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A counterexample concerning products in the shape category

by

J. Dydak (Knoxville) and S. Mardešić (Zagreb)

Abstract. We exhibit a metric continuum X and a polyhedron P such that the
Cartesian product X × P fails to be the product of X and P in the shape category of
topological spaces.

1. Introduction. In every category C the product of two objects X
and Y is defined as the triple consisting of an object X × Y and two
morphisms πX : X × Y → X and πY : X × Y → Y having the follow-
ing universal property. For an arbitrary object Z and arbitrary morphisms
f : Z → X and g : Z → Y there is a unique morphism h : Z → X × Y
such that πXh = f and πY h = g. If a product exists, it is unique up to
natural isomorphism. It is well known that in the category Top of topologi-
cal spaces and continuous mappings the products exist and are represented
by the Cartesian product X × Y . More precisely, the product consists of
the space X × Y = {(x, y) | x ∈ X, y ∈ Y } and of the canonical projec-
tions πX : X × Y → X and πY : X × Y → Y , given by πX(x, y) = x and
πY (x, y) = y. Similarly, the Cartesian product X × Y and the homotopy
classes [πX ] : X × Y → X and [πY ] : X × Y → Y of the canonical pro-
jections πX and πY form a product in the homotopy category H(Top) of
topological spaces and homotopy classes of mappings. Since shape theory
is a modification of homotopy theory, it is natural to ask whether products
exist in the category Sh(Top) of topological spaces and shape morphisms.
In particular, one can ask whether the Cartesian product X × Y of two
spaces X and Y is a product in the shape category Sh(Top). More pre-
cisely, let S : H(Top) → Sh(Top) denote the shape functor. Does the Carte-
sian product X × Y together with the morphisms S[πX ] : X × Y → X and
S[πY ] : X×Y → Y form a product in Sh(Top)? Equivalently, does the shape
functor S preserve products?
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The answer to the above question is positive when X and Y are poly-
hedra, because shape morphisms into spaces having the homotopy type of
polyhedra reduce to homotopy classes of mappings and thus, the question
reduces to the analogous question in the category H(Top). In 1974 J. E.
Keesling [2] proved that the Cartesian product of two compact Hausdorff
spaces is a product in Sh(Top). In the same paper he also exhibited a separ-
able metric space X such that X×X is not a product in Sh(Top). In a recent
paper S. Mardešić [6] proved that, for arbitrary topological spaces X,Y , the
Cartesian product X×Y is a product in Sh(Top) provided X×P is a prod-
uct in Sh(Top), for all polyhedra P . These facts show the importance of the
following question. Is the Cartesian product X × P of a compact Hausdorff
space X and a polyhedron P a product in the shape category Sh(Top)? In
this paper we give a negative answer by proving the following theorem.

Theorem. The Cartesian product X ×P of the dyadic solenoid X and

the wedge P = P1 ∨ P2 ∨ · · · of a sequence of 1-spheres is not a product in

the shape category of topological spaces Sh(Top).

Since solenoids are not movable, the following problem remains open.

Problem. Is the Cartesian product X × P of a movable compactum X
and a polyhedron P a product in the shape category Sh(Top)?

A positive answer would imply a positive answer to a problem of
Y. Kodama [3], raised in 1977. Kodama asked if a product in Sh(Top) exists
for every movable compactum and every metric space. For information on
movable compacta see [1], [7].

It is easy to show that every shape morphism F : Z → X of a space Z
to the dyadic solenoid X is induced by a mapping f : Z → X, i.e., F = S[f ]
(apply the first two assertions of Lemma 1 below). Since P is a polyhedron,
every shape morphism G : Z → P admits a mapping g : Z → P such that
G = S(g). It follows that the diagonal mapping h = (f, g) : Z → X × P
induces a shape morphism H = S[h] : Z → X × P such that S[πX ]H =
S[πX ]S[h] = S[πXh] = S[f ] = F and analogously, S[πP ]H = G. This means
that the existence part of the universal property defining a product of X and
P is fulfilled. Therefore, to prove the Theorem we need a space Z and two
different shape morphisms H,H ′ : Z → X×P such that S[πX ]H = S[πX ]H ′

and S[πP ]H = S[πP ]H ′.

Actually, we will exhibit two mappings h, h′ : P → X × P such that

S[πX ]S[h] = S[πX ]S[h′],(1)

S[πP ]S[h] = S[πP ]S[h′],(2)

S[h] 6= S[h′].(3)
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2. The dyadic solenoid. Let S1 = {ζ = e2πit | 0 ≤ t ≤ 1} denote the
unit circle in the complex plane and let p : S1 → S1 be the mapping given
by p(ζ) = ζ2, ζ ∈ S1. Let X = (Xi, pii′ ,N), where Xi = S1, pii′ = pi′−i,
i ≤ i′, and N = {1, 2, . . .}. Then X is an inverse sequence whose limit space
X = limX is the dyadic solenoid and the canonical projections pi : X → Xi

map ξ = (ξ1, ξ2, . . .) ∈ X to ξi, i ∈ N. For completeness of exposition we
prove the following elementary lemma.

Lemma 1. Let Z be a topological space and let fi : Z → Xi, i ∈ N, be

mappings such that fi−1 ≃ pi−1 ifi. Then there exist mappings f ′i : Z → Xi

such that fi ≃ f ′i and f ′i−1 = pi−1 if
′

i . The unique mapping f ′ : Z → X =
limX such that f ′i = pif

′, i ∈ N, has the property that fi ≃ pif
′, i ∈ N. If

Z0 is a subset of Z and fi−1 ≃ pi−1 ifi (relZ0), then one can achieve that

fi ≃ f ′i (relZ0).

