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Abstract. Let Cp(X) be the space of continuous real-valued functions on X, with
the topology of pointwise convergence. We consider the following three properties of a
space X: (a) Cp(X) is Scott-domain representable; (b) Cp(X) is domain representable;
(c) X is discrete. We show that those three properties are mutually equivalent in any
normal T1-space, and that properties (a) and (c) are equivalent in any completely regular
pseudo-normal space. For normal spaces, this generalizes the recent result of Tkachuk that
Cp(X) is subcompact if and only if X is discrete.

1. Introduction. Experience has shown that domain representability
of a topological space, an idea borrowed from theoretical computer science,
is a very strong completeness property in the sense of the Baire category
theorem. For example, de Groot’s subcompactness property [4] implies do-
main representability [1], and domain representability implies strong Cho-
quet completeness, i.e., the existence of a winning strategy for the nonempty
player in the strong Choquet game [7], a property that is much stronger
than the familiar Baire space property “the intersection of countably many
dense open sets is dense”. Scott-domain representability is an even stronger
completeness property. (Definitions appear in Section 2.)

Experience has also shown that it is difficult for the space Cp(X), of
continuous real-valued functions on X with the topology of pointwise con-
vergence, to have strong completeness properties. While Cp(X) can be a
Baire space [5], it rarely has the stronger completeness properties mentioned
above. For example, it was recently proved that for any completely regular
X,Cp(X) is subcompact if and only if X is discrete, thereby answering an
old question from the folklore [6]. Knowing that every subcompact regular

2000 Mathematics Subject Classification: Primary 54C35; Secondary 54E52, 06B35,
05F30.

Key words and phrases: domain, Scott domain, Scott topology, domain representable
space, pointwise convergence topology, normal space, pseudo-normal space, subcompact
space, Choquet complete.

[185] c© Instytut Matematyczny PAN, 2008



186 H. Bennett and D. Lutzer

space is domain representable and inspired by Tkachuk’s methods in [6], we
began to ask whether Cp(X) could be domain representable, except in the
trivial case where X is discrete. In this paper, we settle that question for
normal spaces and we generalize the main result of [6] for normal spaces, by
proving:

Main Theorem. The following properties of a normal space are equiv-
alent:

(a) Cp(X) is Scott-domain representable;
(b) Cp(X) is domain representable;
(c) X is discrete.

The theorem is proved in Section 3. Normality plays a key role in some
of the lemmas used in the proof and we do not know whether our result
holds without normality. However, as we prove in the paper’s final section,
parts (a) and (c) of our main theorem are equivalent in any pseudo-normal,
completely regular space.

Throughout this paper, all spaces are at least Hausdorff. We reserve the
symbol R for the usual space of real numbers. Cardinals are initial ordinals,
and for any ordinal β, |β| is the first cardinal that is less than or equal to β.

2. Definitions and preliminary results. A particularly good intro-
duction to the use of domain theory is given by Martin, Mislove, and Reed
in [8] and we generally follow their terminology and notation. The supre-
mum of a subset S of a partially ordered set (P,v) is an upper bound u for
S in P that has u v v for each upper bound v for S. A nonempty subset
D ⊆ P is directed provided that for each pair d1, d2 ∈ D, some d3 ∈ D
has d1, d2 v d3. A partially ordered set is a directed complete partial order
(dcpo) if each nonempty directed subset of P has a supremum in P . In a
dcpo, Zorn’s lemma shows that for each x ∈ P , there is a maximal member
of p ∈ P with x v p, and the set of all maximal members of P is denoted
by max(P ).

Given two elements p, q of a poset (P,v), we define p� q to mean that
for any directed set D with q v sup(D), some d ∈ D has p v d. For p, q ∈ P
we use the notations ⇓(q) = {x ∈ P : x � q} and ⇑(p) = {x ∈ P : p � x},
and the notations ↑(p) = {x ∈ P : p v x} and ↓(q) = {x ∈ P : x v q}.

To say that a poset P is continuous means that for each p ∈ P , the set
⇓(p) is directed and has p = sup(⇓(p)). A domain is a continuous dcpo, and
a Scott domain is a domain with the additional property that if p, q ∈ P
and ↑(p)∩ ↑(q) 6= ∅, then sup(p, q) ∈ P . The following Interpolation Lemma
is a key tool in domain theory [8].
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Lemma 2.1. Suppose (P,v) is a domain and a, c ∈ P with a� c. Then
there is some b ∈ P with a� b� c.

Lemma 2.2. Suppose (P,v) is a domain and p, q, r ∈ P with p ∈ ⇑(q)∩
⇑(r). Then there is an s ∈ P with p ∈ ⇑(s) ⊆ ⇑(q) ∩ ⇑(r) and s � q and
s� r.

Proof. We note that q and r belong to the directed set ⇓(p) so there is
some s′ ∈ ⇓(p) with q, r v s′ � p. Apply the Interpolation Lemma 2.1 to
find some s ∈ P with s′ � s� p.

Given a domain P , the collection {⇑(p) : p ∈ P} is the basis for a topol-
ogy on P that is called the Scott topology. To say that a topological space
X is (Scott-) domain representable means that there is a (Scott) domain
(P,v) with the property that max(P ), topologized using the relative Scott
topology of P , is homeomorphic to X.

Basic open neighborhoods of a function f in the topology of Cp(X)
have the form O(f, S, ε) = {g ∈ Cp(X) : |g(x) − f(x)| < ε for all x ∈ S},
where ε > 0 and S is a finite subset of X. Basic open neighborhoods of
f ∈ max(P ) = Cp(X) have the form ⇑(p) ∩ max(P ), where p ∈ P and
p � f . The interplay of these two kinds of sets will be crucial in the proof
of our main theorem.

