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Persistence of fixed points under rigid perturbations of maps

by

Salvador Addas-Zanata and Pedro A. S. Salomão (São Paulo)

Abstract. Let f : S1 × [0, 1] → S1 × [0, 1] be a real-analytic diffeomorphism which
is homotopic to the identity map and preserves an area form. Assume that for some lift
f̃ : R× [0, 1]→ R× [0, 1] we have Fix(f̃) = R×{0} and that f̃ positively translates points
in R × {1}. Let f̃ε be the perturbation of f̃ by the rigid horizontal translation (x, y) 7→
(x+ ε, y). We show that Fix(f̃ε) = ∅ for all ε > 0 sufficiently small. The proof follows from
Kerékjártó’s construction of Brouwer lines for orientation preserving homeomorphisms of
the plane with no fixed points. This result turns out to be sharp with respect to the
regularity assumption: there exists a diffeomorphism f with all the properties above,
except that f is not real-analytic but only smooth, such that the above conclusion is false.
Such a map is constructed via generating functions.

1. Introduction. For k ≥ 1, let us denote by Diffk(D) the set of ori-

entation and area preserving Ck-diffeomorphisms ĥ : D→ D, defined in the
closed disk D := {z ∈ R2 : |z| ≤ 1}, which fix the origin 0 ∈ D. We denote
by Diffk0(D) ⊂ Diffk(D) the subset of diffeomorphisms satisfying

Fix(ĥ) := {ĥ(z) = z} = {0} and Dĥ(0) = Id.

Here we are considering the usual area form dz1∧dz2 on R2 with coordinates
(z1, z2).

In this paper we address the following question:

(Q1) Under what conditions can we find ĝ ∈ Diffk(D) arbitrarily Ck-

close to ĥ such that Fix(ĝ) = {0} and Dĝ(0) = e2πεi for some
ε ∈ R \Q?

Before stating the main results we need some definitions.

Definition 1.1. (a) Let A := S1×[0, 1] be the closed annulus, where S1

is identified with R/Z. Let Ã := R× [0, 1] be the infinite strip and p : Ã→ A
be the covering map (x, y) 7→ (x mod 1, y).
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(b) Let p1 : Ã→ R and p2 : Ã→ R be the projections of Ã into the first
and second factors, respectively. We also denote by p1 and p2 the respective
projections defined on A.

(c) Let Diffk(A) be the space of area preserving Ck-diffeomorphisms
f : A → A, where k ∈ N ∪ {∞, ω}, which are homotopic to the identity
map. Let Diffk0(A) ⊂ Diffk(A) denote the diffeomorphisms which satisfy the
following conditions: f(x, 0) = (x, 0) for all x ∈ S1 and if f̃ : Ã → Ã is the
lift of f such that f̃(x, 0) = (x, 0) for all x ∈ R, then Fix(f̃) = R × {0}.
Moreover, we require that

(1) p1 ◦ f̃(x, 1) > x, ∀x ∈ R.

(d) Let Diffk0(Ã) be the lifts of maps in Diffk0(A) which fix all points in
R× {0}.

Now if ĥ ∈ Diffk0(D), we obtain a map f := b−1 ◦ ĥ ◦ b induced by
b : A→ D defined by

b(x, y) := (
√
y cos 2πx,−√y sin 2πx),

where (x, y) are coordinates in A. Notice that f preserves the area form
dx ∧ dy. We assume that f extends to a map in Diffk(A). Clearly, S1 × {0}
corresponds to the blow up of 0 ∈ D, and S1×{1} corresponds to ∂D. Also,

since ĥ ∈ Diffk0(D), it follows that either f or f−1 admits a lift f̃ ∈ Diffk0(Ã).
In fact, either p1 ◦ f̃(x, 1) > x for all x ∈ R, or p1 ◦ f̃(x, 1) < x for all
x ∈ R. After possibly interchanging f with f−1 we may assume without loss
of generality that (1) is satisfied.

Given ε ∈ R we consider the diffeomorphism

(2) f̃ε : Ã→ Ã : (x, y) 7→ f̃(x, y) + (ε, 0).

The map f̃ε naturally induces a diffeomorphism fε : A→ A given by

(3) fε = p ◦ f̃ε ◦ p−1.

Notice that the translated map fε corresponds to blowing up the map ĥ ∈
Diffk0(D) after composing it with the rigid rotation z 7→ e2πεiz.

Our first result is the following theorem.

Theorem 1.2. Let f ∈ Diffω0 (A) and f̃ ∈ Diffω0 (Ã) be a lift of f . Then
there exists ε0 > 0 such that Fix(f̃ε) = ∅ for all 0 < ε < ε0.

Remark 1.3. The hypothesis f̃(x, 0) = (x, 0) for all x ∈ R can be
weakened to p1 ◦ f̃(x, 0) ≥ x for all x ∈ R, as is easily seen from the proof.

Remark 1.4. From the classical Poincaré–Birkhoff theorem, f̃ε has fixed
points in interior(Ã) for all ε < 0 sufficiently small.
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Our next result proves sharpness of the real-analyticity assumption in
Theorem 1.2, i.e. this phenomenon does not occur assuming only smooth-
ness.

Theorem 1.5. There exist f ∈ Diff∞0 (A) and a sequence of positive real
numbers εn → 0+ as n→∞ such that Fix(f̃εn) 6= ∅, where f̃ ∈ Diff∞0 (Ã) is
the special lift of f and f̃εn is defined as in (2), for all n ∈ N.

The proof of Theorem 1.2 strongly relies on a construction due to B. de
Kerékjártó [3] of Brouwer lines for orientation preserving homeomorphisms of
the plane which have no fixed point. Here, the hypothesis of real-analyticity
of f plays an important role. We argue indirectly assuming the existence of
a sequence εn → 0+ such that f̃εn admits a fixed point zn. We can assume
that zn converges to a point z̄ at the lower boundary component of Ã.
The real-analyticity hypothesis then allows one to deduce the existence of
a small real-analytic curve γ0 starting at z̄, which is a graph in the vertical
direction, so that f̃ moves its points horizontally to the left. Since f̃ has no
fixed point in interior(Ã), the curve γ0 is then prolonged to a Brouwer line
L ⊂ Ã, following Kerékjártó’s construction. We analyse all possibilities for
the behaviour of L and each of them yields a contradiction. Here, we strongly
use the fact that f̃ moves points in the upper boundary of Ã to the right.