Proof. We construct the mappings f ′i by induction on i. Put f ′1 = f1. If
we have already constructed f ′i−1 : Z → Xi−1, then pi−1 ifi ≃ fi−1 ≃ f ′i−1.
Since pi−1 i = p is a covering mapping, we can lift the homotopy Hi−1 : Z×I
→ Xi−1 realizing pi−1 ifi ≃ f ′i−1 to a homotopy Hi : Z×I → Xi whose initial
stage is fi. Then its terminal stage is a mapping f ′i : Z → Xi such that fi ≃ f ′i
and pi−1 if

′

i = f ′i−1. If pi−1 ifi ≃ fi−1 (relZ0) and fi−1 ≃ f ′i−1 (relZ0), then
one can assume that Hi−1 is a homotopy relZ0. Since the fibers of pi−1 i are
discrete, the lift Hi of Hi−1 will also be a homotopy relZ0.

3. The mappings h and h′. Let P =
∨

∞

i=1 Pi be the wedge of a
sequence of copies of 1-spheres Pi = S1, obtained from the coproduct

⊔
∞

i=1 Pi

by identifying all the base points 1 ∈ S1 in the various summands Pi to a
single base point ∗ of P .

For any fixed point x ∈ X, we define hx : P → X × P by putting

(4) hx(t) = (x, t), t ∈ P.

Lemma 2. For an arbitrary choice of points x, x′ ∈ X, the mappings

h = hx, h′ = hx′

satisfy conditions (1) and (2).

Proof. SinceX is a continuum, any two constant mappings intoX induce
the same shape morphism. In particular, for x, x′ ∈ X, S[x] = S[x′]. Further-
more, for t ∈ P , πXh

x(t) = πX(x, t) = x and πXh
x′

(t) = πX(x′, t) = x′. Con-

sequently, S[πX ]S[hx] = S[πXh
x] = S[x] = S[x′] = S[πXh

x′

] = S[πX ]S[hx′

]
so that h and h′ satisfy condition (1). Furthermore, πPh

x(t) = πP (x, t) = t,
i.e., πPh

x is the identity mapping 1P : P → P . Analogously, πPh
x′

= 1P so
that h and h′ also satisfy condition (2).

The Theorem is an immediate consequence of Lemma 2 and the following
Lemma 3.
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Lemma 3. There exist points x, x′ ∈ X such that h = hx, h′ = hx′

satisfy

condition (3).

To prove Lemma 3, it suffices to exhibit points x, x′ ∈ X, a CW-complex
Q and a mapping q : X × P → Q such that the mappings qhx and qhx′

are
not homotopic. Indeed, in that case we cannot have S[hx] = S[hx′

], because
this would imply S[qhx] = S[q]S[hx] = S[q]S[hx′

] = S[qhx′

]. However, since
Q has the homotopy type of a polyhedron, S[qhx] = S[qhx′

] would imply
qhx ≃ qhx′

, which contradicts the assumption.

4. The CW -complex Q and the mapping q : X ×P → Q. Consider
the space

(5) Q̃ = (X1 × ∗) ⊔
∞⊔

i=1

(Xi × Pi)

and consider the equivalence relation ∼ on Q̃ generated by the requirement
that

(6) (p1i(ζ), ∗) ∼ (ζ, ∗), ζ ∈ Xi, i ∈ N.

Note that (pii′(ζ), ∗) ∼ (ζ, ∗) for i < i′ and ζ ∈ Xi′ . This is so because

(pii′(ζ), ∗) ∼ (p1ipii′(ζ), ∗) = (p1i′(ζ), ∗) ∼ (ζ, ∗). Put Q = Q̃/∼ and let

φ : Q̃→ Q be the corresponding quotient mapping. Note that for (ζ, ∗), (ζ ′, ∗)
∈ X1 × ∗ one has (ζ, ∗) ∼ (ζ ′, ∗) if and only if ζ = ζ ′. Therefore, X1 × ∗ can
be identified with φ(X1 × ∗) and can be viewed as a subspace of Q.

In order to define q, we first define mappings qi : X × Pi → Q, i ∈ N, by
putting

(7) qi(ξ, t) = φ(pi(ξ), t), ξ ∈ X, t ∈ Pi, i ∈ N.

Note that, for ξ = (ξ1, ξ2, . . .) ∈ X and the base point ∗ ∈ Pi, (7) yields the
value

(8) qi(ξ, ∗) = φ(pi(ξ), ∗) = φ(p1ipi(ξ), ∗) = φ(p1(ξ), ∗) = (ξ1, ∗) ∈ X1 × ∗.

Since this value does not depend on i, there is a well-defined mapping
q : X × P → Q such that q|X × Pi = qi, i ∈ N.

It is now clear that to prove Lemma 3, we only need to prove that Q
is a CW-complex (this will be accomplished in Lemma 10) and that the
following lemma holds.

Lemma 4. There exist points x, x′ ∈ X such that , for the above described

mapping q : X × P → Q,

(9) qhx 6≃ qhx′

.

Remark 1. The space Q and the mapping q were suggested by the stan-
dard HPol-resolution for the general case of a product X × P of a compact
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Hausdorff space and a polyhedron (see [5]). (For information on resolutions
see [7] or [4].)

5. Points x, x′ and paths ui and ci. Let i = (i0 = 0 < i1 < · · · <
ik < · · · ) be a sequence of integers and let x = (x1, x2, . . .) be an arbitrary
point in X. We will associate with i and x a point x′ = (x′1, x

′

2, . . .) ∈ X.
We first construct a sequence of paths ui : I = [0, 1] → Xi with initial points
xi = ui(0). Then we define x′i to be the terminal points of these paths,
x′i = ui(1). To describe the paths ui we also need some loops ai : I → Xi in
Xi, based at xi. By definition,

(10) ai(t) = xie
2πit, t ∈ I.

The paths ui are completely determined by the next lemma.

