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Point-countable π-bases in first countable

and similar spaces
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Abstract. It is a classical result of Shapirovsky that any compact space of countable
tightness has a point-countable π-base. We look at general spaces with point-countable
π-bases and prove, in particular, that, under the Continuum Hypothesis, any Lindelöf first
countable space has a point-countable π-base. We also analyze when the function space
Cp(X) has a point-countable π-base, giving a criterion for this in terms of the topology of
X when l∗(X) = ω. Dealing with point-countable π-bases makes it possible to show that,
in some models of ZFC, there exists a space X such that Cp(X) is a W -space in the sense
of Gruenhage while there exists no embedding of Cp(X) in a Σ-product of first countable
spaces. This gives a consistent answer to a twenty-years-old problem of Gruenhage.

1. Introduction. Shapirovsky proved in [Sh2] that any compact space
X has a π-base B whose order does not exceed t(X), i.e., every x ∈ X
belongs to at most t(X) elements of B. In particular, any compact space of
countable tightness has a point-countable π-base. At that time this was a
new result even for first countable compact spaces. This deep and beautiful
theorem of Shapirovsky was cited and proved in quite a few major surveys
on general topology as well as in the book [Ju]. Although there are several
pretty polished proofs of this theorem, it remains highly non-trivial and
difficult.

This might be a reason why nowadays, more than twenty years after this
theorem was published, there are no strengthenings of this result. To show
that some strengthenings are still possible we use a very simple modification
of the method of Shapirovsky to prove that, for first countable spaces, the
same theorem is true for some classes wider than the class of compact spaces.
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In particular, under CH, every Lindelöf first countable space has a point-
countable π-base.

We also study when a space Cp(X) has a point-countable π-base, giving
some necessary and some sufficient conditions for this as well as a crterion
in terms of the topology of X for every X all of whose finite powers are
Lindelöf.

It is an open problem whether every first countable space has a point-
countable π-base so it is natural to look at wider classes of spaces which
might have examples of spaces without a point-countable π-base. A natural
generalization of first countable spaces is the class of W -spaces introduced
by Gruenhage. It is defined in terms of a topological game in which two
players, OP (for choosing open sets) and PT (for choosing points), take
turns making their moves, for a given closed set F ⊂ X, as follows: in the
nth move OP chooses an open neighbourhood Un of F and PT responds by
choosing a point xn ∈ Un. After ω moves, OP wins if {xn} converges to F ;
otherwise PT is the winner. The set F is called aW -set if OP has a winning
strategy at F . The space X is aW -space if {x} is aW -subset of X for every
point x ∈ X.

We establish that if Cp(X) embeds in a Σ-product of first countable
spaces then it has a point-countable π-base; we also show that, in some
models of ZFC, there exists a spaceX such that Cp(X) is aW -space without
a point-countable π-base. Therefore such a Cp(X) is aW -space which cannot
be embedded in a Σ-product of first countable spaces. This gives a consistent
answer to Question 5.7 of [Gr2].

2. Notation and terminology. All spaces under consideration are
assumed to be Tikhonov; if X is a space then τ(X) is its topology and
τ∗(X) = τ(X)\{∅}. For any A ⊂ X let τ(A,X) = {U ∈ τ(X) : A ⊂ U}; we
write τ(x,X) instead of τ({x}, X) for any x ∈ X. If κ is an infinite cardinal
then the κ-modification of X is the underlying set of X with the topology
generated by all intersections of at most κ open subsets of X. In particular,
the ω-modification of X is the set X with the topology generated by all
Gδ-subsets of X. If A is a set then exp(A) = {B : B ⊂ A}. If ϕ is a cardinal
function then

ϕ∗(X) = sup{ϕ(Xn) : n ∈ N} and hϕ(X) = sup{ϕ(Y ) : Y ⊂ X}

for any space X. Furthermore, x ∈ X is called a P -point of X if, for any
countable U ⊂ τ(x,X), the point x belongs to the interior of

⋂
U . If every

x ∈ X is a P -point, then X is called a P -space.

For any space X and natural n > 1 the n-diagonal of X is the set

∆n(X) = {x ∈ X
n : there are distinct i, j < n such that x(i) = x(j)}.
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A set A ⊂ X is concentrated around a set B ⊂ X (or a point x ∈ X)
if A \ U is countable for any U ∈ τ(B,X) (or U ∈ τ(x,X) respectively).
The tightness t(X) of X is the minimal infinite cardinal κ such that for
any A ⊂ X and x ∈ A there is B ⊂ A such that |B| ≤ κ and x ∈ B. If
F ⊂ X then ψ(F,X) is the least cardinal κ such that F is the intersection of
≤ κ open sets; given a point x ∈ X we write ψ(x,X) instead of ψ({x}, X).
The pseudocharacter ψ(X) of X is the cardinal sup{ψ(x,X) : x ∈ X}. The
character χ(x,X) of X at x ∈ X is the minimal cardinality of a local base
at x; the cardinal χ(X) = sup{χ(x,X) : x ∈ X} is the character of X.
If X is a space and U is a family of subsets of X then the order ord(U , x)

