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Abstract. We show that under ZFC, for every indecomposable ordinal @ < w1, there
exists a poset which is S-proper for every 8 < a but not a-proper. It is also shown that a
poset is forcing equivalent to a poset satisfying Axiom A if and only if it is a-proper for
every o < wi.

0. Introduction. The notion of proper forcing was introduced by She-
lah in [12]. He proved several very important results about this notion. For
example, he showed that every proper poset preserves Ni, and properness
is preserved by countable support iteration. These are important theorems
and indeed plenty of forcing arguments rely on them.

Shelah also introduced a-properness in the same book. It is defined for
every countable ordinal « as a strengthening of properness; see Definition 1.2.
This notion is used to establish further preservation theorems. For instance,
Shelah gave a sufficient condition for a countable iteration to add no new
reals, which requires a stronger property than properness and adding no new
reals. Such an iteration is an effective tool to show the consistency of various
principles with CH.

When I is some property of posets, let MA(I") denote Martin’s Axiom for
all posets with I'. For example, MA(ccc) means the usual Martin’s Axiom,
and MA (proper) means the proper forcing axiom, which is often denoted by
PFA. In [13], Shelah constructed a model of MA (w-proper) + = PFA. The
key tool in his argument was a club guessing sequence on wi, defined in
Definition 3.1. It was considered by Nyikos in [11] and has several applica-
tions to general topology (see e.g. [6]). Its generalization to larger cardinals
was first considered by Shelah and has been very fruitfully used in many
arguments including pcf theory. One of the most significant properties of
club guessing sequences on a regular cardinal larger than w; is their exis-
tence under ZFC. However, a club guessing sequence on w; does not exist
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under PFA. Shelah showed that a club guessing sequence on w; with a cer-
tain property is preserved by w-proper forcing, which shows the difference
between MA (w-proper) and PFA.

Extending this result, Shelah mentioned the following facts in [13, pp.
838-839.

Fact 0.1. Let a be an indecomposable ordinal.

(i) If ¢ = (Cy + v < wi and o divides y) is a fully club guessing
sequence such that each C. has order type o and for every { < wi,
{CyNE vy <wi and o divides v} is countable, then C is preserved
by every a-proper poset.

(ii) If B is an indecomposable ordinal larger than « and C= (Cy iy <wy
and 3 divides v) is a fully club guessing sequence with ot(C,) = f3,
then there exists an c-proper poset P which destroys C_", i.e. P forces
that C is not a fully club guessing sequence.

By the same argument, we can show that for every indecomposable
o < wy, if there exists a fully club guessing sequence C = (Cy iy € wNLim)
such that for a club subset of v, a divides ot(Cy), then there exists a <a-
proper poset which destroys C and hence is not Q-proper.

However, it was not known whether the existence of such a poset can be
shown from ZFC for every indecomposable o < w1. One of the proper posets
which destroy club guessing sequences is Baumgartner’s poset to shoot a
club with finite conditions. It is well known as an example of a proper poset
which is not w-proper. In Section 2, we shall extend this fact by proving the
following theorem.

THEOREM A. If « is a countable indecomposable ordinal, then there
exists a poset which is <a-proper but not a-proper.

In Section 3, we shall show that our example of a <a-proper but not
a-proper poset destroys all club guessing sequences (C, : v € S) such that
for a club set of v in S, « divides ot(C,).

Another topic we deal with in this paper is the class of Axiom A posets.
Axiom A was proposed by Baumgartner in [3]. It is a generalization of the
property which is shared by various well known posets and used to show the
preservation theorem under countable support iterations. All ccc posets and
countably closed posets satisfy Axiom A, and a poset satisfying Axiom A is
proper. Although this axiom works well once it is satisfied, it is not known
what kind of forcing can be expressed by a poset satisfying Axiom A. In
Section 4, we shall show the following theorem.

THEOREM B. For every poset P, the following are equivalent:

(i) P is <wi-proper.
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(i1) There exists a pseudo partially ordered set Q) which can be densely
embedded in P and satisfies Aziom A.

Several other equivalent conditions will also be established.