Lemma 5. Let u1 : I → X1 be an arbitrary path in X1 whose initial

point is u1(0) = x1. Then there exists a unique sequence of paths ui in Xi

beginning at ui(0) = xi, i ∈ N, and having the following properties:

(i) For i 6= ik + 1, k ∈ N, the path ui is a lift of the path ui−1 with

respect to the mapping pi−1 i = p : Xi → Xi−1, i.e., pui = ui−1;

(ii) For i = ik+1, k ∈ N, ui is a lift of the concatenation of paths aik ·uik .

The terminal points x′i = ui(1), i ∈ N, form a point x′ ∈ X.

Recall that the concatenation η1·η2 of two paths is defined by the formula

(11) (η1 · η2)(t) =

{
η1(2t), 0 ≤ t ≤ 1/2,

η2(2t− 1), 1/2 ≤ t ≤ 1.

By definition, η1 · η2 · · · ηn = (η1 · η2 · · · ηn−1) · ηn. It is well known that
concatenation of paths is associative up to homotopy rel ∂I. Every path η
determines its reversed path η−1. By definition, η−1(t) = η(1− t). It is well
known that η · η−1 ≃ η(0) and η−1 · η ≃ η(1).

Proof of Lemma 5. Since p : S1 → S1 is a covering mapping, the initial
point xi and the path ui−1 completely determine the path ui. If i 6= ik + 1,
then p(x′i) = (pui)(1) = ui−1(1) = x′i−1. If i = ik+1, then p(x′i) = p(x′ik+1) =
(puik+1)(1) = (aik · uik)(1) = uik(1) = ui−1(1) = x′i−1. Therefore, x′ =
(x′1, x

′

2, . . .) ∈ X.

In the proof of Lemma 4 we will impose additional conditions on the
sequence i (see Section 10).

With every path η in Q̃ the mapping φ associates a path φ#(η) in Q
defined by (φ#(η))(t) = (φη)(t), t ∈ I. In particular, since ui × ∗ is a path

in Xi × ∗ ⊆ Q̃ given by (ui × ∗)(t) = (ui(t), ∗), we see that

(12) ci = φ#(ui × ∗), i ∈ N,
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is a path in φ(Xi × ∗) ⊆ X1 × ∗ ⊆ Q. It connects the point φ(ui(0), ∗) =
φ(xi, ∗) = φ(p1i(xi), ∗) = φ(x1, ∗) = (x1, ∗) to the point φ(ui(1), ∗) =
φ(x′i, ∗) = (x′1, ∗).

In the next lemma we will give explicit formulae determining ci up to
homotopy of paths, i.e., homotopy rel ∂I. To be able to write the formulae
in a concise way, we associate with every sequence i = (i0 = 0 < i1 < · · · <
ik < · · · ) of integers an integral-valued function m whose domain consists
of the integers i ≥ i1 + 1. By definition,

(13) m(i) = 2i1−1 + 2i2−1 + · · · + 2ik−1, ik + 1 ≤ i ≤ ik+1, k ∈ N.

Lemma 6.

(14)
ci = c1, 1 ≤ i ≤ i1,

ci ≃ (a
m(i)
1 × ∗) · c1, i1 + 1 ≤ i.

Proof. It suffices to prove the following two formulae:

ci = ci−1, ik + 1 < i ≤ ik+1, k ∈ {0, 1, . . .},(15)

cik+1 ≃ (a2ik−1

1 × ∗) · cik , k ∈ N.(16)

Proof of (15):

(17) ci = φ#(ui × ∗) = φ#(pi−1 iui × ∗),

because (ui(ζ), ∗) ∼ (pi−1 iui(ζ), ∗) for ζ ∈ Xi. However, pi−1 i = p and
pui = ui−1 for ik + 1 < i ≤ ik+1 and k ∈ {0, 1, . . .}. Consequently, ci =
φ#(ui−1 × ∗) = ci−1.

Proof of (16): By (12),

(18) cik+1 = φ#(uik+1 × ∗) = φ#(pikik+1uik+1 × ∗).

Since pikik+1 = p and puik+1 = aik · uik , it follows that

cik+1 = φ#(aik · uik × ∗) = φ#((aik × ∗) · (uik × ∗))(19)

= φ#(aik × ∗) · φ#(uik × ∗).

Since by (12), φ#(uik × ∗) = cik , it remains to show that

(20) φ#(aik × ∗) ≃ a2ik−1

1 × ∗.

This is a special case of the formula

(21) φ#(ai × ∗) ≃ a2i−1

1 × ∗,

valid for all i ∈ N. Since

(22) φ#(ai × ∗) = φ(ai × ∗) = φ(p1iai × ∗) = φ(pi−1ai × ∗),

to prove (21), it suffices to show that

(23) pi−1ai ≃ a2i−1

1 ,
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because then

(24) φ(pi−1ai × ∗) ≃ φ(a2i−1

1 × ∗) = a2i−1

1 × ∗.

Formula (23) follows by induction on i, using the formula

(25) pai = a2
i−1.

Indeed, if (23) holds, we see, by (25) for i+ 1, that

(26) piai+1 = pi−1pai+1 = pi−1a2
i = pi−1ai · p

i−1ai ≃ a2i−1

1 · a2i−1

1 ≃ a2i

1 .

To verify (25), note that, for t ∈ I,

(27) pai(t) = p(xie
2πit) = p(xi)p(e

2πit) = xi−1e
4πit.

On the other hand,

(28) (a2
i−1)(t) =

{
ai−1(2t) = xi−1e

4πit, 0 ≤ t ≤ 1/2,

ai−1(2t− 1) = xi−1e
2πi(2t−1), 1/2 ≤ t ≤ 1.

Since e2πi(2t−1) = e4πit, we conclude that also (a2
i−1)(t) = xi−1e

4πit for
t ∈ I.