of U at x ∈ X is the cardinality of {U ∈ U : x ∈ U}. The cardinal
sup{ord(U , x) : x ∈ X} is called the order of U . The families whose or-
der is countable are called point-countable. We say that ω1 is a caliber
of X if any point-countable family U ⊂ τ∗(X) is countable. The cardi-
nal c(X) = sup{|U| : U ⊂ τ∗(X) is disjoint} is the Suslin number of X; if
c(X) = ω then X is said to have the Suslin property.
Given a space X the symbol Cp(X) stands for the set of all continuous

real-valued functions on X endowed with the pointwise convergence topol-
ogy. The spread s(X) of X is the supremum of the cardinalities of discrete
subspaces of X, and the density d(X) is the minimal cardinality of a dense
subset of X. A network in X is a family N ⊂ exp(X) such that every
U ∈ τ(X) is the union of a subfamily of N . The network weight nw(X) is
the minimal cardinality of a network in X, and the Lindelöf number l(X) is
the minimal cardinality κ such that any open cover of X has a subcover of
cardinality ≤ κ.
A family B ⊂ τ∗(X) is called a π-base of X at x ∈ X if for any U ∈

τ(x,X) there is V ∈ B such that V ⊂ U . The π-character πχ(x,X) of
X at x ∈ X is the minimal cardinality of a π-base at x, and the cardinal
πχ(X) = sup{πχ(x,X) : x ∈ X} is the π-character of X. The family B is
a π-base of X if it is a π-base at any x ∈ X. The π-weight πw(X) is the
minimal cardinality of a π-base in X.
The rest of our terminology is standard and follows [En].

3. Point-countable π-bases in general spaces and in Cp(X). We
will show that many first countable spaces have point-countable π-bases,
and we will give some necessary and some sufficient conditions in terms
of X for the space Cp(X) to have a point-countable π-base. Most of the
results on point-countable π-bases can be generalized, in an evident way, to
π-bases of order ≤ κ. Since we have found no applications to that, we do
not formulate any such generalizations.

3.1. Theorem. Suppose that X is a space such that t(X) = πχ(X) = ω.
If d(X) ≤ ω1 then X has a point-countable π-base.
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Proof. The proof that follows is an essential simplification of the author’s
original proof. The author is grateful to the referee for indicating the relevant
modifications.

Let D = {dα : α < ω1} be a dense subset of X. Fix, for any x ∈ X, a
countable π-base Bx at x and observe that

(1) for any x ∈ X and U ∈ τ(x,X) the family {B ∈ Bx : B ∈ U} is a
π-base at x.

Set A = {α < ω1 : dα /∈ {dβ : β < α}}. Then D′ = {dα : α ∈ A} is dense
in X. Indeed, given a non-empty open U ⊂ X let α = min{β : dβ ∈ U};
then dα ∈ U ∩D′.
For any α ∈ A let Uα = {B ∈ Bdα : B ∩ {dβ : β < α} = ∅}; it follows

from (1) that Uα is a π-base at dα. Therefore U =
⋃
{Uα : α ∈ A} is a π-base

in X.

To see that U is point-countable fix x ∈ X; since t(X) ≤ ω, there exists
an ordinal α < ω1 such that x ∈ {dβ : β < α}. Our choice of {Uα : α ∈ A}
shows that x /∈

⋃
Uβ for any β ∈ A \ α and therefore x ∈ U ∈ U implies

U ∈
⋃
{Uβ : β ∈ A ∩ α}, i.e., the order of U at x is countable.

3.2. Corollary. If X is first countable and d(X) ≤ ω1 then X has a
point-countable π-base.

3.3. Corollary. Under the Continuum Hypothesis, any Lindelöf first
countable space has a point-countable π-base.

Proof. It follows fromArkhangel’skĭı’s theorem (see [Ar1, Theorem1.1.10]
or [Ho, Theorem 4.5]) that any Lindelöf first countable space X has cardi-
nality at most c so under CH we have d(X) ≤ |X| ≤ ω1 and hence Theorem
3.1 yields the assertion.

3.4. Corollary. Under CH , any first countable space with the Suslin
property has a point-countable π-base.

Proof. Let X be a first countable space with c(X) = ω. By a Hajnal–
Juhász theorem (see [Ho, Theorem 4.7]), we have |X| ≤ 2χ(X)·c(X) ≤ c so,
under CH, d(X) ≤ |X| ≤ ω1 and hence Theorem 3.1 is applicable.

3.5. Corollary. Under CH , if X is a space such that χ(X) = ω and
ω1 is a caliber of X then X is separable.

3.6. Corollary. Under CH , if X is a first countable space which is
either Lindelöf or has the Suslin property , then X has a dense subspace with
a point-countable base.

Proof. Shapirovsky observed in [Sh2] that, for a first countable space,
having a point-countable π-base is equivalent to having a dense subspace
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with a point-countable base, so we can apply Corollaries 3.3 and 3.4 to
complete the proof.