Suppose we have a completely regular space X and a continuous f :
X → R. It is possible to find a continuous function that agrees with f on
S and has pre-assigned values at finitely many other points. More precisely,
given any closed set S ⊆ X, any finite subset T = {y1, . . . , yn} ⊆ X − S,
and any sequence r1, . . . , rn ∈ R, there is a continuous g : X → R with
g(x) = f(x) for each x ∈ S and g(yk) = rk. In some of the lemmas to be
proved in Section 4 below, we need even more. We will have a continuous
function f : X → R and a closed set S, and we will want to modify f
on a countable, closed, discrete set of points {zn : n < ω} ⊆ X − S. As
the Tikhonov plank and the space of Problem (5I) in [3] show, complete
regularity of X is not enough to allow us to do that. Therefore, our lemmas
will deal with completely regular pseudo-normal spaces, i.e., spaces with the
property that given two disjoint closed sets C,D, one of which is countable,
there are disjoint open sets U, V with C ⊆ U and D ⊆ V . For such spaces
we have:

Lemma 2.3. Suppose X is completely regular and pseudo-normal. Sup-
pose S is a closed subset of X and that u ∈ Cp(X). If {zn : n < ω} ⊆ X−S
is a closed , discrete subset of X and if {rn : n < ω} is any set of real num-
bers, then there is a function u1 ∈ Cp(X) with u1(x) = u(x) for each x ∈ S
and u1(zn) = rn.
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Proof. Because X is regular and pseudo-normal, there is a discrete col-
lection {Wn : n < ω} of open subsets of X with zn ∈ Wn ⊆ X − S. Using
complete regularity, for each n find a function hn ∈ Cp(X) with hn(x) = 0
for each x ∈ X − Wn and hn(zn) = rn − u(zn). Because the collection
{Wn : n < ω} is discrete, the function h =

∑
{hn : n < ω} belongs to

Cp(X). Hence so does the function u1 = u + h and we see that u1 has the
required properties.

Our next result seems to be part of the folklore of domain representabil-
ity. The heart of the lemma is in Section I-2 of [2].

Lemma 2.4. Suppose the space Xi is representable as max(Pi) for some
(Scott) domain (Pi,vi) for each i ∈ I. We may assume that min(Xi) ∈ Pi
for each i ∈ I. Then the coordinatewise ordered product set

∏
{Pi : i ∈ I} is

a (Scott) domain and represents the Tikhonov product space
∏
{Xi : i∈I}.

In particular , for any cardinal κ, the product space Rκ is Scott-domain rep-
resentable.

Proof. Let �i denote the auxiliary ordering of the poset (Pi,vi). If
(Pi,vi) has a minimum element, call it θi, and if Pi does not have a minimum
element, add one called θi lying below every other element of Pi. Exercise
I-2-18 of [2] shows that the set P :=

∏
{Pi : i ∈ I} with the coordinatewise

partial order v is a domain, and it is easy to check that if each Pi is a
Scott domain, then so is P . A key feature of P (proved in the previously
cited exercise) is that if 〈ai : i ∈ I〉, 〈bi : i ∈ I〉 are points of P , then in the
auxiliary order � on P , we have

(∗) 〈ai〉 � 〈bi〉 if and only if ai �i bi for each i ∈ I and {i ∈ I : ai 6= θi} is
finite.

Clearly, there is a natural mapping between max(P ) and
∏
{max(Pi) :

i ∈ I} =
∏
{Xi : i ∈ I}, and assertion (∗) shows that under that natural

mapping, if 〈ai〉 ∈ P , then ⇑(〈ai〉) ∩ max(P ) =
∏
{⇑(ai) ∩ Xi : ai 6= θi} ×∏

{Xi : ai = θi}. Therefore the Scott topology on max(P ) coincides with
the product topology on

∏
{Xi : i ∈ I}.

Finally, recall that R is locally compact, so that R is Scott-domain-
representable, and now apply the first part of this lemma to conclude that
each product space Rκ is also Scott-domain representable, as claimed.

3. Proof of the main theorem. As announced in Section 1, the
main theorem of our paper asserts that for any normal space, the follow-
ing three properties are equivalent: (a) Cp(X) is Scott-domain representable;
(b) Cp(X) is domain representable; (c) X is discrete. Clearly, (a) implies (b).
Also, (c) implies (a) because if X is discrete, then Cp(X) is the full topo-
logical product space RX , which is known to be Scott-domain representable
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by Lemma 2.4. Therefore it suffices to prove that (b) implies (c). Our proof
will quote a sequence of lemmas whose proofs appear in the next section of
the paper.

For contradiction, suppose X is not discrete and yet Cp(X) is domain
representable using a domain (P,v). Because X is not discrete, there are
nonclosed subsets of X. Let κ be the least cardinal of a nonclosed subset
of X. Then any subset of X with cardinality < κ is closed and discrete, and
Lemma 4.1 shows that κ > ω. Fix a subset Y ⊆ X that has cardinality κ
and is not closed in X. Fix z ∈ cl(Y )−Y . Well order Y as Y = {yα : α < κ}.

Because (P,v) is a domain that represents Cp(X), we know that when
max(P ) is endowed with the relative Scott topology, max(P ) is homeomor-
phic to Cp(X). We will abuse notation and write max(P ) = Cp(X).

We will say that a 4-tuple (β,D,E, S) is acceptable if

(A1) β is an ordinal with β < κ, D ∪ E ⊂ P , and {z} ∪ {yα : α < β} ⊆
S ⊆ X;

(A2) |D ∪ E ∪ S| ≤ max(|β|, ω);
(A3) D and E are both bounded subsets of P ;
(A4) if d ∈ D (respectively e ∈ E) then some d̂ ∈ D has d � d̂ (resp.,

some ê ∈ E has e� ê);
(A5) if u1, u2 ∈ max(P ) = Cp(X) with D ⊆ ↓(u1) ∩ ↓(u2) (respectively,

with E ⊆ ↓(u1) ∩ ↓(u2)), then u1(x) = u2(x) for each x ∈ S;
(A6) if u1, u2 ∈ max(P ) with D ⊆ ↓(u1) (respectively, with E ⊆ ↓(u1))

and if u2(x) = u1(x) for each x ∈ S, then D ⊆ ↓(u2) (resp.,
E ⊆ ↓(u2));

(A7) if u, v ∈ max(P ) have D ⊆ ↓(u) and E ⊆ ↓(v), then u(z)+v(z) = 1
(where z is the limit point of Y chosen above), and if x ∈ S −{z},
then u(x) + v(x) = 0.

