Expanding repellers in limit sets
for iterations of holomorphic functions

by

Feliks Przytycki (Warszawa)

Abstract. We prove that for Ω being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure μ on the boundary $\text{Fr}\Omega$, with positive Lyapunov exponent, there is an invariant subset of $\text{Fr}\Omega$ which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of μ. We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in $\text{Fr}\Omega$ was proved.

1. Introduction. Let Ω be a simply connected domain in $\overline{\mathbb{C}}$ and f be a holomorphic map defined on a neighbourhood W of $\text{Fr}\Omega$ to $\overline{\mathbb{C}}$. Assume $f(W \cap \Omega) \subset \Omega$, $f(\text{Fr}\Omega) \subset \text{Fr}\Omega$ and $\text{Fr}\Omega$ repells to the side of Ω, that is, $\bigcap_{n=0}^{\infty} f^{-n}(W \cap \Omega) = \text{Fr}\Omega$. An important special case is where Ω is an immediate basin of attraction of an attracting fixed point for a rational function. This covers also the case of a component of the immediate basin of attraction to a periodic attracting orbit, as one can consider an iterate of f mapping the component to itself. Distances and derivatives are considered in the Riemann spherical metric on \mathbb{C}.

Let $R : \mathbb{D} \to \Omega$ be a Riemann mapping from the unit disc onto Ω and let g be a holomorphic extension of $R^{-1} \circ f \circ R$ to a neighbourhood of the unit circle $\partial\mathbb{D}$. It exists and it is expanding on $\partial\mathbb{D}$ (see [P2, Section 7]). We prove the following

Theorem A. Let ν be an ergodic g-invariant probability measure on $\partial\mathbb{D}$ such that for ν-a.e. $\zeta \in \partial\mathbb{D}$ the radial limit $\hat{R}(\zeta) := \lim_{r \to 1} R(r\zeta)$ exists. Assume that the measure $\mu := \hat{R}_{*}(\nu)$ has positive Lyapunov exponent $\chi_\mu(f)$.

2000 Mathematics Subject Classification: Primary 37F15; Secondary 37F35, 37D25.

Key words and phrases: boundary of basin of attraction, iteration of rational map, Hausdorff dimension, hyperbolic dimension, coding tree, Pesin theory, Katok theory.

Supported by Polish KBN grant 2P03A 03425.
Let \(\varphi : \partial \mathbb{D} \to \mathbb{R} \) be a continuous real-valued function. Then for every \(\varepsilon > 0 \) there exist a \(g \)-invariant expanding repeller \(Y \subset \partial \mathbb{D} \) and \(C > 0 \) such that for all positive integers \(n \) and all \(\zeta \in Y \),

(i) \(- \ln C + n(\int \varphi \, d\nu - \varepsilon) \leq \sum_{j=0}^{n-1} \varphi(g^j(\zeta)) \leq \ln C + n(\int \varphi \, d\nu + \varepsilon)\).

(ii) \(\hat{R} \) is defined on all of \(Y \) and finite-to-one on \(Y \). Moreover \(R(r\zeta) \to \hat{R}(\zeta) \) uniformly as \(r \not\to 1 \) for \(\zeta \in Y \). The set \(X := \hat{R}(Y) \) is an expanding repeller for \(f \) contained in \(\text{Fr} \Omega \). Both \(Y \) and \(X \) are Cantor sets.

(iii) \(C^{-1} \exp n(x_\mu(f) - \varepsilon) \leq |(f^n)'(\hat{R}(\zeta))| \leq C \exp n(x_\mu(f) + \varepsilon)\).

(iv) \(\text{HD}(X) \geq \text{HD}(\mu) - \varepsilon \).

The existence of an expanding repeller \(X \subset \text{Fr} \Omega \) satisfying (iii) for all \(x \in X \) (in place of \(\hat{R}(\zeta) \)) and (iv) holds without the assumption that \(\Omega \) is simply connected.

Above, \(X \) being an expanding repeller for \(f \) means that \(X \) is compact, \(f(X) \subset X \) and the map \(f \) restricted to \(X \) is open, topologically mixing and expanding, that is, there exist \(C > 0 \) and \(\lambda > 1 \), called an expanding constant, such that \(|(f^n)'(x)| \geq C\lambda^n \) for every \(x \in X \). The property that \(f|_X \) is open is equivalent to the existence of a neighbourhood \(U \) of \(X \) in \(\mathbb{C} \), called a repelling neighbourhood, such that every forward \(f \)-trajectory \(x, f(x), \ldots, f^n(x), \ldots \) staying in \(U \) must be contained in \(X \). The definition of an expanding repeller \(Y \subset \partial \mathbb{D} \) for \(g \) is similar. \(\text{HD}(X) \) denotes the Hausdorff dimension of the set \(X \), and \(\text{HD}(\mu) \) the Hausdorff dimension of the measure \(\mu \) which is defined as the infimum of the Hausdorff dimensions of sets of full measure \(\mu \).