3.7. Remark. Strange as it is, no example seems to be known of a first
countable space without a point-countable π-base. Furthermore, there might
be hope to prove that no such space exists if we recall that any first countable
space is an open continuous image of a metrizable space which, in turn, has
a σ-discrete base. So, if open mappings are “nice” enough to imply existence
of a point-countable π-base when applied to a metric space then any first
countable space has a point-countable π-base. Such a result would be a very
drastic strengthening of “the first countable case” of Shapirovsky’s theorem
for compact spaces.

3.8. Theorem. Suppose that for a space X there exists a sequence {km :
m ∈ ω} ⊂ N \ {1} and a family of sets {Am : m ∈ ω} such that sup{|Am| :
m ∈ ω} = |X| and Am ⊂ Xkm \ ∆km(X) is concentrated around ∆km(X)
for any m ∈ ω. Then the space Cp(X) has a point-countable π-base.

Proof. Given a space Z call a family U ⊂ τ∗(Z) a π-base of a family
V ⊂ τ∗(Z) if any element of V contains some U ∈ U . It is evident that if V
is a π-base in Z and U is a π-base of V then U is also a π-base in Z.
Denote by Q the family of all non-trivial open intervals with rational

endpoints. The collection A = {(Q0, . . . , Qn−1) : n ∈ N \ {1}, Qi ∈ Q
for any i < n and the family {Q0, . . . , Qn−1} is disjoint} is countable. If
x = (x0, . . . , xn−1) ∈ Xn and Q = (Q0, . . . , Qn−1) ∈ A then let O(x,Q) =
{f ∈ Cp(X) : f(xi) ∈ Qi for all i < n}. It is straightforward that the
family B = {O(x,Q) : there is n ∈ N \ {1} such that x ∈ Xn \∆n(X) and
Q ∈ A ∩ Qn} is a π-base in Cp(X). For any Q = (Q0, . . . , Qn−1) ∈ A let
BQ = {O(x,Q) : x ∈ Xn \∆n(X)}; it is evident that B =

⋃
{BQ : Q ∈ A}.

The family A being countable it suffices to find a point-countable π-base for
every BQ; so fix any Q = (Q0, . . . , Qn−1) ∈ A.
The premises of our theorem make it possible to choose a family {Ym :

m ∈ ω} of subsets of Xn \ ∆n(X) and a sequence {ϕm : m ∈ ω} such
that every mapping ϕm : Ym → Am is an injection and

⋃
{Ym : m ∈ ω} =

Xn \∆n(X). Then BQ =
⋃
{BmQ : m ∈ ω} where B

m
Q = {O(x,Q) : x ∈ Ym}

for anym ∈ ω. Thus it suffices to find a point-countable π-base for every BmQ .
So fix an m ∈ ω. We still have to split the family BmQ into finitely many
subfamilies. To do so, take any x ∈ Ym; then, for the point y = ϕm(x) ∈
Xkm , let Ax = {i < n : x(i) ∈ {y(0), . . . , y(km−1)}}. Now, for any A ⊂ n let
BmQ (A) = {O(x,Q) : x ∈ Ym and Ax = A}. Then B

m
Q =
⋃
{BmQ (A) : A ⊂ n}

so it suffices to find a point-countable π-base for every BmQ (A). To do the
last splitting, for any E ⊂ km consider the family

BmQ (A,E) = {O(x,Q) ∈ B
m
Q (A) : {x(i) : i ∈ Ax} = {ϕm(x)(j) : j ∈ E}}.
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It is immediate that BmQ (A) =
⋃
{BmQ (A,E) : E ⊂ km} so it suffices to

construct a point-countable π-base for every family BmQ (A,E).
To do so, for r = km − |E| take an r-tuple S = (S0, . . . , Sr−1) ∈ A such

that the family {S0, . . . , Sr} ∪ {Qi : i < m} is disjoint and fix a bijection
b : km \E → r.
Given x = (x0, . . . , xm−1) ∈ Y m such that O(x,Q) ∈ BmQ (A,E) and

ϕm(x) = (y0, . . . , ykm−1), for any i ∈ E there is a unique j(i) ∈ A such that
xj(i) = yi. Let H(x) = {f ∈ Cp(X) : f(xi) ∈ Qi for any i < m, f(yi) ∈ Sb(i)
if i ∈ km \ E and f(yi) ∈ Qj(i) for any i ∈ E}. It is evident that H(x) ⊂
O(x,Q) is a non-empty open set so the family H = {H(x) : O(x,Q) ∈
BmQ (A,E)} is a π-base for B

m
Q (A,E).

Finally, take any f ∈ Cp(X). If x ∈ Ym and f ∈ H(x) then ϕm(x)
belongs to the set

W (x) =
∏
{f−1(Qj(i)) : i ∈ E} ×

∏
{f−1(Sb(i)) : i ∈ km \ E}.

Since {Qj(i) : i ∈ E}∪{Sb(i) : i ∈ km\E} is disjoint, we haveW (x)∩∆km(X)
= ∅. The set Am is concentrated around ∆km(X) so |W (x) ∩ Am| ≤ ω.
The set P = {x ∈ Xm \ ∆m(X) : O(x,Q) ∈ BmQ (A,E) and f ∈ H(x)}
is contained in R = {x ∈ Xm \ ∆m(X) : ϕm(x) ∈ W (x)}. The set R is
countable because W (x) ∩ Am is countable and ϕm is injective. Thus P is
also countable, i.e., the family H is point-countable at f .

