion 3, we shall show that our example of a <α-proper but not
α-proper poset destroys all lub guessing sequenes 〈Cγ : γ ∈ S〉 suh thatfor a lub set of γ in S, α divides ot(Cγ).Another topi we deal with in this paper is the lass of Axiom A posets.Axiom A was proposed by Baumgartner in [3℄. It is a generalization of theproperty whih is shared by various well known posets and used to show thepreservation theorem under ountable support iterations. All  posets andountably losed posets satisfy Axiom A, and a poset satisfying Axiom A isproper. Although this axiom works well one it is satis�ed, it is not knownwhat kind of foring an be expressed by a poset satisfying Axiom A. InSetion 4, we shall show the following theorem.Theorem B. For every poset P , the following are equivalent :(i) P is <ω1-proper.



α-Properness and Axiom A 27(ii) There exists a pseudo partially ordered set Q whih an be denselyembedded in P and satis�es Axiom A.Several other equivalent onditions will also be established.This paper was developed while the author partiipated in ThematiProgram on Set Theory and Analysis at the Fields Institute, supported bythe Institute. I am deeply grateful to the Institute and the NSF, whihpartially supported my partiipation in this program. I would also like tothank all partiipants of the program for interesting disussions. Finally, Iannot be thankful enough to my thesis advisor Dr. Foreman for his varioussupport.1. De�nitions. Basially we follow the standard notation in set theory.The following are a few non-standard symbols. Lim denotes the lass of alllimit ordinals and if X is a set of ordinals, lim(X) denotes the set of all limitpoints of X. ⊳ denotes a well-ordering on the underlying set.For every ordinal α, we de�ne the indeomposable order type of α, denotedby iot(α), to be the indeomposable ordinal β < α suh that α = γ + β forsome β < α. For example, iot(ω1 + ω) = ω. If α = β0 + β1 + · · · + βk−1is the Cantor normal form, i.e. eah βi is indeomposable and βi ≥ βi+1,then iot(α) = βk−1. Moreover, iot(α) is equal to the largest indeomposableordinal whih divides α. If X is a set of ordinals, the indeomposable ordertype of X, denoted by iot(X), is de�ned to be iot(ot(X)).Let us introdue the following onvenient term, whih appears in [1℄.Definition 1.1. Let α > 0 be an ordinal and 〈Mi : i < α〉 a sequeneof ountable elementary substrutures of 〈H(λ),∈, ⊳〉 for some large regularardinal λ. We say that 〈Mi : i < α〉 is an α-tower if(i) for every limit δ < α, Mδ =
⋃

i<δ Mi,(ii) for every i < α, 〈Mj : j ≤ i〉 ∈ Mi+1.If A is a struture expanding 〈H(λ),∈, ⊳〉, then we an easily onstrutan ω1-tower 〈Mi : i < ω1〉 suh that eah Mi is an elementary submodelof A. The following strengthening of properness is due to Shelah.Definition 1.2. Let α > 0 be a ountable ordinal. A poset P is α-properif for every su�iently large λ and every α-tower 〈Mi : i < α〉 of ountableelementary substrutures of 〈H(λ),∈, ⊳〉 suh that P ∈ M0, every p ∈ P∩M0has an extension q whih is Mi-generi for every i < α. We say that P is
<α-proper if P is β-proper for all β < α.By the same trik as for proper foring, for every �xed struture A ex-panding 〈H(λ),∈, ⊳〉, we may assume that the α-tower 〈Mi : i < α〉 satis�es
Mi ≺ A for every i < α. Clearly P is proper if and only if P is 1-proper.Moreover, if P is α-proper, then it is β-proper for all β < α. Shelah also



28 T. Ishiuremarked that if P is α-proper and δ is the least indeomposable ordinalabove α, then P is <δ-proper. For proofs and further information, see [13℄.Jeh began the study of games played on Boolean algebras in [8℄. Therehave been many interesting studies about various games on Booleans alge-bras and posets, suh as [4℄, [15℄, [9℄, [14℄ and [16℄. In partiular, Gray [5℄ andShelah [12℄ independently found game-theoreti proofs of several preserva-tion theorems. The following de�nitions are variations of the game-theoretiharaterization of properness used by them.Definition 1.3 ([13, pp. 593�595℄). Let P be a poset, p ∈ P and α anordinal. We de�ne three games Paα
l (p, P ) for l = 0, 1 or 2 as follows. Allgames are played by two players alternatingly. When l = 0, at stage β forevery β < α, player I hooses a P -name ξ̇β for an ordinal and then player IIhooses an ordinal ζβ. Player II wins if and only if there exists a q ≤ p suhthat q  �for every β < α, there exists an n < ω suh that ξ̇β = ζβ+n�.When l = 1, player I plays in the same way and player II hooses aountable set Yβ of ordinals at eah stage β. Player II wins if and only ifthere exists a q ≤ p suh that q  �for every β < α, ξ̇β ∈ Yβ�.When l = 2, at eah stage β, player I hooses a P -name Ẋβ for a ountableset of ordinals and player II hooses a ountable set Yβ of ordinals. PlayerII wins if and only if there exists a q ≤ p suh that q  �for every β < α,

