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Abstract. We study maximal almost disjoint (MAD) families of functions in ωω

that satisfy certain strong combinatorial properties. In particular, we study the notions
of strongly and very MAD families of functions. We introduce and study a hierarchy of
combinatorial properties lying between strong MADness and very MADness. Proving a
conjecture of Brendle, we show that if cov(M) < ae, then there no very MAD families.
We answer a question of Kastermans by constructing a strongly MAD family from b = c.
Next, we study the indestructibility properties of strongly MAD families, and prove that
the strong MADness of strongly MAD families is preserved by a large class of posets that
do not make the ground model reals meager. We solve a well-known problem of Kellner
and Shelah by showing that a countable support iteration of proper posets of limit length
does not make the ground model reals meager if no initial segment does. Finally, we prove
that the weak Freese–Nation property of P(ω) implies that all strongly MAD families
have size at most ℵ1.

1. Introduction. In this paper, we study the notion of a strongly MAD
family of functions in ωω, as well as several variations of this notion, such
as very MAD families. We solve a variety of problems about these notions.
Recall that two functions f and g in ωω are said to be almost disjoint or a.d.
if |f ∩ g| < ω. A family A ⊂ ωω is said to a.d. if its members are pairwise
a.d. And finally, an a.d. family A ⊂ ωω is said to be maximal almost disjoint
or MAD if ∀f ∈ ωω ∃h ∈ A [|h ∩ f | = ω].

The notion of a strongly MAD family is a “σ version” of the notion of
a MAD family of functions. Very roughly, this means that instead of re-
quiring the family to be maximal just with respect to elements of ωω, we
require it to be maximal with respect to countable subsets of ωω. “σ ver-
sions” of various types of subfamilies of [ω]ω = {a ⊂ ω : |a| = ω} have
been considered in the literature. For example, Malykhin [19] and Kam-
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burelis and Węglorz [13] have studied the “σ version” of the notion of a
splitting family. Recall that a set a ∈ [ω]ω splits a set b ∈ [ω]ω if both
a ∩ b and b \ a are infinite. Recall also that a family F ⊂ [ω]ω is a splitting
family if every b ∈ [ω]ω is split by some a ∈ F . Now, the “σ version” of
this notion, called an ℵ0-splitting family, is simply a family F ⊂ [ω]ω such
that for every countable set {bi : i ∈ ω} ⊂ [ω]ω, there is a single a ∈ F
which splits all the bi. We cannot simply lift this definition to the case of
MAD families. That is, we cannot define a strongly MAD family to simply
be an a.d. family A ⊂ ωω such that for every countable set of functions
{fi : i ∈ ω} ⊂ ωω, there is h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω]. To
see this, suppose A ⊂ ωω is an a.d. family with at least two elements.
Choose h0, h1 ∈ A , with h0 6= h1, and consider the set {h0, h1}. It is
clear that no element of A can intersect both h0 and h1 in an infinite set.
Hence we must put some restriction on the countable sets of functions we
are allowed to consider. It is easy to see that the above counterexample
will go through even if h0 and h1 are covered by finitely many members
from A .

Definition 1. Let A ⊂ ωω be an a.d. family, and let Y ∈ [ω × ω]ω. We
say that Y avoids A if for every finite set {h0, . . . , hk} ⊂ A , |Y \ (h0 ∪ · · ·
∪ hk)| = ω.

Definition 2. Let A ⊂ ωω be an a.d. family. We say that A is strongly
MAD if for any countable family of functions {fi : i ∈ ω} ⊂ ωω avoiding A ,
there is h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω].

Strongly MAD families were introduced by Steprāns [15], who showed
that they cannot be analytic, though the same notion had been considered
earlier by Malykhin [19] in the context of MAD families of subsets of ω and
further studied by Kurilić [18] and Hrušák and García Ferreira [9]. Soon
after, Zhang and Kastermans [14] introduced a strengthening of this notion,
which they called very MAD family.

Definition 3. Let A ⊂ ωω be an a.d. family, and let κ = |A |. We
say that A is very MAD if for all cardinals λ < κ and for every family
{fα : α < λ} ⊂ ωω of functions avoiding A , there is h ∈ A such that
∀α < λ [|fα ∩ h| = ω].

Clearly, very MAD families are strongly MAD, which in turn, are MAD.
On the other hand, E. van Douwen [20] asked about the existence of the
following sort of MAD family in ωω:

Definition 4. Let us say that p is an infinite partial function if there is
an infinite set X ∈ [ω]ω such that p ∈ ωX . An a.d. family A ⊂ ωω is said to
be van Douwen MAD if for every infinite partial function p, there is h ∈ A
such that |p ∩ h| = ω.
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It turns out that the notion of a van Douwen MAD family is weaker than
that of a strongly MAD family (see Lemma 6). Thus, we have a natural
spectrum of combinatorial properties of increasing strength. In this paper we
investigate this hierarchy and answer several questions about these notions.
In [21] we positively answered van Douwen’s question by showing in ZFC
that van Douwen MAD families exist.

In Section 2 we first refine this hierarchy by introducing a sequence of
combinatorial properties lying between MADness and very MADness, and
we show under MA(σ-centered) that this refined hierarchy is proper, mean-
ing that there is a member in each class not belonging to any higher class.

Sections 3 and 4 answer questions of Kastermans and Brendle regarding
when very MAD families exist and whether it is possible to have models with
strongly MAD families, but no very MAD families. In Section 3, we modify
a construction of Hrušák [8], Kurilić [18] and Brendle and Yatabe [4] to show
that strongly MAD families exist if b = c. In Section 4, we prove a conjecture
of Brendle that if cov(M) < ae, there are no very MAD families. Together
these results show that in the Laver model there is a strongly MAD family,
but no very MAD families.

In Sections 5 and 6 we study the effect of forcing on strongly MAD
families in ωω. In particular, in Section 5, we are interested in characterizing
those posets that preserve the strong MADness of strongly MAD families.
While we do not provide a full characterization, we show that many posets
that do not turn the set of ground model reals into a meager set also preserve
the strong MADness of strongly MAD families (it is easy to see that not
making the ground model reals meager is a necessary condition for a poset
to do this). We introduce a property of posets called having diagonal fusion
(see Definition 40), and we show that all posets that have diagonal fusion
preserve the strong MADness of all strongly MAD families. The class of
posets having diagonal fusion includes all the usual posets not making the
ground model reals meager, like Sacks and Miller forcing. Given this close
connection between these two properties, we conjecture (see Conjecture 30)
that they actually coincide for a class of “nicely definable” posets.