The smooth map f in Theorem 1.5 is obtained from a special generating
function on Ã. More precisely, first we define a diffeomorphism ψ : Ã → Ã
supported in the sequence of balls Bk ⊂ Ã centred at (0, 3/2k+2) and of
radius 1/2k+3, converging to the origin. Using the function h(t) = e−1/t,
which extends smoothly at t = 0 as a flat point, we define the generating
function by g(p) = h ◦ p2 ◦ ψ(p), where p2 is the projection in the vertical
direction. The diffeomorphism associated to g, which is a priori defined only
in a small neighbourhood of the origin, is then suitably rescaled in order to
get a diffeomorphism f of the annulus satisfying all the requirements.

As one can see, f satisfies all hypotheses of Theorem 1.2 except that it
is not real-analytic at a unique point in the lower boundary. This follows
from the flatness of h at t = 0, and therefore the example in Theorem 1.5
shows the sharpness of the regularity assumption in Theorem 1.2.

2. Kerékjártó’s construction of Brouwer lines. In this section we
denote by h : R2 → R2 an orientation preserving homeomorphism of the
plane satisfying

(4) Fix(h) = ∅.

The following periodicity in x is assumed:

(5) h(x+ 1, y) = h(x, y) + (1, 0), ∀(x, y) ∈ R2.
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Definition 2.1. (a) We call α ⊂ R2 a simple arc if α is the image of
a topological embedding ψ : [0, 1]→ R2. We may consider the parametriza-
tion ψ of the arc α, which will also be denoted by α. We also identify all
the parametrizations of α which are induced by orientation preserving hom-
eomorphisms of the respective domains. The internal points of the simple
arc α are defined by α \ {α(0), α(1)} and denoted α̇. Given distinct points
B1, B2, . . . in R2, we denote by B1B2 . . . the polygonal arc connecting them
by straight line segments following that order. We may also denote by AB a
simple arc with end points A 6= B, which is not necessarily a line segment.

(b) Given any two simple arcs η0 and η1 with a unique common end
point, we denote by η0∪η1 the simple arc obtained by concatenating η0 and
η1 in the usual way and respecting the orientation from η0 to η1.

(c) We say that the simple arc α ⊂ R2 is a translation arc if α(0) = z,
α(1) = h(z) 6= z and

α ∩ h(α) = {h(z)}.
(d) Let α be a simple arc with end points b and c. We say that α abuts

on its inverse or direct image, respectively, if b 6∈ h−1(α)∪h(α) = ∅ and one
of the following conditions holds:

(i) α̇ ∩ h−1(α) = ∅ and c ∈ h−1(α).
(ii) α̇ ∩ h(α) = ∅ and c ∈ h(α).

(e) We say that L ⊂ R2 is a Brouwer line for h if L is the image of a
proper topological embedding ψ : R → R2 so that h(L) and h−1(L) lie in
different components of R2 \ L.

Let AB be a translation arc with end points A and B := h(A). Let
C = h(B) and denote by BC the simple arc given by h(AB). Assume
without loss of generality that the vertical line passing through B intersects
the arcs AB and BC only at B. Otherwise, we can perform a topological
change of coordinates in order to achieve this property.

We will construct two half-lines L1 and L2 issuing from B, with L1 start-
ing upwards and L2 starting downwards, so that L = L1 ∪ L2 is a Brouwer
line for h. L1 and L2 will be referred to as Brouwer half-lines since both are
topological embeddings of [0,∞) into R2 and h(Li) ∩ Li = ∅, i = 1, 2.

Let us start with L1. Consider the vertical arc γ1 starting upwards from
B which is defined by γ1(t) = B + (0, t), where t ∈ [0, t∗] (with t∗ to be
defined below), or t ∈ [0,∞). One of the following conditions is met:

(i) There exists t∗ > 0 such that γ1 abuts on its inverse image and
P := γ1(t

∗) is such that h(P ) =: P ′ is an internal point of γ1.
(ii) There exists t∗ > 0 such that γ1 abuts on its image and P := γ1(t

∗)
is an internal point of h(γ1). In this case we set P ′ := h−1(P ), which
is an internal point of γ1.
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(iii) γ1 is defined for all t ≥ 0, (h−1(γ̇1) ∪ γ̇1 ∪ h(γ̇1)) ∩ (AB ∪ BC) = ∅
and h(γ1) ∩ γ1 = ∅.

In case (iii) our construction of L1 ends and we define L1 = γ1. In cases
(i) and (ii), we define PP ′ to be the simple arc in γ1 from P ′ to P . Notice that
by construction, PP ′ is a translation arc. Kerékjártó proves the following
theorem.

Theorem 2.2 (see [3, Theorems II, III and IV]). In cases (i) and (ii)
above, we have

h(γ1) ∩AB = h−1(γ1) ∩BC = h(γ1) ∩ h−1(γ1) = ∅.
Moreover, in case (i) there exists a subarc ν1 of h−1(γ1) from A to P such
that ν1 ∪ PP ′ ∪ h(γ1) ∪BC ∪AB is a simple closed curve which bounds an
open domain U1 ⊂ R2. In case (ii) there exists a subarc ν1 of h(γ1) from C
to P such that ν1∪PP ′∪h−1(γ1)∪AB∪BC is a simple closed curve which
bounds an open domain U1 ⊂ R2.

Definition 2.3. The free side of PP ′ is defined to be the side of PP ′

outside U1 as in Theorem 2.2. See Figure 1.

Fig. 1. In this picture, γ1 abuts on its inverse and direct image as in cases (i) and (ii),
respectively.

The free side of the translation arc PP ′ ⊂ γ1 only depends on which side
γ1 lies on with respect to the oriented arc AB∪BC and how γ1 abuts on its
image according to cases (i) or (ii). This dependence strongly follows from
the assumption that h has no fixed points and is exemplified in Figure 1.