Ẋβ ⊆ Yβ�.Clearly if there exists a winning strategy for player II in Paα
2 , there existsone for player II in Paα

1 .Shelah gave haraterizations of α-properness in terms of games.Theorem 1.4 (Shelah, [13, p. 594℄). Let P be a poset and α > 0. Then
P is α-proper if and only if player II wins Paωα

0 (p, P ) for every p ∈ P .We use a generalization of these haraterizations in Setion 4.2. α-Properness. Baumgartner de�ned a poset to shoot a lub subsetof ω1 with �nite onditions, whih appeared in [2℄. It is known that theposet is proper but not ω-proper. In this setion, we shall extend this resultto every indeomposable ordinal α < ω1.Let α be a ountable indeomposable ordinal and A a struture expanding
〈H(λ),∈, ⊳〉 for some regular ardinal λ above ℵ1. We shall de�ne a poset
P (ω1, A, α) by: p ∈ P (ω1, A, α) if and only if p is a funtion suh that(i) dom(p) is a subset of ω1 with ot(dom(p)) < α,(ii) for every γ ∈ dom(p), γ ≤ p(γ) < ω1,(iii) for any γ < δ both in dom(p), p(γ) < δ,(iv) for every γ ∈ dom(p), p↾(dom(p) ∩ γ) ∈ SkA(γ).
P (ω1, A, α) is ordered by extension.



α-Properness and Axiom A 29Fix A and α as above. We shall show that P (ω1, A, α) is not α-properand that CH implies that P (ω1, A, α) is <α-proper.We shall use the following notation. For eah p ∈ P (ω1, A, α), we saythat γ is a domain andidate of p if γ 6∈ dom(p) and there exists a q ≤ psuh that γ ∈ dom(q).Lemma 2.1. Let p ∈ P (ω1, A, α) and γ a domain andidate of p. Thenfor every δ, if γ ≤ δ < min(dom(p)\(γ + 1)), then there exists a q ≤ p suhthat γ ∈ dom(q) and q(γ) = δ.Proof. Let p′ ≤ p be suh that γ ∈ dom(p′). De�ne q by: dom(q) =
(dom(p′) ∩ (γ + 1)) ∪ dom(p) and

q(ξ) =





p′(ξ) if ξ < γ,

δ if ξ = γ,

p(ξ) if ξ > γ.If q ∈ P , then learly q ≤ p, γ ∈ dom(q), and q(γ) = δ. Thus it su�es toshow q ∈ P . The only ondition whih is not lear is (iv). To prove it, let
ξ ∈ dom(q). If ξ ≤ γ, then ξ ∈ dom(p′) and q↾(dom(q)∩ξ) = p′↾(dom(p′)∩ξ).Hene q↾(dom(q) ∩ ξ) ∈ SkA(ξ). If ξ > γ, then ξ ∈ dom(p), so p↾(dom(p)
∩ ξ) ∈ SkA(ξ). Moreover, by assumption, δ < min(dom(p) \ (γ + 1)) ≤ ξ.Thus, γ, δ ∈ SkA(ξ) and hene 〈γ, δ〉 ∈ SkA(ξ). It follows that
q↾(dom(q) ∩ ξ) = p′↾(dom(p′) ∩ γ) ∪ {〈γ, δ〉} ∪ p↾(dom(p) ∩ ξ) ∈ SkA(ξ).Proposition 2.2. If CH holds, then P (ω1, A, α) is <α-proper.Proof. Let P = P (ω1, A, α) and β < α. Sine we assume CH, there existsa bijetion f from ω1 into the set of all funtions from a ountable subset of