In Section 6 we solve a problem from Kellner and Shelah [16] regard-
ing the preservation of the property of not making the ground model reals
meager under countable support iterations. Preservation theorems are an
important component of the theory of iterated forcing. The simplest and
most well-known preservation theorem says that the finite support iteration
of c.c.c. posets is c.c.c. For countable support iterations (CS iterations), a
fundamental result of Shelah [23] is that properness is preserved under such
iterations. Other well-known examples for CS iterations include the preser-
vation of ωω-bounding and of the Sacks property. For a given property P of
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forcing notions two kinds of preservation may be considered. One kind says
if 〈Pα, Q̊α : α ≤ γ〉 is a CS iteration such that for each α < γ, α “Q̊α is
proper and has property P”, then Pγ also has property P. An example of
this kind is the preservation of ωω-bounding. The other kind of preservation
theorem say that given a limit ordinal γ, if 〈Pα, Q̊α : α ≤ γ〉 is a CS iteration
such that for each α < γ, α “Q̊α is proper” and Pα has property P, then
Pγ also has property P. An example of this kind is the preservation of not
adding random reals. The key difference is that in the first kind of preser-
vation, P is assumed to hold for each iterand, whereas in the second kind,
P is assumed to hold for each initial segment of the iteration (in both cases
the iterands are assumed to be proper). One often considers a preservation
theorem of the second kind only for properties P that fail to be preserved by
two-step iterations, so that one cannot hope for a result of the first kind for
them. In [16] Kellner and Shelah asked if the second kind of preservation the-
orem holds for the properties of not making V∩ωω meager and not making
V∩ωω null. Regarding the first of these, Kellner and Shelah [16] prove that
it holds under the additional assumption that the iterands are nep, provid-
ing a partial positive answer. Also, it is shown in Goldstern [7] that the first
kind of preservation theorem holds for the property of preserving vC (see
Definition 27), which is a property stronger than not making V∩ωω meager.
In Section 6 we answer the question of Kellner and Shelah affirmatively by
proving the most general version of the second kind of preservation theorem
for the property of not making V ∩ ωω meager. We then use this result to
show that any countable support iteration of posets having diagonal fusion
preserves the strong MADness of all strongly MAD families.

In Section 7 we show that the weak Freese–Nation property of P(ω) im-
plies that all strongly MAD families have size at most ℵ1. The weak Freese–
Nation property of P(ω) is one of several axioms considered by Juhász and
others (see [12]) in an attempt to capture the combinatorial essence of the
Cohen model. This axiom is known to be true in this and several other mod-
els. Thus, in particular, there are no strongly MAD families of size c in the
Cohen model.

Finally, in Section 8 we end with some miscellaneous observations con-
cerning some similarities and differences between the notion of a strongly
MAD family of functions in ωω and that of sets in [ω]ω.

2. The strength of an a.d. family. We will introduce the notion of
strength of an a.d. family of functions. This notion allows for the systematic
investigation of variations on the concept of a strongly MAD family. In par-
ticular, it introduces a sequence of combinatorial properties of intermediate
strength between MADness and very MADness, with strong MADness as a
special case. The notion of strength allows for the systematic investigation
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of this entire spectrum starting with MADness, going through van Douwen
and strong MADness, all the way up to very MADness.

Definition 5. Let A ⊂ ωω be an a.d. family. We define the strength
of A , written st(A ), to be the least cardinal κ such that there is a family
{fα : α < κ} ⊂ ωω of functions avoiding A such that ∀h ∈ A ∃α < κ
[|h ∩ fα| < ω].

Thus an a.d. family A is MAD iff st(A ) ≥ 2. It is strongly MAD iff
st(A ) ≥ ω1, and it is very MAD iff st(A ) ≥ |A |. The next lemma points
out a connection with the notion of a van Douwen MAD family.

Lemma 6. Let A ⊂ ωω be an a.d. family. If st(A ) ≥ 3, then A is van
Douwen MAD.

Proof. Suppose, for a contradiction, that there is an infinite partial func-
tion f from ω to ω which is a.d. from A . Let h0 6= h1 be two distinct
functions in A . Let a = dom(f) and let b = ω \ a. Let g0 = f ∪ h0�b and
let g1 = f ∪ h1�b. Since f is a.d. from A , it avoids A . So {g0, g1} ⊂ ωω is
a set of two functions avoiding A . As st(A ) ≥ 3, there is h ∈ A such that
|h∩g0| = |h∩g1| = ω. We will argue that |f ∩h| = ω, giving a contradiction.
Indeed, suppose that |f ∩ h| < ω. Since h intersects both g0 and g1 in an
infinite set, it follows that both h∩h0 and h∩h1 are infinite. But since A is
an a.d. family, this implies that h = h0 and h = h1, contradicting our choice
of h0 and h1.

This argument can be generalized to yield the following.

Lemma 7. Let κ be an infinite cardinal. Let A ⊂ ωω be an a.d. family
with st(A ) > κ. If {fα : α < κ} is a family of infinite partial functions
avoiding A , there is h ∈ A such that ∀α < κ [|h ∩ fα| = ω].

Proof. Just as in Lemma 6, pick two distinct members h0 and h1 of A .
For each α < κ, set aα = dom(fα) and bα = ω \ aα. Put g0

α = (fα ∪ h0)�bα
and g1

α = (fα ∪ h1)�bα. Since fα avoids A , both g0
α and g1

α avoid A . As κ
is an infinite cardinal, {giα : i ∈ 2 ∧ α < κ} ⊂ ωω is a family of κ functions
avoiding A . As st(A ) > k, there is h ∈ A such that ∀α < κ ∀i ∈ 2
[|h ∩ giα| = ω]. Now, it is easily argued, just as in Lemma 6, that ∀α < κ
[|h ∩ fα| = ω].

It is natural to ask for which sets of cardinals X ⊂ c + 1 it is consistent
to have X = {st(A ) : A ⊂ ωω is an a.d. family}. We will provide a partial
answer by showing that under MA(σ-centered), every cardinal κ ≤ c occurs
as the strength of some a.d. family A . We first point out that the strength
of an infinite a.d. family can never exceed its size. In Section 4 we obtain a
better upper bound by showing that st(A ) ≤ cov(M) (Corollary 25)

Lemma 8. Let A ⊂ ωω be an infinite a.d. family. Then st(A ) ≤ |A |.
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Proof. For each h ∈ A choose a countably infinite set Xh ∈ [A ]ω with
h /∈ Xh. Pick gh ∈ ωω such that gh is a.d. from h but ∀h′ ∈ Xh [|h′∩gh| = ω].
It is possible to do this because h is a.d. from everything in Xh. Now since
gh has infinite intersection with infinitely many members of A , it avoids A .
Thus {gh : h ∈ A } is a family of functions avoiding A of size at most |A |
such that no member of A has infinite intersection with all the functions in
the family.

In what follows, we prove that when κ ≤ c, there is an a.d. family A ⊂ ωω
with st(A ) = κ (Theorem 11). To get st(A ) ≤ κ, we fix an a.d. family
〈fα : α < κ〉 ⊂ ωω ahead of time, and we ensure during the construction that
this family avoids A , and yet that no member of A has infinite intersection
with all the fα. To get st(A ) ≥ κ, we recursively take care of all subsets of
ωω of size less than κ. At any stage, given a set 〈gα : α < λ〉 of functions of
size less than κ avoiding A , we will use MA(σ-centered) to find a function
a.d. from A and having infinite intersection with all the gα. The following
lemma is crucial for ensuring that we can do this without violating the first
requirement.

Lemma 9. Let λ < κ be cardinals. Let A ⊂ ωω be a family of functions
and let 〈fα : α < κ〉 ⊂ ωω be an a.d. family. Let 〈gα : α < λ〉 ⊂ ωω be any
family of functions avoiding A . There is an α < κ such that 〈gα : α < λ〉
avoids A ∪ {fα}.