Property (iv) is a version of the fact that the hyperbolic Hausdorff dimension of the Julia set \(J(f) \) for a rational mapping (= supremum of the Hausdorff dimensions of expanding repellers contained in \(J(f) \)) is equal to the hyperbolic dynamical dimension (= supremum of the Hausdorff dimensions of invariant probability measures on \(J(f) \) of positive Lyapunov exponents); see for example [PU].

Theorem A, with property \((v')\) below added to the conclusions, extends the main theorem from the paper [PZ], where the density of periodic orbits in \(\text{Fr} \Omega \) was proved. The idea of the proof, as in [PZ], is to apply Pesin and Katok theories; see [HK, Suplement] for a general theory and [PU, Ch. 9] for its adaptation in holomorphic iteration. The problem is, as in [PZ], that the standard Katok method to produce a large hyperbolic (here expanding) set does not guarantee that the set is in \(\text{Fr} \Omega \). It does not give the set \(Y \) either.

We needed this theorem in [P3], applied to \(\varphi = \ln |g'| \) and \(\mu \) in the harmonic measure class, but it is of independent interest, so we have decided to put it in a separate paper.
2. Additional properties. The following additional properties of suitably constructed X in Theorem A will be proved:

(v) X can be arbitrarily close to the topological support $\text{supp } \mu$ in the Hausdorff metric in the space of compact subsets of $\text{Fr } \Omega$.

(vi) For any finite families of real-valued continuous functions $\varphi_1, \ldots, \varphi_k$ on $\partial \mathbb{D}$, $\psi_1, \ldots, \psi_{k'}$ on $\text{Fr } \Omega$, for every $i = 1, \ldots, k$ and $i = 1, \ldots, k'$ respectively, for all $\zeta \in Y$, $x \in X$ and positive integers n,

$$-\ln C + n \left(\int_{\partial \mathbb{D}} \varphi_i \, d\nu - \varepsilon \right) \leq \sum_{j=0}^{n-1} \varphi_i(g^j(\zeta)) \leq \ln C + n \left(\int_{\partial \mathbb{D}} \varphi_i \, d\nu + \varepsilon \right),$$

$$-\ln C + n \left(\int_{\text{Fr } \Omega} \psi_i \, d\mu - \varepsilon \right) \leq \sum_{j=0}^{n-1} \psi_i(f^j(x)) \leq \ln C + n \left(\int_{\text{Fr } \Omega} \psi_i \, d\mu + \varepsilon \right).$$

(vii) For P denoting the topological pressure and h_{top} the topological entropy,

$$P(f | X, \psi_i) \geq h_\mu(f) + \int_{\text{Fr } \Omega} \psi_i \, d\mu - \varepsilon,$$

$$P(g | Y, \varphi_i) \geq h_\nu(g) + \int_{\partial \mathbb{D}} \varphi_i \, d\nu - \varepsilon,$$

in particular

(viii) $h_{\text{top}}(f | X) \geq h_\mu(f) - \varepsilon$ and $h_{\text{top}}(g | Y) \geq h_\nu(g) - \varepsilon$.

(xi) $\text{HD}(Y) \geq \text{HD}(\nu) - \varepsilon$.

Remark 1. Property (v) implies

(v') If $\text{supp } \mu = \text{Fr } \Omega$ then X is arbitrarily close to $\text{Fr } \Omega$ in the Hausdorff metric.

The assumption $\text{supp } \mu = \text{Fr } \Omega$ holds for every $\mu = \hat{R}_*(\nu)$ for ν being a g-invariant Gibbs state (measure) for a Hölder continuous potential function on $\partial \mathbb{D}$ (see [PZ]). In this case ν has positive entropy, hence the existence of the radial limit ν-a.e. holds automatically (see [PZ] and references there, in particular [P1]). This automatically implies $\chi_\mu(f) > 0$, since $0 < h_\nu(g) = h_\mu(f) \leq 2\chi_\mu(f)$ (Ruelle inequality).

Remark 2. The radial convergence in (ii) automatically implies the nontangential convergence. This means the following: For every $\zeta \in \partial \mathbb{D}$, $0 < \vartheta < \pi/2$ and $t > 0$ define

$$S_{\vartheta, t}(\zeta) = \zeta \cdot (1 + \{x \in \mathbb{C} \setminus \{0\} : \pi - \vartheta \leq \text{Arg}(x) \leq \pi + \vartheta, |x| < t\}).$$

Such a set is called a Stolz angle. If t is irrelevant we skip it and write S_ϑ.

