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α-Properness and Axiom AbyTetsuya Ishiu (Lawren
e, KS)
Abstra
t. We show that under ZFC, for every inde
omposable ordinal α < ω1, thereexists a poset whi
h is β-proper for every β < α but not α-proper. It is also shown that aposet is for
ing equivalent to a poset satisfying Axiom A if and only if it is α-proper forevery α < ω1.0. Introdu
tion. The notion of proper for
ing was introdu
ed by She-lah in [12℄. He proved several very important results about this notion. Forexample, he showed that every proper poset preserves ℵ1, and propernessis preserved by 
ountable support iteration. These are important theoremsand indeed plenty of for
ing arguments rely on them.Shelah also introdu
ed α-properness in the same book. It is de�ned forevery 
ountable ordinal α as a strengthening of properness; see De�nition 1.2.This notion is used to establish further preservation theorems. For instan
e,Shelah gave a su�
ient 
ondition for a 
ountable iteration to add no newreals, whi
h requires a stronger property than properness and adding no newreals. Su
h an iteration is an e�e
tive tool to show the 
onsisten
y of variousprin
iples with CH.When Γ is some property of posets, let MA(Γ ) denote Martin's Axiom forall posets with Γ . For example, MA(


) means the usual Martin's Axiom,and MA(proper) means the proper for
ing axiom, whi
h is often denoted by

PFA. In [13℄, Shelah 
onstru
ted a model of MA(ω-proper) + ¬PFA. Thekey tool in his argument was a 
lub guessing sequen
e on ω1, de�ned inDe�nition 3.1. It was 
onsidered by Nyikos in [11℄ and has several appli
a-tions to general topology (see e.g. [6℄). Its generalization to larger 
ardinalswas �rst 
onsidered by Shelah and has been very fruitfully used in manyarguments in
luding p
f theory. One of the most signi�
ant properties of
lub guessing sequen
es on a regular 
ardinal larger than ω1 is their exis-ten
e under ZFC. However, a 
lub guessing sequen
e on ω1 does not exist2000 Mathemati
s Subje
t Classi�
ation: Primary 03E40; Se
ondary 03E35.Key words and phrases: α-properness, 
lub guessing sequen
e, Axiom A.[25℄



26 T. Ishiuunder PFA. Shelah showed that a 
lub guessing sequen
e on ω1 with a 
er-tain property is preserved by ω-proper for
ing, whi
h shows the di�eren
ebetween MA(ω-proper) and PFA.Extending this result, Shelah mentioned the following fa
ts in [13, pp.838�839℄.Fa
t 0.1. Let α be an inde
omposable ordinal.(i) If ~C = 〈Cγ : γ < ω1 and α divides γ〉 is a fully 
lub guessingsequen
e su
h that ea
h Cγ has order type α and for every ξ < ω1,
{Cγ ∩ ξ : γ < ω1 and α divides γ} is 
ountable, then ~C is preservedby every α-proper poset.(ii) If β is an inde
omposable ordinal larger than α and ~C = 〈Cγ : γ < ω1and β divides γ〉 is a fully 
lub guessing sequen
e with ot(Cγ) = β,then there exists an α-proper poset P whi
h destroys ~C, i.e. P for
esthat ~C is not a fully 
lub guessing sequen
e.By the same argument, we 
an show that for every inde
omposable

α < ω1, if there exists a fully 
lub guessing sequen
e ~C = 〈Cγ : γ ∈ ω1∩Lim〉su
h that for a 
lub subset of γ, α divides ot(Cγ), then there exists a <α-proper poset whi
h destroys ~C and hen
e is not α-proper.However, it was not known whether the existen
e of su
h a poset 
an beshown from ZFC for every inde
omposable α < ω1. One of the proper posetswhi
h destroy 
lub guessing sequen
es is Baumgartner's poset to shoot a
lub with �nite 
onditions. It is well known as an example of a proper posetwhi
h is not ω-proper. In Se
tion 2, we shall extend this fa
t by proving thefollowing theorem.Theorem A. If α is a 
ountable inde
omposable ordinal , then thereexists a poset whi
h is <α-proper but not α-proper.In Se
tion 3, we shall show that our example of a <α-proper but not
α-proper poset destroys all 
lub guessing sequen
es 〈Cγ : γ ∈ S〉 su
h thatfor a 
lub set of γ in S, α divides ot(Cγ).Another topi
 we deal with in this paper is the 
lass of Axiom A posets.Axiom A was proposed by Baumgartner in [3℄. It is a generalization of theproperty whi
h is shared by various well known posets and used to show thepreservation theorem under 
ountable support iterations. All 


 posets and
ountably 
losed posets satisfy Axiom A, and a poset satisfying Axiom A isproper. Although this axiom works well on
e it is satis�ed, it is not knownwhat kind of for
ing 
an be expressed by a poset satisfying Axiom A. InSe
tion 4, we shall show the following theorem.Theorem B. For every poset P , the following are equivalent :(i) P is <ω1-proper.