We will say that an acceptable 4-tuple (β,D,E, S) is fully acceptable pro-
vided the sets D and E are directed subsets of P . Recall that any directed
subset of a domain P is a bounded subset of P . Consequently, as the names
suggest, any fully acceptable 4-tuple is also an acceptable 4-tuple. Because
constructing directed sets, rather than just bounded sets, is a challenge, we
will need both of these ideas in our paper.

Let Ψ denote the collection of all fully acceptable 4-tuples and partially
order Ψ by the rule that (β1, D1, E1, S1) � (β2, D2, E2, S2) if and only if
either (β1, D1, E1, S1) = (β2, D2, E2, S2) or else β1 < β2 and D1 ⊆ D2,
E1 ⊆ E2, and S1 ⊆ S2. Corollary 4.6 shows that there is a fully acceptable
4-tuple (1, D∗, E∗, S∗). Hence Ψ 6= ∅. The Hausdorff Maximal Principle then
yields a maximal chain Φ ⊆ Ψ .

Let I = π1[Φ], and write Φ = {(β,Dβ, Eβ, Sβ) : β ∈ I}. Then by Lemma
4.7 we know that I is cofinal in κ. Let D̂ =

⋃
{Dβ : β ∈ I}, Ê =

⋃
{Eβ :
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β ∈ I} and Ŝ =
⋃
{Sβ : β ∈ I}. Then D̂ and Ê are directed subsets of P ,

because each is the union of a chain of directed subsets of P . Therefore
sup(D̂) and sup(Ê) exist in P , so there are elements u, v ∈ max(P ) = Cp(X)
with D̂ ⊆ ↓(u) and Ê ⊆ ↓(v).

Consider any yα ∈ Y . Because I is cofinal in κ we may choose β ∈ I
with α < β. Then yα ∈ Sβ. Because Dβ ⊆ D̂ ⊆ ↓(u) and Eβ ⊂ Ê ⊆ ↓(v),
property (A7) of the fully acceptable 4-tuple (β,Dβ, Eβ, Sβ) guarantees that
u(yα)+v(yα) = 0 because α < κ. At the same time, we have u(z)+v(z) = 1
and that is impossible because u + v is continuous and z is a limit point
of the set Y = {yα : α < κ}. Therefore, modulo proving the lemmas used
above, our main theorem is established.

4. Lemmas for the main theorem. This section is devoted to a series
of results that combine to give the lemmas used in the proof of our main
theorem in the previous section. Some of the lemmas are proved under the
hypothesis that X is completely regular and pseudo-normal (see Section 2)
and the lemmas proved under this weaker hypothesis will be used in our
paper’s final section. Several of our lemmas, however, seem to require the
full power of normality, which accounts for the hypothesis of normality in
the main theorem stated in Section 1.

All lemmas in this section use the notation developed in Sections 2 and 3.
Our first lemma is a baby version of the arguments used later in this section,
and it might be helpful for the reader to see what happens without all of
the general machinery to be developed later.

Lemma 4.1. If X is completely regular and Cp(X) is domain repre-
sentable, then every countable subset of X is closed. Hence κ > ω.

Proof. Let (P,v) be a domain that represents Cp(X). Suppose there
is a countable subset Y = {yn : n < ω} of X that is not closed. Let
z ∈ cl(Y )− Y . Because X is completely regular, there is a function u0 ∈
Cp(X) with u0(y0) = 0 and u0(z) = 1. The set O(u0, {y0, z}, 1) is a neigh-
borhood of u0 in Cp(X) = max(P ). Then there is a point p0 ∈ P with
u0 ∈ ⇑(p0) ∩ max(P ) ⊆ O(u0, {y0, z}, 1). There is a finite set S0 ⊆ X and
a number ε0 ∈ (0, 1) with u0 ∈ O(u0, S0, ε0) ⊆ ⇑(p0) ⊆ O(u0, {y0, z}, 1).
Then {y0, z} ⊆ S0. Because X is completely regular, there is a function
v0 ∈ Cp(X) with v0(z) = 0 and v0(x) = −u0(x) for all x ∈ S0 − {z}. Then
O(v0, S0, ε0) is a neighborhood of v0 in Cp(X) = max(P ) so there is a q0 ∈ P
with v0 ∈ ⇑(q0)∩max(P ) ⊆ O(v0, S0, ε0). Find a finite set T0 and a positive
η0 with O(v0, T0, η0) ⊆ ⇑(q0) ∩max(P ) ⊆ O(v0, S0, ε0). Then S0 ⊆ T0 and
η0 ≤ ε0.

Because X is completely regular and T0 is finite, there is a function
u1 ∈ Cp(X) with u1(x) = u0(x) for each x ∈ S0 and u1(x) = −v0(x) for
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each x ∈ T0 − S0. Because S0 ⊆ T0 and η0 ≤ ε0 we have

O(u1, T0, η0) ⊆ O(u1, S0, ε0) = O(u0, S0, ε0) ⊆ ⇑(p0)

so that we can find some p1 ∈ P with u1 ∈ ⇑(p1)∩max(P ) ⊆ O(u1, T0, η0) ⊆
⇑(p0). Lemma 2.2 allows us to assume that p0 � p1. Next we find a finite
set S1 and a number ε1 ∈ (0, 2−1) with O(u1, S1, ε1) ⊆ ⇑(p1) ∩ max(P ) ⊆
O(u1, T0, η0). Then T0 ⊆ S1 and ε1 ≤ η0. In addition, we may expand the
set S1 if necessary to ensure that y1 ∈ S1.

