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A theorem on generic intersections in an o-minimal structure
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Abstract. Consider a transitive definable action of a Lie group G on a definable
manifold M . Given two (locally) definable subsets A and B of M , we prove that the
dimension of the intersection σ(A) ∩B is not greater than the expected one for a generic
σ ∈ G.

For a fixed o-minimal expansionR of the real field R, consider a transitive
definable (left) action α of a definable group G on a definable manifold M
of dimension m:

α : G×M →M, α(σ, x) = σ · x.
Here, “definable” means “definable with parameters from R”. WhenM = Rm

is an affine space, the most natural examples of groups which can occur in
what follows are perhaps the group of affine automorphisms, the group of
isometries and the group of translations of Rm. One can also consider the
transitive action of the general linear group on the punctured affine space
Rm \ {0}.

The main purpose of this paper is to establish the theorem below, which
was inspired by a question of Jan Mycielski concerning the intersections of
translates of analytic sets in R2. Jan Mycielski and Grzegorz Tomkowicz
apply our theorem to prove that a bounded subset A of the real plane R2,
which is a countable union of analytic sets of dimension ≤ 1, can be packed
by a finite decomposition and isometries into an arbitrarily small disk D.
Moreover, the image A′ of A in D can be constructed so that D \ A′ is
equivalent to D by a finite decomposition and isometries (equivalence in the
sense of the Banach–Tarski paradox, investigated by Mycielski and Tomkow-
icz in [4, 5]). In their recent manuscript [6], they establish (using only the
principle of dependent choices and our theorem) that bounded subsets of the
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Euclidean space Rn, the sphere Sn and the hyperbolic space Hn, included in
countable unions of proper analytic subsets of these spaces, are of measure
zero in the sense of Tarski.

Theorem on Generic Intersections. Assume that A and B are
two definable subsets of M of dimension k and l, respectively, and put d :=
max{k+ l−m,−1}. Then there is a nowhere dense definable subset Z of G
such that

dim(σ(A) ∩B) ≤ d for all σ ∈ G \ Z;
here dim ∅ = −1. In particular, the intersection σ(A) ∩B is finite or empty
for every σ ∈ G \ Z according as k + l = m or k + l < m, respectively.

Remark. When the structure under study is the expansion of the real
field by restricted analytic functions or, more generally, by restricted quasi-
analytic functions, the family of definable sets coincides with the family of
globally subanalytic or quasi-subanalytic sets (i.e. sets which are subanalytic
or quasi-subanalytic in a semialgebraic compactification; see e.g. [11, 7]). In
turn, the locally definable sets are then precisely the subanalytic or quasi-
subanalytic ones.

We immediately obtain the following

Corollary. Under the above notation, let A and B be two locally de-
finable subsets of M , i.e. each point a ∈M has a neighbourhood U such that
the sets A∩U and B ∩U are definable. Then there is a meagre (in the sense
of Baire) subset Z ⊂ G of zero Haar measure such that

dim(σ(A) ∩B) ≤ d for all σ ∈ G \ Z.
In particular, the intersection σ(A)∩B is discrete (whence at most countable)
or empty for every σ ∈ G\Z according as k+l = m or k+l < m, respectively.

Before proceeding with the proof, we make some remarks about defin-
able groups in o-minimal structures. It is well known that, for any non-
negative integer n, every definable group G can be equipped with a definable
Cn-manifold structure which makes G a definable Lie group of differentia-
bility class Cn. The case n = 0 was proven by Pillay [10] for arbitrary
o-minimal structures, but his proof can be repeated verbatim for a positive
integer n whenever the structure under study is an o-minimal expansion of a
real closed field R. When a given o-minimal structure is on the real field R,
G is a real analytic (not necessarily definable) Lie group (which follows from
the Baker–Campbell–Hausdorff formula; cf. [3, Remark 4.30]).

Let us mention that Pillay’s proof was an adaptation to the o-minimal
setting of Hrushovski’s proof of the Weil theorem that an algebraic group
over an algebraically closed field can be built from birational data. Pillay’s
approach was later adapted by Peterzil–Pillay–Starchenko [8] to strengthen



Generic intersections in an o-minimal structure 23

the result as follows. Consider a definable transitive action α of a definable
group G on a definable set A. Then, for any non-negative integer n, A can be
equipped with a definable Cn-manifold structure which makes α a definable
action of differentiability class Cn.