Now we need a couple of definitions in order to start the construction
of L1.

Definition 2.4. (a) Let Rn = [−n, n]× [−n, n] for all n ∈ N∗ and

εn = inf{|h(x)− x|, |h−1(x)− x| : x ∈ Rn} > 0.

Define ηn > 0 to be the largest t ∈ (0, εn/2] such that |h(x)− h(y)| ≤ εn/2
and |h−1(x)− h−1(y)| ≤ εn/2 whenever x, y ∈ Rn and |x− y| ≤ t.
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(b) Let n ∈ N∗ and assume PP ′ ⊂ Rn. By a mid-segment of PP ′ we
mean a segment M ⊂ PP ′ such that the distances of its points to P and to
P ′ are at least ηn. Notice that M 6= ∅.

(c) A base point associated to the vertical translation arc PP ′ and to a
given free side of PP ′ is a point B1 in a mid-segment M ⊂ PP ′ such that
either the half-line lB1 starting from B towards the free side of PP ′ is such
that lB1 ∩ (h(lB1) ∪ h(PP ′) ∪ h−1(PP ′)) = ∅, or there exists a simple arc β
starting from B1, perpendicular to PP ′ and going towards the free side of
PP ′ such that β abuts on its image and β ∩ (h(PP ′) ∪ h−1(PP ′)) = ∅. In
the former case, we say that the base point B1 with that given free side is
unbounded, and in the latter case B1 with the given free side is bounded.
One of the end points of β is B1 and the other is denoted by P1.

The proof of the existence of at least one base point associated to a
translation arc PP ′ and to any given free side of PP ′ is found in [3, Section
2.2].

Remark 2.5. If the translation arc PP ′ is horizontal, then the defini-
tions above are the same and analogous results hold.

Continuing our construction, we pick a base point B1 associated to the
vertical translation arc PP ′. The initial part of L1 is then defined to be the
segment BB1. If B1 is unbounded then we are finished and L1 = BB1∪lB1 is
the desired half-line. If B1 is bounded then the horizontal segment β = B1P1

abuts on its image and we find an internal point P ′1 = h(P1) or P ′1 = h−1(P1)
as before such that the horizontal arc P1P

′
1 ⊂ β is a translation arc. The

translation arc P1P
′
1 admits a free side according to the description above.

Observe that now the free side of P1P
′
1 is either the upper or the lower side.

Again we find a base point B2 ∈ P1P
′
1 associated to the free side of P1P

′
1

and add the simple arc B1B2 to L1, now given by L1 = BB1B2. Repeating
this procedure indefinitely we arrive at one of the following cases:

(i) After a finite number of steps we find an unbounded base point Bj ∈
Pj−1P

′
j−1 and our broken half-line is given by L1 = BB1B2 . . . BjlBj .

(ii) All base points Bj found in the construction are bounded and we
define L1 = BB1B2B3 . . . . Then the following holds: given n ∈ N∗,
there exists k0 ∈ N∗ such that Bk 6∈ Rn for all k ≥ k0. This follows
from the definition of base points and is proved in [3].

Notice that the construction of L depends on the choices of the internal
base points Bk ∈ Pk−1P ′k−1. Also, the half-line L1 goes to infinity and

(6) h(L1) ∩ L1 = (h(L̇1) ∪ h−1(L̇1) ∪ L̇1) ∩ (AB ∪BC) = ∅.
We still need a modification trick from [3] in the construction of L1. It

is called the deviation of the path. Let Vk = {(x, y) ∈ R2 : x = k}, k ∈ Z,
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be the vertical lines at integer values and assume that

(7) 0 < l := #V0 ∩ h−1(V0) <∞.
Notice that from (5), hypothesis (7) must hold as well for each Vk, k ∈ Z,

and the respective intersections are shifted by (k, 0).
Let V0 ∩ h−1(V0) = {w1, . . . , wl} and w′i := h(wi), i = 1, . . . , l. Consider

the vertical arcs γi = wiw
′
i ⊂ V0, i = 1, . . . , l. If γj does not properly contain

any γi with i 6= j, then γj is a translation arc. We consider only such
translation arcs on V0 and keep denoting them by γj , now with j = 1, . . . , l0,
l0 ≤ l. Given j, assume a free side of γj is given and is to the left. Then
there exists a base point uj,l ∈ γ̇j associated to γj and to that free side.
Accordingly, if the given free side of γj is to the right, we can also find
a base point uj,r ∈ γ̇j associated to γj and to that free side. Let γij =
γj + (i, 0) be the respective translation arcs on Vi for all i ∈ Z and let
uij,l := uj,l + (i, 0), uij,r := uj,r + (i, 0), i ∈ Z, be their respective base points.

In the following we fix these base points uij,l and uij,r in each γij .
In the construction of L1 above suppose that at some point we find a

vertical translation arc Pk−1P
′
k−1 with a given free side and the horizontal

arc issuing from a bounded base point Bk ⊂ Pk−1P
′
k−1 towards the free

side intersects some Vj at an internal point z ∈ BkBk+1 so that the arc
Bkz intersects no other vertical Vi, i 6= j. Instead of adding the segment
BkBk+1 to L1 we add only the segment Bkz and the new Bk+1 is determined
according to one of the alternatives found in the following theorem.

Theorem 2.6 ([3], [2]). We have:

(i) There exists a vertical half-line lz ⊂ Vj through z so that the broken
half-line α := Bkz ∪ lz satisfies α ∩ h(α) = ∅ and (h(Pk−1P

′
k−1) ∪

h−1(Pk−1P
′
k−1)) ∩ α = ∅. In this case we have L1 = BB1 . . . Bkzlz

and the construction of L1 is finished.
(ii) There exists c ∈ Vj, c 6= z, such that the broken arc α := Bkz ∪ zc

abuts on its image, satisfies (h(Pk−1P
′
k−1)∪h−1(Pk−1P ′k−1))∩α = ∅,

and contains a translation arc γjm ⊂ Vj for some m ∈ {1, . . . , l0}.
Let Bk+1 ∈ {ujm,l, u

j
m,r} be the base point in γjm associated to the free

side of α. In this case we have L1 = BB1 . . . BkzBk+1 . . . and we
keep constructing L1 through the horizontal arc issuing from Bk+1 ∈
Vj towards the free side of α as before.