Because X is completely regular, there is a function v2 ∈ Cp(X) such
that v2(x) = v1(x) if x ∈ T0 and with v2(x) = −u1(x) for each x ∈ S1 − T0.
Then there is some q1 ∈ P with v1 ∈ ⇑(q1) ∩ max(P ) ⊆ O(v1, S1, ε1) ⊆
O(v0, T0, η0) ⊆ ⇑(q0). Lemma 2.2 allows us to assume that q0 � q1. Then
there is a finite set T1 and a positive η1 with O(v1, T1, η1) ⊆ ⇑(q1)∩max(P ) ⊆
O(v1, S1, ε1) so that S1 ⊆ T1 and η1 ≤ ε1. Note that if x ∈ S1 with x 6= z,
then u1(x) + v1(x) = 0, while u1(z) + v1(z) = 1.

This recursion continues, producing a sequence of finite sets {y0, z} ⊆
S0 ⊆ T0 ⊆ S1 ⊆ T1 ⊆ · · · with yk ∈ Sk, functions uk, vk ∈ Cp(X), elements
p0 � p1 � · · · and q0 � q1 � · · · of the domain P , and positive numbers
ηk ≤ εk < 2−k with O(uk, Sk, εk) ⊆ ⇑(pk) ∩ max(P ) and O(vk, Tk, ηk) ⊆
⇑(qk). The sets {pk : k < ω} and {qk : k < ω} are directed subsets of P
and therefore have suprema in P . Therefore there exist u∗, v∗ ∈ max(P ) =
Cp(X) with pk � pk+1 v u∗ and qk � qk+1 v v∗ for each k. Hence u∗ ∈
⇑(pk) ⊆ O(uk, Sk, εk) for each k so that if j ≥ k and x ∈ Sk, then |u∗(x)−
uk(x)| = |u∗(x) − uj(x)| < 2−j . Consequently, u∗(x) = uk(x) whenever
x∈Sk. Similarly, v∗(x)=vk(x) whenever x∈Sk. Therefore, u∗(z) + v∗(z)=1,
while u∗(x) + v∗(x) = 0 whenever x ∈ Sk − {z}. But then yk ∈ Sk gives
u∗(yk) + v∗(yk) = 0 for every k, while u∗(z) + v∗(z) = 1. That is impossible
because u∗ + v∗ ∈ Cp(X) and z ∈ cl({yk : k < ω}).

Our next three lemmas show how to extend an acceptable 4-tuple in
various ways. In combination, they show how to extend any fully acceptable
4-tuple to a larger fully acceptable 4-tuple.

Lemma 4.2. Suppose X is completely regular and pseudo-normal and
that (β,D,E, S) is an acceptable 4-tuple. Then there is an acceptable 4-tuple
(β + 1, D+, E+, S+) with D ⊆ D+, E ⊆ E+, and S ⊆ S+.

Proof. We know that β < κ so that |β| ≤ β < κ = |κ|, and that
yα ∈ S whenever α < β. If yβ ∈ S, then (β + 1, D,E, S) is the required
acceptable 4-tuple, so assume yβ 6∈ S. Because D and E are bounded subsets
of P , we fix any u0, v0 ∈ max(P ) with D ⊆ ↓(u0) and E ⊆ ↓(v0). Let
f0 = u0. Then O(f0, {z, yβ}, 1) is a neighborhood of f0 in Cp(X) = max(P )
so there is some p0 ∈ P with f0 ∈ ⇑(p0) ∩ max(P ) ⊆ O(f0, {yβ, z}, 1).
There is a finite set S0 ⊆ X and some ε0 < 20 with O(f0, S0, ε0) ⊆ ⇑(p0) ∩
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max(P ) ⊆ O(f0, {yβ, z}, 1). Then {yβ, z} ⊆ S0 and ε0 ≤ 1. Next we use
complete regularity of X to modify v0 on the finite set S0 − S. Because
|S0 ∪ S| < κ, S0 ∪ S is closed discrete. Then there is a function g0 ∈ Cp(X)
with g0(x) = v0(x) whenever x ∈ S and g0(x) = −f0(x) if x ∈ S0 − S.
Then O(g0, S0, ε0) is a neighborhood of g0 so there is a q0 ∈ P with g0 ∈
⇑(q0) ∩max(P ) ⊆ O(g0, S0, ε0). Find a finite set T0 and a positive η0 with
O(g0, T0, η0) ⊆ ⇑(q0) ∩max(P ) ⊆ O(g0, S0, ε0). It follows that S0 ⊆ T0 and
η0 ≤ ε0. Note that if x ∈ (S ∪ S0) − {z} then u0(x) + v0(x) = 0 while
u0(z) + v0(z) = 1.

We will use a recursive construction. Suppose k > 0 and for 0 ≤ i < k we
have finite sets Si and Ti, positive numbers εi and ηi, and elements pi, qi ∈ P
that satisfy:

(R1) {yβ, z} ⊆ S0 ⊆ T0 ⊆ · · · ⊆ Sk−1 ⊆ Tk−1;
(R2) pi � pj and qi � qj whenever 0 ≤ i < j < k;
(R3) ηi ≤ εi < 2−i whenever 0 ≤ i < k;
(R4) if 0 ≤ i < j < k then fj(x) = fi(x) for all x ∈ Si and gj(x) = gi(x)

for all x ∈ Ti;
(R5) O(fi, Si, εi) ⊆ ⇑(pi) ∩max(P ) ⊆ O(fi, Ti−1, ηi−1) and O(gi, Ti, ηi)

⊆ ⇑(qi) ∩max(P ) ⊆ O(gi, Si, εi) whenever 0 ≤ i < k;
(R6) if x ∈ Si − {z} then fi(x) + gi(x) = 0, and fi(z) + gi(z) = 1;
(R7) if i < j < k and x ∈ Sk, then fi(x) = fj(x) and gi(x) = gj(x).