Proof. Suppose not. Then for each α < κ there is a β < λ and a finite
subset {h0, . . . , hk} ⊂ A such that gβ ⊂∗h0 ∪ · · · ∪ hk ∪ fα. As λ < κ, it
follows that there are distinct α0 6= α1 < κ such that for the same β < λ
there are finite sets {h0, . . . , hk} ⊂ A and {h0, . . . , hl} ⊂ A so that both
gβ ⊂∗h0 ∪ · · · ∪ hk ∪ fα0 and gβ ⊂∗h0 ∪ · · · ∪ hl ∪ fα1 hold. By assumption,
gβ avoids A . Therefore, p = gβ \ (h0 ∪ · · · ∪ hk ∪ h0 ∪ · · · ∪ hl) is an infinite
partial function. But now, it follows that p ⊂∗fα0 and p ⊂∗fα1 , which is a
contradiction because 〈fα : α < κ〉 is an a.d. family.

Lemma 10. Assume MA(σ-centered). Let A ⊂ ωω be an a.d. family
with |A | < c. Let λ < κ < c be cardinals. Let 〈fα : α < κ〉 ⊂ ωω be an a.d.
family of functions avoiding A . Let 〈gα : α < λ〉 ⊂ ωω be another family of
functions also avoiding A . There is h ∈ ωω such that :

(1) ∀h′ ∈ A [|h ∩ h′| < ω].
(2) 〈fα : α < κ〉 avoids A ∪ {h}.
(3) ∀β < λ [|h ∩ gβ| = ω].
(4) ∃α < κ [|h ∩ fα| < ω].

Proof. By Lemma 9, there is α < κ such that 〈gβ : β < λ〉 avoids B =
A ∪ {fα}. Let us fix such an α. Let Fn(ω, ω) denote the set of finite partial
functions from ω to ω. Consider the poset P = {〈s,H〉 : s ∈ Fn(ω, ω) ∧ H
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∈ [B]<ω}. We order P as follows: given 〈s0, H0〉 and 〈s1, H1〉 in P, 〈s0, H0〉 ≤
〈s1, H1〉 iff s0 ⊃ s1 ∧H0 ⊃ H1 ∧ ∀h ∈ H1 ∀n ∈ dom(s0) \ dom(s1) [h(n) 6=
s0(n)]. It is easily checked that P is σ-centered. If G ⊂ P is a filter on P,
then h =

⋃
{s : ∃H [〈s,H〉 ∈ G]} is a function, which is a.d. from

⋃
{H :

∃s [〈s,H〉 ∈ G]}. To see that we can get a function h that satisfies the
necessary requirements, we will check that certain sets are dense.

• To ensure h ∈ ωω: For each n ∈ ω, set Dn = {〈s,H〉 ∈ P : n ∈
dom(s)}. We will check that Dn is dense. Fix 〈s0, H0〉 ∈ P. If n ∈
dom(s0), there is nothing to be done. Otherwise, {h′(n) : h′ ∈ H0} is
a finite subset of ω. So we may choose k ∈ ω \ {h′(n) : h′ ∈ H0}. Now,
〈s0 ∪ {〈n, k〉}, H0〉 is an extension of 〈s0, H0〉 in Dn.
• To ensure h satisfies requirements (1) and (4): It is enough to ensure

that ∀h′ ∈ B ∃〈s,H〉 ∈ G [h′ ∈ H]. But it is obvious that for each
h′ ∈ B, Dh′ = {〈s,H〉 ∈ P : h′ ∈ H} is dense.
• To ensure h satisfies requirement (2): Let F be a finite subset of A .

Let γ < κ. Since fγ avoids A , XF
γ = {n ∈ ω : ∀h′ ∈ F [fγ(n) 6= h′(n)]}

is an infinite subset of ω. For each n ∈ ω, consider the set D(F, γ, n) =
{〈s,H〉 ∈ P : ∃m > n [m ∈ XF

γ ∧m ∈ dom(s) ∧ fγ(m) 6= s(m)]}. If G
hits D(F, γ, n) for all n, then fγ avoids F ∪ {h} because there will be
infinitely many m ∈ XF

γ so that h(m) 6= fγ(m). To see that D(F, γ, n)
is dense, fix 〈s0, H0〉 ∈ P. Since XF

γ is an infinite set, there is m ∈ XF
γ

which is greater than n and outside dom(s0). Now, we can choose
k /∈ {h′(m) : h′ ∈ H0} ∪ {fγ(m)}. It is clear that 〈s0 ∪ {〈m, k〉}, H0〉 is
as required.
• To ensure h satisfies requirement (3): Let β < λ. It is enough to make
G intersect Dβ

n = {〈s,H〉 ∈ P : ∃m > n [m ∈ dom(s)∧s(m) = gβ(m)]}
for all n ∈ ω. To see that this set is dense, fix 〈s0, H0〉 ∈ P. We know,
by our choice of α, that gβ avoids B. So there are infinitely many
m ∈ ω such that ∀h′ ∈ H0 [h′(m) 6= gβ(m)]. So we can choose such
an m greater than n and outside of dom(s0). By our choice of m,
〈s0 ∪ {〈m, gβ(m)〉}, H0〉 extends 〈s0, H0〉 and is as required.

Since λ < κ < c and |A | < c and since MA(σ-centered) is assumed, we can
find a filter G that intersects all the sets in {Dn : n ∈ ω} ∪ {Dh′ : h′ ∈ B}
∪ {Dβ

n : β < λ ∧ n ∈ ω} ∪ {D(F, γ, n) : F ∈ [A ]<ω ∧ γ < κ ∧ n ∈ ω}. Now,
h, defined as above from G, will have the required properties.

Theorem 11. Assume MA(σ-centered). Let κ ≤ c be a cardinal. There
is an a.d. family A ⊂ ωω with st(A ) = κ.

Proof. We first deal with the case when κ = c. Kastermans [14] showed
that there is a very MAD family under MA(σ-centered). Let A be a very
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MAD family. Clearly, c = |A | ≤ st(A ), and by Lemma 8, st(A ) ≤ |A | = c,
whence st(A ) = c.

Now let us assume that κ < c. Fix an a.d. family 〈fα : α < κ〉 ⊂ ωω of
size κ. We will construct an a.d. family A ⊂ ωω with st(A ) ≥ κ, while at
the same time ensuring that 〈fα : α < κ〉 avoids A , and yet nothing in A
has infinite intersection with all the fα. Thus 〈fα : α < κ〉 will witness that
st(A ) = κ.

A will be the union of an increasing sequence of a.d. families. Since
MA(σ-centered) is assumed, c<κ = c. So we can let 〈Gα : α < c〉 enumerate
all subsets of ωω of size less than κ. We will construct a sequence 〈Aα : α < c〉
so that:

(1) Aα ⊂ ωω is an a.d. family of size ≤ |α|.
(2) ∀α < β < c [Aα ⊂ Aβ].
(3) If Gα avoids

⋃
{Aβ : β < α}, then ∃h ∈ Aα ∀g ∈ Gα [|h ∩ g| = ω].

(4) 〈fα : α < κ〉 avoids Aα.
(5) ∀h ∈ Aα ∃β < κ [|h ∩ fβ| < ω].