(iii) The point z is an internal point of a translation arc γjm for some m

so that γjm ∩ (h(Pk−1P
′
k−1) ∪ Pk−1P ′k−1 ∪ h−1(Pk−1P ′k−1)) = ∅ and⋃

n∈Z h
n(γjm)∩Bkz = {z}. In this case the free side of γjm is the side

opposite to Bkz and we find a base point Bk+1 ∈ {ujm,l, u
j
m,r} associ-

ated to γjm and to that free side. We have L1 = BB1 . . . BkzBk+1 . . .
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and we keep constructing L1 through the horizontal arc issuing from
Bk+1 towards that free side.

Fig. 2. The deviation of the path according to cases (i)–(iii) above

Proceeding as above indefinitely and using the deviation of the path
whenever its conditions are met, we find the desired half-line L1. As ex-
plained before, L1 goes to infinity and satisfies (6).

Remark 2.7. Given a ∈ R, let Ga = {(x, y) ∈ R2 : y ≥ a}. We can
extract some more information on how L1 goes to infinity if we assume the
following twist condition on h:

(8) ∃y0 ∈ R, p1 ◦ h(x, y) > x and p1 ◦ h−1(x, y) < x, ∀(x, y) ∈ Gy0 .
Suppose that at some point in the construction of L1 we find a horizontal
translation arc Pk−1P

′
k−1 with the free side coinciding with its upside and

an associated base point Bk ∈ Pk−1P ′k−1. Assume that there exists a vertical
segment V starting from Bk towards the free side so that its other extremity
lies inside Gy0 and that h(V ) ∩ V = ∅. We claim that Bk is an unbounded
base point and the construction of L1 ends by adding to it the vertical half-
line lBk , i.e., L1 = BB1 . . . BklBk . To see this we argue indirectly and assume
the existence of a vertical segment W starting from Bk and containing V
such that W abuts on its image. Let w 6= Bk be the other extremity of W .
Then either h(w) ∈ W or h−1(w) ∈ W . However, this contradicts (8) and
proves our claim.

Remark 2.8. Using the deviation of the path explained above we know
that if L1 is horizontally unbounded then L1 is eventually periodic. This
follows from the finiteness of the points uij,l, u

i
j,r ∈ Vi for each i ∈ Z. For

instance, suppose that L1 is deviated at Vi for some i ∈ Z, and leaves it to the
right at uij,r ∈ Vi for some j ∈ {1, . . . , l0}. Suppose that after this deviation,
L1 is now deviated at Vi+N , for some N ∈ Z∗, leaving it to the right at
ui+Nj,r ∈ Vi+N . We continue the construction of L1 from ui+Nj,r , proceeding in

exactly the same way as we did from uij,r. This implies that, except perhaps
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for its initial segments, L1 is periodic, i.e., there exists a connected subset
W0 ⊂ L1 from uij,r to ui+Nj,r such that W0 + (kN, 0) ⊂ L for all k ∈ N. Hence
we find a new periodic Brouwer line Lper given by W0 + (kN, 0), k ∈ Z. By
construction we must have h(Lper) ∩ Lper = ∅.

Remark 2.9. The construction of the other half-line L2 from B (now
starting downwards) can be made in exactly the same way as we did for
L1 so that by construction L = L1 ∪ L2 is a Brouwer line. An alternative
construction for L2, which will be used in the proof of Theorem 1.2, is the
following: let ψ : [0,∞) → R2 be a proper topological embedding with
ψ(0) = B and let L2 = ψ([0,∞)). Assume that h(L2) ∩ L2 = ∅ and that L̇1

and L̇2 lie in different components of R2 \ (h−1(L2) ∪ AB ∪ BC ∪ h(L2)).
Then one easily checks that L = L1 ∪ L2 is a Brouwer line for h.

We end this section with a proposition that will be useful in the proof of
Theorem 1.2 in the next section. Its proof is entirely contained in Kerékjár-
tó’s construction of Brouwer lines explained above.

Proposition 2.10. Let h : R2 → R2 be an orientation preserving hom-
eomorphism of the plane which has no fixed points and satisfies the following
assumptions:

(i) There exists y0 ∈ R such that

p1 ◦ h(x, y) > x and p1 ◦ h−1(x, y) < x, ∀(x, y) ∈ R2, y ≥ y0.
(ii) h(x+ 1, y) = h(x, y) + (1, 0) for all (x, y) ∈ R2.
(iii) There exists a vertical line V0 such that

0 < l := #V0 ∩ h−1(V0) <∞.
Then through any point B ∈ R2 as above, there exists a Brouwer half-line
L1 issuing from B upwards such that:

• L1 contains only horizontal and vertical segments.
• If L1 contains a point q ∈ {y ≥ y0} then it contains the vertical upper

half-line through q.
• If L1 is horizontally unbounded then L1 is eventually periodic, i.e.,

there exists a simple arc W0 ⊂ L1 and an integer N 6= 0 such that
W0 + (kN, 0) ⊂ L1 for all k ∈ N; and |N | is the least positive integer
with this property. In particular, this implies that W0 ∩W0 + (N, 0) =
{point}.
• If L2 is a given Brouwer half-line issuing from B downwards and L̇1

and L̇2 lie in different components of R2\(h−1(L2)∪AB∪BC∪h(L2)),
then L1 ∪ L2 is a Brouwer line.

Here, as above, B = h(A), C = h(B), AB is a translation arc and BC =
h(AB) is horizontal.
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3. Proof of Theorem 1.2. We start with the following lemma.