6. Loops bi and b′i. For every i ∈ N we now define two loops b̃i, b̃
′

i : I →

Xi × Pi ⊆ Q̃ by putting

(29) b̃i(t) = (xi, e
2πit), b̃′i(t) = (x′i, e

2πit).

Note that these loops are based at the points (xi, ∗) and (x′i, ∗), respectively.
Next put

(30) bi = φ#(̃bi), b′i = φ#(̃b′i).

The loop bi is based at φ(xi, ∗) = φ(p1i(xi), ∗) = φ(x1, ∗) = (x1, ∗) and b′i is
based at φ(x′i, ∗) = (x′1, ∗). Recall that ci is a path in Q connecting (x1, ∗)
to (x′1, ∗). Denoting by c−1

i the inverse path of ci, i.e., the path given by
c−1
i (t) = ci(1 − t), we conclude that c−1

i · bi · ci is a well-defined loop in Q,
based at (x′1, ∗). The next lemma plays an important role in the proof of the
Theorem.

Lemma 7. In Q the following homotopy of loops based at (x′1, ∗) holds:

(31) c−1
i · bi · ci ≃ b′i, i ∈ N.

Proof. We first prove the analogous formula in Q̃, which reads as follows:

(32) (u−1
i × ∗) · b̃i · (ui × ∗) ≃ b̃′i, i ∈ N.

Since Xi × Pi ⊆ Q̃, it suffices to exhibit a homotopy Hi : I × I → Xi × Pi

(rel ∂I) which connects the left side of (32) to its right side. Using the
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product structure of Xi × Pi, one readily obtains a homotopy H ′

i : I × I →

Xi×Pi (rel ∂I) connecting the left side of (32) to the concatenation x′i · b̃
′

i ·x
′

i,
where x′i is now viewed as a constant path. Indeed, it suffices to put

(33) H ′

i(s, t) = ((u−1
is × ∗) · b̃is · (uis × ∗))(t),

where u−1
is (t) = ui(1 − t(1 − s)), b̃is(t) = (ui(s), e

2πit) and uis(t) = ui(s +
t(1− s)). It is easy to find a homotopy H ′′

i : I × I → Xi × Pi (rel ∂I) which

connects x′i · b̃
′

i ·x
′

i to b̃′i. Then the concatenation H = H ′ ·H ′′ is a homotopy
which realizes (32).

To obtain (31), it now suffices to apply φ# to (32). Indeed, by (12),
φ#(ui × ∗) = ci. Similarly, φ#(u−1

i × ∗) = c−1
i , because φ(u−1

i (t), ∗) =

φ(ui(1− t), ∗) = (φ#(ui × ∗))(1− t) = ci(1− t) = c−1
i (t). Finally, φ(̃bi) = bi

and φ(̃b′i) = b′i.

7. A consequence of the assumption qhx ≃ qhx′

. The next lemma
shows that the assumption qhx ≃ qhx′

has an important consequence for
the loops bi.

Lemma 8. If for some points x, x′ ∈ X the mappings qhx, qhx′

: P → Q
are homotopic, then there exists a path l : I → Q which connects the points

(x1, ∗) and (x′1, ∗) and is such that , for all i ∈ N,

(34) l−1 · bi · l ≃ b′i.

Proof. Choose a homotopy L : P × I → Q which connects the mappings
qhx and qhx′

. Let l : I → Q be the path in Q given by the restriction of L to
∗ × I, i.e., let l(s) = L(∗, s) for s ∈ I. Note that l connects l(0) = L(∗, 0) =
qhx(∗) = q(x, ∗) = (x1, ∗) and l(1) = L(∗, 1) = qhx′

(∗) = q(x′, ∗) = (x′1, ∗)
and it does not depend on i ∈ N. Denote by ωi : I → Pi ⊆ P the loop given
by the formula

(35) ωi(t) = e2πit, t ∈ I.

Then, by (4), (7), (28) and (29),

(36) qhxωi(t) = q(x, e2πit) = φ(pi(x), e
2πit) = φ(xi, e

2πit) = φ(̃bi(t)) = bi(t)

and thus,

(37) L(ωi(t), 0) = bi(t), t ∈ I.

Analogously,

(38) L(ωi(t), 1) = b′i(t), t ∈ I.

Now consider the product P × I and the path λ : I → P × I given by
the formula λ(s) = (∗, s). Also consider the loops ωi × 0, ωi × 1: I → P × I
for i ∈ N. Let us first note that in Pi × I ⊆ P × I the following homotopy
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of paths holds:

(39) λ−1 · (ωi × 0) · λ ≃ ωi × 1.

To verify (39), consider the homotopy G′

i : I × I → Pi × I (rel ∂I) given by
the formula

(40) G′

i(s, t) = λ−1
s · (ωi × s) · λs,

where λ−1
s (t) = (∗, 1−t(1−s)) and λs(t) = (∗, s+t(1−s)). It readily follows

that G′

i connects the left side of (39) to the concatenation (∗× 1) · (ωi × 1) ·
(∗× 1), where we view ∗× 1 as a constant path. Let G = G′

i ·G
′′

i , where G′′

i

is a homotopy which connects (∗ × 1) · (ωi × 1) · (∗ × 1) to ωi × 1. Then G
is a homotopy which realizes (39).

Now apply the homotopy L to (39). Note that Lλ = l, because Lλ(s) =
L(∗, s) = l(s). Moreover, (37) and (38) show that L(ωi × 0) = bi and
L(ωi × 1) = b′i. Consequently, one obtains the desired formula (34).

In the space Q choose a base point ∗ by putting ∗ = (x1, ∗). Since
a1 × ∗, b1, b2, . . . are loops in Q based at ∗, they determine elements α =
[a1 ×∗], β1 = [b1], β2 = [b2], . . . of the fundamental group π1(Q, ∗). The next
lemma is crucial in our argument.