Assume that 〈Aβ : β < α〉 is already given to us. Let B =
⋃

Aβ . If Gα
does not avoid B, there is nothing to be done. In this case, we simply set
Aα = B. Let us assume from now on that Gα avoids B. Notice that by
clause (4), 〈fα : α < κ〉 avoids B as well. By clause (1), B is an a.d. family
with |B| < c. Let λ = |Gα|. Note that we have λ < κ < c. Now, we can
apply Lemma 10 with B as A and Gα as 〈gα : α < λ〉 to find h ∈ ωω such
that:

(a) h is a.d. from B.
(b) 〈fα : α < κ〉 avoids B ∪ {h}.
(c) ∀g ∈ Gα [|h ∩ g| = ω].
(d) ∃α < κ [|h ∩ fα| < ω].

Now, we can define Aα = B ∪ {h}. It is clear that Aα is what is re-
quired.

The original motivation for the above result came from the following
considerations. Under CH, all MAD families have size ℵ1. Hence any strongly
MAD family is automatically very MAD. Given some such consequence of
CH, it is natural to ask whether this consequence also obtains under MA.
So we originally wanted to know if under MA, all strongly MAD families are
also very MAD. The above result shows that this fails badly.

Corollary 12. Assume MA+¬ CH. There is a strongly MAD family
that is not very MAD.

We end this section with a conjecture. We do not know for which cardi-
nals κ there is an a.d. family A ⊂ ωω with st(A ) = κ just on the basis of
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ZFC alone. In view of Lemma 6, the following conjecture is a natural gener-
alization of our result that van Douwen MAD families exist on the basis of
ZFC alone.

Conjecture 13. For every n ∈ ω, there is an a.d. family A ⊂ ωω with
st(A ) ≥ n.

3. A strongly MAD family from b = c. In this section we will con-
struct a strongly MAD family from b = c. Kastermans [14] pointed out that
the standard construction of a strongly MAD family from MA(σ-centered)
actually yields a very MAD family. He asked if there is a different con-
struction that distinguishes between strongly and very MAD families. This
section is intended to address his question. The construction of a strongly
MAD family given here cannot be used to build a very MAD family. This is
because b = c holds in the Laver model, where, as we will see in Section 4,
there are no very MAD families. The question of whether strongly MAD
families exist on the basis of ZFC alone remains open.

Hrušák [8], Kurilić [18] and Brendle and Yatabe [4] construct a Cohen-
indestructible MAD family of sets from b = c. Our construction was inspired
by theirs, although our presentation is different. We will inductively con-
struct a strongly MAD family in c steps. At each step we will deal with a
given countable family of functions. We will deal with this given collection
by first forming an (ω, κ) gap consisting of infinite partial functions. We will
then use b = c to separate this gap by an infinite partial function.

Lemma 14. Assume b = c. Let A ⊂ ωω be an a.d. family with |A | < c.
Suppose {gn : n ∈ ω} ⊂ ωω is a collection of functions avoiding A . There is
h ∈ ωω such that :

(1) ∀h′ ∈ A [|h ∩ h′| < ω].
(2) ∀n ∈ ω [|h ∩ gn| = ω].

Proof. Firstly, observe that b = c implies both a = c and ae = c. Now,
for n ∈ ω consider A ∩ gn = {h ∩ gn : h ∈ A ∧ |h ∩ gn| = ω}. This is an
a.d. family on gn. Since gn avoids A and since |A | < c, it cannot be a MAD
family on gn. So we may find an infinite partial function pn ⊂ gn which is
a.d. from everything in A . By refining their domains if necessary, we may
assume that ∀n < m < ω [dom(pn)∩dom (pm) = 0]. Now, ({pn : n ∈ ω},A )
is the gap we would like to separate using an infinite partial function. We will
use the assumption b = c to do this. Let λ = |A | and put A = {hα : α < λ}.
Remember that λ < c. For each α < λ, define a function Fα ∈ ωω as follows.
For each n ∈ ω, {k ∈ dom(pn) : pn(k) = hα(k)} is finite. So, we can define
Fα(n) = max {k ∈ dom(pn) : pn(k) = hα(k)}. Since we are assuming b = c,
the family {Fα : α < λ} is bounded. Choose a function F ∈ ωω so that
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∀α < λ [Fα<∗F ]. Define p =
⋃

(pn \ (pn�F (n))). Clearly, p is an infinite
partial function, and for all n ∈ ω, |p ∩ gn| = ω.

We will check that ∀α < λ [|p∩hα| < ω]. Fix α < λ. Suppose k ∈ dom(p)
and p(k) = hα(k). By our choice of the pn, it follows that there is a unique
n such that k ∈ dom(pn). Thus, pn(k) = hα(k), and so k ≤ Fα(n). But
since k ∈ dom(p), it follows that k ≥ F (n), whence F (n) ≤ Fα(n). Thus
k ∈

⋃
{Fα(n) + 1 : F (n) ≤ Fα(n)}, which is a finite set. So we conclude that

p ∩ hα is finite.
Now, we are almost done. We just need to extend p into a total function.

We will use ae = c to do this. Let X = dom(p) and Y = ω \ X. As A is
an a.d. family in ωω with |A | < c, it is not maximal. Let h0 ∈ ωω be a.d.
from A . Clearly, h = (p ∪ h0)�Y is as needed.

Theorem 15. Assume b = c. There is a strongly MAD family of size c.

Proof. We will build the strongly MAD family, A , in c steps. Since cω

= c, we can let {Gα : α < c} enumerate all the countable subsets of ωω. We
will build A as the union of an increasing sequence of a.d. families. We will
build a sequence 〈Aα : α < c〉 such that:

(1) Aα ⊂ ωω is an a.d. family with |A | ≤ |α|.
(2) If α < β < c, then Aα ⊂ Aβ .
(3) If Gα avoids

⋃
{Aβ : β < α}, then ∃h ∈ Aα ∀g ∈ Gα [|h ∩ g| = ω].

Assume that the sequence 〈Aβ : β < α〉 has already been built. Set B =⋃
Aβ . Then B ⊂ ωω is an a.d. family with |B| < c. If Gα does not avoid B,

then we can simply set Aα = B. So we assume that Gα avoids B. Now, we
may apply Lemma 14 with B as A and Gα as {gn : n ∈ ω} to find h ∈ ωω
such that h is a.d. from B and ∀g ∈ Gα [|h ∩ g| = ω]. Then it is clear that
Aα = B ∪ {h} is as required.

We remark that even though we have not explicitly tried to ensure that
|A | = c, it is true because b = c implies ae = c.

Corollary 16. There are strongly MAD families in the Laver and
Hechler models.

As mentioned above, it is unknown if strongly MAD families always exist.
We conjecture below that this is not the case. We will prove a partial result
in this direction in Section 7, where we will show that it is consistent to have
no “large” strongly MAD families (Theorem 75).

Conjecture 17. It is consistent to have no strongly MAD families.

4. Brendle’s conjecture: consistency of no very MAD families.
In this section we will show that if cov(M) < ae, then there are no very
MAD families. This was conjectured by Brendle in an email to Kastermans.
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Kastermans showed that very MAD families exist under MA and asked if
their existence can be proved in ZFC. Our result implies that there are no
very MAD families in the Laver, Random or Blass–Shelah models. For the
case of the Laver and Random models, this was already known to Brendle.
Brendle also pointed out in the same email that his conjecture would imply
that there are no very MAD families in a typical template model. Our proof
uses the following characterization of cov(M).