Using complete regularity of X, we define fk by modifying fk−1 on the set
Tk−1−(S∪Sk−1). Because |Tk−1∪S| < κ, the set Tk−1∪S is closed discrete.
Therefore there is some fk ∈ Cp(X) with fk(x) = fk−1(x) if x ∈ S ∪ Sk−1,
and fk(x) = −gk−1(x) if x is in the finite set Tk−1 − (S ∪ Sk−1). Then

O(fk, Tk−1, ηk−1) ⊆ O(fk, Sk−1, εk−1) = O(fk−1, Sk−1, εk−1) ⊆ ⇑(pk−1)

because Sk−1 ⊆ Tk−1 and ηk−1 ≤ εk−1. Therefore we can find some pk ∈ P
with

fk ∈ ⇑(pk) ∩max(P ) ⊆ O(fk, Tk−1, ηk−1) ⊆ ⇑(pk−1).

Lemma 2.2 allows us to choose pk with pk−1 � pk. Then there is a finite set
Sk ⊆ X and a number εk ∈ (0, 2−k) with O(fk, Sk, εk) ⊆ ⇑(pk). Note that
Tk−1 ⊆ Sk and εk ≤ ηk−1.

We use complete regularity of X to find some gk ∈ Cp(X) with the
property that for x ∈ S ∪ Tk−1, gk(x) = gk−1(x) and if x is in the finite
set Sk − (S ∪ Tk−1) then gk(x) = −fk(x). Then gk(z) + fk(z) = 1 and
gk(x) + fk(x) = 0 for each x ∈ (S ∪ Sk) − {z}. Because Tk−1 ⊆ Sk and
εk ≤ ηk−1, we have

O(gk, Sk, εk) ⊆ O(gk, Tk−1, ηk−1) = O(gk−1, Tk−1, ηk−1) ⊆ ⇑(qk−1),
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so that we can find some qk ∈ P with

gk ∈ ⇑(qk) ∩max(P ) ⊆ O(gk, Sk, εk) ⊆ ⇑(qk−1).

Lemma 2.2 allows us to choose qk with qk−1 � qk. Then there is a finite
subset Tk ⊆ X and a positive ηk with

O(gk, Tk, ηk) ⊆ ⇑(qk) ∩max(P ) ⊆ O(gk, Sk, εk),

from which it follows that Sk ⊆ Tk and ηk ≤ εk.
This recursion produces Sk, Tk, fk, gk, εk, ηk, pk, and qk for each k < ω.

Note that
⋃
{Sk : k < ω} =

⋃
{Tk : k < ω}. Define D+ = D ∪ {pk : k < ω},

E+ = E ∪ {qk : k < ω}, and S+ = S ∪
⋃
{Sk : k < ω}. Note that S+ is

a closed, discrete subspace of X because its cardinality is less than κ. We
claim that (β + 1, D+, E+, S+) is an acceptable 4-tuple. We will show that
(A1) through (A7) are satisfied by the new 4-tuple.

Conditions (A1) and (A2) are clear because ω < κ by Lemma 4.1. To
verify (A3) we will show that D+ is a bounded subset of P ; the analogous
assertion for E+ is proved similarly. If x ∈ S, then fi(x) = fj(x) for all i, j.
If x ∈ Sk and if j > k, then fj(x) = fk(x). Therefore, for each x ∈

⋃
{Sk :

k < ω}, the real number rk = lim{fk(x) : k → ω} exists. We now invoke
the hypothesis that X is completely regular and pseudo-normal. Lemma 2.3
gives us some function u1 ∈ Cp(X) = max(P ) with u1(x) = lim{fk(x) :
k → ω} for each x ∈ S+. Because (β,D,E, S) is an acceptable 4-tuple and
u1(x) = u0(x) for all x ∈ S, we know that D ⊆ ↓(u1). Consider any pk ∈ D+.
Because u1(x) = fk(x) for each x ∈ Sk we know that u1 ∈ O(fk, Sk, εk) ⊆
⇑(pk) so that pk � u1. Hence D+ ⊆ ↓(u1), showing that D+ is a bounded
subset of P , as required in (A3).

Because (β,D,E, S) is given as an acceptable 4-tuple, condition (A4)
holds for the set D, and because pk � pk+1 it also holds for all points of
D+ −D. To verify (A5) we will use the function u1 defined above, and any
other u2 ∈ Cp(X) = max(P ) with D+ ⊆ ↓(u2). Because D ⊆ D+ condition
(A5) for (β,D,E, S) shows that u2(x) = u1(x) for all x ∈ S. We also know
that u1(x) = fk(x) for each x ∈ Sk, because of the way that u1 was defined.
Fix some x ∈ Sk and consider any j > k. We know that fj(x) = fk(x). Also,
pj � pj+1 � pj+2 v u2 so that u2 ∈ ⇑(pj+1) ∩max(P ) ⊆ O(fj+1, Tj , ηj) ⊆
O(fj , Sj , εj). Hence |u2(x) − fk(x)| = |u2(x) − fj(x)| < εj < 2−j for each
j > k, so that u2(x) = fk(x) = u1(x) as claimed.

To verify (A6), consider the function u1 defined above and any other
function u2 ∈ Cp(X) with u2(x) = u1(x) for all x ∈ S+. Because (β,D,E, S)
is an acceptable 4-tuple we know that D ⊆ ↓(u2). It remains to show
that pk v u2. We note that if x ∈ Sk then u2(x) = u1(x) = fk(x) so
that u2 ∈ O(fk, Sk, εk) ⊆ ⇑(pk), giving pk � u2 so that pk v u2 as re-
quired.
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To verify (A7), suppose u, v ∈ Cp(X) with D+ ⊆ ↓(u) and E+ ⊆ ↓(v).
Then D ⊆ ↓(u) and E ⊆ ↓(v) so that u(z) + v(z) = 1 while u(x) + v(x) = 0
for each x ∈ S − {z}. Consider any x ∈ S+ − S and choose k with x ∈ Sk.
Then u(x) = fk(x) and v(x) = gk(x) so that recursion condition (R6) gives
the desired conclusion.