3.9. Corollary. If X is a space and there is a number n ∈ N \ {1}
such that some set A ⊂ Xn \ ∆n(X) is concentrated around ∆n(X) and
|A| = |X| then Cp(X) has a point-countable π-base. In particular , if there
is a set A ⊂ X which is concentrated around some point of X and |A| = |X|
then Cp(X) has a point-countable π-base.

3.10. Corollary. If α is an ordinal with its order topology then the
space Cp(α) has a point-countable π-base.

Proof. The set A = {(β, β+1) : β < α} ⊂ α×α has cardinality |α|. It is
straightforward to verify that A is concentrated around the diagonal ∆2(α)
so Corollary 3.9 completes the proof.

Recall that, given a space X, the Aleksandrov duplicate AD(X) of X
has the underlying set X ×{0, 1} and the topology generated by the family
{{(x, 1)} : x ∈ X} ∪ {(U × {0, 1}) \K : U ∈ τ(X) and K ⊂ X × {1} is a
finite set}.

3.11. Corollary. If X is a countably compact space then Cp(AD(X))
has a point-countable π-base.

Proof. If X is finite then there is nothing to prove so we assume that
X is infinite. For any x ∈ X the points x0 = (x, 0) and x1 = (x, 1) belong
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to AD(X) and hence the set A = {(x0, x1) : x ∈ X} ⊂ AD(X) × AD(X)
has cardinality |AD(X)|. If B ⊂ A is an infinite set then there is an infinite
C ⊂ X such that some y ∈ X is a cluster point of C and B0 = {(x0, x1) :
x ∈ C} ⊂ B. It is an easy exercise to show that (y0, y0) ∈ B0 so the closure
of B0 meets the diagonal ∆ of the space AD(X). Consequently, A\U is even
finite for any U ∈ τ(∆,AD(X) × AD(X)) and therefore A is concentrated
around ∆. Now apply Corollary 3.9 to finish the proof.

3.12. Theorem. If X is an infinite space with l∗(X) = ω then the fol-
lowing conditions are equivalent :

(a) Cp(X) has a point-countable π-base;

(b) there exists a sequence {km : m ∈ ω} ⊂ N \ {1} and a family of
sets {Am : m ∈ ω} such that sup{|Am| : m ∈ ω} = |X| and Am ⊂
Xkm \∆km(X) is concentrated around ∆km(X) for any m ∈ ω.

Proof. By Theorem 3.8, it suffices to show that (a)⇒(b). Denote by
Q the family of all non-trivial open intervals with rational endpoints. The
collection A = {(Q0, . . . , Qn−1) : n ∈ N, Qi ∈ Q for any i < n and the
family {Q0, . . . , Qn−1} is disjoint} is countable. If x = (x0, . . . , xn−1) ∈
Xn \∆n and Q = (Q0, . . . , Qn−1) ∈ A then let

O(x,Q) = {f ∈ Cp(X) : f(xi) ∈ Qi for all i < n}.

Fix a point-countable π-base B ⊂ τ∗(Cp(X)). Making the elements of
B smaller if necessary, we can assume that for each B ∈ B there are x ∈
Xn \ ∆n(X) and Q = (Q0, . . . , Qn−1) ∈ A such that B = O(x,Q). Let
{Qm : m ∈ ω} be an enumeration of A. Then Qm = (Qm0 , . . . , Q

m
km−1
) for

everym ∈ ω. For anym ∈ ω let Am = {x ∈ Xkm \∆km(X) : O(x,Q
m) ∈ B}.

It is clear that B =
⋃
{Bm : m ∈ ω} where Bm = {O(x,Qm) : x ∈ Am} for

any m ∈ ω.

Since w(Cp(X)) = πw(Cp(X)) = |X| (see [Ar4, Theorem I.1.1] and [Ar2,
Proposition 1.1]), we have |B| ≥ |X| and hence |B| = |X| because there are
at most |X| sets of the form O(x,Q) where x ∈ Xn and Q ∈ A∩Qn for some
n ∈ N\{1}. Therefore |X| = |B| = sup{|Bm| : m ∈ ω} = sup{|Am| : m ∈ ω}.

Fix a number m ∈ N \ {1} and take a set U ∈ τ(∆km , X
km). For any

x = (x0, . . . , xkm−1) ∈ F = X
km \ U choose fx ∈ Cp(X) such that fx(xi) ∈

Qmi for all i < km. Then x ∈Wx = f−1x (Q
m
1 )× . . .×f

−1
x (Q

m
km−1
). Moreover,

fx ∈ O(y,Qm) if and only if y ∈ Wx; the family B being point-countable,
the set {y ∈ A : y ∈Wx} is countable for any x ∈ F .