ω1 into ω1. Let f be the ⊳-least suh bijetion. Let 〈Mi : i < β〉 be a β-towerof elementary substrutures of 〈H(λ′),∈, ⊳〉 for some regular ardinal λ′ > 2λsuh that A, P ∈ M0. Set δi = Mi ∩ ω1 for every i < β.Let p ∈ P ∩M0 be arbitrary. De�ne q = p ∪ {〈δi, δi〉 : i < β and i is 0 ora suessor ordinal}. We shall show that q is an Mi-generi ondition for all
i < β.Claim 1. q ∈ P .Proof. Sine p ∈ M0 and |dom(p)| = ℵ0, we have dom(p) ⊆ δ0. Thus
ot(dom(q)) ≤ ot(dom(p)) + β. Sine α is indeomposable, ot(dom(q)) < α.(ii) is trivial. Sine ran(p) ⊆ δ0, (iii) follows. For (iv), let γ ∈ dom(p). If
γ < δ0, then q↾(dom(q) ∩ γ) = p↾(dom(p) ∩ γ) ∈ SkA(γ). Suppose γ = δ0.Sine p ∈ M0 and f is a bijetion, there exists a ξ < δ0 suh that f(ξ) = p.Thus we have q↾(dom(q) ∩ γ) = p ∈ SkA(δ0). If γ > δ0, then there exists an
i < β suh that γ = δi+1. Sine 〈Mj : j < β〉 is a β-tower, 〈Mj : j ≤ i〉 ∈
Mi+1. In partiular, Ai := {〈δj, δj〉 : j ≤ i and j is 0 or a suessor ordinal}



30 T. Ishiuis in Mi+1. Sine f is a bijetion, there exists a ξ < δi+1 suh that f(ξ) = Ai.Thus Ai ∈ SkA(δi+1). Therefore q↾(dom(q) ∩ γ) = p ∪ Ai ∈ SkA(δi+1).Claim 2. q is Mi-generi for all i < β.Proof. If i is a limit ordinal and q is Mj-generi for all j < i, then q is
Mi-generi by the ontinuity of the tower. Thus it su�es to show that q is
Mi-generi when i = 0 or i is a suessor ordinal less than β.Fix suh an i and a dense open set D lying in Mi. Let q′ ≤ q be ar-bitrary. We need to �nd an r ∈ D ∩ Mi whih is ompatible with q′. Let
q = q′↾(dom(q′) ∩ δi). By (iv) applied to q′, q ∈ SkA(δi). In partiular,
q ∈ Mi. Sine D is a dense open set lying in Mi, there exists an r ≤ q suhthat r ∈ D ∩ Mi. Let r = r ∪ q′. If r ∈ P , then r is a ommon extension of
q′ and r ∈ D ∩ Mi. Hene it su�es to show r ∈ P .We have ot(dom(r)) ≤ ot(dom(r)) + ot(dom(q′)) < α and hene r sat-is�es (i). (ii) is trivial. (iii) is also trivial exept for δ = δi. Sine r ∈ Miand |ran(r)| = ℵ0, we have ran(r) ⊆ Mi. Thus for every γ ∈ dom(r) ∩ δi,
r(γ) < δi. To see (iv), let γ ∈ dom(r). If γ < δi, the assertion follows di-retly from r ∈ P . Suppose γ ≥ δi. Then we have r ∈ SkA(δi) as before and
q′↾(dom(q′) ∩ γ) ∈ SkA(γ). Thus r↾(dom(r) ∩ γ) = r ∪ q′↾(dom(q′) ∩ γ) ∈
SkA(γ).This ompletes the proof of Proposition 2.2.Proposition 2.3. P (ω1, A, α) is not α-proper. Moreover , for every tower
〈Mi : i < α〉 of ountable elementary substrutures of A with P ∈ M0, thereis no q ≤ p whih is Mi-generi for every i < α.Proof. Let 〈Mi : i < α〉 be any α-tower with P ∈ M0. We shall show thatthere is no q ∈ P suh that q is Mi-proper for all i < α. Let δi = Mi ∩ ω1for eah i < α.Suppose that q is Mi-proper for all i < α. Sine ot(dom(q) ∪ ran(q)) =
2 · ot(dom(q)) < α, there exists an i < α suh that (dom(q) ∪ ran(q)) ∩
[δi, δi+2) = ∅. Let D = {r ∈ P : dom(r) * δi}. Then learly D is a denseopen subset lying in Mi+1. Sine q is assumed to be Mi+1-generi, D∩Mi+1is predense below q. We shall derive a ontradition.Claim 1. There exists a domain andidate γ ∈ [δi, δi+1) of q.Proof. Let r be an element of D ∩ Mi+1 whih is ompatible with q,and r a ommon extension of q and r. Sine r ∈ D ∩ Mi+1, there existsa γ ∈ dom(r) suh that γ ∈ [δi, δi+1). Thus γ ∈ dom(r). Therefore γ is adomain andidate of q.Let γ0 be the least domain andidate of q with γ0 ≥ δi. By Lemma2.1, there exists a p ≤ q suh that γ0 ∈ dom(p) and p(γ0) = δi+1. Let