Lemma 9. Let i = (0 < i1 < · · · < ik < · · ·) be a sequence of integers and

let x, x′ ∈ X be points chosen in accordance with Lemma 5. If qhx ≃ qhx′

,
then there exists an element κ ∈ π1(Q, ∗) such that

(41) (αm(i)κ)βi = βi(α
m(i)κ)

for all i > i1.

Proof. Since both l and c1 are paths in Q from ∗ = (x1, ∗) to (x′1, ∗), it
follows that k = c1 · l

−1 is a well-defined loop in Q based at ∗. Then κ = [k]
is a well-defined element of the fundamental group π1(Q, ∗). Comparing (31)
and (34), we conclude that

(42) c−1
i · bi · ci ≃ l−1 · bi · l

for all i ∈ N. Moreover, for i > i1, (42) and Lemma 6 imply

(43) c−1
1 · (a

m(i)
1 × ∗)−1 · bi · (a

m(i)
1 × ∗) · c1 ≃ l−1 · bi · l.

Since c1 · l
−1 = k, (43) assumes the form

(44) (a
m(i)
1 × ∗) · k · bi ≃ bi · (a

m(i)
1 × ∗) · k.

Passing to homotopy classes, we conclude that κ satisfies (41) for all i > i1.

8. The fundamental group of Q. In this section we will prove the
following lemma.



48 J. Dydak and S. Mardešić

Lemma 10. Q is a connected CW-complex whose fundamental group

π1(Q, ∗) has generators α, β1, β2, . . . and relations

(45) α2i−1

βi = βiα
2i−1

, i ∈ N.

Proof. First note that Q can also be obtained by attaching to the 1-
sphere X1 ×∗ the 2-tori Xi ×Pi, i ∈ N, via the mappings p1i ×∗ : Xi ×∗ →
X1×∗. Next notice that the 2-torus Xi×Pi is obtained by attaching a 2-cell
Di = I × I to the wedge of two 1-spheres

(46) Wi = (Xi × ∗) ∨ (xi × Pi)

via a mapping χi : ∂Di → Wi of the boundary ∂Di = (I × ∂I) ∪ (∂I × I).
The mapping χi is given by the formulae

χi|I × 0 = χi|I × 1 = ai × ∗,(47)

χi|0 × I = χi|1 × I = b̃i.(48)

It is now clear that Q is a connected 2-dimensional CW-complex whose
0-skeleton is the base point ∗, the 1-skeleton is the wedge of 1-spheres

(49) W = (X1 × ∗) ∨
( ∞∨

i=1

φ(xi × Pi)
)
,

and Q is obtained by attaching to W the 2-cells Di, i ∈ N, via the mappings
ψi = φχi : ∂Di → W . Consequently, π1(W, ∗) is a free group whose gen-

erators are the homotopy classes of the loops a1 × ∗, b̃1, b̃2, . . . . The group
π1(Q, ∗) is the quotient of π1(W, ∗) by the normal subgroup generated by
the homotopy classes of the loops

(50) φ((ai×∗)· b̃i ·(ai×∗)−1 · b̃−1
i ) = φ(ai×∗)·φ(̃bi)·(φ(ai×∗))−1 ·(φ(̃bi))

−1.

However, by (21), φ(ai×∗) ≃ a2i−1

1 ×∗ = (a1×∗)2
i−1

and by (30), φ(̃bi) = bi.

Therefore, the homotopy class of the loop (50) equals α2i−1

βi(α
2i−1

)−1β−1
i .

9. Two lemmas from group theory. In the proof of the Theorem
we also need two lemmas on groups.

Lemma 11. Let n ≥ 2 be an integer and let G be the group with two

generators α, β and one relation αnβ = βαn. If for some m ∈ Z the power

αm commutes with β, then m is divisible by n.

Proof. Consider the symmetric group S(n + 1) of all permutations of
the set {0, 1, . . . , n}. Let a be the permutation which keeps the point 0 fixed
and permutes the set {1, . . . , n} cyclically, i.e., a(0) = 0, a(i) = i + 1 for
1 ≤ i ≤ n − 1, and a(n) = 1. Let b be the permutation which keeps n
fixed and permutes {0, . . . , n− 1} cyclically. Clearly, an equals the identity
permutation 1 and therefore,

(51) anb = ban.
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On the other hand,

(52) akb 6= bak, 1 ≤ k ≤ n− 1.

Indeed, ak(0) = 0 and therefore, bak(0) = b(0) = 1. For 1 ≤ k ≤ n − 1,
akb(0) = ak(1) = k + 1 6= 1, which establishes (52).

Now define a homomorphism ϕ of the free group F with basis {α, β} to
S(n + 1) by putting ϕ(α) = a and ϕ(β) = b. Note that (51) implies that
ϕ(αnβα−nβ−1) = anba−nb−1 = 1 and therefore, ϕ induces a homomorphism
φ : G→ S(n+1) with φ(α) = a and φ(β) = b. It is now readily seen that the
elements α, α2, . . . , αn−1 do not commute with β. Indeed, for 1 ≤ k ≤ n−1,
αkβ = βαk would imply akb = bak, contrary to (52). Now assume that
a power αm commutes with β. Note that there are integers l and r such
that m = ln + r and 0 ≤ r ≤ n − 1. Since αln = (αn)l commutes with β,
one concludes that also αr commutes with β. By (52), one cannot have
1 ≤ r ≤ n− 1 and thus, r = 0, i.e., m = ln is divisible by n.

The next lemma generalizes Lemma 11.

Lemma 12. Let n1, n2, . . . be a sequence of integers ≥ 2 and let G be the

group with generators α, β1, β2, . . . and relations αniβi = βiα
ni , i ∈ N. If for

some j ∈ N and some m ∈ Z the power αm commutes with βj , then m is

divisible by nj.