Theorem 18 (see [2] or [3]). The following are equivalent for a cardinal
κ ≥ ω:

(1) The reals cannot be covered by κ meager sets.
(2) If {fα : α < κ} ⊂ ωω is a collection of κ functions, there is h ∈ ωω

such that ∀α < κ [|fα ∩ h| = ω].

Now, this characterization implies that there is a family {fα : α <
cov(M)} ⊂ ωω such that there is no h ∈ ωω for which |h∩ fα| = ω holds for
all α < cov(M). Therefore, if this {fα : α < cov(M)} avoids an a.d. family
A ⊂ ωω, and if cov(M) < |A |, then A cannot be a very MAD family. How-
ever, given an arbitrary very MAD family A , there is no reason to expect
the family {fα : α < cov(M)} to avoid it. We deal with this by showing
that in the above theorem one can replace functions with objects that are a
bit “ fatter”, namely slaloms. This will provide a new characterization of the
cardinal cov(M). Their “fatness” will ensure that the slaloms avoid any a.d.
family.

Definition 19. A function S : ω → [ω]<ω is called a slalom if ∀n ∈ ω
[|S(n)| ≤ 2n]. We say that S is a wide slalom if ∀n ∈ ω [|S(n)| = 2n].

Theorem 20. Let κ be an infinite cardinal. The following are equivalent :

(1) The reals cannot be covered by κ meager sets.
(2) If {Sα : α < κ} is a collection of κ wide slaloms, there is h ∈ ωω

such that ∀α < κ ∃∞n ∈ ω [h(n) ∈ Sα(n)].

Proof. ¬(2)⇒¬(1). Fix a family of wide slaloms {Sα : α < κ} for which
the consequent of (2) fails. For each α < κ set Eα = {h ∈ ωω : ∀∞n ∈ ω
[h(n) /∈ Sα(n)]}. It is clear that each Eα is meager. Also, by assumption,
ωω =

⋃
Eα. Thus (1) is false.

(2)⇒(1). Assume (2). We will show that clause (2) of Theorem 18 holds.
Fix a family {fα : α < κ} ⊂ ωω. Since we may code functions from ω to
[ω × ω]<ω by slaloms, our assumption entails the following:

(∗) For every family {Hα : α < κ} of functions from ω to [ω × ω]<ω such
that ∀n ∈ ω [|Hα(n)| = 2n], there is g ∈ (ω × ω)ω so that ∀α < κ
∃∞n ∈ ω [g(n) ∈ Hα(n)].
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Now, for each n ∈ ω set ln = 2n − 1 and In = [ln, ln+1). Thus 〈In : n ∈ ω〉
is an interval partition of ω with |In| = 2n. Let us define a family {Hα :
α < κ} of functions from ω to [ω × ω]<ω by stipulating that for all n ∈ ω,
Hα(n) = fα�In. Since |In| = 2n, ∀n ∈ ω [|Hα(n)| = 2n]. Therefore, by (∗)
above, there is a g ∈ (ω × ω)ω so that

(∗∗) ∀α < κ ∃∞n ∈ ω [g(n) ∈ Hα(n)].

We may assume that ∀n ∈ ω [g(n) ∈ In × ω] because we can modify g to
make this true without affecting (∗∗) above. Now, set p = g′′ω. It is clear
that given our assumption about g, p is an infinite partial function from ω
to ω. Now, let h be a function in ωω which extends p (arbitrarily). We will
check that h is the function we are looking for.

Indeed, fix α < κ. We must show that |h ∩ fα| = ω. We will prove that
|p ∩ fα| = ω. For n ∈ ω, let us use 〈in, jn〉 to denote g(n). Note that by our
assumption on g, ∀n ∈ ω [in ∈ In]. Also observe that by the definition of p,
dom(p) = {in : n ∈ ω} and ∀n ∈ ω [p(in) = jn]. By (∗∗) above, the set
X = {n ∈ ω : 〈in, jn〉 ∈ Hα(n)} is infinite. By the definition of Hα, it follows
that ∀n ∈ X [fα(in) = jn = p(in)]. Since the In are disjoint, {in : n ∈ X} is
infinite, and so |fα ∩ p| = ω.

Lemma 21. Let A ⊂ ωω be a MAD family. Let λ < st(A ) be a cardinal
and let {Sα : α < λ} be a family of wide slaloms. There is h ∈ A such that
∀α < λ ∃∞n ∈ ω [h(n) ∈ Sα(n)].

Proof. For each α < λ, let Xα =
⋃

({n} × Sα(n)). Observe that for
any function f ∈ ωω, ∃∞n ∈ ω [f(n) ∈ Sα(n)] ⇔ |Xα ∩ f | = ω. Hence,
it suffices to produce h ∈ A such that ∀α < λ [|h ∩ Xα| = ω]. For each
α < λ, we will produce a total function fα ⊂ Xα avoiding A . Notice that
we can ensure that fα avoids A by ensuring that it has infinite intersection
with infinitely many members of A . Indeed, given any finite collection of
functions {f0, . . . , fn} ⊂ ωω, there is a total function g ⊂ Xα which is a.d.
from f0, . . . , fn. This is because Sα is a wide slalom. But we are assuming
that A is MAD. It now follows that for each α < λ there must be an infinite
collection {hαi : i ∈ ω} ⊂ A such that ∀i ∈ ω [|hαi ∩ Xα| = ω]. For each
i ∈ ω, set pαi = hαi ∩ Xα. Then pαi is an infinite partial function contained
in Xα. By refining their domains, it is possible to choose a collection of
infinite partial functions {gαi : i ∈ ω} such that ∀i ∈ ω [gαi ⊂ pαi ] and
∀i < j < ω [dom(gαi ) ∩ dom(gαj ) = 0]. Now, we can find a function fα ∈ ωω
with

⋃
i∈ω g

α
i ⊂ fα ⊂ Xα. Now, λ < st(A ). So there is h ∈ A such that

∀α < λ [|h ∩ fα| = ω]. This h is the function we are looking for.

Theorem 22 (Brendle’s Conjecture). If A is a very MAD family , then
|A | ≤ cov(M). In particular , if cov(M) < ae, then there are no very MAD
families.
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Proof. Suppose, for a contradiction, that cov(M) < |A |. By Theorem 20,
there is a family {Sα : α < cov(M)} of wide slaloms such that for every
h ∈ ωω there is α < cov(M) such that ∀∞n ∈ ω [h(n) /∈ Sα(n)]. But now,
since cov(M) < |A | ≤ st(A ), we can apply Lemma 21 to get a function
h ∈ A that contradicts this.

Corollary 23. There are no very MAD families in the Laver , Random
or Blass–Shelah models.

Proof. It is well-known (see [3]) that none of these forcings, nor their
respective iterations, add Cohen reals. Thus in all of these models cov(M)
= ℵ1. On the other hand, each of these forcings makes the ground model
meager. Hence in all three of these models non(M), and hence ae, is ℵ2.

Remark 24. Let av be the least size of a van Douwen MAD family. Since
very MAD families are van Douwen MAD, Theorem 22 implies that there
are no very MAD families as long as cov(M) < av. It is conceivable that
ae < av is consistent, but no models of this are known.

In Section 2 we promised to give a proof that st(A ) ≤ cov(M) in this
section. We end this section by fulfilling this promise.