This paper was developed while the author participated in Thematic
Program on Set Theory and Analysis at the Fields Institute, supported by
the Institute. I am deeply grateful to the Institute and the NSF, which
partially supported my participation in this program. I would also like to
thank all participants of the program for interesting discussions. Finally, T
cannot be thankful enough to my thesis advisor Dr. Foreman for his various
support.

1. Definitions. Basically we follow the standard notation in set theory.
The following are a few non-standard symbols. Lim denotes the class of all
limit ordinals and if X is a set of ordinals, lim(X') denotes the set of all limit
points of X. < denotes a well-ordering on the underlying set.

For every ordinal o, we define the indecomposable order type of o, denoted
by iot(«), to be the indecomposable ordinal 5 < a such that o = v + 3 for
some 3 < «a. For example, iot(w +w) = w. lf « = By + B4 + -+ + Br_1
is the Cantor normal form, i.e. each (; is indecomposable and 5; > (11,
then iot(«) = fr—1. Moreover, iot(«) is equal to the largest indecomposable
ordinal which divides a. If X is a set of ordinals, the indecomposable order
type of X, denoted by iot(X), is defined to be iot(ot(X)).

Let us introduce the following convenient term, which appears in [1].

DEFINITION 1.1. Let > 0 be an ordinal and (M, : i < a) a sequence
of countable elementary substructures of (H(\), €,<) for some large regular
cardinal X\. We say that (M; : ¢ < «) is an a-tower if

(i) for every limit 0 < o, M5 = ;5 M,

(ii) for every i < o, (Mj:j <1i) € M.

If A is a structure expanding (H (), €,<), then we can easily construct
an wi-tower (M; : i < wiy) such that each M; is an elementary submodel
of /. The following strengthening of properness is due to Shelah.

DEFINITION 1.2. Let a > 0 be a countable ordinal. A poset P is a-proper
if for every sufficiently large \ and every a-tower (M; : i < a) of countable
elementary substructures of (H (), €, <) such that P € My, every p € PNM,
has an extension g which is M;-generic for every i < a. We say that P is
<a-proper if P is B-proper for all 3 < a.

By the same trick as for proper forcing, for every fixed structure 2 ex-
panding (H (M), €,<), we may assume that the a-tower (M; : i < «) satisfies
M; < U for every ¢ < a. Clearly P is proper if and only if P is 1-proper.
Moreover, if P is a-proper, then it is G-proper for all 3 < «. Shelah also
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remarked that if P is a-proper and ¢ is the least indecomposable ordinal
above «, then P is <d-proper. For proofs and further information, see [13].

Jech began the study of games played on Boolean algebras in [8]. There
have been many interesting studies about various games on Booleans alge-
bras and posets, such as [4], [15], [9], [14] and [16]. In particular, Gray [5] and
Shelah [12] independently found game-theoretic proofs of several preserva-
tion theorems. The following definitions are variations of the game-theoretic
characterization of properness used by them.

DEFINITION 1.3 ([13, pp. 593-595|). Let P be a poset, p € P and « an
ordinal. We define three games Pof*(p, P) for | = 0,1 or 2 as follows. All
games are played by two players alternatingly. When [ = 0, at stage 3 for
every 3 < «, player I chooses a P-name fﬁ for an ordinal and then player II
chooses an ordinal (3. Player Il wins if and only if there exists a ¢ < p such
that ¢ IF “for every 8 < «, there exists an n < w such that ég = (B4n-

When [ = 1, player I plays in the same way and player II chooses a
countable set Y3 of ordinals at each stage 3. Player II wins if and only if
there exists a ¢ < p such that ¢ I+ “for every 0 < «a, ég €Yy

When [ = 2, at each stage 3, player I chooses a P-name Xﬁ for a countable
set of ordinals and player II chooses a countable set Y3 of ordinals. Player
IT wins if and only if there exists a ¢ < p such that ¢ IF “for every § < «,
X 8 - Yg”.

Clearly if there exists a winning strategy for player II in Pog, there exists
one for player II in Pof.

Shelah gave characterizations of a-properness in terms of games.