α-Properness and Axiom A 27(ii) There exists a pseudo partially ordered set Q whi
h 
an be denselyembedded in P and satis�es Axiom A.Several other equivalent 
onditions will also be established.This paper was developed while the author parti
ipated in Themati
Program on Set Theory and Analysis at the Fields Institute, supported bythe Institute. I am deeply grateful to the Institute and the NSF, whi
hpartially supported my parti
ipation in this program. I would also like tothank all parti
ipants of the program for interesting dis
ussions. Finally, I
annot be thankful enough to my thesis advisor Dr. Foreman for his varioussupport.1. De�nitions. Basi
ally we follow the standard notation in set theory.The following are a few non-standard symbols. Lim denotes the 
lass of alllimit ordinals and if X is a set of ordinals, lim(X) denotes the set of all limitpoints of X. ⊳ denotes a well-ordering on the underlying set.For every ordinal α, we de�ne the inde
omposable order type of α, denotedby iot(α), to be the inde
omposable ordinal β < α su
h that α = γ + β forsome β < α. For example, iot(ω1 + ω) = ω. If α = β0 + β1 + · · · + βk−1is the Cantor normal form, i.e. ea
h βi is inde
omposable and βi ≥ βi+1,then iot(α) = βk−1. Moreover, iot(α) is equal to the largest inde
omposableordinal whi
h divides α. If X is a set of ordinals, the inde
omposable ordertype of X, denoted by iot(X), is de�ned to be iot(ot(X)).Let us introdu
e the following 
onvenient term, whi
h appears in [1℄.Definition 1.1. Let α > 0 be an ordinal and 〈Mi : i < α〉 a sequen
eof 
ountable elementary substru
tures of 〈H(λ),∈, ⊳〉 for some large regular
ardinal λ. We say that 〈Mi : i < α〉 is an α-tower if(i) for every limit δ < α, Mδ =
⋃

i<δ Mi,(ii) for every i < α, 〈Mj : j ≤ i〉 ∈ Mi+1.If A is a stru
ture expanding 〈H(λ),∈, ⊳〉, then we 
an easily 
onstru
tan ω1-tower 〈Mi : i < ω1〉 su
h that ea
h Mi is an elementary submodelof A. The following strengthening of properness is due to Shelah.Definition 1.2. Let α > 0 be a 
ountable ordinal. A poset P is α-properif for every su�
iently large λ and every α-tower 〈Mi : i < α〉 of 
ountableelementary substru
tures of 〈H(λ),∈, ⊳〉 su
h that P ∈ M0, every p ∈ P∩M0has an extension q whi
h is Mi-generi
 for every i < α. We say that P is
<α-proper if P is β-proper for all β < α.By the same tri
k as for proper for
ing, for every �xed stru
ture A ex-panding 〈H(λ),∈, ⊳〉, we may assume that the α-tower 〈Mi : i < α〉 satis�es
Mi ≺ A for every i < α. Clearly P is proper if and only if P is 1-proper.Moreover, if P is α-proper, then it is β-proper for all β < α. Shelah also



28 T. Ishiuremarked that if P is α-proper and δ is the least inde
omposable ordinalabove α, then P is <δ-proper. For proofs and further information, see [13℄.Je
h began the study of games played on Boolean algebras in [8℄. Therehave been many interesting studies about various games on Booleans alge-bras and posets, su
h as [4℄, [15℄, [9℄, [14℄ and [16℄. In parti
ular, Gray [5℄ andShelah [12℄ independently found game-theoreti
 proofs of several preserva-tion theorems. The following de�nitions are variations of the game-theoreti

hara
terization of properness used by them.Definition 1.3 ([13, pp. 593�595℄). Let P be a poset, p ∈ P and α anordinal. We de�ne three games Paα
l (p, P ) for l = 0, 1 or 2 as follows. Allgames are played by two players alternatingly. When l = 0, at stage β forevery β < α, player I 
hooses a P -name ξ̇β for an ordinal and then player II
hooses an ordinal ζβ. Player II wins if and only if there exists a q ≤ p su
hthat q 
 �for every β < α, there exists an n < ω su
h that ξ̇β = ζβ+n�.When l = 1, player I plays in the same way and player II 
hooses a
ountable set Yβ of ordinals at ea
h stage β. Player II wins if and only ifthere exists a q ≤ p su
h that q 
 �for every β < α, ξ̇β ∈ Yβ�.When l = 2, at ea
h stage β, player I 
hooses a P -name Ẋβ for a 
ountableset of ordinals and player II 
hooses a 
ountable set Yβ of ordinals. PlayerII wins if and only if there exists a q ≤ p su
h that q 
 �for every β < α,

Ẋβ ⊆ Yβ�.Clearly if there exists a winning strategy for player II in Paα
2 , there existsone for player II in Paα

1 .Shelah gave 
hara
terizations of α-properness in terms of games.Theorem 1.4 (Shelah, [13, p. 594℄). Let P be a poset and α > 0. Then
P is α-proper if and only if player II wins Paωα

0 (p, P ) for every p ∈ P .We use a generalization of these 
hara
terizations in Se
tion 4.2. α-Properness. Baumgartner de�ned a poset to shoot a 
lub subsetof ω1 with �nite 
onditions, whi
h appeared in [2℄. It is known that theposet is proper but not ω-proper. In this se
tion, we shall extend this resultto every inde
omposable ordinal α < ω1.Let α be a 
ountable inde
omposable ordinal and A a stru
ture expanding
〈H(λ),∈, ⊳〉 for some regular 
ardinal λ above ℵ1. We shall de�ne a poset
P (ω1, A, α) by: p ∈ P (ω1, A, α) if and only if p is a fun
tion su
h that(i) dom(p) is a subset of ω1 with ot(dom(p)) < α,(ii) for every γ ∈ dom(p), γ ≤ p(γ) < ω1,(iii) for any γ < δ both in dom(p), p(γ) < δ,(iv) for every γ ∈ dom(p), p↾(dom(p) ∩ γ) ∈ SkA(γ).
P (ω1, A, α) is ordered by extension.