Corollary 25. Let A ⊂ ωω be an a.d. family. Then st(A ) ≤ cov(M).

Proof. Suppose for a contradiction that st(A ) > cov(M). By Lemma 6,
A is van Douwen MAD. But now, we can argue just as in Theorem 22 to
get a contradiction using Lemma 21.

5. Indestructibility properties of strongly MAD families. In this
section we will study the effect of forcing on strongly MAD families. In par-
ticular, we will be interested in showing that certain posets preserve strongly
MAD families.

We will assume familiarity with the basic theory of proper forcing. The
reader may consult Abraham [1], Goldstern [7] or Shelah [23] for an intro-
duction.

Definition 26. Let P be a notion of forcing and let A ⊂ ωω be a strong-
ly MAD family. We will say that A is P-indestructible if P A is MAD. We
will say that A is strongly P-indestructible if P A is strongly MAD.

Brendle and Yatabe [4] have studied P-indestructibility of MAD families
of subsets of ω for various posets P. The focus of their work was to provide
combinatorial characterizations of the property of being a P-indestructible
MAD family of sets for some well known posets P. Here our focus is instead
to find those posets P for which strongly MAD families of functions are
strongly P-indestructible.
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If P is a poset which turns the ground model reals into a meager set,
then it is clear that no MAD family A ⊂ ωω can be P-indestructible. This is
because any such poset adds an element of ωω which is eventually different
from all the elements of ωω in the ground model (see [3]). Our intuition is
that strongly MAD families are “so large” that a converse to this observation
must be true, at least for “nicely” definable posets, meaning that such a poset
can kill a strongly MAD family only by introducing an eventually different
real. If we take “nicely” definable to mean Suslin proper (for example, see
Section 7 of [7]), then the property of not turning the ground model meager
is known to be equivalent to the seemingly stronger property of preserving
Cohen reals over elementary submodels.

Definition 27. Let P be a poset. We say that P preserves vC if the
following holds. For every M ≺ H(θ), M countable, with P ∈ M , whenever
p ∈ P ∩M and x is a Cohen real over M , there is q ≤ p which is (M,P)
generic such that q  x is a Cohen real over M [G̊].

It is easy to see that if P preserves vC, then P does not make the ground
model reals into a meager set. Shelah (see [23, Chapter 18]) showed that the
converse is also true for Suslin proper posets. While a poset that preserves
vC need not be Suslin proper, we believe that just preserving vC is good
enough to guarantee that strongly MAD families are strongly indestructible
for that poset. In fact, our official conjecture will be slightly stronger. We
will introduce a property stronger than strong indestructibility, a property
which, like the property of preserving vC, is preserved by countable support
iterations of proper forcings. We are ultimately interested not only in treating
indestructibility for single step forcing extensions, but also for countable
support iterations. We are unable to show that every strongly MAD A is
strongly indestructible for any countable support iteration of proper posets
for which A is strongly indestructible. However, we are able to prove the
preservation of this slightly stronger property, which we next introduce, and
which can be thought of as the property of preserving vC “relativized to A ”.

Definition 28. Let A ⊂ ωω be an a.d. family. Let M ≺ H(θ) be
countable with A ∈ M . We say that h ∈ A covers M with respect to A if
whenever f ∈M is an infinite partial function avoiding A , |h ∩ f | = ω.

Notice that by Lemma 7, if A ⊂ ωω is a strongly MAD family and
M ≺ H(θ) is countable, then there is h ∈ A which covers M with respect
to A .

Definition 29. Let A ⊂ ωω be a strongly MAD family and let P
be a poset. Let M ≺ H(θ) be countable with A ,P ∈ M . We say that
R(A ,P,M) holds if whenever p is a condition in P ∩M and h ∈ A cov-
ers M with respect to A , there is q ≤ p which is (M,P) generic such that
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q  h covers M [G̊] with respect to A . We say that P strongly preserves A
if for every M ≺ H(θ), M countable, with A ,P ∈M , R(A ,P,M) holds.

Conjecture 30. Let A ⊂ ωω be a strongly MAD family and let P be
a poset that preserves vC. Then A is strongly P-indestructible. Moreover ,
P strongly preserves A .

Observe that Conjecture 30 implies that a Suslin proper poset fails to
strongly preserve a strongly MAD family iff it adds an eventually different
real. If true, our conjecture would say that a poset P either destroys all MAD
families in the ground model, or else every strongly MAD family is strongly
P-indestructible, at least for the case of Suslin proper P.

While we do not have a proof of Conjecture 30, we provide some good
evidence for it in this section. In particular, we will show that any poset for
which a certain kind of fusion argument can be carried out strongly preserves
all strongly MAD families (Theorem 52). The class of posets for which this
type of fusion can be done includes all the usual posets preserving vC that
we are aware of, like Sacks, Miller and Silver forcing. In fact, for this class of
posets, the same kind of fusion argument shows both the strong preservation
of strongly MAD families as well as the preservation of vC.

Remark 31. Notice that if A ⊂ ωω is a strongly MAD family and if P
is a poset which strongly preserves A , then P is proper.

Our definition of strongly preserving requires R(A ,P,M) to hold for all
elementary submodels containing A and P. But as is usual in the theory
of proper forcing, it is sufficient if this is true for a club of such elementary
submodels. We will prove this next, and in what follows, we will use this fact
without further comment.

Lemma 32. Let A ⊂ ωω be a strongly MAD family and let P be a poset.
If {M ≺ H(θ) : |M | = ω∧ A ,P ∈ M ∧R(A ,P,M) holds} contains a club
in [H(θ)]ω, then P strongly preserves A .

Proof. Arguments of this sort are standard in the theory of properness;
so we merely outline the steps. We must find a set X ∈ H(θ) that “captures”
all the information necessary for deciding the truth of R(A ,P,M) for anyM
with A ,P ∈M . Let FA = {f : f is an infinite partial function avoiding A }
and let AP = {x̊ ∈ VP : x̊ is a nice P name for a subset of ω × ω}. Put
X = P∪P(P)∪AP∪A ∪FA . We will argue that this X does the job. Notice
that if M ≺ H(θ) is countable with A ,P ∈ M , then X, and hence [X]ω,
are elements of M . Now, given a ∈ [X]ω and q ∈ P, say that q is (a,P)
generic if whenever D ⊂ P is a dense open set in a, q  a ∩D ∩ G̊ 6= 0.
Similarly, say that h ∈ A covers a with respect to A if |h ∩ f | = ω for all
f ∈ a ∩ FA . Finally, say that a ∈ [X]ω is good if whenever p ∈ P ∩ a and
h ∈ A covers a with respect to A , there is q ≤ p which is (a,P) generic such
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that q  h covers a[G̊] with respect to A. It is easy to see that if M ≺ H(θ)
is countable with A ,P ∈M and if R(A ,P,M) holds, then M ∩X is good.
Thus our assumption implies that C = {a ∈ [X]ω : a is good} contains a club
in [X]ω. Now, fix a countable M ≺ H(θ) with A ,P ∈ M . We must show
that R(A ,P,M) holds. Notice that C ∈ M and since C contains a club,
X ∩M ∈ C. Therefore, X ∩M is good. Now, fix p ∈ P ∩M and let h ∈ A
cover M with respect to A . Obviously, p ∈ P∩X ∩M and h covers X ∩M
with respect to A . So, we can find q ≤ p which is (X∩M,P) generic such that
q  h covers (X ∩M)[G̊] with respect to A . It is easily seen that q is in fact
(M,P) generic. We will argue that q  h covers M [G̊] with respect to A .
Indeed, let G be a (V,P) generic filter with q ∈ G and suppose f ∈ M [G]
is an infinite partial function avoiding A . By elementarity of M , there is
x̊ ∈ AP∩M such that x̊[G] = f . But then x̊ ∈ X∩M , and so f ∈ (X ∩M)[G].
Therefore, |h ∩ f | = ω, and we are done.