THEOREM 1.4 (Shelah, [13, p. 594]). Let P be a poset and o > 0. Then
P is a-proper if and only if player II wins PO§*(p, P) for every p € P.

We use a generalization of these characterizations in Section 4.

2. a-Properness. Baumgartner defined a poset to shoot a club subset
of w; with finite conditions, which appeared in [2]. It is known that the
poset is proper but not w-proper. In this section, we shall extend this result
to every indecomposable ordinal o < wy.

Let « be a countable indecomposable ordinal and 2l a structure expanding
(H(X), €,<) for some regular cardinal A above X;. We shall define a poset
P(w1,2, «) by: p € P(wi,2, «) if and only if p is a function such that

(i) dom(p) is a subset of w; with ot(dom(p)) < a,
(ii) for every v € dom(p), v < p(v) < w1,
(iii) for any v < ¢ both in dom(p), p(y) < 4,
(iv) for every v € dom(p), p[(dom(p) N~) € Sk?(7).

P(w1,%, ) is ordered by extension.
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Fix 20 and « as above. We shall show that P(wq,2, «) is not a-proper
and that CH implies that P(wi,2, ) is <a-proper.

We shall use the following notation. For each p € P(w1,%, a), we say
that « is a domain candidate of p if v ¢ dom(p) and there exists a ¢ < p
such that v € dom(q).

LEMMA 2.1. Let p € P(w1,U,«) and v a domain candidate of p. Then
for every ¢, if v < § < min(dom(p)\(y + 1)), then there exists a ¢ < p such
that v € dom(q) and q(v) = 96.

Proof. Let p’ < p be such that v € dom(p’). Define ¢ by: dom(q) =
(dom(p’) N (v + 1)) Udom(p) and

p'(§) if £ <,
q€) =4 o if £ =,
p(&) if&>n.

If ¢ € P, then clearly ¢ < p, v € dom(q), and ¢(vy) = 6. Thus it suffices to
show ¢ € P. The only condition which is not clear is (iv). To prove it, let
¢ € dom(q). If € < v, then £ € dom(p') and ¢[(dom(q)NE) = p'[(dom(p’)NE).
Hence ¢[(dom(q) N &) € Sk¥(&). If £ > 4, then & € dom(p), so p|(dom(p)
N €) € Sk™(&). Moreover, by assumption, § < min(dom(p) \ (y 4+ 1)) < &.
Thus, 7,8 € Sk®(£) and hence (v,d) € Sk*(¢). Tt follows that

gl (dom(q) N &) = p'I(dom(p') N ) U{(7,8)} Upl(dom(p) N¢) € SK*(€). m
PROPOSITION 2.2. If CH holds, then P(wi,2, ) is <a-proper.

Proof. Let P = P(w1,%, ) and 8 < «. Since we assume CH, there exists
a bijection f from w; into the set of all functions from a countable subset of
w1 into wi. Let f be the <-least such bijection. Let (M; : i < ) be a B-tower
of elementary substructures of (H()\'), €, <) for some regular cardinal \ > 2*
such that A, P € My. Set §; = M; Nw; for every i < .

Let p € P N My be arbitrary. Define ¢ = pU {(d;,;) : i <  and 7 is 0 or
a successor ordinal}. We shall show that ¢ is an M;-generic condition for all
1< f.

CLAIM 1. g € P.

Proof. Since p € My and |dom(p)| = Np, we have dom(p) C Jp. Thus
ot(dom(q)) < ot(dom(p)) + 3. Since « is indecomposable, ot(dom(q)) < .
(ii) is trivial. Since ran(p) C do, (iii) follows. For (iv), let v € dom(p). If
7 < b0, then g[(dom(q) N~) = p[(dom(p) N7) € Sk™(v). Suppose y = .
Since p € My and f is a bijection, there exists a £ < dg such that f(§) = p.
Thus we have ¢|(dom(q) Nv) = p € Sk®(dp). If ¥ > dp, then there exists an
i < 8 such that v = 0;11. Since (M; : j < B) is a B-tower, (M; : j <1i) €
M; 1. In particular, A; := {(J;,6;) : j < i and j is 0 or a successor ordinal}
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is in M 1. Since f is a bijection, there exists a £ < d;11 such that f(§) = A;.
Thus A; € Sk®(0;41). Therefore q[(dom(q) Nvy) =pU A; € Sk¥(5;41). u

CLAIM 2. q is M;-generic for all i < 3.