Lemma 3.1. Let g̃ : Ũ ⊂ Ã→ Ã be a real-analytic area preserving diffeo-
morphism onto its image, defined in an open neighbourhood Ũ of R × {0}
⊂ Ã such that Fix(g̃) = R × {0}. Assume that there exists a sequence of
positive real numbers εn → 0+ such that each g̃εn, defined as in (2), admits
a fixed point pn ∈ Ũ , with pn → p̄ = (x̄, 0) ∈ R×{0} as n→∞. Then there
exists a real-analytic curve γ0 : [0, 1] → Ũ , γ0(t) = (x(t), y(t)), such that
g̃ ◦ γ0(t) = (w(t), y(t)) and

(9) w(0) = x̄, w(t) < x(t), y′(t) > 0, ∀t ∈ (0, 1].

Proof. Write g̃(x, y) = (g1(x, y), g2(x, y)) and let G2(x, y) := g2(x, y)−y.
We may express G2 as a power series in x− x̄ and y near p̄ which converges
in Bε := {(x, y) ∈ R2 : (x− x̄)2 + y2 ≤ ε2} with ε > 0 small.

If G2 vanishes identically then g2(x, y) = y near p̄. By preservation of
area and the fact that g1(x, 0) = x for all x, we have g1(x, y) = x + yR(y)
for a real-analytic function R defined near y = 0. Since Fix(g̃) = R × {0},
R does not vanish identically. The existence of pn as in the hypothesis implies
R(y) < 0 for y small. In this case we can define the curve γ0 by γ0(t) = (x̄, t),
with t ≥ 0 small.

Now assume that G2 does not vanish identically. We investigate the zeros
of G2 near p̄ in Bε for ε > 0 small. Notice that p̄ ∈ R×{0}∩Bε ⊂ {G2 = 0}
and thus p̄ is not an isolated point of {G2 = 0}. Since G2 is real-analytic, we
take ε > 0 small and find an even number of real-analytic embedded curves
ηi : [0, 1] → Bε, i = 1, . . . , 2m, with ηi(0) = p̄, such that {G2 = 0} ∩ Bε =⋃2m
i=1 Image(ηi) (see [4, Lemmas 3.1 and 3.3]). Taking ε > 0 even smaller, we

may assume that the images of any two of these curves intersect each other
only at p̄. Also, we may choose η1(t) = (x̄+ εt, 0) and η2(t) = (x̄− εt, 0) for
t ∈ [0, 1], since R× {0} ⊂ {G2 = 0}. The existence of a sequence pn → p̄ as
in the hypothesis implies that m ≥ 2 and therefore we find j0 ∈ {3, . . . , 2m}
and a subsequence of pn, still denoted by pn, such that pn ∈ Image(ηj0).
Moreover, since ηj0(t) = (xj0(t), yj0(t)) is real-analytic, we have y′j0(t) > 0
for all t ∈ (0, µ], for some µ > 0 small, and therefore Image(ηj0 |[0,µ]) projects
injectively into the y-axis. Finally, we define γ0(t) = ηi0(µt), t ∈ [0, 1]. By
the properties of pn and the fact that Fix(g̃) = R × {0}, we conclude that
γ0 has the properties as in the statement.

To prove Theorem 1.2 we argue indirectly. Assume that there exists a
sequence εn → 0+ such that f̃εn defined as in (2) admits a fixed point pn.

By the periodicity of p1 ◦ f̃(x, y) − x in x we can assume that pn → p̄ =
(x̄, 0) ∈ R × {0}. This implies that f̃ restricted to a neighbourhood Ũ of
R×{0} satisfies the conditions of Lemma 3.1. So we can find a real-analytic
curve γ0 : [0, 1] → Ã, γ0(t) = (x(t), y(t)), such that f̃ ◦ γ0(t) = (w(t), y(t))
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satisfies (9). In what follows, the curve γ0 will be prolonged to a Brouwer
line L̃ in Ã satisfying one of the possibilities:

• L̃ hits R×{1}. Since f̃ moves points in R×{1} to the right and moves
γ0 to the left, L̃ must intersect its image, a contradiction.
• L̃ is eventually periodic. In this case we obtain an area preserving dif-

feomorphism of the closed annulus with a homotopically non-trivial
simple closed curve which is disjoint from its image, again a contra-
diction.
• L̃ is bounded and accumulates at R×{0}. In this case we obtain an area

preserving homeomorphism of the 2-sphere admitting a simple closed
curve bounding a topological disk whose image is properly contained
inside itself, a contradiction.

Given t ∈ (0, 1] let Bt := γ0(t), Ct := f̃(Bt) and At := f̃−1(Bt). Let BtCt
be the horizontal segment connecting Bt and Ct, and let AtBt := f̃−1(BtCt)
be its inverse image. We claim that AtBt is a translation arc for f̃ if t is
small enough. To see this, assume this is not the case, so that we can find
a point Bt 6= z ∈ BtCt which is also contained in AtBt. It follows that

p1(z) > p1(Bt). Since ∂(p1◦f̃)
∂x (x, y)→ 1 as (x, y)→ p̄, we have

p1 ◦ f̃(z)− p1 ◦ f̃(Bt) =
∂(p1 ◦ f̃)

∂x
(ξ)(p1(z)− p1(Bt)) > 0

for some ξ ∈ BtCt and t > 0 small. As f̃(z) ∈ BtCt, we also have p1 ◦ f̃(z)
≤ p1(Ct) = p1 ◦ f̃(Bt). This contradiction proves that indeed AtBt is a

translation arc for f̃ and

(10) p1(z) > p1(Bt)

for all internal points z ∈ AtBt where t ∈ (0, 1] is fixed and small.
Let us fix a sufficiently small t0 > 0 such that for some c0 ∈ R, the set

f̃−1(γ0([0, t0])) ∪ γ0([0, t0]) ∪ f̃(γ0([0, t0])) ∪Bt0Ct0 ∪At0Bt0 is disjoint from

all the verticals Vk+c0 = {(x, y) ∈ Ã : x = k + c0}, k ∈ Z. We may assume
without loss of generality that c0 = 0.

In order to directly apply elements of Kerékjártó’s construction of Brou-
wer lines in the plane as stated in Proposition 2.10, we consider the homeo-
morphism d : interior(Ã)→ R2 given by

d(x, y) =

(
x,
y − 1/2

y(1− y)

)
and the induced orientation preserving homeomorphism h : R2 → R2 given
by h = d◦ f̃ ◦d−1. From the hypothesis Fix(f̃) = R×{0}, we get Fix(h) = ∅.