α-Properness and Axiom A 29Fix A and α as above. We shall show that P (ω1, A, α) is not α-properand that CH implies that P (ω1, A, α) is <α-proper.We shall use the following notation. For ea
h p ∈ P (ω1, A, α), we saythat γ is a domain 
andidate of p if γ 6∈ dom(p) and there exists a q ≤ psu
h that γ ∈ dom(q).Lemma 2.1. Let p ∈ P (ω1, A, α) and γ a domain 
andidate of p. Thenfor every δ, if γ ≤ δ < min(dom(p)\(γ + 1)), then there exists a q ≤ p su
hthat γ ∈ dom(q) and q(γ) = δ.Proof. Let p′ ≤ p be su
h that γ ∈ dom(p′). De�ne q by: dom(q) =
(dom(p′) ∩ (γ + 1)) ∪ dom(p) and

q(ξ) =





p′(ξ) if ξ < γ,

δ if ξ = γ,

p(ξ) if ξ > γ.If q ∈ P , then 
learly q ≤ p, γ ∈ dom(q), and q(γ) = δ. Thus it su�
es toshow q ∈ P . The only 
ondition whi
h is not 
lear is (iv). To prove it, let
ξ ∈ dom(q). If ξ ≤ γ, then ξ ∈ dom(p′) and q↾(dom(q)∩ξ) = p′↾(dom(p′)∩ξ).Hen
e q↾(dom(q) ∩ ξ) ∈ SkA(ξ). If ξ > γ, then ξ ∈ dom(p), so p↾(dom(p)
∩ ξ) ∈ SkA(ξ). Moreover, by assumption, δ < min(dom(p) \ (γ + 1)) ≤ ξ.Thus, γ, δ ∈ SkA(ξ) and hen
e 〈γ, δ〉 ∈ SkA(ξ). It follows that
q↾(dom(q) ∩ ξ) = p′↾(dom(p′) ∩ γ) ∪ {〈γ, δ〉} ∪ p↾(dom(p) ∩ ξ) ∈ SkA(ξ).Proposition 2.2. If CH holds, then P (ω1, A, α) is <α-proper.Proof. Let P = P (ω1, A, α) and β < α. Sin
e we assume CH, there existsa bije
tion f from ω1 into the set of all fun
tions from a 
ountable subset of

ω1 into ω1. Let f be the ⊳-least su
h bije
tion. Let 〈Mi : i < β〉 be a β-towerof elementary substru
tures of 〈H(λ′),∈, ⊳〉 for some regular 
ardinal λ′ > 2λsu
h that A, P ∈ M0. Set δi = Mi ∩ ω1 for every i < β.Let p ∈ P ∩M0 be arbitrary. De�ne q = p ∪ {〈δi, δi〉 : i < β and i is 0 ora su

essor ordinal}. We shall show that q is an Mi-generi
 
ondition for all
i < β.Claim 1. q ∈ P .Proof. Sin
e p ∈ M0 and |dom(p)| = ℵ0, we have dom(p) ⊆ δ0. Thus
ot(dom(q)) ≤ ot(dom(p)) + β. Sin
e α is inde
omposable, ot(dom(q)) < α.(ii) is trivial. Sin
e ran(p) ⊆ δ0, (iii) follows. For (iv), let γ ∈ dom(p). If
γ < δ0, then q↾(dom(q) ∩ γ) = p↾(dom(p) ∩ γ) ∈ SkA(γ). Suppose γ = δ0.Sin
e p ∈ M0 and f is a bije
tion, there exists a ξ < δ0 su
h that f(ξ) = p.Thus we have q↾(dom(q) ∩ γ) = p ∈ SkA(δ0). If γ > δ0, then there exists an
i < β su
h that γ = δi+1. Sin
e 〈Mj : j < β〉 is a β-tower, 〈Mj : j ≤ i〉 ∈
Mi+1. In parti
ular, Ai := {〈δj, δj〉 : j ≤ i and j is 0 or a su

essor ordinal}



30 T. Ishiuis in Mi+1. Sin
e f is a bije
tion, there exists a ξ < δi+1 su
h that f(ξ) = Ai.Thus Ai ∈ SkA(δi+1). Therefore q↾(dom(q) ∩ γ) = p ∪ Ai ∈ SkA(δi+1).Claim 2. q is Mi-generi
 for all i < β.Proof. If i is a limit ordinal and q is Mj-generi
 for all j < i, then q is
Mi-generi
 by the 
ontinuity of the tower. Thus it su�
es to show that q is
Mi-generi
 when i = 0 or i is a su