Now (ii) can be written as
(ii') For every $0 < \vartheta < \pi/2$ the convergence $R(z) \to \tilde{R}(\zeta)$ is uniform for $\zeta \in X$ as $z \to \zeta$ and $z \in S_\vartheta$. The rate of convergence is exponential, more precisely, there exists $C > 0$ such that for $z \in S_{\vartheta,r}(\zeta)$,

$$C^{-1}(1 - r)\chi_\alpha(f) / (\chi_\nu(g) - \varepsilon) \leq \text{dist}(R(z), \tilde{R}(\zeta)) \leq C(1 - r)\chi_\nu(g) / (\chi_\mu(f) + \varepsilon).$$

3. Geometric coding tree version. As in [PZ], we prove a more general, abstract version of these results, in the language of a geometric coding tree. We recall the definitions and notation:

Let U be an open connected subset of the Riemann sphere \mathbb{C}. Consider any holomorphic mapping $f : U \to \mathbb{C}$ such that $f(U) \supset U$ and $f : U \to f(U)$ is a proper map. Define $\text{Crit}(f) = \{z : f'(z) = 0\}$, the set of critical points for f. Suppose that $\text{Crit}(f)$ is finite. Consider any $z \in f(U)$. Let z^1, \ldots, z^d be some of the f-preimages of z in U where $d \geq 2$. Consider continuous curves $\gamma^j : [0, 1] \to f(U)$, $j = 1, \ldots, d$, joining z to z^j respectively (i.e. $\gamma^j(0) = z$, $\gamma^j(1) = z^j$) such that there are no critical values for the iterates of f in $\bigcup_{j=1}^d \gamma^j$, i.e. $\gamma^j \cap f^n(\text{Crit}(f)) = \emptyset$ for every j and $n > 0$.

Let $\Sigma^d := \{1, \ldots, d\}^\mathbb{Z}_+$ denote the one-sided shift space and σ the shift to the left, i.e. $\sigma((\alpha_n)) = (\alpha_{n+1})$. For every sequence $\alpha = (\alpha_n)_{n=0}^\infty \in \Sigma^d$ we define $\gamma_0(\alpha) := \gamma^\alpha_0$. Suppose that for some $n \geq 0$, every $0 \leq m \leq n$, and all $\alpha \in \Sigma^d$, the curves $\gamma_m(\alpha)$ are already defined. Suppose that for $1 \leq m \leq n$ we have $f \circ \gamma_m(\alpha) = \gamma_{m-1}(\sigma(\alpha))$, and $\gamma_m(\alpha)(0) = \gamma_{m-1}(\alpha)(1)$.

Define the curves $\gamma_{n+1}(\alpha)$ so that the previous equalities hold by taking suitable f-preimages of γ_n. For every $\alpha \in \Sigma^d$ and $n \geq 0$ set $z_n(\alpha) := \gamma_n(\alpha)(1)$. Note that $z_n(\alpha)$ and $\gamma_n(\alpha)$ depend only on $(\alpha_0, \ldots, \alpha_n)$ so sometimes we consider z_n and γ_n as functions on blocks of symbols of length $n + 1$. Sometimes it is convenient to denote z by z_{-1}.

The graph $T(z, \gamma^1, \ldots, \gamma^d)$ with vertices z and $z_n(\alpha)$ and edges $\gamma_n(\alpha)$ is called a geometric coding tree with root at z. For every $\alpha \in \Sigma^d$ the subgraph composed of $z, z_n(\alpha)$ and $\gamma_n(\alpha)$ for all $n \geq 0$ is called a geometric branch and denoted by $b(\alpha)$.

For each $j = 1, \ldots, d$ we define f^{-1}_j on a small neighbourhood of z as the branch of f^{-1} mapping z to z^j. For each $\alpha \in \Sigma^d$ the branch f^{-1}_j has an analytic continuation $f^{-1}_{j,\alpha}$ along the curve $b(\alpha)$. Note that by construction $f^{-1}_{j,\alpha}(b(\alpha)) = b(j\alpha)$, where $j\alpha$ is the concatenation of the symbol j and the sequence α. By induction, for any block w of k symbols in $\{1, \ldots, d\}$, for f^{-k}_w being the branch of f^{-k} mapping z to $z_{k-1}(w)$ and for $f^{-k}_{w,\alpha}$ being the analytic continuation along $b(\alpha)$, we get

$$f^{-k}_{w,\alpha}(b(\alpha)) = b(w\alpha).$$
Expanding repellers in limit sets

Similar notation is used and properties hold for finite sequences α, where for $\alpha = (\alpha_0, \ldots, \alpha_n)$, $b(\alpha)$ is the path in T from z to $z_n(\alpha)$.

For infinite α the branch $b(\alpha)$ is called convergent if the sequence $\gamma_n(\alpha)$ is convergent to a point in $\text{cl}U$ in the Hausdorff metric. We define the coding map $z_\infty : D(z_\infty) \rightarrow \text{cl}U$ by $z_\infty(\alpha) := \lim_{n \rightarrow \infty} z_n(\alpha)$ on the domain $D = D(z_\infty)$ of all α’s for which $b(\alpha)$ is convergent.