Corollary 4.3. Suppose X is completely regular. Then there is an ac-
ceptable 4-tuple (1, D,E, S).

Proof. Part (A1) of the definition of acceptable 4-tuple requires that
z ∈ S. Consequently, the 4-tuple (β,D,E, S) = (0, ∅, ∅, ∅) is not acceptable.
However, the proof of Lemma 4.2 still applies and is designed in such a way
that it could start with (β,D,E, S) = (0, ∅, ∅, ∅) and produce an acceptable
4-tuple (1, {pk : k < ω}, {qk : k < ω},

⋃
{Sk : k < ω}) because the con-

struction forces z, y0 ∈ S0. Notice that we do not need the pseudo-normality
hypothesis to get the continuous function that bounds {pk : k < ω}, because
{pk : k < ω} is a directed set in the domain P .

Lemma 4.4. Suppose X is completely regular and pseudo-normal , and
that (β,D,E, S) is an acceptable 4-tuple. Fix p, q ∈ D and r, s ∈ E. Then
there is an acceptable 4-tuple (β,D′, E′, S′) with D ⊆ D′, E ⊆ E′, S ⊆ S′

and with the property that some d ∈ D′ and some e ∈ E′ have p, q � d and
r, s� e.

Proof. Because the given 4-tuple is acceptable, we may choose u∗, v∗ ∈
Cp(X) = max(P ) with D ⊆ ↓(u∗) and E ⊆ ↓(v∗). Note that any functions
u, v ∈ Cp(X) that agree with u∗ and v∗ respectively on the closed discrete
set S will also be upper bounds for D and E, respectively, in P .

Let u0 = u∗. Because d ∈ D, condition (A4) gives p′ ∈ D with p �
p′ v u0 so that u0 ∈ ⇑(p). Similarly, u0 ∈ ⇑(q) and v∗ ∈ ⇑(r) ∩ ⇑(s).
Choose d0 ∈ P with u0 ∈ ⇑(d0) ⊆ ⇑(p) ∩ ⇑(q). In the light of Lemma 2.2
we may assume that p, q � d0. Choose a finite set S0 and ε0 ∈ (0, 20)
with u0 ∈ O(u0, S0, ε0) ⊂ ⇑(d0). Because X is completely regular and S
is closed in X, there is a function v0 ∈ Cp(X) with v0(x) = v∗(x) for
each x ∈ S and v0(x) = −u0(x) for each x in the finite set S0 − S. Then
v0 ∈ ⇑(r) ∩ ⇑(s) ∩O(v0, S0, ε0) so there is some e0 ∈ P with

v0 ∈ ⇑(e0) ∩max(P ) ⊆ ⇑(r) ∩ ⇑(s) ∩O(v0, S0, ε0),

and then some finite set T0 and a positive η0 with v0 ∈ O(v0, T0, η0) ⊆
⇑(e0) ∩max(P ) ⊆ O(v0, S0, ε0). It follows that S0 ⊆ T0 and η0 ≤ ε0.

The set S ∪ S0 is closed and T0 − (S ∪ S0) is finite. Because X is com-
pletely regular there is a function u1 ∈ Cp(X) with u1(x) = u0(x) for
each x ∈ S ∪ S0 and u1(x) = −v0(x) for each x ∈ T0 − (S ∪ S0). Then
O(u1, T0, η0) ⊆ O(u1, S0, ε0) = O(u0, S0, ε0) ⊆ ⇑(d0) so there is some d1 ∈ P
with u1 ∈ ⇑(d1) ∩max(P ) ⊆ O(u1, T0, η0). Lemma 2.2 allows us to choose



Domain representability of Cp(X) 195

d1 with d0 � d1. Then we have a finite set S1 and a number ε1 ∈ (0, 2−1)
with O(u1, S1, ε1) ⊆ ⇑(d1) ∩ max(P ) ⊆ O(u1, T0, η0) so that T0 ⊆ S1 and
ε1 ≤ η0.

Because the set S1−(S∪T0) is finite, there is a function v1 ∈ Cp(X) with
v1(x) = v0(x) for all x ∈ S∪T0 and v1(x) = −u1(x) for all x ∈ S1−(S∪T0).
Then O(v1, S1, ε1) ⊆ O(v1, T0, η0) = O(v0, T0, η0) ⊆ ⇑(e0). This allows us
to find e1 ∈ P with v1 ∈ ⇑(e1) ∩ max(P ) ⊆ O(v1, S1, ε1) ⊆ ⇑(e0) and
with e0 � e1. We find a finite T1 and a positive η1 with O(v1, T1, η1) ⊆
⇑(e1) ∩max(P ) ⊆ O(v1, S1, ε1). Then S1 ⊆ T1 and η1 ≤ ε1.

This recursion produces uk, vk, Sk, Tk, εk, and ηk just as in Lemma 4.2,
and just as in that lemma, if we let D′ = D ∪ {dk : k < ω}, E′ =
E ∪ {ek : k < ω}, and S = S ∪

⋃
{Sk : k < ω} we obtain an acceptable

4-tuple (β,D′, E′, S′). The hypothesis of pseudo-normality is used when we
invoke Lemma 2.3 in the proof that the sets D′ and E′ are bounded sub-
sets of P . Because p, q � d0 ∈ D′ and r, s � e0 ∈ E′, the lemma is
proved.

Recall that an acceptable 4-tuple (β,D,E, S) is fully acceptable provided
the sets D and E are directed subsets of P , rather than just bounded in P .
The next lemma is the first in this section that seems to require the full
force of the normality of X.

Lemma 4.5. Suppose X is normal and that (β,D,E, S) is an accept-
able 4-tuple. Then there is a fully acceptable 4-tuple (β,D∗, E∗, S∗) with the
property that D ⊆ D∗, E ⊆ E∗, and S ⊆ S∗.