The space F = Xkm \ U is Lindelöf so there is a countable H ⊂ F such
that F ⊂

⋃
{Wx : x ∈ H}. Thus A \ U = A ∩ F ⊂ A ∩

⋃
{Wx : x ∈ H}

is countable because A ∩Wx is countable for any x ∈ H. Therefore Am ⊂
Xkm \∆km is concentrated around ∆km for any m ∈ ω.
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3.13. Corollary. Suppose that X is an infinite space with l∗(X) = ω.
If |X| is a regular uncountable cardinal then the following conditions are
equivalent :

(a) Cp(X) has a point-countable π-base;

(b) there exist n ∈ N \ {1} and a set A ⊂ Xn \ ∆n(X) such that A is
concentrated around ∆n(X) and |A| = |X|.

3.14. Proposition. If X is a metrizable space and Cp(X) has a point-
countable π-base then X is countable.

Proof. The cardinal ω1 is a caliber of Cp(X) by [Tk, Theorem 4] so any
point-countable π-base of Cp(X) is countable. Thus |X| = w(Cp(X)) =
πw(Cp(X)) = ω.

Given a space X its diagonal number ∆(X) is the minimal infinite car-
dinal κ such that the diagonal of X is a Gκ-set.

3.15. Theorem. If X is a space such that l∗(X) = ω and Cp(X) has a
point-countable π-base then |X| = ∆(X).

Proof. It is evident that ∆(X) ≤ |X| so asume that ∆(X) = κ < |X|. It
follows from Theorem 3.12 that there are n ∈ N \ {1} and A ⊂ Xn \∆n(X)
such that |A| = κ+ and A is concentrated around ∆n(X). It is easy to
see that ∆n(X) is a finite union of inverse images of the diagonal of X
under the appropriate projections so ∆n(X) is a Gκ-set in X

n. Choose a
family U ⊂ τ(∆n(X), X

n) such that |U| ≤ κ and
⋂
U = ∆n(X). Then

A =
⋃
{A\U : U ∈ U} and hence |A| ≤ κ · sup{|A\U | : U ∈ U} ≤ κ ·ω = κ,

which contradicts |A| = κ+.

3.16. Corollary. If X is a compact space such that Cp(X) has a point-
countable π-base then w(X) = |X|.

3.17. Theorem. If X is a scattered Corson (or , equivalently , Eberlein)
compact space then Cp(X) has a point-countable π-base.

Proof. An evident modification of Gruenhage’s reasoning in [Gr1, The-
orem 3.7] proves that, for any infinite cardinal κ,

(G) if F is a closed W -set of a space Z such that ψ(F,Z) = κ then there
is A ⊂ Z \F such that |A| = κ and A\U is finite for any U ∈ τ(F,Z).

(Actually, the statement of Theorem 3.7 of [Gr1] together with Proposition
3.10 of [Gr2] show that (G) is true for κ = ω1.) Now ifX is a scattered Corson
compact space and |X| = κ then it follows from [Us, Proposition 1] that
w(X) = κ so, for the diagonal ∆ of the space X, we have ψ(∆,X×X) = κ.
Since ∆ is a W -set in X × X by [Gr2, Corollary 4.2], the statement (G)
shows that there is A ⊂ (X × X) \ ∆ with |A| = κ which is concentrated
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around ∆. Thus we can apply Corollary 3.9 to conclude that Cp(X) has a
point-countable π-base.

3.18. Proposition. Open continuous maps do not necessarily preserve
existence of a point-countable π-base.

Proof. If X = [0, 1] ⊂ R then the separable space Cp(X) has no point-
countable π-base because in a separable space any point-countable family
of open sets is countable while πw(Cp(X)) = w(Cp(X)) = |X| = c.
On the other hand, if AD(X) is the Aleksandrov duplicate of X then X

can be considered to be a closed subspace of AD(X) so the restriction map
π : Cp(AD(X)) → Cp(X) is open, continuous, onto (see [Ar4, Proposition
0.4.1]) and Cp(AD(X)) has a point-countable π-base by Corollary 3.11.

3.19. Theorem. If 2ω = ω1 and 2
ω1 = ω2 then there exists a Lindelöf

scattered P -space M such that hd∗(M) = ω1 and |M | = ω2.

Proof. Denote by CH+ the statement 2ω1 = ω2; we will make the nec-
essary modifications of the construction of de la Vega and Kunen [VK] of a
locally compact uncountable scattered strong S-space. Let D be a discrete
space of cardinality ω1. Since we have CH, the ω-modification Y of D

ω1 has
weight ω1. It follows from CH

+ that |Y | = ω2 so we can identify the underly-
ing set of Y with ω2 and assume that we have a topology ̺ on the set ω2 such
that Y = (ω2, ̺) is a P -space with w(Y ) = ω1. For every β < ω2 and natural
n > 1 we will need the natural projection πnβ : β

n−1 × (β + 1)→ (β + 1).
For any α < ω2, denote by ̺α the topology on α induced from Y . Apply

CH+ once more to conclude that the family S = {S : there is n ∈ N such
that S ⊂ ωn2 and |S| = ω1} has cardinality ω2 so choose an enumeration
{Sµ : ω1 ≤ µ < ω2} of S such that

(∗) for every µ ∈ [ω1, ω2) we have Sµ ⊂ µn(µ) for some n(µ) ∈ N.