Proof. If F is the free group with basis {α, β1, β2, . . .} and N ⊆ F is the
normal subgroup generated by the elements αniβiα

−niβ−1
i , i ∈ N, then G =

F/N . Let F ′ be the free group with basis {a, b} and let N ′ ⊆ F ′ be the nor-
mal subgroup generated by the element anjba−njb−1. ThenG′ = F ′/N ′ is the
group with generators a, b and with the only relation anjb = banj . Consider
the homomorphism ϕ : F → F ′ determined by putting ϕ(α) = a, ϕ(βj) = b
and ϕ(βi) = 1 for i 6= j. Note that ϕ(αnjβjα

−njβ−1
j ) = anjba−njb−1 and

ϕ(αniβiα
−niβ−1

i ) = ania−ni = 1 for i 6= j and thus, ϕ(N) ⊆ N ′. Therefore,
ϕ induces a homomorphism φ : G → G′ such that φ(α) = a, φ(βj) = b and
φ(βi) = 1 for i 6= j. Applying φ to αmβj = βjα

m, one concludes that am

commutes with b. We now apply Lemma 11 to nj , to the group G′ and to
the power am and we conclude that m is divisible by nj .

10. Proof of Lemma 4. With every sequence i = {0 = i0 < · · · < ik
< · · · } we associate a sequence s of integers sk, k ≥ 2, defined by the formula

(53) sk = 2ik−1 −m(ik) = 2ik−1 − (2i1−1 + 2i2−1 + · · · + 2ik−1−1).

Clearly,

(54) sk+1 − sk = 2ik+1−1 − 2ik = 2ik(2ik+1−ik−1 − 1), k ≥ 2.
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Since ik+1 ≤ ik+1, (53) and (54) imply that 0 < s2 < · · · < sk < sk+1 < · · · ,
i.e., s is a strictly increasing sequence. Moreover, if for some k ≥ 2,

(55) ik + 2 ≤ ik+1,

then (54) implies that

(56) sk+1 > sk+1 − sk ≥ 2ik ≥ 2k.

Lemma 13. Let i = {0 = i0 < · · · < ik < · · · } be a sequence of integers

such that (55) holds for infinitely many integers k ≥ 2. Then, for an arbi-

trary point x ∈ X and for x′ ∈ X determined by i and x as in Lemma 5,
the mappings qhx and qhx′

are not homotopic.

Proof. Assume that qhx ≃ qhx′

. Then Lemma 9 yields an element
κ ∈ π1(Q, ∗) such that (41) holds for all i > i1. By Lemma 10, π1(Q, ∗)
is the quotient group G = F/N , where F is the free group with basis
{α, β1, β2, . . .} and N ⊆ F is the normal subgroup generated by the elements

α2i−1

βiα
−2i−1

β−1
i , i ∈ N. Since the elements α, β1, β2, . . . generate G, κ is a

product of the form κ = γ1γ2 · · · γs, where every γl, 1 ≤ l ≤ s, is either a
power of α or a power of one of the generators βi. There are only finitely
many such βi, hence there is an integer r ≥ 1 such that, for 1 ≤ l ≤ s and
i > r, γl is not a power of βi. Without loss of generality we can assume that
r ≥ i1.

We now consider the group G′ = F ′/N ′, where F ′ is the free group
with basis {a, br+1, br+2, . . .} and N ′ ⊆ F ′ is the normal subgroup gener-

ated by the elements a2i−1

bia
−2i−1

b−1
i , i ≥ r + 1. Let ϕ : F → F ′ be the

homomorphism determined by putting ϕ(α) = a, ϕ(βi) = 1 for 1 ≤ i ≤ r,

and φ(βi) = bi for i ≥ r + 1. Note that ϕ(α2i−1

βiα
−2i−1

β−1
i ) = 1 ∈ N ′ for

1 ≤ i ≤ r, and ϕ(α2i−1

βiα
−2i−1

β−1
i ) = a2i−1

bia
−2i−1

b−1
i ∈ N ′ for i ≥ r + 1,

and thus, ϕ(N) ⊆ N ′. Consequently, ϕ induces a homomorphism φ : G→ G′

such that φ(α) = a, φ(βi) = 1 for 1 ≤ i ≤ r, and φ(βi) = bi for i ≥ r + 1.
Putting φ(κ) = c and applying φ to (41) for i ≥ r+ 1, we conclude that c is
an element of G′ such that

(57) (am(i)c)bi = bi(a
m(i)c), i ≥ r + 1.

Now note that c = φ(γ1) · · ·φ(γs). If for some l, 1 ≤ l ≤ s, γl is a power
of α, say, γl = αn, then φ(γl) = an is a power of a. If γl is a power of βi, then
i ≤ r and thus φ(γl) = 1. Consequently, c ∈ G′ is a power of a, say c = aM ,
and thus, am(i)c = am(i)+M is also a power of a. Moreover, by (57), for any
j ≥ r+1, am(j)+M commutes with bj . This enables us to apply Lemma 12 to
the sequence of integers 2i−1, i ≥ r+1, to the group G′ with generators a, bi
and relations a2i−1

bia
−2i−1

b−1
i for i ≥ r + 1, and to the element am(j)+M .

We conclude that, for j ≥ r + 1, m(j) +M is divisible by 2j−1.
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Now choose an integer k0 so large that, for k ≥ k0, ik ≥ r+1. Then, if we
put j = ik, the above assertion shows that there is an integer nk such that

(58) m(ik) +M = nk2
ik−1, k ≥ k0.

Let us first show that there is an integer k1 ≥ max{3, k0} such that k ≥ k1

implies nk ≥ 1. Indeed, if nk ≤ 0, then −M = m(ik) − nk2
ik−1 ≥ m(ik).