Proof. Using transfinite induction, we will show that there is an accept-
able 4-tuple (β,D(1), E(1), S(1)) with D ⊆ D(1), E ⊆ E(1), and S ⊆ S(1),
and with the property that for any p, q ∈ D and any r, s ∈ E, some d ∈ D(1)

has p, q � d and some e ∈ E(1) has r, s � e. Once that part of the
proof is completed, we will apply it recursively to obtain acceptable 4-tuples
(β,D(k), E(k), S(k)) with D(k) ⊆ D(k+1), E(k) ⊆ E(k+1), and S(k) ⊆ S(k+1)

so that each pair p, q ∈ D(k) has some d ∈ D(k+1) with p, q � d and
such that an analogous statement holds for E(k) and E(k+1). Then we let
D∗ =

⋃
{D(k) : k < ω}, E∗ =

⋃
{E(k) : k < ω}, and S∗ =

⋃
{S(k) : k < ω}.

Then the sets D∗ and E∗ are directed subsets of P so that the resulting
4-tuple (β,D∗, E∗, S∗) is fully acceptable, as required.

To construct D(1) and E(1), we well order the sets D×D and E ×E as
{(pα, qα) : α < max(|β|, ω)} and {(rα, sα) : α < max(|β|, ω)} respectively.
Repetitions are allowed, if necessary. Let D0 = D, E0 = E, and S0 = S.

We use Lemma 4.4 to extend (β,D0, E0, S0) to an acceptable 4-tuple
(β,D1, E1, S1) such that some d ∈ D1 and some e ∈ E1 have p0, q0 � d and
r0, s0 � e.
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Suppose γ < max(|β|, ω) and that for each α < γ we have an acceptable
4-tuple (β,Dα, Eα, Sα) with the properties that

(aγ) if δ < η < γ then Dδ ⊆ Dη, Eδ ⊆ Eη, and Sδ ⊆ Sη;
(bγ) if δ < η < γ then some d ∈ Dη and e ∈ Eη have pδ, qδ � d and

rδ, sδ � e.

In case γ = η + 1, use Lemma 4.4 to extend (β,Dη, Eη, Sη) to (β,Dη+1,
Eη+1, Sη+1). The remaining case is where γ is a limit ordinal. Define Dγ =⋃
{Dη : η < γ}, Eγ =

⋃
{Eη : η < γ} and Sγ =

⋃
{Sη : η < γ}. We

claim that (β,Dγ , Eγ , Sγ) is an acceptable 4-tuple. There are several things
to verify. (A1) clearly holds. Consider (A2). Each Dη has cardinality less
than or equal to max(|β|, ω) and there are at most |γ|-many of them, where
|γ| ≤ γ < max(|β|, ω), so that |Dγ | ≤ max(|β|, ω). Similarly, Eγ and Sγ have
cardinality less than or equal to max(|β|, ω).

Next we show that Dγ is a bounded subset of P . Because Sγ has car-
dinality less than κ, Sγ is closed an discrete in X. For each α < γ choose
some uα ∈ Cp(X) with Dα ⊆ ↓(uα). Note that if δ < η < γ, then Dδ ⊆
Dη ⊆ ↓(uη). Property (A5) applied to uδ and uη shows that uη(x) = uδ(x)
for each x ∈ Sδ. Therefore for each x ∈ Sγ , lim{uα(x) : α → γ} is a real
number so that the rule x→ lim{uα(x) : α→ γ} gives a function from the
closed discrete subspace Sγ into the space of real numbers. Normality of X
provides a function uγ ∈ Cp(X) that has uγ(x) = lim{uη(x) : η → γ}, and
this uγ ∈ max(P ) is an upper bound for each set Dη with η < γ. There-
fore uγ is also an upper bound for Dγ . Similarly, Eγ is a bounded subset
of P .

Properties (A4)–(A7) hold for Dγ and Eγ because they hold for each Dη

and Eη with η < γ.
The above transfinite recursion gives acceptable 4-tuples (β,Dγ , Eγ , Sγ)

for each γ < max(|β|, ω) with the properties (aγ) and (bγ). Because
max(|β|, ω) is a limit ordinal less than κ, we obtain the desired extension
(β,D(1), E(1), S(1)) by letting D(1) =

⋃
{Dγ : γ < max(|β|, ω)}, E(1) =⋃

{Eγ : γ < max(|β|, ω)} and S(1) =
⋃
{Sγ : γ < max(|β|, ω)}. Then, as ex-

plained in the proof’s first paragraph, we obtain the desired fully acceptable
4-tuple.

Corollary 4.6. If X is normal , then there is a fully acceptable 4-tuple
(1, D∗, E∗, S∗).

Proof. By Corollary 4.3, there is an acceptable 4-tuple (1, D,E, S). Now
apply Lemma 4.5 to that acceptable 4-tuple to produce the required fully
acceptable (1, D∗, E∗, S∗).
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Lemma 4.7. Suppose X is normal. Let Φ be a maximal chain in the
nonempty poset (Ψ,�). For any 4-tuple in Φ, let π1 be first-coordinate pro-
jection. Then the set π1[Φ] = {π1(β,D,E, S) : (β,D,E, S) ∈ Φ} is cofinal
in κ.

Proof. Write I = π1[Φ] and λ = sup(I). Then λ ≤ κ. If λ = κ there is
nothing to prove. For contradiction, suppose λ < κ. If λ ∈ I then choose
(λ,D,E, S) ∈ Φ. Because X is completely regular and pseudo-normal we
may apply Lemma 4.2 to (λ,D,E, S) to produce an acceptable 4-tuple
(λ + 1, D′, E′, S′) with D ⊆ D′, E ⊆ E′, and S ⊆ S′. Then, because X
is normal, we may apply Lemma 4.5 to (λ+ 1, D′, E′, S′) to produce a fully
acceptable 4-tuple (λ + 1, D∗, E∗, S∗) with D ⊆ D′ ⊆ D∗, E ⊆ E′ ⊆ E∗,
and S ⊆ S′ ⊆ E∗. But then Φ ∪ {(λ+ 1, D∗, E∗, S∗)} is a chain in Ψ that is
strictly larger than Φ, and that is impossible. Hence λ 6∈ I. Therefore λ is
an infinite limit ordinal.