For each geometric branch $b(\alpha)$ denote by $b_m(\alpha)$ the part of $b(\alpha)$ starting from $z_m(\alpha)$, i.e. consisting of the vertices $z_k(\alpha)$, $k \geq m$, and of the edges $\gamma_k(\alpha)$, $k > m$.

If the map f extends holomorphically to a neighbourhood of the closure of the limit set Λ of a geometric coding tree, $\Lambda = z_\infty(D(z_\infty))$, then Λ is called a quasi-repeller (see [PUZ]). Note that $f(\Lambda) \subset \Lambda$ and $fz_\infty = z_\infty\sigma$.

Theorem B. Let Λ be a quasi-repeller for a geometric coding tree $T(z, \gamma_1, \ldots, \gamma^d)$ for a holomorphic map $f : U \rightarrow \mathbb{C}$. Let ν be an ergodic σ-invariant probability measure on Σ^d such that for ν-a.e. $\alpha \in \Sigma^d$ the limit $z_\infty(\alpha)$ exists. Assume that the measure $\mu := z_\infty(\nu)$ has positive Lyapunov exponent $\chi_\mu(f)$. Let $\varphi, \varphi_j, \psi_j$ be continuous real-valued functions on Σ^d or $\text{cl}\Lambda$ respectively. Then all the properties (i)–(ix) hold, with $\widehat{R} : \partial D \rightarrow \text{Fr} \Omega$ replaced by $z_\infty : \Sigma^d \rightarrow \text{cl} \Lambda$ defined ν-a.e. and $\text{R}(r\zeta) \rightarrow \widehat{R}(\zeta)$ replaced by $\gamma_n(\alpha) \rightarrow z_\infty(\alpha)$ as $n \rightarrow \infty$.

The assumption that $z_\infty(\alpha)$ exists for ν-a.e. $\alpha \in \Sigma^d$, i.e. $\nu(D) = 1$, holds for every ν of positive entropy (compare Remark 1; see [PZ, Convergence Theorem], where further references are given). As in the Riemann mapping case, $\chi_\mu(f) > 0$ then holds automatically.

In the setting of Theorem B property (v’) also holds, with $\text{Fr} \Omega$ replaced by $\text{cl} \Lambda$, which immediately follows from (v).

The assumption supp $\mu = \text{cl} \Lambda$ holds whenever ν is a σ-invariant Gibbs state for a Hölder continuous function on Σ^d (cf. Remark 1), and if additionally the tree T satisfies $\gamma^j \cap \text{cl}(\bigcup_{n \geq 0} f^n(\text{Crit} f)) = \emptyset$ for all $j = 1, \ldots, d$ and there exists a neighbourhood $U^j \subset f(U)$ of γ^j such that area$(f^{-n}(U^j)) \rightarrow 0$, where area denotes the standard Riemann measure on \mathbb{C}.

For the proof see [PZ, Lemma 3], where $\text{cl} \Lambda$ is replaced by a formally larger set $\hat{\Lambda} := \{\text{all limit points of the sequences } z_n(\alpha^n), \alpha^n \in \Sigma^d, n \rightarrow \infty\}$. It is easy to see that the above conditions about the tree T hold if T is in $W \cap \Omega$, close enough to Fr Ω, as in the situation of Theorem A (see Section 5).

4. Proof of Theorem B

Step 1: Good backward branches and their number. Denote the natural extension of the one-sided shift $\sigma : \Sigma^d \rightarrow \Sigma^d$ preserving a Borel probability measure ν, i.e. the corresponding two-sided shift, by $(\hat{\Sigma}^d, \hat{\nu}, \hat{\sigma})$. Denote the
projection \(\tilde{\Sigma}^d \to \Sigma^d \) mapping \(\alpha \) to \((\alpha_0, \alpha_1, \ldots) \) by \(\pi_+ \). For each \(\alpha \in \tilde{\Sigma}^d \) denote \(\pi_+(\alpha) \) by \(\alpha^+ \).

By Pesin theory (see [PZ, Lemma 1] for the version we apply) and by the Birkhoff Ergodic Theorem applied to \(\varphi \), for every \(\varepsilon > 0 \) we can find a set \(K \subset \tilde{\Sigma}^d \), constants \(C, \delta > 0 \) and a positive integer \(M \) such that \(\bar{\nu}(K) > 1 - \varepsilon \) and for all \(\alpha \in K \) and \(n \geq 0 \),

\[
\begin{align*}
B(i) & \quad \ln C + n(\int_{\varphi} d\nu - \varepsilon/2) \leq \sum_{j=0}^{n-1} \varphi(\sigma^j(\alpha^+)) \leq \ln C + n(\int_{\varphi} d\nu + \varepsilon/2). \\
B(ii) & \quad b_M(\alpha^+) \subset B(z_\infty(\alpha^+), \delta/3). \\
B(iii) & \quad \text{There exist univalent branches } f_{\alpha}^{-n} \text{ of } f^{-n} \text{ on } B(z_\infty(\alpha^+), \delta) \text{ for all } n = 1, 2, \ldots \text{ mapping } z_\infty(\alpha^+) \text{ to } z_\infty(\tilde{\sigma}^{-n}(\alpha^+)).
\end{align*}
\]

In the notation accompanying property (1) these branches are the continuations along \(b(\alpha^+) \) of \(f_{(\alpha_n, \ldots, \alpha_{-1})}^{-n} \), i.e. the branches \(f_{(\alpha_n, \ldots, \alpha_{-1}), \alpha^+}^{-n} \).