Proof. If i is a limit ordinal and ¢ is Mj-generic for all j < 7, then ¢ is
M;-generic by the continuity of the tower. Thus it suffices to show that ¢ is
M;-generic when ¢ = 0 or 7 is a successor ordinal less than 5.

Fix such an i and a dense open set D lying in M;. Let ¢ < ¢ be ar-
bitrary. We need to find an » € D N M; which is compatible with ¢’. Let
7 = ¢'[(dom(¢) N &;). By (iv) applied to ¢/, § € Sk*(§;). In particular,
q € M;. Since D is a dense open set lying in M;, there exists an 7 < 7§ such
that F€ DN M;. Let r =7U¢. If r € P, then r is a common extension of
¢ and ¥ € D N M;. Hence it suffices to show r € P.

We have ot(dom(r)) < ot(dom(7)) + ot(dom(q’)) < o and hence r sat-
isfies (i). (ii) is trivial. (iii) is also trivial except for 6 = §;. Since ¥ € M;
and |ran(7)| = No, we have ran(7) C M;. Thus for every v € dom(r) N d;,
r(y) < 6;. To see (iv), let v € dom(r). If v < §;, the assertion follows di-
rectly from 7 € P. Suppose v > ;. Then we have 7 € Sk®(5;) as before and
q [é{dom(q’) N~v) € Sk*(y). Thus r[(dom(r) Nv) = 7 U ¢[(dom(¢’) N~) €
Sk*(7). =

This completes the proof of Proposition 2.2. u

PROPOSITION 2.3. P(w1, %, «) is not a-proper. Moreover, for every tower
(M; : i < a) of countable elementary substructures of % with P € My, there
is no g < p which is M;-generic for every i < a.

Proof. Let (M; : i < «) be any a-tower with P € M. We shall show that
there is no ¢ € P such that g is M;-proper for all i < «. Let 6; = M; Nwy
for each i < a.

Suppose that ¢ is M;-proper for all i < a. Since ot(dom(g) Uran(q)) =
2 - ot(dom(q)) < «, there exists an i < « such that (dom(gq) U ran(q)) N
[0i,0i42) = 0. Let D = {r € P : dom(r) € &;}. Then clearly D is a dense
open subset lying in M;, 1. Since ¢ is assumed to be M;i-generic, DN M,
is predense below q. We shall derive a contradiction.

CLAIM 1. There ezists a domain candidate v € [, ;1) of q.

Proof. Let 7 be an element of D N M;; which is compatible with g,
and r a common extension of ¢ and 7. Since 7 € D N M1, there exists
a vy € dom(F) such that v € [d;,0;+1). Thus v € dom(r). Therefore ~ is a
domain candidate of ¢. »

Let g be the least domain candidate of ¢ with 79 > §;. By Lemma
2.1, there exists a p < ¢ such that 7y € dom(p) and p(y9) = di+1. Let
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¥ € DN M;11 be compatible with p. Let » be a common extension of 7
and p. If 9 € dom(7), then 7(v9) = r(v) = di+1 & M;y1, which is a
contradiction. Thus 79 ¢ dom(7). If 79 < v € dom(7), then v € dom(r).
Then 79 < v < ;41 = r(70). This is a contradiction. Hence dom(7) C ~p.
But since 7 € D, there exists a 7 € dom(7) with v > ¢;. Hence v € dom(r).
Thus « is a domain candidate of ¢ such that §; < v < 7. This contradicts
the minimality of vg. =

Thus CH implies that there exists a poset which is <a-proper but not
a-proper. In fact, we do not need CH to prove it. First, we shall prove the
following lemma.

LEMMA 2.4. Let o be a countable ordinal. Let P be a poset and Q a
P-name for a poset such that P forces that for every a-tower (M; : i < «) of
countable elementary substructures of (H(k),€,<) where K is a sufficiently
large regular cardinal, there is no q € Q which is M;-generic for every i < a.
Then P % Q is not a-proper.