Because Φ is a chain in (Ψ,�), we may index the elements of Φ in a
monotonic way using their first coordinates. This allows us to write Φ =
{(β,Dβ, Eβ, Sβ) : β ∈ I} with Dβ ⊆ Dγ , Eβ ⊆ Eγ , and Sβ ⊆ Sγ whenever
β < γ are in I. Let D∗∗ =

⋃
{Dβ : β ∈ I}, E∗∗ =

⋃
{Eβ : β ∈ I} and

S∗∗ =
⋃
{Sβ : β ∈ I}. We claim that (λ,D∗∗, E∗∗, S∗∗) is a fully acceptable

4-tuple.
Because λ < κ, property (A1) is immediate. To prove (A2) consider D∗∗.

This set is a union of at most |λ|-many sets, each of cardinality less than or
equal to max(|γ|, ω) where γ < λ < κ. Hence each of the sets Dβ used to
construct D∗∗ has cardinality less than |λ| and there are at most |λ|-many
of them, so that D∗∗ has cardinality less than or equal to |λ| = max(|λ|, ω).
The same statement holds for E∗∗ and S∗∗. Property (A3) holds because
D∗∗ and E∗∗ are unions of chains of directed subsets of P , and therefore
both D∗∗ and E∗∗ are directed subsets of P .

Properties (A4)–(A7) follow directly from the definitions of D∗∗, E∗∗

and S∗∗ as unions of chains of acceptable 4-tuples. But now we contradict
maximality of Φ because (λ,D∗∗, E∗∗, S∗∗) ∈ Ψ is strictly above every mem-
ber of Φ.

At this point the reader will see that all of the lemmas needed in the
previous section have been established.

5. What to do without normality. In the results of the previous
section, only Lemma 4.5, Corollary 4.6, and Lemma 4.7 used the normality
hypothesis. In those three cases, normality was the key to extending a certain
function defined on a possibly uncountable closed discrete subset of X to be
a continuous function on all of X. We do not know how to get around this
problem, so we ask
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Question 5.1. Suppose X is completely regular and pseudo-normal. If
Cp(X) is domain representable, must X be discrete? Suppose X is com-
pletely regular but not discrete. Can Cp(X) be domain representable?

As a partial answer to that question, we can prove:

Proposition 5.2. Suppose X is completely regular and pseudo-normal.
Then Cp(X) is Scott-domain representable if and only if X is discrete.

Proof. As before, it is enough to prove that if Cp(X) is Scott-domain
representable, then X is discrete. Suppose X is not discrete and yet Cp(X)
is represented by the Scott domain (P,v). Let κ be the smallest cardinal
such that some subset Y ⊆ X has cardinality κ and is not closed. Well
order Y = {yα : α < κ}. Fix a limit point z ∈ cl(Y ) − Y . Define an
acceptable 4-tuple as before and let Ψ ′ be the collection of all acceptable
4-tuples. Then Corollary 4.3 shows that Ψ ′ 6= ∅. Let � be the partial order
used in the previous section and let Φ′ be a maximal chain in Ψ ′. Write
I ′ = π1[Φ′] and write Φ′ = {(β,D,E, S) : β ∈ I ′}. We claim that I ′ is cofinal
in κ. If not, then the ordinal λ′ = sup(I ′) has λ′ < κ. If λ′ ∈ I ′, choose
(λ′, D,E, S) ∈ Φ′ and use Lemma 4.2 to extend (λ′, D,E, S) by one step to
an acceptable 4-tuple (λ′ + 1, D′, E′, S′). But that is impossible because Φ′

is a maximal chain in Ψ ′, so λ′ 6∈ I ′. Then λ′ is an infinite limit ordinal. Let
D′ =

⋃
{Dβ : β ∈ I ′}, E′ =

⋃
{Eβ : β ∈ I ′}, and S′ =

⋃
{Sβ : β ∈ I ′}. We

claim that D′ is a bounded subset of P .
For each β ∈ I ′ we know that Dβ is a bounded subset of P so that, P

being a Scott domain, sup(Dβ) ∈ P . Note that if β < γ both belong to I ′

then Dβ ⊆ Dγ so that sup(Dβ) v sup(Dγ). Hence the set {sup(Dβ) : β ∈ I ′}
is a directed subset of P (in fact, a chain in P ), so that because P is a domain,
sup({sup(Dβ) : β ∈ I ′}) ∈ P , and that element of P is an upper bound in P
for the set D′. Similarly, E′ is a bounded subset of P . (Note that we avoided
the use of normality.) Because λ′ is a limit ordinal, the other properties of
an acceptable 4-tuple hold for (λ′, D′, E′, S′) precisely because they hold for
the members of Φ′ out of which (λ′, D′, E′, S′) was constructed. But then
Φ′∪{(λ′, D′, E′, S′)} is a chain in Ψ ′ that is strictly larger than Φ′, and that
is impossible. Therefore the set I ′ is cofinal in κ.

For each β ∈ I ′, sup(Dβ) ∈ P because Dβ is a bounded subset of the
Scott domain P , and the set {sup(Dβ) : β ∈ I ′} is a directed subset (in
fact, a chain) in the domain P . Hence there is some element u∗ ∈ max(P ) =
Cp(X) that is an upper bound for {sup(Dβ) : β ∈ I ′}. Similarly, there is
some v∗ ∈ max(P ) = Cp(X) that is an upper bound for the directed set
{sup(Eβ) : β ∈ I ′}.

Consider any yα ∈ Y . Because I ′ is cofinal in κ, some β ∈ I ′ has α < β.
Because sup(Dβ) v u∗, Dβ ⊆ ↓(u∗), Similarly, Eβ ⊆ ↓(v∗). Therefore
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u∗(yα) + v∗(yα) = 0, while u∗(z) + v∗(z) = 1. As before, that is impos-
sible because u∗ + v∗ is continuous and z ∈ cl(Y )− Y .
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