essor ordinal less than β.Fix su
h an i and a dense open set D lying in Mi. Let q′ ≤ q be ar-bitrary. We need to �nd an r ∈ D ∩ Mi whi
h is 
ompatible with q′. Let
q = q′↾(dom(q′) ∩ δi). By (iv) applied to q′, q ∈ SkA(δi). In parti
ular,
q ∈ Mi. Sin
e D is a dense open set lying in Mi, there exists an r ≤ q su
hthat r ∈ D ∩ Mi. Let r = r ∪ q′. If r ∈ P , then r is a 
ommon extension of
q′ and r ∈ D ∩ Mi. Hen
e it su�
es to show r ∈ P .We have ot(dom(r)) ≤ ot(dom(r)) + ot(dom(q′)) < α and hen
e r sat-is�es (i). (ii) is trivial. (iii) is also trivial ex
ept for δ = δi. Sin
e r ∈ Miand |ran(r)| = ℵ0, we have ran(r) ⊆ Mi. Thus for every γ ∈ dom(r) ∩ δi,
r(γ) < δi. To see (iv), let γ ∈ dom(r). If γ < δi, the assertion follows di-re
tly from r ∈ P . Suppose γ ≥ δi. Then we have r ∈ SkA(δi) as before and
q′↾(dom(q′) ∩ γ) ∈ SkA(γ). Thus r↾(dom(r) ∩ γ) = r ∪ q′↾(dom(q′) ∩ γ) ∈
SkA(γ).This 
ompletes the proof of Proposition 2.2.Proposition 2.3. P (ω1, A, α) is not α-proper. Moreover , for every tower
〈Mi : i < α〉 of 
ountable elementary substru
tures of A with P ∈ M0, thereis no q ≤ p whi
h is Mi-generi
 for every i < α.Proof. Let 〈Mi : i < α〉 be any α-tower with P ∈ M0. We shall show thatthere is no q ∈ P su
h that q is Mi-proper for all i < α. Let δi = Mi ∩ ω1for ea
h i < α.Suppose that q is Mi-proper for all i < α. Sin
e ot(dom(q) ∪ ran(q)) =
2 · ot(dom(q)) < α, there exists an i < α su
h that (dom(q) ∪ ran(q)) ∩
[δi, δi+2) = ∅. Let D = {r ∈ P : dom(r) * δi}. Then 
learly D is a denseopen subset lying in Mi+1. Sin
e q is assumed to be Mi+1-generi
, D∩Mi+1is predense below q. We shall derive a 
ontradi
tion.Claim 1. There exists a domain 
andidate γ ∈ [δi, δi+1) of q.Proof. Let r be an element of D ∩ Mi+1 whi
h is 
ompatible with q,and r a 
ommon extension of q and r. Sin
e r ∈ D ∩ Mi+1, there existsa γ ∈ dom(r) su
h that γ ∈ [δi, δi+1). Thus γ ∈ dom(r). Therefore γ is adomain 
andidate of q.Let γ0 be the least domain 
andidate of q with γ0 ≥ δi. By Lemma2.1, there exists a p ≤ q su
h that γ0 ∈ dom(p) and p(γ0) = δi+1. Let
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r ∈ D ∩ Mi+1 be 
ompatible with p. Let r be a 
ommon extension of rand p. If γ0 ∈ dom(r), then r(γ0) = r(γ0) = δi+1 6∈ Mi+1, whi
h is a
ontradi
tion. Thus γ0 6∈ dom(r). If γ0 < γ ∈ dom(r), then γ ∈ dom(r).Then γ0 < γ < δi+1 = r(γ0). This is a 
ontradi
tion. Hen
e dom(r) ⊆ γ0.But sin
e r ∈ D, there exists a γ ∈ dom(r) with γ ≥ δi. Hen
e γ ∈ dom(r).Thus γ is a domain 
andidate of q su
h that δi ≤ γ < γ0. This 
ontradi
tsthe minimality of γ0.Thus CH implies that there exists a poset whi
h is <α-proper but not
α-proper. In fa
t, we do not need CH to prove it. First, we shall prove thefollowing lemma.Lemma 2.4. Let α be a 
ountable ordinal. Let P be a poset and Q̇ a
P -name for a poset su
h that P for
es that for every α-tower 〈Mi : i < α〉 of
ountable elementary substru
tures of 〈H(κ),∈, ⊳〉 where κ is a su�
ientlylarge regular 
ardinal , there is no q ∈ Q̇ whi
h is Mi-generi
 for every i < α.Then P ∗ Q̇ is not α-proper.Proof. Suppose that P ∗Q̇ is α-proper. Let κ be a su�
iently large regular
ardinal and λ be a regular 
ardinal with λ > 22κ . Let 〈Mi : i < α〉 be an
α-tower of 
ountable elementary substru
tures of 〈H(λ),∈, ⊳, κ〉 with P ∗ Q̇

∈ M0. By assumption, there exists a 〈p, q̇〉 ∈ P ∗ Q̇ whi
h is Mi-generi
 forevery i < α. Let G ⊆ P be generi
 with p ∈ G. Work in V [G]. Let q be theinterpretation of q̇. Let Ni = Mi[G] ∩ H(κ) for every i < α. Then for every
i < α, 〈Nj : j ≤ i〉 ∈ Mi+1[G] ∩ H(κ) = Ni+1. Therefore, 〈Ni : i < α〉 is an
α-tower. It is easy to see that ea
h Ni is a 
ountable elementary substru
tureof 〈H(κ),∈, ⊳〉. Moreover, sin
e 〈p, q̇〉 is Mi-generi
 for every i < α, q is
Ni-generi
 for every i < α. This 
ontradi
ts the assumption. Therefore,
P ∗ Q̇ is not α-proper.It is known that a 
ountable support iteration of α-proper posets is α-proper. Using these fa
ts, we 
an prove Theorem A.Theorem A. If α is a 
ountable inde
omposable ordinal , then there ex-ists a poset whi
h is <α-proper but not α-proper.Proof. Let P be the Levy 
ollapse whi
h 
ollapses 2ℵ0 to ℵ1. In V P , let
λ be a su�
iently large regular 
ardinal and A = 〈H(λ),∈, ⊳〉. Let Q =
P (ω1, A, α). Then Q is <α-proper by Proposition 2.2. But by Proposition2.3, for every α-tower 〈Mi : i < α〉 of 
ountable elementary substru
tures of
〈H(κ),∈, ⊳〉, there is no q ∈ Q whi
h is Mi-generi
 for every i < α. Let Q̇be a P -name for Q.Sin
e P is <ω1-proper and P for
es that Q̇ is <α-proper, P ∗ Q̇ is <α-proper. However, by Lemma 2.4, P ∗ Q̇ is not α-proper.