Proof. Suppose that Px(Q is a-proper. Let « be a sufficiently large regular
cardinal and \ be a regular cardinal with A > 22", Let (M; : i < ) be an

a-tower of countable elementary substructures of (H(\), €,<, k) with P * Q
€ My. By assumption, there exists a (p,q) € P @ which is M;-generic for
every i < a. Let G C P be generic with p € G. Work in V[G]. Let ¢ be the
interpretation of ¢. Let N; = M;[G] N H(k) for every i < a. Then for every
i <o, (Nj:j<i)e M1[G]NH(k) = Niy1. Therefore, (N; : i < ) is an
a-tower. It is easy to see that each NV; is a countable elementary substructure
of (H(k),€,<). Moreover, since (p,q) is M;-generic for every i < «, q is
N;-generic for every ¢ < «a. This contradicts the assumption. Therefore,
P % Q is not a-proper. =

It is known that a countable support iteration of a-proper posets is a-
proper. Using these facts, we can prove Theorem A.

THEOREM A. If « is a countable indecomposable ordinal, then there ex-
ists a poset which is <a-proper but not a-proper.

Proof. Let P be the Levy collapse which collapses 2% to Xy. In V7, let
A be a sufficiently large regular cardinal and 20 = (H(\), €,<). Let Q =
P(w1,2, ). Then @ is <a-proper by Proposition 2.2. But by Proposition
2.3, for every a-tower (M, : i < «) of countable elementary substructures of
(H(k), €,<), there is no ¢ € @ which is M;-generic for every i < «. Let Q
be a P-name for Q.

Since P is <wi-proper and P forces that Q is <a-proper, P x Q is <a-
proper. However, by Lemma 2.4, P x Q is not a-proper. =
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3. Destruction of club guessing sequences. In this section, we shall
show the relationship between a-properness and the preservation of club
guessing sequences. First of all we shall define a tail club guessing sequence
which was investigated in various papers, such as [11] and [13, Chapter
XVIII].

DEFINITION 3.1. Let C = (Cy : v € S) be a sequence on a stationary
subset S of wy such that each C, is an unbounded subset of 7. We say that
C is a tail (resp. fully) club guessing sequence on S if and only if for every
club subset D of wy, there exists a v € S such that C, \ ¢ € D for some
¢ <7 (resp. Cy C D).

We shall also define semiproperness and a-semiproperness because the
method in this section works for these weaker properties. They were defined
in [12] to handle posets which preserve 8y but add a countable set of ordinals
which is not covered by a countable set in the ground model.

DEFINITION 3.2. Let P be a poset. For a set M and p € P, we say
that p is M-semigeneric if for every P-name for a countable ordinal £ € M,
plF€&e M.

A poset P is semiproper if for every large enough regular cardinal A
and every countable elementary substructure M < (H(\), €,<), whenever
P e M and p € M N P, there exists a ¢ < p such that ¢ is M-semigeneric.

Let o be a countable ordinal. P is said to be a-semiproper if for every
large enough regular cardinal A and every a-tower (M, : i < «) of countable
elementary substructures of (H(\), €, <), whenever P € My and p € MyNP,
there exists a ¢ < p such that ¢ is M;-semigeneric for all i < a.

Trivially every («-)proper poset is (a-)semiproper. Shelah [12] showed
that it is consistent that Namba forcing is a semiproper poset which is not
proper.

The following lemma is standard.

LEMMA 3.3. Let P be a poset and M a countable elementary substructure
of (H(\),€,<) with P € M for some sufficiently large regular cardinal A.
Suppose that p € P is M -semigeneric and D € M is a P-name for a club.
Then pl- M Nw; € D.

Proof. Let 6 = M Nw;. It suffices to show that p IF“D N4 is unbounded
in 0”. Let ¢ < 4. Since D is a P-name for a club, we have I- D\C # (. Let &
be a P-name such that I+ & € D \ ¢. Since M is an elementary substructure
of (H()), €,4), we can assume & € M. Since p is M-semigeneric, we have
plkée MNw =46. Hence, plF“¢ < & < d and & € D”. Thus, p F“D N6
is unbounded in ¢”. =
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The following are easy facts about the preservation of club guessing se-
quences. For the proof, see [7].