However, by (13),

(59) m(ik) = 2i1−1 + 2i2−1 + · · · + 2ik−1−1, k ≥ 2,

and therefore, k ≥ 3 impliesm(ik) ≥ 2k−3. One cannot have infinitely many
k ≥ max{3, k0} such that nk ≤ 0, because that would imply that there are
infinitely many k such that −M ≥ 2k − 3, which is obviously false. Conse-
quently, there is an integer k1 having the desired properties. Now assume
that k + 1 ≥ k1 and thus, nk+1 ≥ 1. Then, by (58) for k + 1,

(60) M = nk+12
ik+1−1 −m(ik+1) ≥ 2ik+1−1 −m(ik+1) = sk+1.

However, by (56), for infinitely many k, one has sk+1 > 2k and thus,M > 2k,
which is obviously false.

Proof of Lemma 4. Choose a sequence i = {0 = i0 < . . . < ik < . . .}
such that (55) holds for infinitely many k ≥ 2. Choose an arbitrary point
x ∈ X and determine x′ ∈ X by i and x as in Lemma 5. Then Lemma 13
shows that the mappings qhx and qhx′

are not homotopic. This completes
the proofs of Lemma 4 and of the Theorem.

We will now state and prove a sharper version of Lemma 3.

Proposition 1. If two points x, x′ ∈ X belong to the same path compo-

nent of X, then hx ≃ hx′

and thus, S[hx] = S[hx′

]. Conversely , if S[hx] =
S[hx′

], then x, x′ belong to the same path component of X.

Proof. First assume that x and x′ belong to the same path component
of X. Choose a path ϕ : I → X which connects x to x′. Then the for-
mula φ(t, s) = (ϕ(s), t) defines a homotopy φ : P × I → X × P such that
φ(t, 0) = (ϕ(0), t) = (x, t) = hx(t) and φ(t, 1) = (ϕ(1), t) = (x′, t) = hx′

(t).
Consequently, hx ≃ hx′

and thus, S[hx] = S[hx′

].

Now assume that S[hx] = S[hx′

]. We first construct, by induction on
i ≥ 1, a sequence of paths ui in Xi which begin at xi and end at x′i. For u1

we choose an arbitrary path in X1 which connects x1 and x′1. Assume that
we have already constructed the path ui in Xi, i ≥ 1. Consider the lifts of
ui and ai · ui with respect to the mapping pi i+1 = p : Xi+1 → Xi, having
xi+1 for its initial point. Clearly, either the first or the second of the lifted
paths must have x′i+1 for its terminal point. Let that path be ui+1.

If there are only finitely many integers i ≥ 1 for which the second case
occurs, then there is an i0 ∈ N such that, for i ≥ i0, ui+1 is the lift of ui,
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i.e., pui+1 = ui. In this case the paths ui : I → Xi, i ≥ i0, determine a
path u : I → X such that piu = ui. Since piu(0) = ui(0) = xi = pi(x), we
conclude that u(0) = x. Analogously, u(1) = x′ and we see that the points
x, x′ are connected by the path u. Hence, they belong to the same path
component.

Now consider the case where the integers i ≥ 1 for which ui+1 lifts ai ·ui

form a sequence i1 < · · · < ik < · · · . Since uik+1 is a lift of aik · uik , we see
that the sequence i = {0 = i0 < i1 < · · · < ik < · · · } of integers and the
points x, x′ have all the properties stated in Lemma 5. We claim that there
are only finitely many integers k ≥ 1 for which condition (55) holds. Indeed,
in the opposite case, Lemma 13 would imply that qhx 6≃ qhx′

and thus,
S[hx] 6= S[hx′

], which contradicts the present assumption. Consequently,
there is an integer k0 ≥ 1 such that for all k ≥ k0, ik + 1 = ik+1 and the
sequence i is of the form i = {0 < i1 < · · · < ik0

< ik0
+ 1 < ik0

+ 2 < · · · },
i.e., starting from the term ik0

, it consists of consecutive integers. Therefore,
for i ≥ ik0

, pui+1 = ai ·ui. To complete the proof it now suffices to construct
a sequence of paths vi in Xi, i ≥ ik0

, such that vi connects x′i and xi and vi+1

is a lift of vi, i.e., pvi+1 = vi. Indeed, such a sequence of paths determines
a unique path v : I → X = limX such that piv = vi, i ≥ ik0

, and the
endpoints of v are x′ and x. Hence, x, x′ again belong to the same path
component of X.

To define the paths vi consider the fundamental groupoid π(X) of X. Let
wi be a representative of the homotopy class [ui]

−1[ai] ∈ π(X). Then wi(0) =
x′i, wi(1) = xi and [ui][wi] = [ai]. Therefore, for i ≥ ik0

, [ai]([ui][pwi+1]) =
([ai][ui])[pwi+1] = [pui+1][pwi+1] = [p(ui+1 · wi+1)] = [pai+1] = [ai · ai] =
[ai][ai]. Consequently, [ui][pwi+1] = [ai] = [ui][wi]. However, this implies
that [pwi+1] = [wi], i.e., pwi+1 ≃ wi (rel ∂I). Applying Lemma 1, we
see that there exist paths vi : I → X such that pvi+1 = vi and vi ≃ wi

(rel ∂I). However, the latter relation implies that vi(0) = wi(0) = x′i,
vi(1) = wi(1) = xi.