32 T. Ishiu3. Destru
tion of 
lub guessing sequen
es. In this se
tion, we shallshow the relationship between α-properness and the preservation of 
lubguessing sequen
es. First of all we shall de�ne a tail 
lub guessing sequen
ewhi
h was investigated in various papers, su
h as [11℄ and [13, ChapterXVIII℄.Definition 3.1. Let ~C = 〈Cγ : γ ∈ S〉 be a sequen
e on a stationarysubset S of ω1 su
h that ea
h Cγ is an unbounded subset of γ. We say that
~C is a tail (resp. fully) 
lub guessing sequen
e on S if and only if for every
lub subset D of ω1, there exists a γ ∈ S su
h that Cγ \ ζ ⊆ D for some
ζ < γ (resp. Cγ ⊆ D).We shall also de�ne semiproperness and α-semiproperness be
ause themethod in this se
tion works for these weaker properties. They were de�nedin [12℄ to handle posets whi
h preserve ℵ1 but add a 
ountable set of ordinalswhi
h is not 
overed by a 
ountable set in the ground model.Definition 3.2. Let P be a poset. For a set M and p ∈ P , we saythat p is M -semigeneri
 if for every P -name for a 
ountable ordinal ξ̇ ∈ M ,
p 
 ξ̇ ∈ M .A poset P is semiproper if for every large enough regular 
ardinal λand every 
ountable elementary substru
ture M ≺ 〈H(λ),∈, ⊳〉, whenever
P ∈ M and p ∈ M ∩ P , there exists a q ≤ p su
h that q is M -semigeneri
.Let α be a 
ountable ordinal. P is said to be α-semiproper if for everylarge enough regular 
ardinal λ and every α-tower 〈Mi : i < α〉 of 
ountableelementary substru
tures of 〈H(λ),∈, ⊳〉, whenever P ∈ M0 and p ∈ M0∩P ,there exists a q ≤ p su
h that q is Mi-semigeneri
 for all i < α.Trivially every (α-)proper poset is (α-)semiproper. Shelah [12℄ showedthat it is 
onsistent that Namba for
ing is a semiproper poset whi
h is notproper.The following lemma is standard.Lemma 3.3. Let P be a poset and M a 
ountable elementary substru
tureof 〈H(λ),∈, ⊳〉 with P ∈ M for some su�
iently large regular 
ardinal λ.Suppose that p ∈ P is M -semigeneri
 and Ḋ ∈ M is a P -name for a 
lub.Then p 
 M ∩ ω1 ∈ Ḋ.Proof. Let δ = M ∩ ω1. It su�
es to show that p 
 �Ḋ ∩ δ is unboundedin δ�. Let ζ < δ. Sin
e Ḋ is a P -name for a 
lub, we have 
 Ḋ \ ζ 6= ∅. Let α̇be a P -name su
h that 
 α̇ ∈ Ḋ \ ζ. Sin
e M is an elementary substru
tureof 〈H(λ),∈, ⊳〉, we 
an assume α̇ ∈ M . Sin
e p is M -semigeneri
, we have
p 
 α̇ ∈ M ∩ ω1 = δ. Hen
e, p 
 �ζ ≤ α̇ < δ and α̇ ∈ Ḋ�. Thus, p 
 �Ḋ ∩ δis unbounded in δ�.
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ts about the preservation of 
lub guessing se-quen
es. For the proof, see [7℄.Fa
t 3.4. (i) Every <ω1-semiproper poset preserves all fully 
lub guess-ing sequen
es.(ii) Every ω-semiproper poset preserves every fully 
lub guessing sequen
e
〈Cγ : γ ∈ ω1 ∩ Lim〉 with ot(Cγ) = ω.(iii) Baumgartner's poset to shoot a 
lub with �nite 
onditions destroysall tail 
lub guessing sequen
es in the ground model.The following result extending Fa
t 3.4(ii) was mentioned by Shelahin [13℄. We give the proof for the reader's 
onvenien
e.Proposition 3.5 (Shelah). Let α be a 
ountable inde
omposable ordinaland P an α-semiproper poset. Let 〈Cγ : γ ∈ S〉 be a fully 
lub guessingsequen
e on a stationary subset S of ω1 su
h that Cγ is 
losed and ot(Cγ) ≤ αfor every γ ∈ S. Suppose also that for every ξ < ω1, |{Cγ ∩ ξ : γ ∈ S}| = ℵ0.Then P preserves 〈Cγ : γ ∈ S〉.Proof. Let p ∈ P and Ḋ be a name for a 
lub subset of ω1. Let Aξ =