Let A := d(At0), B := d(Bt0) and C := d(Ct0). Denote by AB the simple
arc d(At0Bt0) and by BC its image under h. Notice that AB is a translation
arc and BC is a horizontal simple arc. From (10), the vertical line through
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B intersects AB and BC only at B. Hence we can start the construction
of a Brouwer line for h with the vertical line starting from B towards the
upside and proceeding as in Section 2, thus obtaining the half-line L1. To
obtain L2 we simply define L2 = d(γ0|(0,t0]). It follows that L = L1 ∪ L2 is

a Brouwer line (see Remark 2.9). Let L̃ := d−1(L) = L̃1 ∪ L̃2 and observe
that

(11) f̃(L̃) ∩ L̃ = ∅.

Now we prove that the existence of the Brouwer line L̃ leads to a contra-
diction. First, from the twist condition (1), we can find 0 < δ < 1 such that
for all (x, y) ∈ Sδ := {(x, y) ∈ Ã : δ ≤ y ≤ 1}, we have p1 ◦ f̃(x, y) > x and

p1 ◦ f̃−1(x, y) < x. This implies that h satisfies condition (8) for y0 = δ−1/2
δ(1−δ)

(see Remark 2.7). It follows that if L̃ hits Sδ then L̃ contains a vertical

segment with end point z0 ∈ R×{1}. By construction, points of L̃ near but
different from p̄ are mapped under f̃ to the left, while points near z0 are
mapped to the right. This implies that f̃(L̃)∩ L̃ 6= ∅, which contradicts (11).
Hence we can assume that L̃ does not accumulate at R× {1}.

Fig. 3. The Brower line L̃ = L̃1 ∪ L̃2 ⊂ Ã

Since f̃ is analytic and p1 ◦ f̃(x, 1) > x for all x ∈ R, we deduce that
f̃−1(Vk) ∩ Vk = (f̃−1(V0) ∩ V0) + (k, 0) is a finite set for all k ∈ Z, and

therefore condition (7) holds for h. This implies that if L̃ is horizontally
unbounded then, as explained in Remark 2.8, we can find N ∈ Z and another
Brouwer line L̃per = d−1(Lper) ⊂ interior(Ã) which is N -periodic in x, i.e.,

L̃per + (kN, 0) = L̃per for all k ∈ Z. Let fN : AN → AN be the map
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induced by f̃ on the annulus AN := Ã/TN , where TN : Ã → Ã is the
horizontal translation TN (x, y) = (x + N, y). Let pN : Ã → AN be the
associated covering map and let LN := pN (L̃per). From the properties of

L̃per and of the map f̃ we see that LN and fN (LN ) are disjoint simple
closed curves which are homotopically non-trivial. Let C− be the topological
closed annulus bounded by LN and pN (R × {0}). Then either fN or f−1N
maps C− properly into itself. Since fN preserves a finite area form, we get
a contradiction. Hence we can assume that L̃ is horizontally bounded and
accumulates only at R× {0}.

Now we find N0 ∈ N large enough that L̃ ∩ (L̃ + (N0, 0)) = ∅, which
implies by Brouwer’s lemma (see for instance [1]) that

(12) L̃ ∩ (L̃+ (kN0, 0)) = ∅, ∀k ∈ Z∗.
As before we consider the annulus AN0 := Ã/TN0 and identify the points in
each component of ∂AN0 to obtain a topological sphere S2. We end up with

a map f̂N0 : S2 → S2 induced by fN0 which preserves orientation and a finite
area form. The closure of pN0(L̃) corresponds to a simple closed curve γ0 ⊂
S2 passing through the pole p0, which corresponds to the lower component
of ∂AN0 . This last assertion follows from (12). Since L̃ is a Brouwer line we

see that f̂N0(γ0)∩ γ0 = {p0} and that f̂N0 maps properly one component of
S2 \γ0 into itself. This contradicts the preservation of a finite area form and
shows that L̃ cannot exist. The proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.5. Our aim in this section is to construct a
diffeomorphism f : S1 × [0, 1]→ S1 × [0, 1], homotopic to the identity map,
which satisfies:

(i) f is smooth and area preserving.
(ii) Fix(f) = S1 × {0}.

(iii) If f̃ : R× [0, 1]→ R× [0, 1] is the lift of f satisfying f̃(x, 0) = (x, 0)
for all x ∈ R, then p1 ◦ f̃(x, 1) > x for all x ∈ R.

(iv) Given ε > 0, if fε : S1 × [0, 1] → S1 × [0, 1] is induced by the
lift f̃ε := f̃ + (ε, 0) as before, then there exists a positive sequence
(εn)n∈N with εn → 0+ as n→∞ such that Fix(f̃εn) 6= ∅ for all n.

As proved in Theorem 1.2, such a diffeomorphism cannot exist if smooth-
ness is replaced by real-analyticity in (i).

4.1. Area preserving maps and generating functions. We start
by recalling basic facts on area preserving maps associated to generating
functions. Let U := {(X, y) ∈ R× [0, 1] : X2+y2 < ε}, ε > 0, and g : U → R
be a smooth function such that

(13) Dνg|{y=0}∩U ≡ 0, ∀0 ≤ |ν| ≤ 2.
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We denote by G : U → R the function given by

(14) G(X, y) := Xy − g(X, y).

Let (x, Y ) ∈ R× [0, 1] be given by

(15) x := Gy = X − gy(X, y), Y := GX = y − gX(X, y).

We see from the first equation of (15) and the hypothesis (13) on g that
we can use the implicit function theorem to write X = α(x, y) for |(x, y)|
small, where α is a smooth map satisfying α(x, 0) = x for all x. In this
case Y = y − gX(α(x, y), y) = β(x, y) ≥ 0, where β is smooth and satisfies
β(x, 0) = 0 for all x. Let f̄ : V ⊂ R× [0, 1]→ R× [0, 1] be given by

(X,Y ) = f̄(x, y) := (α(x, y), β(x, y)),

where V is a small neighbourhood of (0, 0) ∈ R × [0, 1]. We say that f̄ is a
local map associated to the generating function G. Moreover, f̄ |R×{0} is the
identity map.