α-Properness and Axiom A 31
r ∈ D ∩ Mi+1 be ompatible with p. Let r be a ommon extension of rand p. If γ0 ∈ dom(r), then r(γ0) = r(γ0) = δi+1 6∈ Mi+1, whih is aontradition. Thus γ0 6∈ dom(r). If γ0 < γ ∈ dom(r), then γ ∈ dom(r).Then γ0 < γ < δi+1 = r(γ0). This is a ontradition. Hene dom(r) ⊆ γ0.But sine r ∈ D, there exists a γ ∈ dom(r) with γ ≥ δi. Hene γ ∈ dom(r).Thus γ is a domain andidate of q suh that δi ≤ γ < γ0. This ontraditsthe minimality of γ0.Thus CH implies that there exists a poset whih is <α-proper but not
α-proper. In fat, we do not need CH to prove it. First, we shall prove thefollowing lemma.Lemma 2.4. Let α be a ountable ordinal. Let P be a poset and Q̇ a
P -name for a poset suh that P fores that for every α-tower 〈Mi : i < α〉 ofountable elementary substrutures of 〈H(κ),∈, ⊳〉 where κ is a su�ientlylarge regular ardinal , there is no q ∈ Q̇ whih is Mi-generi for every i < α.Then P ∗ Q̇ is not α-proper.Proof. Suppose that P ∗Q̇ is α-proper. Let κ be a su�iently large regularardinal and λ be a regular ardinal with λ > 22κ . Let 〈Mi : i < α〉 be an
α-tower of ountable elementary substrutures of 〈H(λ),∈, ⊳, κ〉 with P ∗ Q̇

∈ M0. By assumption, there exists a 〈p, q̇〉 ∈ P ∗ Q̇ whih is Mi-generi forevery i < α. Let G ⊆ P be generi with p ∈ G. Work in V [G]. Let q be theinterpretation of q̇. Let Ni = Mi[G] ∩ H(κ) for every i < α. Then for every
i < α, 〈Nj : j ≤ i〉 ∈ Mi+1[G] ∩ H(κ) = Ni+1. Therefore, 〈Ni : i < α〉 is an
α-tower. It is easy to see that eah Ni is a ountable elementary substrutureof 〈H(κ),∈, ⊳〉. Moreover, sine 〈p, q̇〉 is Mi-generi for every i < α, q is
Ni-generi for every i < α. This ontradits the assumption. Therefore,
P ∗ Q̇ is not α-proper.It is known that a ountable support iteration of α-proper posets is α-proper. Using these fats, we an prove Theorem A.Theorem A. If α is a ountable indeomposable ordinal , then there ex-ists a poset whih is <α-proper but not α-proper.Proof. Let P be the Levy ollapse whih ollapses 2ℵ0 to ℵ1. In V P , let
λ be a su�iently large regular ardinal and A = 〈H(λ),∈, ⊳〉. Let Q =
P (ω1, A, α). Then Q is <α-proper by Proposition 2.2. But by Proposition2.3, for every α-tower 〈Mi : i < α〉 of ountable elementary substrutures of
〈H(κ),∈, ⊳〉, there is no q ∈ Q whih is Mi-generi for every i < α. Let Q̇be a P -name for Q.Sine P is <ω1-proper and P fores that Q̇ is <α-proper, P ∗ Q̇ is <α-proper. However, by Lemma 2.4, P ∗ Q̇ is not α-proper.