FacT 3.4. (i) Every <wi-semiproper poset preserves all fully club guess-
1mng sequences.

(ii) Everyw-semiproper poset preserves every fully club guessing sequence
(Cy 1y € wy NLim) with ot(Cy) = w.

(iii) Baumgartner’s poset to shoot a club with finite conditions destroys
all tail club guessing sequences in the ground model.

The following result extending Fact 3.4(ii) was mentioned by Shelah
in [13]. We give the proof for the reader’s convenience.

PROPOSITION 3.5 (Shelah). Let a be a countable indecomposable ordinal
and P an o-semiproper poset. Let (C, : v € S) be a fully club guessing
sequence on a stationary subset S of wy such that Cy is closed and ot(Cy) < «
for every v € S. Suppose also that for every & < wy, [{CyNE v € S} = Ny.
Then P preserves (C, : v € S).

Proof. Let p € P and D be a name for a club subset of w;. Let Ae =
{CyNE:ye Stand A= (H()\),€,<, P, p,D, (Ae : £ € 5)). Then if y € S
and ¢ € C, \ lim(C,), then C, N ¢ € SK*(¢).

We can construct an wi-tower (M, : v < wq) of countable elementary
substructures of 2. Let D = {M,Nwy :y <wi}. Clearly D is a club subset
of wy. Thus there exists a § < w; such that C5 C D. Let {& : i < n} be the
increasing enumeration of Cs. Then for each ¢ < 7, there exists a §; < w;
such that Ms, Nwy = &;. Note that n = ot(C;s) < a.

We claim that (Mjs, : i < n) is an 7-tower of countable elementary sub-
structures of . Let i < n. By definition, (M, : v < 6;) € Ms,+1. By the
assumption on Cs, Cs5 N & 41 € Sk*(&41). In particular, {& j <i} =
Cs N&iy1 € Ms,,,. But M;, is definable from §; and (M, : v < 6;). Thus
(ng 1j <i)€ Ms, ..

Since P is a-semiproper, there exists a ¢ < p such that ¢ is M;,-semi-
generic for all ¢ < n. In particular, ¢ IF &; € D foralli < 7. By the definition
of &, it follows that ¢ I Cs C D. =

It was shown in [7] that if (Cy : v € S) is a tail club guessing sequence,
then there exists a ( < wy such that (C,\ (:v €S\ ((+1)) is a fully club
guessing sequence. Thus the previous proposition can be easily modified to
cover tail club guessing sequences.

Notice that the coherence condition of the previous proposition is not
always satisfied. For example, although a {-sequence is trivially a fully club
guessing sequence, it does not satisfy the condition. In [17]|, Zapletal con-
structed a poset which adds a fully club guessing sequence and satisfies that
condition.
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We do not know if the coherence condition is necessary. But the order
type restriction is: this is witnessed by the poset Shelah introduced in [13]
as well as the poset defined in Section 2.

PROPOSITION 3.6. Let o < wy be an indecomposable ordinal. Suppose
that C' = (Cy : vy €8) is a tail club guessing sequence on wi such that for
every v € S, iot(Cy) > a. Then P(wi,U, a) forces that C is not a tail club
guessing sequence.

Proof. Let P = P(w1,2,«) and let G C P be generic. Let f = JG and
define D to be the set of all limit points of dom(f) less than wj.