Lemma 33. Let A ⊂ ωω be a strongly MAD family and let P be a poset
that strongly preserves A . Then A is strongly P-indestructible.

Proof. Firstly, note that if A is strongly MAD and M is a countable
elementary submodel, then, by Lemma 7, there is h ∈ A which covers M
with respect to A . Suppose for a contradiction that A is not strongly P-
indestructible. Fix M ≺ H(θ) with |M | = ω and P,A ∈ M . Now, by our
assumption, we can find a set of P-names {f̊i : i ∈ ω} ∈ M and p ∈ P ∩M
such that:

(1) ∀i ∈ ω [p  f̊i ∈ ωω ∧ f̊i avoids A ].
(2) ∀h ∈ A [p  ∃i ∈ ω [|h ∩ f̊i| < ω]].

Now, fix h ∈ A which covers M with respect to A . Choose q ≤ p such that
q  h covers M [G̊] with respect to A . By elementarity, {f̊i : i ∈ ω} ⊂ M .
So, for each i ∈ ω, q  f̊i ∈ ωω ∩M [G̊] ∧ f̊i avoids A . But then, for each
i ∈ ω, q  |h ∩ f̊i| = ω, contradicting (2) above.

Our aim in the rest of this section will be to show that a large class
of posets not turning the ground model reals into a meager set strongly
preserve all strongly MAD families. As a warm up, we first show that the
Cohen poset strongly preserves all strongly MAD families. Kurilić [18] and
Hrušák and García Ferreira [9] showed that a strongly MAD family in [ω]ω

(see Definition 70) stays maximal after Cohen forcing. While it is possible
to modify their proof to get a proof of Theorem 36, we give a different proof
which foreshadows the proof of the more general Theorem 52.

The following lemma will play an important role in all our proofs of strong
preservation. It allows us to transfer the property of avoiding A from a P
name for a partial function to some partial function in the ground model.
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We will use clause (2) of the lemma below to ensure that certain partial
functions we construct in the ground model from some P names avoid A .

Lemma 34. Let A ⊂ ωω be an infinite a.d. family and let P be any
poset. Suppose f̊ is a P name such that  f̊ is an infinite partial function
avoiding A . There is a countable set of P names {f̊i : i ∈ ω} such that :

(1)  f̊i ⊂ f̊ is an infinite partial function.
(2)  ∀g ⊂ ω × ω [if ∀i ∈ ω [|g ∩ f̊i| = ω], then g avoids A ].

Proof. Let G be any (V,P) generic filter. We will work inside V[G]. By
assumption, f̊ [G] is an infinite partial function avoiding A . We will find a
countable set {fi : i ∈ ω} of infinite partial subfunctions of f̊ [G] such that
any g ⊂ ω × ω having infinite intersection with all the fi avoids A . Consider
A ∩ f̊ [G] = {h ∩ f̊ [G] : h ∈ A ∧ |h ∩ f̊ [G]| = ω}. This is an a.d. family on
f̊ [G]. The proof will break into two cases depending on whether A ∩ f̊ [G] is
finite or infinite.

First, consider the case when A ∩ f̊ [G] is finite. Since f̊ [G] avoids A ,
we can find an infinite partial function f0 ⊂ f̊ [G] that is a.d. from A . Now,
for each i ∈ ω, we can simply set fi equal to f0. We will check that this
will do. Indeed, suppose g ⊂ ω × ω has infinite intersection with f0. If g did
not avoid A , then since f0 is a.d. from A , f0 would also be a.d. from g.
Therefore, g avoids A .

Next, suppose that A ∩f̊ [G] is infinite. Choose an infinite set {hi : i ∈ ω}
⊂ A such that ∀i ∈ ω [|hi ∩ f̊ [G]| = ω]. Now, for each i ∈ ω set fi equal to
hi ∩ f̊ [G]. Thus fi is an infinite partial subfunction of f̊ [G]. Now, suppose
g ⊂ ω × ω has infinite intersection with all the fi. Clearly, then, |g∩hi| = ω,
for all i ∈ ω. Since g has infinite intersection with infinitely many members
of A , it avoids A .

Now, back in the ground model V, since G was an arbitrary (V,P)
generic filter, we can use the maximal principle to find a countable set
of names {f̊i : i ∈ ω} which are forced to have the same properties as
{fi : i ∈ ω} defined above.

Lemma 35. Let P = Fn(ω, 2). Let f̊ be a name and suppose that  f̊

is an infinite partial function. Suppose that {f̊i : i ∈ ω} is a set of names
so that for each i ∈ ω,  f̊i ⊂ f̊ is an infinite partial function. Let p ∈ P.
There is an infinite partial function g such that

(1) ∀i ∈ ω [p  |g ∩ f̊i| = ω].
(2) ∀n ∈ dom(g) ∃q ≤ p [q  n ∈ dom(f̊) ∧ f̊(n) = g(n)].

Proof. Let {qj : j ∈ ω} enumerate {q ∈ P : q ≤ p}. We will build g by
induction as the union of an increasing sequence of finite partial functions gj .
We will build a sequence 〈gj : −1 ≤ j < ω〉 such that:
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(a) g−1 = 0 and gj−1 ⊂ gj is a finite partial function.
(b) ∃q ≤ qj ∀i ≤ j ∃kij > j ∃mi

j ∈ ω [q  kij ∈ dom(f̊i) ∧ f̊i(kij) = mi
j ].

(c) gj = gj−1 ∪ {〈kij ,mi
j〉 : i ≤ j}.

We will first argue that g =
⋃
gj will satisfy requirements (1) and (2) above.

To see that (1) holds, suppose for a contradiction that for some i ∈ ω, there
is a p0 ≤ p and k ∈ ω such that p0  ∀n > k [n ∈ dom(f̊i) ∩ dom(g) ⇒
f̊i(n) 6= g(n)]. There are infinitely many conditions below p0. So it is possible
to find j ≥ k, i such that qj ≤ p0. But then by clause (b) and (c), there is
a q ≤ qj and numbers kij > j ≥ k and mi

j ∈ ω such that kij ∈ dom(g),
g(kij) = mi

j , and q  kij ∈ dom(f̊i) ∧ f̊i(kij) = mi
j , which is a contradiction.

Next, to see that (2) holds, suppose that n ∈ dom(g). By clause (c) above,
n = kij for some i ≤ j, and g(n) = mi

j . But then by clause (b), there is a
q ≤ qj ≤ p such that q  n ∈ dom(f̊i) ∧ f̊i(n) = mi

j = g(n). Since f̊i is forced
to be a subfunction of f̊ , we have q  n ∈ dom(f̊) ∧ f̊(n) = g(n), which is
as required.