32 T. Ishiu3. Destrution of lub guessing sequenes. In this setion, we shallshow the relationship between α-properness and the preservation of lubguessing sequenes. First of all we shall de�ne a tail lub guessing sequenewhih was investigated in various papers, suh as [11℄ and [13, ChapterXVIII℄.Definition 3.1. Let ~C = 〈Cγ : γ ∈ S〉 be a sequene on a stationarysubset S of ω1 suh that eah Cγ is an unbounded subset of γ. We say that
~C is a tail (resp. fully) lub guessing sequene on S if and only if for everylub subset D of ω1, there exists a γ ∈ S suh that Cγ \ ζ ⊆ D for some
ζ < γ (resp. Cγ ⊆ D).We shall also de�ne semiproperness and α-semiproperness beause themethod in this setion works for these weaker properties. They were de�nedin [12℄ to handle posets whih preserve ℵ1 but add a ountable set of ordinalswhih is not overed by a ountable set in the ground model.Definition 3.2. Let P be a poset. For a set M and p ∈ P , we saythat p is M -semigeneri if for every P -name for a ountable ordinal ξ̇ ∈ M ,
p  ξ̇ ∈ M .A poset P is semiproper if for every large enough regular ardinal λand every ountable elementary substruture M ≺ 〈H(λ),∈, ⊳〉, whenever
P ∈ M and p ∈ M ∩ P , there exists a q ≤ p suh that q is M -semigeneri.Let α be a ountable ordinal. P is said to be α-semiproper if for everylarge enough regular ardinal λ and every α-tower 〈Mi : i < α〉 of ountableelementary substrutures of 〈H(λ),∈, ⊳〉, whenever P ∈ M0 and p ∈ M0∩P ,there exists a q ≤ p suh that q is Mi-semigeneri for all i < α.Trivially every (α-)proper poset is (α-)semiproper. Shelah [12℄ showedthat it is onsistent that Namba foring is a semiproper poset whih is notproper.The following lemma is standard.Lemma 3.3. Let P be a poset and M a ountable elementary substrutureof 〈H(λ),∈, ⊳〉 with P ∈ M for some su�iently large regular ardinal λ.Suppose that p ∈ P is M -semigeneri and Ḋ ∈ M is a P -name for a lub.Then p  M ∩ ω1 ∈ Ḋ.Proof. Let δ = M ∩ ω1. It su�es to show that p  �Ḋ ∩ δ is unboundedin δ�. Let ζ < δ. Sine Ḋ is a P -name for a lub, we have  Ḋ \ ζ 6= ∅. Let α̇be a P -name suh that  α̇ ∈ Ḋ \ ζ. Sine M is an elementary substrutureof 〈H(λ),∈, ⊳〉, we an assume α̇ ∈ M . Sine p is M -semigeneri, we have
p  α̇ ∈ M ∩ ω1 = δ. Hene, p  �ζ ≤ α̇ < δ and α̇ ∈ Ḋ�. Thus, p  �Ḋ ∩ δis unbounded in δ�.



α-Properness and Axiom A 33The following are easy fats about the preservation of lub guessing se-quenes. For the proof, see [7℄.Fat 3.4. (i) Every <ω1-semiproper poset preserves all fully lub guess-ing sequenes.(ii) Every ω-semiproper poset preserves every fully lub guessing sequene
〈Cγ : γ ∈ ω1 ∩ Lim〉 with ot(Cγ) = ω.(iii) Baumgartner's poset to shoot a lub with �nite onditions destroysall tail lub guessing sequenes in the ground model.The following result extending Fat 3.4(ii) was mentioned by Shelahin [13℄. We give the proof for the reader's onveniene.Proposition 3.5 (Shelah). Let α be a ountable indeomposable ordinaland P an α-semiproper poset. Let 〈Cγ : γ ∈ S〉 be a fully lub guessingsequene on a stationary subset S of ω1 suh that Cγ is losed and ot(Cγ) ≤ αfor every γ ∈ S. Suppose also that for every ξ < ω1, |{Cγ ∩ ξ : γ ∈ S}| = ℵ0.Then P preserves 〈Cγ : γ ∈ S〉.Proof. Let p ∈ P and Ḋ be a name for a lub subset of ω1. Let Aξ =

{Cγ ∩ ξ : γ ∈ S} and A = 〈H(λ),∈, ⊳, P, p, Ḋ, 〈Aξ : ξ ∈ S〉〉. Then if γ ∈ Sand ξ ∈ Cγ \ lim(Cγ), then Cγ ∩ ξ ∈ SkA(ξ).We an onstrut an ω1-tower 〈Mγ : γ < ω1〉 of ountable elementarysubstrutures of A. Let D̃ = {Mγ ∩ ω1 : γ < ω1}. Clearly D̃ is a lub subsetof ω1. Thus there exists a δ < ω1 suh that Cδ ⊆ D̃. Let {ξi : i < η} be theinreasing enumeration of Cδ. Then for eah i < η, there exists a δi < ω1suh that Mδi
∩ ω1 = ξi. Note that η = ot(Cδ) ≤ α.We laim that 〈Mδi

: i < η〉 is an η-tower of ountable elementary sub-strutures of A. Let i < η. By de�nition, 〈Mγ : γ ≤ δi〉 ∈ Mδi+1. By theassumption on Cδ, Cδ ∩ ξi+1 ∈ SkA(ξi+1). In partiular, {ξj : j ≤ i} =
Cδ ∩ ξi+1 ∈ Mδi+1

. But Mδj
is de�nable from ξj and 〈Mγ : γ ≤ δi〉. Thus

〈Mδj
: j ≤ i〉 ∈ Mδi+1

.Sine P is α-semiproper, there exists a q ≤ p suh that q is Mδi
-semi-generi for all i < η. In partiular, q  ξi ∈ Ḋ for all i < η. By the de�nitionof ξi, it follows that q  Cδ ⊆ Ḋ.It was shown in [7℄ that if 〈Cγ : γ ∈ S〉 is a tail lub guessing sequene,then there exists a ζ < ω1 suh that 〈Cγ \ ζ : γ ∈ S \ (ζ + 1)〉 is a fully lubguessing sequene. Thus the previous proposition an be easily modi�ed toover tail lub guessing sequenes.Notie that the oherene ondition of the previous proposition is notalways satis�ed. For example, although a ♦-sequene is trivially a fully lubguessing sequene, it does not satisfy the ondition. In [17℄, Zapletal on-struted a poset whih adds a fully lub guessing sequene and satis�es thatondition.