{Cγ ∩ ξ : γ ∈ S} and A = 〈H(λ),∈, ⊳, P, p, Ḋ, 〈Aξ : ξ ∈ S〉〉. Then if γ ∈ Sand ξ ∈ Cγ \ lim(Cγ), then Cγ ∩ ξ ∈ SkA(ξ).We 
an 
onstru
t an ω1-tower 〈Mγ : γ < ω1〉 of 
ountable elementarysubstru
tures of A. Let D̃ = {Mγ ∩ ω1 : γ < ω1}. Clearly D̃ is a 
lub subsetof ω1. Thus there exists a δ < ω1 su
h that Cδ ⊆ D̃. Let {ξi : i < η} be thein
reasing enumeration of Cδ. Then for ea
h i < η, there exists a δi < ω1su
h that Mδi
∩ ω1 = ξi. Note that η = ot(Cδ) ≤ α.We 
laim that 〈Mδi

: i < η〉 is an η-tower of 
ountable elementary sub-stru
tures of A. Let i < η. By de�nition, 〈Mγ : γ ≤ δi〉 ∈ Mδi+1. By theassumption on Cδ, Cδ ∩ ξi+1 ∈ SkA(ξi+1). In parti
ular, {ξj : j ≤ i} =
Cδ ∩ ξi+1 ∈ Mδi+1

. But Mδj
is de�nable from ξj and 〈Mγ : γ ≤ δi〉. Thus

〈Mδj
: j ≤ i〉 ∈ Mδi+1

.Sin
e P is α-semiproper, there exists a q ≤ p su
h that q is Mδi
-semi-generi
 for all i < η. In parti
ular, q 
 ξi ∈ Ḋ for all i < η. By the de�nitionof ξi, it follows that q 
 Cδ ⊆ Ḋ.It was shown in [7℄ that if 〈Cγ : γ ∈ S〉 is a tail 
lub guessing sequen
e,then there exists a ζ < ω1 su
h that 〈Cγ \ ζ : γ ∈ S \ (ζ + 1)〉 is a fully 
lubguessing sequen
e. Thus the previous proposition 
an be easily modi�ed to
over tail 
lub guessing sequen
es.Noti
e that the 
oheren
e 
ondition of the previous proposition is notalways satis�ed. For example, although a ♦-sequen
e is trivially a fully 
lubguessing sequen
e, it does not satisfy the 
ondition. In [17℄, Zapletal 
on-stru
ted a poset whi
h adds a fully 
lub guessing sequen
e and satis�es that
ondition.
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oheren
e 
ondition is ne
essary. But the ordertype restri
tion is: this is witnessed by the poset Shelah introdu
ed in [13℄as well as the poset de�ned in Se
tion 2.Proposition 3.6. Let α < ω1 be an inde
omposable ordinal. Supposethat ~C = 〈Cγ : γ ∈ S〉 is a tail 
lub guessing sequen
e on ω1 su
h that forevery γ ∈ S, iot(Cγ) ≥ α. Then P (ω1, A, α) for
es that ~C is not a tail 
lubguessing sequen
e.Proof. Let P = P (ω1, A, α) and let G ⊆ P be generi
. Let f =
⋃

G andde�ne D to be the set of all limit points of dom(f) less than ω1.We 
laim that D is not guessed by ~C. Suppose otherwise. Let ḟ and Ḋ be
P -names for f and D respe
tively. Then there exist a p ∈ G, a γ ∈ S and a
ζ < γ su
h that p 
 Cγ\ζ ⊆ Ḋ. Let {ξi : i < η} be an in
reasing enumerationof Cγ \ ζ. Sin
e iot(Cγ) ≥ α, we have η ≥ α. Sin
e ot(dom(p)) < α, thereexists an i < η su
h that [ξi, ξi+2)∩dom(p) = ∅. Sin
e p 
 ξi+1 ∈ Ḋ, i.e. ξi+1is a limit point of dom(ḟ), there exists a ν ∈ [ξi, ξi+1) su
h that ν is a domain
andidate of p. By Lemma 2.1, we 
an get q ≤ p su
h that q(ν) = ξi+1. Butthen q 
 �ξi+1 is not a limit point of dom(ḟ)�. This is a 
ontradi
tion.4. The for
ing-theoreti
 equivalen
e of <ω1-properness andAxiom A. In this se
tion, we shall show Theorem B, whi
h asserts thata for
ing notion is des
ribable by a pseudo partially ordered set satisfyingAxiom A if and only if it is <ω1-proper. It determines the strength of AxiomA in terms of for
ing. It is well known that we may adopt a pseudo partiallyordered set as a for
ing notion. We remark that this 
onvention is essentialin our proof. In terms of for
ing, a pseudo partially ordered set 
an be iden-ti�ed as a poset by taking equivalen
e 
lasses. But when we build a for
ingnotion satisfying Axiom A, we may treat 
onditions in the same equivalen
e
lass di�erently. It is not known if we 
an prove this result without using apseudo partial ordering.First of all, let us de�ne Axiom A and uniform Axiom A, whi
h is astronger notion.Definition 4.1. A pseudo partially ordered set P satis�es Axiom A ifthere exists a sequen
e 〈≤n: n < ω〉 of pseudo partial orderings on P su
hthat (i) p ≤0 q implies p ≤ q,(ii) p ≤n+1 q implies p ≤n q for every n < ω,(iii) if 〈pn : n < ω〉 is a sequen
e su
h that pn+1 ≤n pn for all n < ω,then there exists a q ∈ P su
h that q ≤n pn for all n < ω,(iv) for every p ∈ P and n < ω, if α̇ is a P -name for an ordinal, thenthere exist a q ≤n p and a 
ountable set X of ordinals su
h that

q 
 α̇ ∈ X.