Moreover

\[
\text{B(iv) } C^{-1} \exp n(\chi_\mu(f) - \varepsilon/2) \leq |(f^n)'(z_\infty(\tilde{\sigma}^{-n}(\alpha^+)))| \leq C \exp n(\chi_\mu(f) + \varepsilon/2).
\]

\[
\text{B(v) } |(f_{\alpha}^{-n})'(x)| |(f_{\alpha}^{-n})'(y)| < C \text{ for all } x, y \in B(z_\infty(\alpha^+), \delta).
\]

For \(-\infty \leq r \leq s \leq \infty \) and \(\alpha \in \tilde{\Sigma}^d \) or \(\alpha \in \Sigma_{r,s} = \{1, \ldots, d\}^{\{r, r+1, \ldots, s\}} \), we denote by \(C_{r,s}(\alpha) \) the cylinder \(\{w \in \tilde{\Sigma}^d : w_j = \alpha_j \text{ for all } j : r \leq j \leq s\} \).

The projection \(\tilde{\Sigma}^d \ni (\alpha_j, \ldots) \mapsto (\alpha_r, \alpha_s) \in \Sigma_{r,s} \) will be denoted by \(\pi_{r,s} \). Note that \(C_{r,s}(\alpha) = \pi_{r,s}^{-1} \pi_{r,s}(\alpha) \).

Choose an arbitrary cylinder \(C_M := C_{0,M}(\beta) \), for a fixed sequence \(\beta = (\beta_0, \ldots, \beta_M) \in \Sigma_M := \Sigma_{0,M} \), such that \(\bar{\nu}(C_M \cap K) \geq \bar{\nu}(C_M)/2 \), which is possible provided \(\varepsilon \leq 1/2 \).

Denote \(C_M \cap K \) by \(K' \). For all \(n \geq 0 \) consider \(K_n := \tilde{\sigma}^{-n}(K') \). By the invariance of \(\bar{\nu} \) we have \(\bar{\nu}(K_n) \geq \bar{\nu}(C_M)/2 =: \xi \).

By the Birkhoff Ergodic Theorem there exists \(N \geq 0 \) such that

\[
\nu(\{\alpha \in K_n : \exists i : 0 \leq i \leq N, \tilde{\sigma}^{-i}(\alpha) \in K'\} \geq \xi/2.
\]

Therefore for every \(n \geq 0 \) there exists \(N' \) with \(0 \leq N' \leq N \) such that, setting \(n' := n + N' \), for \(A(n') := \{\alpha \in K' : \tilde{\sigma}^{-n'}(\alpha) \in K'\} \) we have

\[
\bar{\nu}(A(n')) \geq \xi/2N.
\]

For every \(\alpha \in A(n') \) we obtain \(b_M(\tilde{\sigma}^{-n'}(\alpha^+)) \subset B(z_M(\alpha^+), \delta/3) \). Indeed, for \(\alpha' = \sigma^{-n'}(\alpha) \) we have \(\pi_{0,M}(\alpha') = \beta \), as we have landed with \(\alpha' \) in \(C_M \).

The length of \(b_M(\alpha'^+) \) is at most \(\delta/3 \) as \(\alpha' \in K \).

Hence

\[
f_{\alpha}^{-n'}(\text{cl}(B(z_M(\beta), 2\delta/3))) \subset B(z_M(\beta), 2\delta/3)
\]
for all n large enough, more precisely for n such that
\begin{equation}
|\left((f^{-n'}_\alpha) '\right|(x)| < 1/2 \quad \text{for all } x \in B(z_M(\beta), 2\delta/3).
\end{equation}
By B(ii)–B(iv) this holds for $n \geq (2\ln C + \ln 2)/(\chi_M(f) - \varepsilon)$.

Claim. The branches $f^{-n'}_\alpha$ on $B(z_\infty(\alpha^+), \delta)$ depend only on $\pi_{-n',M}(\alpha)$, more precisely on $\pi_{-n',-1}(\alpha)$ as $\pi_{0,M}(\alpha) = \beta$ has been fixed, on the common domain $B := B(z_M(\beta), 2\delta/3)$.

This is so since if two α’s in $A(n')$, say α and α', have the same block $(\alpha_{-n'}, \ldots, \alpha_{-1})$, then the branches $f^{-n'}_{\alpha}$ and $f^{-n'}_{\alpha'}$ are continuations of the same branch at z along curves coinciding till $z_M(\beta)$ and next contained in the common domain B (see Figure 1).