To start our inductive construction let τα = exp(α) for each α < ω1
and assume that for some α ∈ [ω1, ω2] we have a collection {τβ : β < α} of
topologies with the following properties:

(5) τβ is a topology on β for all β < α;
(6) for any β < α, the space Xβ = (β, τβ) is Tikhonov, locally Lindelöf

and every Gδ-subset of Xβ is open in Xβ (i.e., Xβ is a P -space);
moreover, for any n ∈ N, a base Bnβ with |B

n
β | ≤ ω1 is chosen in

(Xβ)
n;

(7) if γ < β < α then τβ ∩ exp(γ) = τγ ;
(8) ̺β ⊂ τβ for any β < α;
(9) if µ < β < α, n = n(µ) > 1 and β belongs to the ̺-closure of

πnβ (Sµ ∩ (U × (β + 1))) for some U ∈ B
n−1
β then it belongs to the

τβ+1-closure of π
n
β (Sµ ∩ (U × (β + 1)));
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(10) if µ < β < α, n = n(µ) = 1 and β belongs to the ̺-closure of Sµ
then it also belongs to the τβ+1-closure of Sµ.

If α is a limit ordinal then let τα be the ω-modification of the topology
generated by the family

⋃
{τβ : β < α} as a subbase. It follows from (7) that

every set β is open in Xα = (α, τα) so (6) and (7) imply that (7) still holds
for all β ≤ α. If U ∈ ̺α then Uβ = U∩β ∈ τβ for any β < α by (8). Therefore
U =
⋃
{Uβ : β < α} ∈ τα, i.e., (8) also holds for all β ≤ α. Properties (9)

and (10) bring no new restrictions on the collection {τβ : β ≤ α} so they
are also fulfilled for all β ≤ α.

As to (6), observe first that Xα is Hausdorff, its topology being stronger
than the Tikhonov topology ̺α. Given β < α there is a local base C of
Lindelöf open neighbourhoods of β in Xβ+1. It follows from (6) and (7)
that C is also a local base in Xα at β. Since any Lindelöf subspace is closed
in a Hausdorff P -space, C is a clopen local base in Xα at β. Thus Xα is
zero-dimensional and hence Tikhonov. Choosing the relevant bases in all
finite powers of Xα, we conclude that (6) is also fulfilled for all β ≤ α, i.e.,
our construction can be carried out for any limit ordinal α.

Now assume that α is a successor ordinal, say α = ξ + 1, and consider
the set Mξ = {µ < ξ: either n = n(µ) > 1 and ξ is in the ̺-closure of
TUµ = π

n
β (Sµ ∩ (U × (ξ + 1))) for some U ∈ B

n−1
ξ , or n = n(µ) = 1 and ξ is

in the ̺-closure of Sµ}. IfMξ = ∅ then let τα be the topology generated by
τξ ∪ {{ξ}} as a subbase. Conditions (5)–(10) are, evidently, satisfied for all
β ≤ α so this case is easy.

Now, if the setMξ is non-empty then the family

Hξ = {Sµ : µ ∈Mξ and n(µ) = 1}

∪ {TUµ : µ ∈Mξ, n(µ) > 1 and U ∈ B
n−1
ξ }

has cardinality ≤ ω1 so we can choose an enumeration {Hβ : β < ω1} of Hξ
in which every H ∈ Hξ occurs ω1 times. Since Yα = (α, ̺α) is a P -space of
weight ω1, we can choose a local clopen base {Bβ : β < ω1} at ξ in Yα such
that γ < β < ω1 implies Bβ ⊂ Bγ .

The point ξ belongs to the ̺-closure of every element of Hξ so we can
pick zβ ∈ Hβ ∩ Bβ for every β < ω1. It follows from (∗) that zβ 6= ξ for
any β < ω1. The transfinite sequence S = {zβ : β < ω1} converges to ξ
in Yα, which together with the P -property of Yα implies that S is a discrete
subspace of Yα and ξ is the unique cluster point of S.

Given β < ω1 the set Bβ ∩ ξ is a clopen subspace of Xξ so there exists
a clopen Lindelöf subspace Lβ of Xξ such that zβ ∈ Lβ ⊂ Bβ . For Cξ =
{{ξ} ∪

⋃
{Lγ : γ ≥ β} : β < ω1} let τα be the topology generated by the

family τξ ∪ Cξ as a subbase.
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An immediate consequence of the definition of τα is that τα∩exp(ξ) = τξ,
i.e., we have (5) and (7) for the collection {τβ : β ≤ α}. The family Cξ is
a local clopen base at ξ so Xα is Tikhonov, being T1 and zero-dimensional.
Any countable intersection of elements of Cξ belongs to Cξ whence ξ is a
P -point in Xα; thus Xα is a P -space. Furthermore, every C ∈ Cξ is Lindelöf
because for any U ∈ τ(ξ,Xα) there is β < ω1 such that C \U is closed in the
Lindelöf space

⋃
{Lγ : γ < β}. After we choose the relevant bases in all finite

powers of Xα we conclude that (6) also holds for the family {τβ : β ≤ α}.
Property (8) is clear and (9) must only be checked for β = ξ.