α-Properness and Axiom A 35If there exists a sequen
e 〈≤n: n < ω〉 whi
h is 
onstant and witnessesAxiom A, then we say that P satis�es uniform Axiom A. We usually denotethe 
onstant value by ≤∞.It is easy to see that 


 posets and 
ountably 
losed posets satisfy uni-form Axiom A. It is well known that if P satis�es Axiom A, then P is
<ω1-proper, whi
h 
an be easily shown by indu
tion.We need the following natural extension of the games whi
h 
hara
terizeproperness properties.Definition 4.2. Let P be a (pseudo) partially ordered set and p ∈ P .We shall de�ne a game Pa<ω1

l (P, p) for ea
h l = 0, 1 or 2. In ea
h game,players play in the same way as in Paα
l (P, p) of length ω1. Player II winsif and only if at every limit stage α < ω1, the sequen
e satis�es player II'swinning 
ondition in Paα

l (P, p).In order to prove Theorem B, we shall show the following stronger theo-rem.Theorem 4.3. For every poset P , the following are equivalent :(i) P is <ω1-proper.(ii) Player II has a winning strategy in Pa<ω1

0
(P, p) for every p ∈ P .(iii) Player II has a winning strategy in Pa<ω1

2
(P, p) for every p ∈ P .(iv) Player II has a winning strategy in Pa<ω1

1
(P, p) for every p ∈ P .(v) There exists a pseudo partially ordered set Q whi
h 
an be denselyembedded in P and satis�es uniform Axiom A.(vi) There exists a pseudo partially ordered set Q whi
h 
an be denselyembedded in P and satis�es Axiom A.Proof. Let P be a poset and �x a large regular 
ardinal λ. De�ne A =

〈H(λ),∈, ⊳〉.First we shall show (i)⇒(ii). Let n 7→ (kn, ln) be a bije
tion from ωonto ω × ω with kn ≤ n. Suppose that P is <ω1-proper. Let p ∈ P .We shall des
ribe a winning strategy for player II. We also de�ne an in-
reasing 
ontinuous sequen
e 〈Mβ : β < ω1〉 of 
ountable elementary sub-stru
tures of H(λ) su
h that 〈Mγ : γ ≤ β〉 ∈ Mβ+1. Let M0 = SkA({p}). Atstage β, suppose that player I plays α̇β. Let Mβ+1 = SkA({p, 〈Mγ : γ ≤ β〉,
〈α̇γ : γ ≤β〉}). Then 
learly 〈Mγ : γ ≤ β〉 ∈ Mβ+1 and Mβ+1 is 
ountable.Let {ξβ+1

i : i < ω} enumerate Mβ+1∩ON and let player II play ζβ = ξδ+kn+1

lnwhere a limit ordinal δ and n < ω are su
h that β = δ + n.If β is a non-zero limit ordinal, let Mβ =
⋃

γ<β Mγ . We shall show thatplayer II does not lose at this point. Sin
e P is <ω1-proper, there exists a
q ≤ p whi
h is Mγ-generi
 for all γ ≤ β. Let γ < β. Write γ = δ+k where δ isa limit ordinal and k < ω. Sin
e q is Mγ+1-generi
 and α̇γ ∈ Mγ+1 as a name,
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q 
 α̇γ ∈ Mγ+1. But Mγ+1 ∩ ON = {ξγ+1

l : l < ω} = {ξδ+kn+1

ln
: n < ω and

kn = k} ⊆ {ζi : γ ≤ i < γ + ω}. Therefore q 
 α̇γ = ζγ+n for some n < ω.If player II follows this strategy, he wins the game, be
ause he does not loseat any stage. Thus this is a winning strategy.For (ii)⇒(iii), suppose that σ is a winning strategy for player II inPa<ω1

0
(P, p), i.e. σ is a fun
tion from the set of all sequen
es of P -namesfor ordinals of 
ountable length into the set of ordinals su
h that when

〈α̇γ : γ < ω1〉 is a sequen
e of moves of player I and player II plays
σ(〈α̇i : i ≤ γ〉) at ea
h stage γ, then player II wins. We shall des
ribea winning strategy for player II in Pa<ω1

2
(P, p). At stage β, suppose thatplayer I 
hooses Ẋβ. Then there exists a 
ountable set {η̇β

n : n < ω} of
P -names for ordinals su
h that 
P Ẋβ = {η̇β

n : n < ω}. De�ne ξ̇ωβ+n = η̇
β
nfor all n < ω. Let Yβ = {σ(〈ξ̇i : i ≤ ωβ + n〉) : n < ω}.We need to show that it is a winning strategy. Let δ < ω1 be a limit ordi-nal. Sin
e σ is a winning strategy, there exists a q ≤ p su
h that q 
 �for all

β < δ, there exists an n < ω su
h that ξ̇β = σ(〈ξ̇i : i ≤ β+n〉)�. But then q 
�Ẋβ = {η̇β
n : n < ω} = {ξ̇ωβ+n : n < ω} ⊆ {σ(〈ξ̇i : i ≤ ωβ + m〉) : m < ω}

= Yβ�.(iii)⇒(iv) is trivial.(iv)⇒(v) is proved in the author's master thesis. We present it for thereader's 
onvenien
e. Suppose that player II has a winning strategy σp inPa<ω1

1
(P, p) for every p ∈ P . Let B(P ) be the Boolean 
ompletion of P , i.e.