![Fig. 1](image)

We shall not use this claim directly, but we put it to help the reader understand the proof and to simplify notation later on.

By (2) we have $\nu(\pi_{-n',M}^{-1} \pi_{-n',M}(\alpha), \bar{A}(n')) \geq \xi/2N$. By the Shannon–McMillan–Breiman theorem for every $\eta > 0$ and all integers k large enough,

$$\nu\left(\bigcup\{C_{0,k}(w) : w \in \Sigma_{0,k}, \nu(C_{0,k}(w)) \leq \exp k(h_\nu(\sigma) + \varepsilon/3)\}\right) \geq 1 - \eta.$$

Setting $\eta = \xi/4N$ and $k = M + n'$ we get

$$\nu\left(\bigcup\{C_{-n',M}(w) : w \in \bar{A}(n')\}, \nu(C_{-n',M}(w)) \leq \exp (n' + M)(h_\nu(\sigma) + \varepsilon/3)\right) \geq \xi/2N - \xi/4N = \xi/2N.$$
Therefore for \(n \) large enough, the number of “good backward trajectories” of length \(n' \) can be estimated as follows:

\[
\#(\pi_{-n',-1}(A(n'))) \geq \exp n' (h_\nu(\sigma) - \varepsilon/2).
\]

Step 2: The sets \(X, Y \) and IFS. Now define \(Y' \subset \Sigma^d \) as the set of one-sided sequences which are concatenations of blocks \(v^k \) belonging to \(G_{n'} := \pi_{0,n'-1}\hat{\sigma}^{-n'}(A(n')) \), that is,

\[
Y' = \{ \alpha = v^0v^1\ldots \in \Sigma^d : v^k = \pi_{0,n'-1}\sigma^{kn'}(\alpha) \in G_{n'} \ \forall k = 0,1,\ldots \},
\]

and set

\[
X' = z_\infty(Y').
\]

Finally, define

\[
Y = \bigcup \{ \sigma^j(Y') : j = 0,\ldots,n'-1 \},
\]

\[
X = \bigcup \{ f^j(X') : j = 0,\ldots,n'-1 \} = z_\infty(Y).
\]

For each \(\alpha \in \Sigma^d \) and \(r \leq s \) denote by \(b_{r,s} \) the part of the branch \(b(\alpha) \) starting from \(z_{r-1}(\alpha) \) and ending at \(z_s(\alpha) \).

Now, to put it briefly, by (3) and (4) for every \(\alpha \in Y' \) the length of \(b_{kn',(k+1)n'-1}(\alpha) \) is less than \(C2^{-k} \) for a constant \(C > 0 \). Hence \(z_n(\alpha) \to z_\infty(\alpha) \) uniformly (even exponentially fast), which proves (ii) on \(Y' \), hence on \(Y \) by the uniform continuity of \(f \). By (3) and (4), \(X' \), and hence \(X \), are expanding repellers for \(f^{n'} \) and \(f \) respectively.

Let us now be more precise. Let \(\alpha \in Y' \) be a concatenation of \(v^k = \pi_{0,n'-1}\hat{\sigma}^{-n'}(w^k) \), for \(w^k \in A(n') \), for \(k = 0,1,\ldots \). We want to analyse \(b(\alpha) \). Note that by (1),

\[
(b_{(k-1)n',kn'-1}(\alpha)) = f_{-n'}^{-n'}(f_{-n',v^1,v^2,\ldots,v^k}(\ldots(f_{-n',v^{k-1},v^k}(b_{0,n'-1}(v^k))))).
\]

Assume that \(n' > M \). Then all \(b(\alpha) \) for \(\alpha = v^0v^1\ldots \in Y' \) pass through \(z_M(\beta) \) since \(v^0 \in G_{n'} \) implies that \(b_{0,n'-1}(\alpha) \) depending only on \(v^0 \) passes through \(z_M(\beta) \). (There is no reason for \(\alpha \) to belong to \(A(n') \), which would imply passing through \(z_M(\beta) \) by definition, as in the Claim. So for the first time in the proof we need to use \(n' > M \).)