34 T. IshiuWe do not know if the oherene ondition is neessary. But the ordertype restrition is: this is witnessed by the poset Shelah introdued in [13℄as well as the poset de�ned in Setion 2.Proposition 3.6. Let α < ω1 be an indeomposable ordinal. Supposethat ~C = 〈Cγ : γ ∈ S〉 is a tail lub guessing sequene on ω1 suh that forevery γ ∈ S, iot(Cγ) ≥ α. Then P (ω1, A, α) fores that ~C is not a tail lubguessing sequene.Proof. Let P = P (ω1, A, α) and let G ⊆ P be generi. Let f =
⋃

G andde�ne D to be the set of all limit points of dom(f) less than ω1.We laim that D is not guessed by ~C. Suppose otherwise. Let ḟ and Ḋ be
P -names for f and D respetively. Then there exist a p ∈ G, a γ ∈ S and a
ζ < γ suh that p  Cγ\ζ ⊆ Ḋ. Let {ξi : i < η} be an inreasing enumerationof Cγ \ ζ. Sine iot(Cγ) ≥ α, we have η ≥ α. Sine ot(dom(p)) < α, thereexists an i < η suh that [ξi, ξi+2)∩dom(p) = ∅. Sine p  ξi+1 ∈ Ḋ, i.e. ξi+1is a limit point of dom(ḟ), there exists a ν ∈ [ξi, ξi+1) suh that ν is a domainandidate of p. By Lemma 2.1, we an get q ≤ p suh that q(ν) = ξi+1. Butthen q  �ξi+1 is not a limit point of dom(ḟ)�. This is a ontradition.4. The foring-theoreti equivalene of <ω1-properness andAxiom A. In this setion, we shall show Theorem B, whih asserts thata foring notion is desribable by a pseudo partially ordered set satisfyingAxiom A if and only if it is <ω1-proper. It determines the strength of AxiomA in terms of foring. It is well known that we may adopt a pseudo partiallyordered set as a foring notion. We remark that this onvention is essentialin our proof. In terms of foring, a pseudo partially ordered set an be iden-ti�ed as a poset by taking equivalene lasses. But when we build a foringnotion satisfying Axiom A, we may treat onditions in the same equivalenelass di�erently. It is not known if we an prove this result without using apseudo partial ordering.First of all, let us de�ne Axiom A and uniform Axiom A, whih is astronger notion.Definition 4.1. A pseudo partially ordered set P satis�es Axiom A ifthere exists a sequene 〈≤n: n < ω〉 of pseudo partial orderings on P suhthat (i) p ≤0 q implies p ≤ q,(ii) p ≤n+1 q implies p ≤n q for every n < ω,(iii) if 〈pn : n < ω〉 is a sequene suh that pn+1 ≤n pn for all n < ω,then there exists a q ∈ P suh that q ≤n pn for all n < ω,(iv) for every p ∈ P and n < ω, if α̇ is a P -name for an ordinal, thenthere exist a q ≤n p and a ountable set X of ordinals suh that

q  α̇ ∈ X.



α-Properness and Axiom A 35If there exists a sequene 〈≤n: n < ω〉 whih is onstant and witnessesAxiom A, then we say that P satis�es uniform Axiom A. We usually denotethe onstant value by ≤∞.It is easy to see that  posets and ountably losed posets satisfy uni-form Axiom A. It is well known that if P satis�es Axiom A, then P is
<ω1-proper, whih an be easily shown by indution.We need the following natural extension of the games whih haraterizeproperness properties.Definition 4.2. Let P be a (pseudo) partially ordered set and p ∈ P .We shall de�ne a game Pa<ω1

l (P, p) for eah l = 0, 1 or 2. In eah game,players play in the same way as in Paα
l (P, p) of length ω1. Player II winsif and only if at every limit stage α < ω1, the sequene satis�es player II'swinning ondition in Paα

l (P, p).In order to prove Theorem B, we shall show the following stronger theo-rem.Theorem 4.3. For every poset P , the following are equivalent :(i) P is <ω1-proper.(ii) Player II has a winning strategy in Pa<ω1