If µ < ξ and n(µ) > 1 assume that ξ is in the ̺-closure of TUµ for some

U ∈ Bn−1ξ . Then H = TUµ ∈ Hξ and therefore |H ∩ S| = ω1, which shows
that C ∩H 6= ∅ for any C ∈ Cξ, i.e., ξ is in the τα-closure of H. Therefore
(9) is satisfied for T = {τβ : β ≤ α}. The proof that (10) is also satisfied for
T is analogous so our inductive construction is complete; let τ = τω2 and
X = (ω2, τ).

It follows from (6) and (7) that every Xβ is open in X so X is right-
separated and hence scattered. Properties (6) and (7) imply thatX is locally
Lindelöf, Tikhonov and every β ∈ X is a P -point in X, i.e., X is a locally
Lindelöf P -space.

We will prove by induction that hd(Xn) ≤ ω1 for every n ∈ N. The
following easy statements will be used in the proof (they are also formulated
in [VK] as exercises).

(11) If κ is an infinite regular cardinal, Z and P are spaces such that
hd(Z) ≤ κ and w(P ) ≤ λ < κ then hd(Z × P ) ≤ κ.

(12) Given spaces Z and P , if A ⊂ Z × P and u = (z, p) ∈ Z × P then
u ∈ A if and only if p ∈ π(A ∩ (U × P )) for any U ∈ τ(z, Z), where
π : Z × P → P is the projection.

To start the induction letX0 = {∅}; then hd(X0) = 1 < ω1. Now assume
that n ≥ 1 and we have proved that hd(Xk) ≤ ω1 for all k < n. Let ∆1 = ∅
and ∆n = {x ∈ Xn : there are distinct i, j < n with x(i) = x(j)} for any
n ∈ N \ {1}. It is clear that, for n > 1, the space ∆n is a finite union of
spaces homeomorphic to Xn−1 so it suffices to show that hd(Xn \∆n) ≤ ω1.
Consider the set Gn = {x ∈ Xn : x(0) < . . . < x(n − 1)}; since any
permutation of the set n generates a homeomorphism of Xn \ ∆n onto
itself, the space Xn \ ∆n is a finite union of spaces homeomorphic to Gn.
Therefore it suffices to establish that hd(Gn) ≤ ω1 (evidently, G1 = X).
Take an arbitrary set A ⊂ Gn; there is no loss of generality to assume

that |A| = ω2. By the induction hypothesis and (11), A has density at most
ω1 in X

n−1 × Y so take B ⊂ A such that |B| = ω1 and B is ν-dense in A
where ν = τ(Xn−1 × Y ); there is an ordinal µ < ω2 such that B = Sµ. Let
π : Xn−1 ×X → X be the projection.



66 V. V. Tkachuk

The set A0 = {x ∈ A : x(n − 1) ≤ µ} has cardinality at most ω1. If
x ∈ A\A0 then β = x(n−1) > µ and x = (z, β) where z ∈ βn−1. Given any
V ∈ τ(z,Xn−1), there is U ∈ Bn−1β such that z ∈ U ⊂ V . The point x being
in the ν-closure of Sµ, we can apply (12) to see that β is in the ̺-closure
of TUµ = πn(Sµ ∩ (U × (β + 1))). Property (9) for n > 1 (or (10) if n = 1)

shows that β belongs to the τβ+1-closure of T
U
µ .

An immediate consequence of (7) is that β belongs to the τ -closure of TUµ .
Since U ⊂ V , β belongs to the τ -closure of πn(Sµ ∩ (V × (β + 1))), and
hence to the τ -closure of π(Sµ ∩ (V ×X)). Now, apply (12) to Z ×P where
Z = Xn−1 and P = X to conclude that x = (z, β) is in the τn-closure of
Sµ where τ

n = τ(Xn). This proves that A0 ∪B is a τn-dense subset of A of
cardinality at most ω1. Therefore hd(Gn) ≤ ω1 and, as we observed before,
hd(Xn) ≤ ω1.
To finally construct the promised space M take a point a /∈ X. To

introduce a topology τM onM = X ∪{a} consider the family L = {U ⊂ X :
X \ U is a clopen Lindelöf subspace of X} and let τM be the topology
generated by the family τ ∪ {{a} ∪ L : L ∈ L}. It is straightforward that
(M, τM ) is a Lindelöf scattered P -space. It follows from hd∗(X) ≤ ω1 that
hd∗(M) ≤ ω1.

Now let us recall the definitions of two topological games. The first one
(called the point-open game) was independently discovered by Telgársky and
Galvin (see [Te]). The second one was introduced by Gruenhage in [Gr1] so
we call it the Gruenhage game.

3.20. Definition. Given a space X say that P and O play a point-open
game on X if the nth move of the player P is to pick a point xn ∈ X while
the player O responds by taking a set Un ∈ τ(xn, X). The game is played
ω moves and P wins if

⋃
{Un : n ∈ ω} = X. We will use the terminology of

Telgársky and call the spaces in which P has a winning strategy finite-like.