Now we apply induction on \(k \). Suppose that for every \(\alpha \in \Sigma_{0, kn'-1} \) which is a concatenation \(v^0v^1\ldots v^{k-1} \) of blocks \(v^j \) in \(G_{n'} \) we have \(b_{M+1, kn'-1}(\alpha) \subset B \) (see Figure 2)). Take an arbitrary \(v \in G_{n'} \) which is the truncation of \(w \in A(n') \), more precisely \(v = \pi_{0,n'-1}\hat{\sigma}^{-n'}(w) \). Then \(f^{-n'}_{v,\alpha} \) and \(f^{-n'}_{w} \) coincide on \(B \), in particular on \(b_{M, kn'-1}(\alpha) \), since also \(b_{M}(w^+) \) is contained in \(B \), as \(w \in K \), yielding a path in \(T \) joining \(z_{kn'-1}(\alpha) \) to \(z_\infty(w^+) \) and entirely contained in \(B \) (compare the proof of Claim). Hence, by (3) applied to \(f^{-n'}_{w} \) we get \(b_{M+1,(k+1)n'-1}(w\alpha) \subset B \), which finishes the induction.
Therefore in (6) we can replace $f^{-n'} v \cdot v_{j+1} \cdot v_{j+2} \cdot \ldots \cdot v_k$ by $f^{-n'} w \cdot w_{j+1} \cdot w_{j+2} \cdot \ldots \cdot w_k$ for all $j = 0, 1, \ldots, k - 1$, in particular these branches of $f^{-n'}$ act on branches of the tree T in the common domain B (except $b_{0, n'-1}(w_k)$).

One can view the family of branches $F_v := f^{-n'} v$ for $v \in G_{n'}$ as an iterated function system (IFS) on B. It satisfies the so-called Strong Open Set Condition, i.e. all $F_v(B)$ have pairwise disjoint closures. The Claim allows us to write v in place of w, where v is the truncation of w. These branches also act on (extend to) $b_{0, M} (\beta)$, the line in the tree joining z to $z_M(v)$ which need not be contained in B. So F_v need not contract it. But further iteration contracts them exponentially since $F_v(b_{0, M} (\beta))$ lies already in B.

The limit set is contained in $\text{cl} z_\infty(\Sigma^d)$, since the F_v preserve the tree T.

Step 3: Proving properties (i)–(ix) in Theorem B. To prove (i) consider an arbitrary $\alpha = v^0 v^1 \ldots \in Y'$ for $v^k = \pi_{n'-1}(w^k)$, where $w^k \in A(n')$. Then, for each $k = 1, 2, \ldots$,

$$
\sum_{j=0}^{kn'-1} \varphi(\sigma^j(\alpha^+)) - \sum_{i=0}^{k-1} \sum_{j=0}^{n'-1} \varphi(\sigma^j((\widetilde{\sigma}^{-n'}(w^i))^+)) \leq kn' \varepsilon/2
$$

for n large enough. This follows from the continuity of φ since $\sigma^{in'+j}(\alpha)$ and $\sigma^j((\widetilde{\sigma}^{-n'}(w^i))^+)$ are very close to each other for all i and $0 \leq j \ll n'$. This is so because both one-sided sequences have the same beginning of length.
$n' - j$. Now (i) follows from the estimate $B(i)$ on $\sum_{j=0}^{n' - 1} \varphi(\sigma^j((\tilde{\sigma}^n(w))^{+}))$.

Passing from Y' to Y changes only the constant C in (i).

These considerations also prove (vi). Indeed, in the case of ψ one ensures the property of K analogous to $B(i)$, namely

$$B(vi) \quad -\ln C + n\left(\int \psi \, d\mu - \varepsilon / 2\right) \leq \sum_{j=0}^{n' - 1} \psi(f^j(z_{\infty}(\alpha^+)))$$

following from the ν-integrability of $\psi \circ z_{\infty}$ and the Birkhoff Ergodic Theorem. Use also the property analogous to (7), for ψ and f in place of ϕ and σ, which follows from the continuity of ψ and the fact that the preimages of points in B under the same branch $f^j f_{n' - j}^{-1}$ of $f^{-(n' - j)}$ are very close to each other for $0 \leq j \ll n'$.

The uniform (exponential) convergence in (ii) has already been proven. The injectivity and the property of X' of being a Cantor set follow from the Strong Open Set Condition of the IFS $\{F_v\}$. This implies that z_{∞} is finite-to-one on Y and X is also a Cantor set.

By (5) and (i) and by the definition of pressure,

$$P\left(\sigma^{n'}|_{Y'}, \sum_{j=0}^{n' - 1} \varphi \circ \sigma^j\right) \geq h_\nu(\sigma^{n'}) + n'\left(\int \varphi \, d\nu - \varepsilon\right),$$

hence easily $P(\sigma|_{Y'}, \varphi) \geq h_\nu(f) + \int_Y \varphi \, d\nu - \varepsilon$, proving (vii) for $P(\sigma|_{Y'}, \varphi)$.

The argument for $P(f|_X, \psi)$ is similar, using (vi) for ψ.

Note that one cannot pull back to Σ^d to refer to (vii) for $P(\sigma, \psi \circ z_{\infty})$ on Y since $\psi \circ z_{\infty}$ need not be continuous on $\partial \mathbb{D}$, even not defined, so we might not have (7).