0
(P, p) for every p ∈ P .(iii) Player II has a winning strategy in Pa<ω1

2
(P, p) for every p ∈ P .(iv) Player II has a winning strategy in Pa<ω1

1
(P, p) for every p ∈ P .(v) There exists a pseudo partially ordered set Q whih an be denselyembedded in P and satis�es uniform Axiom A.(vi) There exists a pseudo partially ordered set Q whih an be denselyembedded in P and satis�es Axiom A.Proof. Let P be a poset and �x a large regular ardinal λ. De�ne A =

〈H(λ),∈, ⊳〉.First we shall show (i)⇒(ii). Let n 7→ (kn, ln) be a bijetion from ωonto ω × ω with kn ≤ n. Suppose that P is <ω1-proper. Let p ∈ P .We shall desribe a winning strategy for player II. We also de�ne an in-reasing ontinuous sequene 〈Mβ : β < ω1〉 of ountable elementary sub-strutures of H(λ) suh that 〈Mγ : γ ≤ β〉 ∈ Mβ+1. Let M0 = SkA({p}). Atstage β, suppose that player I plays α̇β. Let Mβ+1 = SkA({p, 〈Mγ : γ ≤ β〉,
〈α̇γ : γ ≤β〉}). Then learly 〈Mγ : γ ≤ β〉 ∈ Mβ+1 and Mβ+1 is ountable.Let {ξβ+1

i : i < ω} enumerate Mβ+1∩ON and let player II play ζβ = ξδ+kn+1

lnwhere a limit ordinal δ and n < ω are suh that β = δ + n.If β is a non-zero limit ordinal, let Mβ =
⋃

γ<β Mγ . We shall show thatplayer II does not lose at this point. Sine P is <ω1-proper, there exists a
q ≤ p whih is Mγ-generi for all γ ≤ β. Let γ < β. Write γ = δ+k where δ isa limit ordinal and k < ω. Sine q is Mγ+1-generi and α̇γ ∈ Mγ+1 as a name,
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q  α̇γ ∈ Mγ+1. But Mγ+1 ∩ ON = {ξγ+1

l : l < ω} = {ξδ+kn+1

ln
: n < ω and

kn = k} ⊆ {ζi : γ ≤ i < γ + ω}. Therefore q  α̇γ = ζγ+n for some n < ω.If player II follows this strategy, he wins the game, beause he does not loseat any stage. Thus this is a winning strategy.For (ii)⇒(iii), suppose that σ is a winning strategy for player II inPa<ω1

0
(P, p), i.e. σ is a funtion from the set of all sequenes of P -namesfor ordinals of ountable length into the set of ordinals suh that when

〈α̇γ : γ < ω1〉 is a sequene of moves of player I and player II plays
σ(〈α̇i : i ≤ γ〉) at eah stage γ, then player II wins. We shall desribea winning strategy for player II in Pa<ω1

2
(P, p). At stage β, suppose thatplayer I hooses Ẋβ. Then there exists a ountable set {η̇β

n : n < ω} of
P -names for ordinals suh that P Ẋβ = {η̇β

n : n < ω}. De�ne ξ̇ωβ+n = η̇
β
nfor all n < ω. Let Yβ = {σ(〈ξ̇i : i ≤ ωβ + n〉) : n < ω}.We need to show that it is a winning strategy. Let δ < ω1 be a limit ordi-nal. Sine σ is a winning strategy, there exists a q ≤ p suh that q  �for all

β < δ, there exists an n < ω suh that ξ̇β = σ(〈ξ̇i : i ≤ β+n〉)�. But then q �Ẋβ = {η̇β
n : n < ω} = {ξ̇ωβ+n : n < ω} ⊆ {σ(〈ξ̇i : i ≤ ωβ + m〉) : m < ω}

= Yβ�.(iii)⇒(iv) is trivial.(iv)⇒(v) is proved in the author's master thesis. We present it for thereader's onveniene. Suppose that player II has a winning strategy σp inPa<ω1

1
(P, p) for every p ∈ P . Let B(P ) be the Boolean ompletion of P , i.e.

B(P ) is a omplete Boolean algebra whih has a dense subset D isomorphito a dense subset of P . Let Q be de�ned by: q ∈ Q if and only if q is of theform 〈p, 〈α̇i : i < η〉〉 where p ∈ P , η < ω1 and α̇i is a P -name for an ordinalfor every i < η. De�ne τ : Q → B(P ) by τ(〈p, 〈α̇i : i < η〉〉) =
∧