We claim that D is not guessed by C. Suppose otherwise. Let f and D be
P-names for f and D respectively. Then there exist a p € G, ay € S and a
¢ <suchthatpl-C,\¢ C D. Let {&; : i < 1} be an increasing enumeration
of C, \ ¢. Since iot(Cy) > «, we have n > a. Since ot(dom(p)) < «, there
exists an ¢ < 1 such that [¢;, &;+2)Ndom(p) = (). Since p IF &+1 € D, ie. Eiv1
is a limit point of dom(f), there exists a v € [¢;, &41) such that v is a domain
candidate of p. By Lemma 2.1, we can get ¢ < p such that ¢(v) = £;4+1. But

then ¢ IF“&;11 is not a limit point of dom(f)”. This is a contradiction. m

4. The forcing-theoretic equivalence of <w;-properness and
Axiom A. In this section, we shall show Theorem B, which asserts that
a forcing notion is describable by a pseudo partially ordered set satisfying
Axiom A if and only if it is <w;-proper. It determines the strength of Axiom
A in terms of forcing. It is well known that we may adopt a pseudo partially
ordered set as a forcing notion. We remark that this convention is essential
in our proof. In terms of forcing, a pseudo partially ordered set can be iden-
tified as a poset by taking equivalence classes. But when we build a forcing
notion satisfying Axiom A, we may treat conditions in the same equivalence
class differently. It is not known if we can prove this result without using a
pseudo partial ordering.

First of all, let us define Axiom A and uniform Axiom A, which is a
stronger notion.

DEFINITION 4.1. A pseudo partially ordered set P satisfies Aziom A if
there exists a sequence (<,,: n < w) of pseudo partial orderings on P such
that

(i) p <o ¢ implies p < g,
(ii) p <p41 q implies p <,, ¢ for every n < w,
(iii) if (p, : n < w) is a sequence such that p,+1 <, py, for all n < w,
then there exists a ¢ € P such that ¢ <,, p,, for all n < w,
(iv) for every p € P and n < w, if & is a P-name for an ordinal, then
there exist a ¢ <, p and a countable set X of ordinals such that
ql-aeX.
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If there exists a sequence (<,: n < w) which is constant and witnesses
Axiom A, then we say that P satisfies uniform Aziom A. We usually denote
the constant value by <.

It is easy to see that ccc posets and countably closed posets satisfy uni-
form Axiom A. It is well known that if P satisfies Axiom A, then P is
<wq-proper, which can be easily shown by induction.

We need the following natural extension of the games which characterize
properness properties.

DEFINITION 4.2. Let P be a (pseudo) partially ordered set and p € P.
We shall define a game PDI<°"1(P, p) for each | = 0,1 or 2. In each game,
players play in the same way as in Pof*(P,p) of length w;. Player II wins
if and only if at every limit stage o < wi, the sequence satisfies player II's
winning condition in POf*(P, p).

In order to prove Theorem B, we shall show the following stronger theo-
rem.

THEOREM 4.3. For every poset P, the following are equivalent:

(i) P is <wi-proper.

i) Player II has a winning strategy in PO3“'(P,p) for every p € P.

) Player II has a winning strategy in PO5“(P,p) for every p € P.
v) Player II has a winning strategy in POT“'(P,p) for every p € P.

) There exists a pseudo partially ordered set QQ which can be densely
embedded in P and satisfies uniform Aziom A.
(vi) There ezists a pseudo partially ordered set ) which can be densely
embedded in P and satisfies Aziom A.

Proof. Let P be a poset and fix a large regular cardinal A. Define 2 =
(H(V), &,9).

First we shall show (i)=(ii). Let n +— (kp,l,) be a bijection from w
onto w X w with k, < n. Suppose that P is <wi-proper. Let p € P.
We shall describe a winning strategy for player II. We also define an in-
creasing continuous sequence (Mpz : 3 < wy) of countable elementary sub-
structures of H(\) such that (M, : vy < 8) € Mg, ;. Let My = Sk®({p}). At
stage (3, suppose that player I plays ¢g. Let Mg, = Skm({p, (My:v <),
(6y : v<fB)}). Then clearly (M, : v < 3) € Mgyy and Mgy, is countable.
Let {fiﬁﬂ : 4 < w} enumerate Mg, 1NON and let player II play (3 = fl‘sjk"ﬂ
where a limit ordinal § and n < w are such that 3 =§ + n.