Remark 2. The restrictions of qhx and qhx′

to the wedge P r = P1 ∨
· · · ∨Pr of finitely many summands Pi are homotopic. This is so because P r

is compact and therefore, the compact subsets hx(X×P r) and hx′

(X×P r)
of X × P must be contained in a product of the form X × P r′ for some
r′ ∈ N. Since X and P r′ are compact, X × P r′ is a product in the category
Sh(Top). It follows that conditions (1) and (2), for the restrictions hx|P r and
hx′

|P r, imply S[hx|P r] = S[hx′

|P r] and thus, S[qhx|P r] = S[q]S[hx|P r] =
S[q]S[hx′

|P r] = S[qhx′

|P r], which is equivalent to qhx|P r ≃ qhx′

|P r.

In homotopy theory one studies phantom mappings (of the second kind),
i.e., mappings between CW-complexes f : X → Y whose restrictions to all
compact subsets of X are homotopically trivial. A phantom mapping is
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called essential if the mapping is homotopically nontrivial [8]. A generaliza-
tion is the notion of essential phantom pairs of mappings. These are pairs
of nonhomotopic mappings f, g : X → Y whose restrictions to every com-
pact subset of X are homotopic. The above constructed pair of mappings
qhx, qhx′

: P → Q is an example of an essential phantom pair. Phantom pairs
of the first kind (restrictions to all n-skeleta are homotopic) were introduced
in [9].

11. Is X × P a product in the strong shape category?

Question. Is the Cartesian product X × P of the dyadic solenoid X
and the wedge P = P1 ∨P2 ∨ · · · of a sequence of 1-spheres a product in the

strong shape category of topological spaces, SSh(Top)?

The mappings hx, hx′

: P → X ×P cannot be used to prove that X ×P
is not a product in the strong shape category SSh(Top), because of the
following proposition, where S : H(Top) → SSh(Top) denotes the strong
shape functor.

Proposition 2. For arbitrary points x = (x1, x2 . . .), x
′ = (x′1, x

′

2 . . .)
in X the mappings hx, hx′

: P → X × P satisfy the condition

(61) S[πX ]S[hx] = S[πX ]S[hx′

]

if and only if the points x = (x1, x2 . . .) and x′ = (x′1, x
′

2 . . .) belong to the

same path component of X. In that case S[hx] = S[hx′

].

Proof. If x and x′ belong to the same path component of X, then Propo-
sition 1 implies that [hx] = [hx′

] and thus, S[hx] = S[hx′

] and (61) holds.
Conversely, assume that (61) holds and hence, also S[πXh

x] = S[πXh
x′

].
Recall that πXh

x = x and πXh
x′

= x′ are constant mappings x, x′ : P → X.
Composing them with the inclusion ∗ → P , we obtain constant mappings
x, x′ : {∗} → X for which S[x] = S[x′].

Denote by fi, f
′

i : ∗ → Xi the constant mappings fi, f
′

i : {∗} → Xi, where
fi(∗) = xi, fi(∗) = x′i. Since pi−1 i(xi) = xi−1, the mappings fi form a
mapping f = (fi) : ∗ → X. Similarly, the mappings f ′i form a mapping
f ′ = (f ′i) : ∗ → X. The induced coherent mapping C(f) : ∗ → X consists
of the mappings fi0...in : ∗ ×∆n → Xi0 , i0 ≤ i1 ≤ · · · , where fi0...in(∗, t) =
fi0(∗) = xi0 (see [4, §1.4]). By the description of the strong shape functor S in
terms of coherent mappings (see [4, §8.2]), S[x] = S[x′] implies the existence
of a coherent homotopy F = (Fi0...in) : ∗ → X which connects C(f) to C(f ′)
(see [4, §2.1]). In particular, one has mappings Fi0 : ∗ ×I → Xi0 such that,
for i0 ∈ N,

(62) Fi0(∗, 0) = fi0(∗) = xi0 , Fi0(∗, 1) = f ′i0(∗) = x′i0 ,
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and one has mappings Fi0i1 : ∗ ×I ×∆1 → Xi0 such that, for i0 ≤ i1, s ∈ I
and τ ∈ ∆1,

Fi0i1(∗, s, e1) = pi0i1Fi1(∗, s), Fi0i1(∗, s, e0) = Fi0(∗, s),(63)

Fi0i1(∗, 0, τ) = fi0i1(∗, τ) = xi0 , Fi0i1(∗, 1, τ) = f ′i0i1
(∗, τ) = x′i0 .(64)

Formulae (62)–(64) show that ui : I → Xi defined by putting ui(s) =
Fi(∗, s) is a path in Xi which connects the point xi to x′i, while ui−1 i : I × I
→ Xi−1 defined by ui−1 i(s, t) = Fi−1 i(∗, s, (1 − t)e0 + te1) is a homotopy
which connects the path ui−1 to pi−1 iui. Moreover, this homotopy is fixed
for s = 0 and s = 1, i.e., ui−1 ≃ pi−1 iui (rel ∂I). Indeed, ui−1 i(0, t) =
Fi−1 i(∗, 0, (1− t)e0 + te1) = xi0 and ui−1 i(1, t) = Fi−1 i(∗, 1, (1− t)e0 + te1)
= x′i0 . We now apply Lemma 1 to the sequence of paths ui : I → Xi and we
obtain a new sequence of paths vi : I → Xi which connect xi and x′i, and
satisfy pi−1 ivi = vi−1 and ui ≃ vi (rel ∂I). The paths vi determine a unique
path v : I → X such that piv = vi. Moreover, v connects x and x′.
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[7] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[8] C. A. McGibbon, Phantom maps, Chapter 25 of: Handbook of Algebraic Topology,

I. M. James (ed.), Elsevier, Amsterdam, 1995, 1209–1257.
[9] N. Oda and Y. Shitanda, Localization, completion and detecting equivariant maps on

skeletons, Manuscripta Math. 65 (1989), 1–18.

Department of Mathematics
University of Tennessee
Knoxville, TN 37996, U.S.A.
E-mail: dydak@math.utk.edu

Department of Mathematics
University of Zagreb
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