i<η[[α̇i ∈
σ(p, 〈α̇j : j ≤ i〉)]]. Here we identify eah α̇i as a B(P )-name in an obviousway and [[ϕ]] denotes the truth value of ϕ. Note that sine σ is a winningstrategy, τ(q) > 0 for every q ∈ Q. De�ne q ≤ q′ if and only if τ(q) ≤ τ(q′).Then τ(〈p, 〈α̇i : i < η〉〉) ≤ p for every 〈p, 〈α̇i : i < η〉〉 ∈ Q. In partiular, τ isa dense embedding. For every q = 〈p, 〈α̇i : i < η〉〉 and q′ = 〈p′, 〈α̇′

i : i < η′〉〉,we de�ne q ≤∞ q′ if and only if p = p′, η ≥ η′ and α̇i = α̇′

i for all i < η′. Then
(Q,≤∞) is learly ountably losed. Suppose that A is a maximal antihain of
Q and q = 〈p, 〈α̇i : i < η〉〉 ∈ Q. We need to show that there exist a q′ ≤∞ qsuh that |{a ∈ A : a and q′ are ompatible}| ≤ ℵ0. Let A = {aγ : γ < |A|}be an enumeration. Sine τ is a dense embedding, {τ(aγ) : γ < |A|} is amaximal antihain. De�ne a P -name α̇η so that τ(aγ)  α̇η = γ for every
γ < |A|. Let q′ = 〈p, 〈α̇i : i ≤ η〉〉. Then τ(q′)  α̇η ∈ σ(〈p, 〈α̇j : j ≤ η〉〉).Let Y = {aγ : γ ∈ σ(〈p, 〈α̇j : j ≤ η〉〉)}. If q′′ is a ommon extension of q′and aγ , then q′′  γ = α̇η ∈ σ(〈p, 〈α̇j : j ≤ η〉〉). Thus aγ ∈ Y . This impliesthat |{aγ : aγ and q′ are ompatible}| ≤ |Y | = ℵ0.



α-Properness and Axiom A 37(v)⇒(vi) is again trivial. (vi)⇒(i) has already been remarked.In [10℄, Miyamoto proposed a generalization of Axiom A, named Ax-iom C. Sine he showed that Axiom A implies Axiom C and Axiom C implies
<ω1-properness in the same paper, the previous theorem shows that everypseudo partially ordered set satisfying Axiom C is equivalent to a pseudopartially ordered set satisfying Axiom A.

Referenes[1℄ U. Abraham, Proper foring , in: Handbook of Set Theory, to appear.[2℄ U. Abraham and S. Shelah, Foring losed unbounded sets, J. Symboli Logi 48(1983), 643�657.[3℄ J. E. Baumgartner, Iterated foring , in: Surveys in Set Theory, London Math. So.Leture Note Ser. 87, Cambridge Univ. Press, Cambridge, 1983, 1�59.[4℄ M. Foreman, Games played on Boolean algebras, J. Symboli Logi 48 (1983), 714�723.[5℄ C. Gray, Iterated foring from the strategi point of view , PhD thesis, Univ. ofCalifornia, Berkeley, 1980.[6℄ F. Hernández-Hernández and T. Ishiu, A perfetly normal nonrealompat spaeonsistent with MAℵ1
, Topology Appl. 143 (2004), 175�188.[7℄ T. Ishiu, Club guessing sequenes and �lters, J. Symboli Logi, to appear.[8℄ T. Jeh, A game theoreti property of Boolean algebras, in: Logi Colloquium '77(Wroªaw, 1977), Stud. Logi Found. Math. 96, North-Holland, Amsterdam, 1978,135�144.[9℄ �, More game-theoreti properties of Boolean algebras, Ann. Pure Appl. Logi 26(1984), 11�29.[10℄ T. Miyamoto, A generalization of Axiom A, J. Math. So. Japan 42 (1990), 65�72.[11℄ P. J. Nyikos, A topologial test spae for many set-theoretial axioms, Russian Math.Surveys 38 (1983), 99�106.[12℄ S. Shelah, Proper Foring , Leture Notes in Math. 940, Springer, Berlin, 1982.[13℄ �, Proper and Improper Foring , 2nd ed., Perspetives in Math. Logi, Springer,Berlin, 1998.[14℄ B. Veli£kovi¢, Playful Boolean algebras, Trans. Amer. Math. So. 296 (1986), 727�740.[15℄ P. Vojtá², Game properties of Boolean algebras, Comment. Math. Univ. Carolin. 24(1983), 349�369.[16℄ J. Zapletal, More on the ut and hoose game, Ann. Pure Appl. Logi 76 (1995),291�301.[17℄ �, Trans�nite open-point games, Topology Appl. 111 (2001), 289�297.Department of MathematisUniversity of Kansas405 Snow Hall, 1460 Jayhawk Blvd.Lawrene, KS 66045, U.S.A.E-mail: ishiu�math.ku.edu Reeived 4 July 2004;in revised form 17 Marh 2005