For a point x ∈ A, denote by Gx the isotropy subgroup of x. Then the
map

αx : G 3 σ 7→ σ · x ∈ A
factors through the canonical map π : G → G/Gx to a G-equivariant dif-
feomorphism G/Gx → A (cf. [3, Theorem 6.4]). In other words, A is diffeo-
morphic to the homogeneous space of G with respect to Gx. Obviously, we
get

dimG = dimA+ dimGx.

While many semialgebraic groups are listed in [12], some examples of
definable linear groups which are not definably isomorphic to semialgebraic
groups are given in [9].

We shall still need an elementary proposition relying on definable cell
decomposition, which can be found e.g. in [2, Chap. 4, Proposition 1.5].

Proposition. Let f : V → W be a definable map between non-empty
definable sets. Then the following three implications hold:

dim f−1f(v) ≤ k for all v ∈ V ⇒ dimV ≤ k + dim f(V );

dim f−1f(v) ≥ k for all v ∈ V ⇒ dimV ≥ k + dim f(V );

dim f−1f(v) = k for all v ∈ V ⇒ dimV = k + dim f(V ).

Proof of the Theorem. It is convenient to regard elements σ ∈ G as defin-
able diffeomorphisms of M , and so we shall write σ(x)=σ · x for x∈M . Let

∆ = ∆M := {(x, x) : x ∈M} and π : ∆→M

be the diagonal and the projection onto the first factor. Then
σ(A) ∩B = π((σ(A)×B) ∩∆)

= π ◦ (σ × IdM )((A×B) ∩ {(x, σ(x)) : x ∈M}).
Therefore the sets σ(A) ∩ B and (A × B) ∩ {(x, σ(x)) : x ∈ M} are diffeo-
morphic, and thus we must find a nowhere dense definable subset Z of G
such that

dim (A×B) ∩ {(x, σ(x)) : x ∈M} ≤ d for all σ ∈ G \ Z.
It is thus sufficient to prove the following

Lemma. Let E be a definable subset of M2 of dimension s and d :=
max{s−m,−1}. Then the subset Z of those σ ∈ G such that

dimE ∩ {(x, σ(x)) : x ∈M} > d

is definable and nowhere dense in G.
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The set Z is definable, because the dimension of fibers from a defin-
able family depends definably on the parameters (loc. cit.). Suppose, on the
contrary, that Z is not nowhere dense. Then it would contain an open cell
C ⊂ G. Further, put

E := {(σ, x, y) ∈ G× E : y = σ(x)},
and let p : E → G and q : E → E be the canonical projections. Obviously,
for (x, y) ∈ E the fibre

q−1(x, y) = {σ ∈ G : σ(x) = y} × {(x, y)}
is diffeomorphic to the isotropy subgroup of x, and thus is of dimension
dimG−m; notice that dimG ≥ m. Hence and by the foregoing proposition,

dim E = dimG+ s−m.
Now, observe that

p−1(σ) = {σ} × (E ∩ {(x, σ(x)) : x ∈M}).
Since dim p−1(σ) > d for every σ ∈ C, it follows again from the Proposition
that

dim E > dimG+ d.

Hence we get a contradiction dimG+ s−m > dimG+ d, which completes
the proof.

Proof of the Corollary. By the second countability axiom, every locally
definable set is a countable, locally finite union of definable sets. We can
thus write

A =
∞⋃
i=1

Ai and B =
∞⋃
j=1

Bj ,

where Ai and Bj , i, j = 1, 2, . . ., are locally finite families of definable subsets
of M . It follows from the Theorem that, for each i, j = 1, 2, . . . , there is a
nowhere dense definable subset Zij of G such that

dim(σ(Ai) ∩Bj) ≤ d for all σ ∈ G \ Zij .

Then the countable union Z :=
⋃∞

i,j=1 Zij is a set we are looking for.

We conclude this paper with some comments. Sometimes definable groups
have better properties than Lie groups. For instance, every definable sub-
group is closed and every definable group has the descending chain condi-
tion for definable subgroups. On the other hand, unlike Lie groups, definable
groups do not in general enjoy the passage from Lie algebras to Lie groups
(described by theorems on existence of subgroups and homomorphisms;
cf. e.g. [1, Chap. IV] or [3, Chap. II, Section 5]).

Finally, observe that the results of this paper remain valid with the same
proofs for o-minimal expansions R of arbitrary real closed fields R.
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