3.21. Definition. Given a space X and a closed set F ⊂ X say that OP
and PT play aGruenhage game onX at the set F if the nth move of OP is to
pick a set Un ∈ τ(F,X) while PT responds by taking a point xn ∈ Un. The
game is played ω moves and OP wins if the sequence {xn : n ∈ ω} converges
to F in the sense that {n ∈ ω : xn /∈ U} is finite for any U ∈ τ(F,X). Now,
F is called a W -set if OP has a winning strategy in the Gruenhage game
at F . If all singletons of X are W -sets, then X is called a W -space.

3.22. Remark. It is easy to see that any finite-like space is Lindelöf.
Telgársky proved in [Te, Theorem 9.3] that any Lindelöf scattered space is
finite-like. Another easy observation is that any first countable space is a
W -space so the W -spaces form a wider class than the first countable ones.
Gruenhage proved in [Gr1, Theorem 4.6] that any subset of a Σ-product of
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first countable spaces is a W -space and asked whether any W -space can be
embedded in a Σ-product of first countable spaces [Gr2, Question 5.7]. We
will give a consistent counterexample which also shows that it cannot be
proved in ZFC that any W -space has a point-countable π-base.

3.23. Theorem. For any space X if Cp(X) embeds in a Σ-product of
first countable spaces then Cp(X) has a point-countable π-base.

Proof. Suppose that Nt is first countable for any t ∈ T and we are given
a point a ∈ N =

∏
{Nt : t ∈ T}; for any t ∈ T let πt : N → Nt be

the natural projection. If Cp(X) embeds in Σ(N, a) = {x ∈ N : |{t ∈ T :
x(t) 6= a(t)}| ≤ ω} then we can assume, without loss of generality, that
Cp(X) ⊂ Σ(N, a) and πt(Cp(X)) = Nt for any t ∈ T . Any first countable
continuous image of Cp(X) has a countable network (see [Ar3, Theorem 3])
so nw(Nt) ≤ ω for any t ∈ T . It is easy to see that if Z is a subspace of
a finite product of spaces {Nt : t ∈ T} then πw(Z) ≤ ω. This makes it
possible to apply Theorem 11o of [Sh1] to conclude that every subspace of
Σ(N, a), and Cp(X) in particular, has a point-countable π-base.

The following theorem gives a consistent answer to Question 5.7 of [Gr2].

3.24. Theorem. If 2ω = ω1 and 2
ω1 = ω2 then there exists a space X

such that Cp(X) is a W -space with no point-countable π-base. Thus Cp(X)
cannot be embedded in a Σ-product of first countable spaces.

Proof. Let X be the space M constructed in Theorem 3.19. Since X is
Lindelöf and scattered, it is finite-like by [Te, Theorem 9.3]. As X being
finite-like is equivalent to the W -property of Cp(X) (see [GN]), it follows
that Cp(X) is a W -space.
Now assume that B is a point-countable π-base in Cp(X). Shapirovsky

proved in [Sh2] that there must exist a family {Dα : α < ω1} of discrete
subspaces of Cp(X) such that D =

⋃
{Dα : α < ω1} meets every element

of B. In particular D is dense in Cp(X). We have s(Cp(X)) ≤ s∗(X) ≤
hd∗(X) = ω1 so |Dα| ≤ ω1 for any α < ω1 which shows that |D| ≤ ω1.
Therefore ψ(X) ≤ d(Cp(X)) ≤ ω1 and hence the ω1-modification Z of X is
discrete. However, |Z| = l(Z) ≤ ω1 by [Us, Proposition 1], which contradicts
|Z| = |X| = ω2.

4. Unsolved problems. The topic of this paper is still far from being
exhausted. To illustrate this we list below some interesting questions we
could not solve while working on this paper.

4.1. Problem. Is it true that any first countable space X has a point-
countable π-base?

4.2. Problem. Is there a ZFC example of a W -space without a point-
countable π-base?
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4.3. Problem. Is it true in ZFC that any first countable Lindelöf space
has a point-countable π-base?

4.4. Problem. Is it true that any first countable countably compact space
has a point-countable π-base?

4.5. Problem. Is it true that any first countable pseudocompact space X
has a point-countable π-base?

4.6. Problem. Is it true in ZFC that any first countable space with the
Suslin property has a point-countable π-base?

4.7. Problem. Is it true in ZFC that any first countable space X with
caliber ω1 has a point-countable π-base?

4.8. Problem. Does there exist (in a model of ZFC ) a compact scattered
space X such that hd∗(X) = ω1 while |X| > ω1?

4.9. Problem. Suppose that a space X embeds in a Σ-product of first
countable spaces. Must X have a point-countable π-base? What happens if
X is a topological group?

4.10. Problem. How to characterize the existence of a point-countable
π-base in Cp(X) for an arbitrary space X? Is the sufficient condition of
Theorem 3.8 also necessary?

4.11. Problem. Suppose that πχ(X) ≤ ω and d(X) ≤ ω1. Must the
space X have a point-countable π-base?

4.12. Problem. Let X be a scattered compact space. Must the space
Cp(X) have a point-countable π-base?
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