By [M], or [P1, Sec. 3] where further references are provided, we have $\text{HD}(\mu) = h_\mu(f)/\chi_\mu(f)$. Consider an arbitrary $\varepsilon' > 0$ and set $t' := \text{HD}(\mu) - \varepsilon'$. Then $t' = h_\mu(f)/\chi_\mu(f) - \varepsilon'$. By (iii) and (5),

$$P(f|_X, -t' \ln |f'|_X|) \geq h_{\text{top}}(f|_X) - t'(\chi_\mu(f) + \varepsilon)$$

$$\geq h_\mu(f) - \varepsilon - (h_\mu(f)/\chi_\mu(f) - \varepsilon')(\chi_\mu(f) + \varepsilon)$$

$$\geq -\varepsilon - \varepsilon h_\mu(f)/\chi_\mu(f) + \varepsilon' \chi_\mu(f) + \varepsilon \varepsilon',$$

which is positive if

$$\varepsilon' > \frac{\varepsilon (1 + h_\mu(f))/\chi_\mu(f)}{\chi_\mu(f) + \varepsilon}.$$

Hence $\text{HD}(X) > t'$ as $\text{HD}(X)$ is not smaller than the first zero of the pressure function $t \mapsto P(f|_X, -t \ln |f'|_X|)$, by the Bowen theorem (see for
example [PU]). If we choose \(\varepsilon \) small we obtain \(\varepsilon' \) small, hence HD(\(X \)) arbitrarily close to HD(\(\mu \)), which proves (iv).

We prove (ix) similarly.

To prove (v) consider the cylinder \(C_M = C_{0,M}(\beta) \) for \(\beta \) being the truncation of a sequence \(\alpha \) dense in supp \(\nu \) and \(M \) large. The proof of Theorem B is finished. \(\blacksquare \)

5. Conclusions. Theorem B easily implies Theorem A. One builds the tree \(T \) in the basin of attraction. It is only sufficient to note that the branches of the tree \(R^{-1}(T) \) converge to \(\partial \mathbb{D} \) nontangentially, so the convergence of each branch \(b(\alpha) \) in \(T \) implies the nontangential, in particular radial, convergence of \(R \) at \(\lim R^{-1}(b(\alpha)) \in \partial \mathbb{D} \), with the same limit. One considers the pull-back \(\varphi \circ (R^{-1}(z))_\infty : \Sigma^d \to \mathbb{R} \), finds \(Y \) in \(\Sigma^d \), maps it by \((R^{-1}(z))_\infty \) with the use of \(R^{-1}(T) \) into \(\partial \mathbb{D} \) and with the use of \(T \) to \(X \subset Fr \Omega \) as in Theorem B. The map \(\hat{R} \) is finite-to-one on \(Y \) since \(z_\infty \) is.

The rate of the exponential convergence in (ii) and more precisely in (ii') follows easily from (iii), (i) applied to \(R \) rule.

Remark 2 follows easily from (iii), (i) applied to \(R \) rule.

Remark 3. If \(\nu \) is mixing, which is the case for Gibbs \(\nu \) as in Remark 1, then one can ensure that \(f \) on \(X \) is topologically mixing, that is, for any open subsets \(U, V \) of \(X \) there exists \(n_0 \) such that \(f^n(U) \cap V \neq \emptyset \) for all \(n \geq n_0 \).

Indeed, for \(n \) large we have by mixing \(\tilde{\nu}(\tilde{\sigma}^{-n}(C_M) \cap C_M) \sim \nu(C_M)^2 \).

Hence, if \(\nu(K) \approx 1 \), then \(\tilde{\nu}(A(n)) \geq \text{const} > 0 \) for all \(n \) large (compare (2)). We can repeat the previous construction by taking instead of one \(n' \) two different mutually prime integers.

Remark 4. Theorem A holds in the case \(\Omega \) is an immediate connected simply connected basin of attraction to a parabolic fixed point \(p \), i.e. \(p \in Fr \Omega \) such that \(f(p) = p \) and \(f'(p) \) is a root of unity.

Indeed, in this case \(R^{-1} \circ f \circ R \) extends to \(\mathbb{C} \) to yield \(g \) which is a Blaschke product such that \(\mathbb{D} \) (and \(\mathbb{C} \setminus \text{cl} \mathbb{D} \)) is a basin of a parabolic fixed point for \(g \) in \(\partial \mathbb{D} \). As in the conclusion that Theorem B implies Theorem A, we consider the trees \(T \) and \(R^{-1}(T) \). All the branches of \(R^{-1}(T) \) converge (polynomially fast, but not necessarily nottangentially), and at each limit point \(\zeta = (R^{-1}(z))_\infty(\alpha) \) for \(\alpha \in D(z_\infty) \), in particular in \(Y \), the radial limit \(\hat{R}(\zeta) \) coincides with \(z_\infty(\alpha) \) by Lindelöf’s theorem. Hence \(z_\infty = \hat{R} \circ (R^{-1}(z))_\infty \) on \(Y \) and all the maps involved are finite-to-one since \(z_\infty \) is finite-to-one on \(Y \).
References

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: feliksp@impan.gov.pl

Received 7 February 2005