B(P ) is a 
omplete Boolean algebra whi
h has a dense subset D isomorphi
to a dense subset of P . Let Q be de�ned by: q ∈ Q if and only if q is of theform 〈p, 〈α̇i : i < η〉〉 where p ∈ P , η < ω1 and α̇i is a P -name for an ordinalfor every i < η. De�ne τ : Q → B(P ) by τ(〈p, 〈α̇i : i < η〉〉) =
∧

i<η[[α̇i ∈
σ(p, 〈α̇j : j ≤ i〉)]]. Here we identify ea
h α̇i as a B(P )-name in an obviousway and [[ϕ]] denotes the truth value of ϕ. Note that sin
e σ is a winningstrategy, τ(q) > 0 for every q ∈ Q. De�ne q ≤ q′ if and only if τ(q) ≤ τ(q′).Then τ(〈p, 〈α̇i : i < η〉〉) ≤ p for every 〈p, 〈α̇i : i < η〉〉 ∈ Q. In parti
ular, τ isa dense embedding. For every q = 〈p, 〈α̇i : i < η〉〉 and q′ = 〈p′, 〈α̇′

i : i < η′〉〉,we de�ne q ≤∞ q′ if and only if p = p′, η ≥ η′ and α̇i = α̇′

i for all i < η′. Then
(Q,≤∞) is 
learly 
ountably 
losed. Suppose that A is a maximal anti
hain of
Q and q = 〈p, 〈α̇i : i < η〉〉 ∈ Q. We need to show that there exist a q′ ≤∞ qsu
h that |{a ∈ A : a and q′ are 
ompatible}| ≤ ℵ0. Let A = {aγ : γ < |A|}be an enumeration. Sin
e τ is a dense embedding, {τ(aγ) : γ < |A|} is amaximal anti
hain. De�ne a P -name α̇η so that τ(aγ) 
 α̇η = γ for every
γ < |A|. Let q′ = 〈p, 〈α̇i : i ≤ η〉〉. Then τ(q′) 
 α̇η ∈ σ(〈p, 〈α̇j : j ≤ η〉〉).Let Y = {aγ : γ ∈ σ(〈p, 〈α̇j : j ≤ η〉〉)}. If q′′ is a 
ommon extension of q′and aγ , then q′′ 
 γ = α̇η ∈ σ(〈p, 〈α̇j : j ≤ η〉〉). Thus aγ ∈ Y . This impliesthat |{aγ : aγ and q′ are 
ompatible}| ≤ |Y | = ℵ0.



α-Properness and Axiom A 37(v)⇒(vi) is again trivial. (vi)⇒(i) has already been remarked.In [10℄, Miyamoto proposed a generalization of Axiom A, named Ax-iom C. Sin
e he showed that Axiom A implies Axiom C and Axiom C implies
<ω1-properness in the same paper, the previous theorem shows that everypseudo partially ordered set satisfying Axiom C is equivalent to a pseudopartially ordered set satisfying Axiom A.

Referen
es[1℄ U. Abraham, Proper for
ing , in: Handbook of Set Theory, to appear.[2℄ U. Abraham and S. Shelah, For
ing 
losed unbounded sets, J. Symboli
 Logi
 48(1983), 643�657.[3℄ J. E. Baumgartner, Iterated for
ing , in: Surveys in Set Theory, London Math. So
.Le
ture Note Ser. 87, Cambridge Univ. Press, Cambridge, 1983, 1�59.[4℄ M. Foreman, Games played on Boolean algebras, J. Symboli
 Logi
 48 (1983), 714�723.[5℄ C. Gray, Iterated for
ing from the strategi
 point of view , PhD thesis, Univ. ofCalifornia, Berkeley, 1980.[6℄ F. Hernández-Hernández and T. Ishiu, A perfe
tly normal nonreal
ompa
t spa
e
onsistent with MAℵ1
, Topology Appl. 143 (2004), 175�188.[7℄ T. Ishiu, Club guessing sequen
es and �lters, J. Symboli
 Logi
, to appear.[8℄ T. Je
h, A game theoreti
 property of Boolean algebras, in: Logi
 Colloquium '77(Wro
ªaw, 1977), Stud. Logi
 Found. Math. 96, North-Holland, Amsterdam, 1978,135�144.[9℄ �, More game-theoreti
 properties of Boolean algebras, Ann. Pure Appl. Logi
 26(1984), 11�29.[10℄ T. Miyamoto, A generalization of Axiom A, J. Math. So
. Japan 42 (1990), 65�72.[11℄ P. J. Nyikos, A topologi
al test spa
e for many set-theoreti
al axioms, Russian Math.Surveys 38 (1983), 99�106.[12℄ S. Shelah, Proper For
ing , Le
ture Notes in Math. 940, Springer, Berlin, 1982.[13℄ �, Proper and Improper For
ing , 2nd ed., Perspe
tives in Math. Logi
, Springer,Berlin, 1998.[14℄ B. Veli£kovi¢, Playful Boolean algebras, Trans. Amer. Math. So
. 296 (1986), 727�740.[15℄ P. Vojtá², Game properties of Boolean algebras, Comment. Math. Univ. Carolin. 24(1983), 349�369.[16℄ J. Zapletal, More on the 
ut and 
hoose game, Ann. Pure Appl. Logi
 76 (1995),291�301.[17℄ �, Trans�nite open-point games, Topology Appl. 111 (2001), 289�297.Department of Mathemati
sUniversity of Kansas405 Snow Hall, 1460 Jayhawk Blvd.Lawren
e, KS 66045, U.S.A.E-mail: ishiu�math.ku.edu Re
eived 4 July 2004;in revised form 17 Mar
h 2005