Proposition 4.1. The map f̄ preserves the area form dx ∧ dy on the
strip R× [0, 1], i.e.,

dX ∧ dY = dx ∧ dy.
Proof. From (15) we have

(16)
dx = (1− gyX)dX − gyydy, so dx ∧ dy = (1− gyX)dX ∧ dy,
dY = (1− gXy)dy − gXXdX, so dX ∧ dY = (1− gXy)dX ∧ dy.

Since g is smooth, the proposition follows.

4.2. A special generating function. Let ρ : [0,∞) → [0, 1] be a
smooth function satisfying ρ ≡ 1 in [0, 1/16], ρ ≡ 0 in [1/4,∞) and ρ′ < 0
in (1/16, 1/4). We define the vector field X on the strip W1 := R × [−1, 1]
by

X(x, y) = ρ(x2 + y2) · (−y, x).

It is clear that X is smooth, X ≡ 0 outside B(1/2) := {(x, y) ∈ W1 :
x2 + y2 ≤ 1/4} and X(x, y) = (−y, x) in B(1/4).

The flow {ϕt} of X on W1 is defined for all t ∈ R and satisfies

(17)
ϕt(x, y) = (x, y), ∀(x, y) ∈W1 \B(1/2), ∀t,
ϕπ(x, y) = −(x, y), ∀(x, y) ∈ B(1/4).

Now let W0 := R× [0, 1]. For each k ∈ N, let

Fk := R× (1/2k+1, 1/2k] ⊂W0, F∞ := R× {0} ⊂W0,

and consider the diffeomorphism

(18)
tk : Fk →W1 \ R× {−1}, k ∈ N,
(x, y) 7→ (2k+2x, 2k+2y − 3).

Letting ∂+k := R× {1/2k} ⊂ Fk, we observe that tk(∂
+
k ) = R× {1}.
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Next define a map ψ : W0 →W0 by

(19)
ψ|Fk := t−1k ◦ ϕπ ◦ tk, ∀k,
ψ|F∞ := Id|F∞ .

Let pk := (0, 3/2k+2) ∈ Fk ⊂W0 be the ‘midpoint’ of Fk. From (17)–(19)
we note that

(20) suppψ =
⋃
k≥0

Bpk(1/2k+3),

where Bp(r) denotes the closed ball centred at p with radius r. Moreover,
ψ is the identity map when restricted to a small neighbourhood of each ∂+k .
These observations together with the second equality in (19) imply that ψ
is smooth in W0 \ {(0, 0)}. We also see that ψ is a diffeomorphism when
restricted to W0 \ {(0, 0)}. From the second equality in (17) we have

(21) ψ(x, y) = 2pk − (x, y), ∀(x, y) ∈ Bpk(1/2k+4), ∀k.
Let h : [0, 1]→ [0,∞) be the smooth function given by

(22)
h(t) = e−1/t, ∀t > 0,

h(0) = 0.

Note that h is flat at t = 0, i.e.,

(23) h(n)(0) = 0, ∀n.
Observe also that given l ∈ N, we find polynomial functions Pl, Ql such that

(24) h(l)(t) = e−1/t
Pl(t)

Ql(t)
, ∀t > 0.

This can easily be proved by induction.
Now let g : W0 → [0,∞) be defined by

(25) g := h ◦ p2 ◦ ψ.
Proposition 4.2. We have the following:

(i) The function g is smooth and Dνg|R×{0} ≡ 0 for all ν ≥ 0.
(ii) The set Crit(g) of critical points of g coincides with R× {0}.
(iii) There exists a positive sequence (sk)k∈N with sk → 0+ as k → ∞

such that ∇g|∂+k = (0, sk) for all k.

(iv) There exists a positive sequence (mk)k∈N with mk → 0+ as k →∞
such that ∇g(pk) = (0,−mk) for all k.

Postponing its proof to Section 4.3, we use Proposition 4.2 to show that
g induces a diffeomorphism f : S1× [0, 1]→ S1× [0, 1] satisfying conditions
(i)–(iv) as given at the beginning of this section.

Let G(X, y) = Xy − g(X, y) be the function defined in (14). Then, as
explained before, we find a small neighbourhood V of (0, 0) in R× [0, 1] and
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a smooth area preserving map f̄ : V → R × [0, 1], f̄(x, y) = (X,Y ), such
that f̄ |V ∩F∞ is the identity map, i.e., f̄ is the local map associated to the
generating functionG. From (15) we see that the fixed points of f̄ correspond
to the critical points of g. This implies that Fix(f̄) = Crit(g) = V ∩ F∞.
Now observe that since ∇g|∂+k = (0, sk) with sk → 0+ as k → ∞, we

see from (15) that f̄(x, y) = (x + sk, y) for all (x, y) ∈ ∂+k . In the same
way, since ∇g(pk) = (0,−mk), we have f̄(mk, 3/2

k+2) = pk = (0, 3/2k+2)
for all k, with mk → 0+ as k → ∞. This implies that for all k ≥ 0,
the map f̄ + (mk, 0) has (mk, 3/2

k+2) as a fixed point. From (20) and the
definition of g, we see that given any x1 > 0 small we have f̄(x, y) =
(x + h′(y), y) for all (x, y) ∈ {|x| = x1, 0 ≤ y ≤ 2x1}. Given λ > 0, let
Tλ : R × [0,∞) → R × [0,∞) be the map Tλ = (λx, λy). If necessary
we replace f̄ by (T1/2k0 )−1 ◦ f̄ ◦ T1/2k0 , for a fixed k0 sufficiently large, in

order to find a map defined in [−1/2, 1/2]× [0, 1] with the same properties
above. Identifying (−1/2, y) ∈ {−1/2} × [0, 1] with (1/2, y) ∈ {1/2} × [0, 1]
we finally find a map f : S1 × [0, 1] → S1 × [0, 1] with all the desired
properties.