If 3 is a non-zero limit ordinal, let Mg = U7<ﬁ M.,. We shall show that
player II does not lose at this point. Since P is <wi-proper, there exists a
g < p which is M, -generic for all 7 < 3. Let v < 3. Write v = 6 +k where ¢ is
a limit ordinal and k < w. Since ¢ is M, 1-generic and ¢, € M, 11 as a name,
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qIF ¢y € Myi1. But My 0 ON = {g* 1l <w} = {1 n <wand
kn =k} C{G :v < i <vy+ w}. Therefore g IF &y = (y4p for some n < w.
If player II follows this strategy, he wins the game, because he does not lose
at any stage. Thus this is a winning strategy.

For (ii)=-(iii), suppose that ¢ is a winning strategy for player II in
PO;“ (P, p), i.e. o is a function from the set of all sequences of P-names
for ordinals of countable length into the set of ordinals such that when
(@y © v < wi) is a sequence of moves of player I and player II plays
o({&; : 1 < 7)) at each stage 7y, then player II wins. We shall describe
a winning strategy for player II in PD;"“(P, p). At stage (3, suppose that
player I chooses Xg. Then there exists a countable set {ng :n < w} of
P-names for ordinals such that IFp Xg = {77;2 :n < w}. Define éwﬂ+n = 7’75
for all n < w. Let Y3 = {o((&:i<wB+n)):n<wh

We need to show that it is a winning strategy. Let § < w; be a limit ordi-
nal. Since o is a winning strategy, there exists a ¢ < p such that ¢ IF“for all
B < 0, there exists an n < w such that fﬁ = o((& i < f+n))”. But then ¢ I-

“ng{ﬁg:n<w}:{£w5+n:n<w}§{a((£i:i§wﬂ+m>):m<w}

(iii)=(iv) is trivial.

(iv)=-(v) is proved in the author’s master thesis. We present it for the
reader’s convenience. Suppose that player II has a winning strategy o, in
PO (P, p) for every p € P. Let B(P) be the Boolean completion of P, i.e.
B(P) is a complete Boolean algebra which has a dense subset D isomorphic
to a dense subset of P. Let ) be defined by: ¢ € @ if and only if ¢ is of the
form (p, (¢ : i < n)) where p € P, n < w; and ¢ is a P-name for an ordinal
for every i < 7. Define 7 : @ — B(P) by 7({p, (& : i <n))) = Ni,)[d €
o(p,{(&; : j < i))]. Here we identify each &; as a B(P)-name in an obvious
way and [¢] denotes the truth value of ¢. Note that since o is a winning
strategy, 7(q) > 0 for every ¢ € Q. Define ¢ < ¢’ if and only if 7(q) < 7(¢).
Then 7({p, (&; : i <n))) < pforevery (p, (¢; : i <n)) € Q. In particular, 7 is
a dense embedding. For every ¢ = (p, (&, : i <n)) and ¢’ = (p/, (&} : i < 1)),
we define ¢ <, ¢/ ifand only if p = p/, n > 1’ and &; = & for all i < 7. Then
(Q, <o) is clearly countably closed. Suppose that A is a maximal antichain of
Q and ¢ = (p, (&; : i <n)) € Q. We need to show that there exist a ¢’ < ¢
such that [{a € A : a and ¢’ are compatible}| < Ng. Let A = {a, : v < |A[}
be an enumeration. Since 7 is a dense embedding, {7(ay) : v < |A]} is a
maximal antichain. Define a P-name &, so that 7(ay) I &, = v for every
v < |A|. Let ¢ = (p, (& : i <n)). Then 7(¢') I &y € o((p, (& : j < n)))-
Let Y = {ay : vy € o((p, (& : 7 < m)))}. If ¢" is a common extension of ¢’
and a,, then ¢" IF v = d,, € o((p, (& : j <n))). Thus a, € Y. This implies
that |{a, : a, and ¢’ are compatible}| < Y] = Ny.
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(v)=>(vi) is again trivial. (vi)=-(i) has already been remarked. =

In [10], Miyamoto proposed a generalization of Axiom A, named Ax-
iom C. Since he showed that Axiom A implies Axiom C and Axiom C implies
<wq-properness in the same paper, the previous theorem shows that every
pseudo partially ordered set satisfying Axiom C is equivalent to a pseudo
partially ordered set satisfying Axiom A.
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