Notice that the diffeomorphism induced by the generating function g is
defined in the open neighbourhood V ⊂ R×[0, 1] which might be very small.
This explains why property (iii) is necessary in Proposition 4.2. Its proof is
not straightforward and is left to the next section.

4.3. Proof of Proposition 4.2. As observed before, ψ is smooth on
W0 \ {(0, 0)}. Hence g is smooth in this set as well. Moreover, since ψ is
the identity map near (x̄, 0) for each x̄ 6= 0, we see that g is given by
g(x, y) = h(y) near (x̄, 0). It follows from (23) that

(26) Dνg(x̄, 0) = 0, ∀x̄ 6= 0, ∀|ν| ≥ 0.

It remains to prove that g is smooth at (0, 0) and Dνg(0, 0) = 0 for all
|ν| ≥ 0. Let p = p2 ◦ ψ. From the definition of ψ we see that

(27) p(x, y) =
1

2n
p(2nx, 2ny), ∀(x, y) ∈W0 \ F∞.

For any given smooth function a : U ⊂ R2 → R, we write Dαa = ∂|α|a
∂xi∂yj

where α = (i, j) ∈ N2 and |α| = i+ j.

Lemma 4.3. In W0 \ F∞, we have

(28) Dαg =

|α|∑
l=1

h(l)(p)Tα,l({Dβp}1≤|β|≤|α|−l+1),

where Tα,l is a multi-variable polynomial function of the Dβp.
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Proof. Observe that D(1,0)g = h′(p)px and D(0,1)g = h′(p)py have the
form above with

T(1,0),1(px, py) = px, T(0,1),1(px, py) = py.

In the same fashion we have D(2,0)g = h′(p)pxx+h′′(p)p2x, D
(1,1)g = h′(p)pxy

+ h′′(p)pxpy, D
(0,2)g = h′(p)pyy + h′′(p)p2y and

T(2,0),1(px, py, pxx, pxy, pyy) = pxx, T(2,0),2(px, py) = p2x,

T(1,1),1(px, py, pxx, pxy, pyy) = pxy, T(1,1),2(px, py) = pxpy,

and so on. Let α̃ = α+ (1, 0) and observe that Dα̃g = D(1,0)Dαg. The case
α̃ = α + (0, 1) is similar. Now an easy induction argument establishes the
claim.

It follows from (24) and (28) that

(29) Dαg = e−1/p
|α|∑
l=1

Pl(p)

Ql(p)
Tα,l({Dβp}),

where Pl, Ql are polynomial functions in p.

Lemma 4.4. There are constants Cβ > 0 depending on (0, 0) 6= β ∈ N×N
such that

|Dβp(x, y)| ≤
Cβ

y|β|
, ∀(x, y) ∈W0 \ F∞.

Proof. Given (x, y) ∈ W0 \ F∞, let n(x, y) ∈ N be the unique positive
integer such that 2n(x,y)(x, y) ∈ F0 = R× (1/2, 1]. From (27), we have

Dβp(x, y) = 2n(x,y)|β|−1Dβp(2n(x,y)x, 2n(x,y)y).

Let
0 < Cβ := sup

(x,y)∈F0

Dβp(x, y) <∞.

It follows from the definition of n(x, y) that

|Dβp(x, y)| ≤ 2n(x,y)|β|−1Cβ.

Now since 2n(x,y) ≤ 1/y ⇒ 2n(x,y)|β|−1 ≤ 1/y|β|, the claim follows.

Lemma 4.5. |Dβg(x, y)| → 0 as (x, y)→ (0, 0) for all β.

Proof. From (26) it suffices to consider (x, y) ∈W0 \F∞. From Lemmas
4.3 and 4.4 we find constants Cα,l, nα,l > 0 such that

(30) |Tα,l({Dβp})| ≤
Cα,l
ynα,l

.

We can also find constants Kl,ml > 0 such that

(31)

∣∣∣∣Pl(p)Ql(p)

∣∣∣∣ ≤ Kl

pml
.
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Now since 0 < y/2 ≤ p(x, y) ≤ 2y, from (29)–(31) we get

(32) |Dβg(x, y)| ≤ e−1/(2y)
|β|∑
l=1

2mlKlCα,l
yml+nα,l

≤ e−1/(2y)
Mβ

ymβ
→ 0

as y → 0, where Mβ,mβ > 0 are suitable constants.

Let β = (b1, 0), where b1 ∈ N. Since g|F∞\{(0,0)} = 0, we have Dβg(0, 0)

= 0. From (32), Dβg is continuous at (0, 0).
Now assume b2 > 0 and let β = (b1, b2). Then

Dβg(0, 0) = lim
y→0+

Dβ−(0,1)g(0, y)−Dβ−(0,1)g(0, 0)

y
.

Using induction on b2 and inequality (32) again, we find

(33) Dβg(0, 0) = 0, ∀β.
Finally, from (32) and (33) we see that Dβg is continuous at (0, 0). The
proof of (i) is finished.

It is clear from the considerations above that Crit(g) ⊇ F∞. Since ψ is
a local diffeomorphism in W0 \ F∞, p2 is a submersion and h′(y) > 0 for all
y > 0, we find that also g is a submersion when restricted to W0 \F∞. This
implies that Crit(g) ⊆ F∞, and therefore Crit(g) = F∞ = R × {0}. This
proves (ii).

Since ψ is the identity map near each ∂+k , we have g(x, y) = h(y) for all
(x, y) near ∂+k . This implies that

∇g(x, y) = (0, h′(1/2k)), ∀(x, y) ∈ ∂+k .
Since h′(1/2k) > 0 for all k and limk→∞ h

′(1/2k) = 0, (iii) follows.
To prove (iv), observe from (21) that g(x, y) = h(p2(2pk − (x, y))) =

h(3/2k+1 − y) for all (x, y) ∈ Bpk(1/2k+4). This implies in particular that

∇g(pk) = (0,−h′(3/2k+2)).

Since h′(3/2k+2) > 0 for all k and limk→∞ h
′(3/2k+2) = 0, (iv) follows. The

proof of Proposition 4.2 is now complete.
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