Now, let us build the sequence 〈gj : −1 ≤ j < ω〉. At stage j, suppose that
gj−1 is given to us. As all the f̊i are forced to be infinite partial functions,
we can successively extend qj j + 1 times to find a condition q ≤ qj and
numbers max {max (dom(gj−1)), j} < k0

j < · · · < kjj and m0
j , . . . ,m

j
j ∈ ω

such that ∀i ≤ j [q  kij ∈ dom(f̊i) ∧ f̊i(kij) = mi
j ]. Since the kij are different

for different values of i, we can set gj = gj−1 ∪ {〈k0
j ,m

0
j 〉, . . . , 〈k

j
j ,m

j
j〉}. It is

clear that gj satisfies conditions (a)–(c).

Theorem 36. Let P = Fn (ω, 2). If A ⊂ ωω is a strongly MAD family ,
then P strongly preserves A .

Proof. Let A ⊂ ωω be a strongly MAD family. Fix a countable elemen-
tary submodel M ≺ H(θ) with P,A ∈ M . Choose h ∈ A which covers M
with respect to A , and let p ∈ P ∩M be any condition. It is well known
that p is always (M,P) generic. We will argue that p  h covers M [G̊] with
respect to A .

Suppose for a contradiction that there are q ≤ p, f̊ ∈M ∩VP and n ∈ ω
such that:

(∗)  f̊ is an infinite partial function avoiding A .
(∗∗) q  ∀m > n [m ∈ dom (f̊)⇒ f̊(m) 6= h(m)].

Since P is countable, P ⊂ M . Therefore, q ∈ M . Now, we can apply
Lemma 34 to f̊ to find a countable set of names {f̊i : i ∈ ω} ∈ M that
satisfy clauses (1) and (2) of Lemma 34. Clause (1) of Lemma 34 implies
that f̊ and {f̊i : i ∈ ω} satisfy the hypothesis of Lemma 35. Thus we can
apply Lemma 35 with the condition q in place of p to find an infinite partial
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function g ∈M which satisfies clauses (1) and (2) of Lemma 35 (with respect
to q). Now, clause (2) of Lemma 34 and clause (1) of Lemma 35 together
imply that g avoids A . As h coversM with respect to A , |h∩g| = ω. Choose
n < m ∈ dom(g) such that g(m) = h(m). But by clause (2) of Lemma 35,
there is r ≤ q such that r  m ∈ dom(f̊) ∧ f̊(m) = g(m) = h(m), which
contradicts (∗∗) above.

Corollary 37. Let A ⊂ωω be a strongly MAD family. Let P =Fn(ω, 2).
Then A is P-indestructible. In fact , A is strongly P-indestructible.

An immediate consequence of the Cohen-indestructibility of strongly
MAD families is a strengthening of a result of Steprāns [15] which says
that strongly MAD families cannot be analytic.

Corollary 38. If A ⊂ ωω is strongly MAD , then A does not contain
perfect sets.

Proof. Suppose for a contradiction that T ⊂ ω<ω is a perfect tree such
that [T ] ⊂ A . Let P = Fn(ω, 2) be Cohen forcing and G be a (V,P) generic
filter. Since T is perfect, [T ] has a new branch in V[G]. That is, there is a
b ∈ [T ] ∩ V[G], which is not a member of V. We will argue that b is a.d.
from A , contradicting the Cohen-indestructibility of A . First of all, notice
that in V, the following statement is true: any two distinct branches through
T are a.d. This statement is Π1

1 and hence absolute. So it is still true in V[G]
that any two distinct branches through T are a.d. In particular, b is a.d. from
[T ]∩V. Next, suppose that f ∈ A \([T ]∩V). Notice that in V, the following
statement holds: f is a.d. from every branch through T . This is again Π1

1,
and hence absolute. Thus in V[G] every branch through T is a.d. from f . In
particular, b is a.d. from f , and we are done.

We now continue with our demonstration that a certain large class of forc-
ings not making the ground model reals meager strongly preserve strongly
MAD families. We adopt a general framework and show that all forcings for
which a certain type of fusion argument can be carried out (Definition 40)
have this property. But before doing this, we will first check that the re-
quired type of fusion argument can be done for Sacks and Miller forcing.
The conditions in our definition might seem technical, but they are a nat-
ural abstraction of the properties of these two forcings. This will be clear
from the proof of Theorem 48.

Definition 39. Let (P,≤) be a poset. We say that (P,≤) has fusion if
there is a sequence 〈≤n : n ∈ ω〉 of partial orderings on P such that:

(1) ∀p, q ∈ P[q ≤n p⇒ q ≤n−1 p], with ≤−1 being ≤.
(2) If 〈pn : n ∈ ω〉 is a sequence with pn+1 ≤n pn, then ∃q ∈ P ∀n ∈ ω

[q ≤n pn].
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Definition 40. Let P be a poset. We say that P has diagonal fusion
if there exist a sequence 〈≤n : n ∈ ω〉 of partial orderings on P, a strictly
increasing sequence of natural numbers 〈in : n ∈ ω〉 with i0 = 0, and for
each p ∈ P a sequence Ip = 〈pi : i ∈ ω〉 ∈ Pω such that the following hold:

(1) P has fusion with respect to 〈≤n : n ∈ ω〉.
(2) ∀i ∈ ω[pi ≤p].
(3) If q ≤ p, then ∃∞i ∈ ω [q 6⊥ pi].
(4) If q ≤n p, then ∀i < in [qi ≤ pi], where Iq = 〈qi : i ∈ ω〉.
(5) If 〈ri : in ≤ i < in+1〉 is a sequence such that ∀i ∈ [in, in+1) [ri ≤ pi],

then ∃q ≤n p ∀i ∈ [in, in+1) [qi ≤ ri], where Iq = 〈qi : i ∈ ω〉.
Our terminology is motivated by analogy with Miller forcing, where the

notion of diagonal fusion across a Miller tree occurs. We show in Theorem 48
below that conditions (1)–(5) are abstractions of what goes on in the case of
diagonal fusion through a Miller tree. In the case of Miller forcing, IT , as a
set, is just the collection of all subtrees of T that correspond to the successors
of its split nodes. Condition (5) corresponds to amalgamating extensions of
these into the tree T .

Intuitively, posets with diagonal fusion are those Axiom A posets which
allow for fusion arguments involving amalgamating finitely many conditions
into a given condition at each step of the fusion. Unlike for Laver or Mathias
forcing, where only “pure extensions” can be amalgamated, posets with diag-
onal fusion allow for arbitrary extensions to be amalgamated. This is what is
expressed by condition (5). Of course, Laver and Mathias forcing make the
ground model meager, and hence do not preserve any MAD families in ωω.

Remark 41. We point out here that all our proofs will go through under
the following slight weakening of condition (5) above:

(5′) for any i ∈ [in, in+1), if ri ≤ pi, then there is a q ≤n p such that
qi ≤ ri and ∀in ≤ i′ < i [qi′ ≤ pi′ ].

Intuitively, (5) seems stronger than (5′) because (5) allows us to “amalga-
mate” the ri into q simultaneously, whereas with (5′), we must do this suc-
cessively, one i at a time. We do not use (5′) in our proofs because it makes
the notation more cumbersome, and it does not introduce any new ideas into
the proofs. We will leave it to the reader to verify that (5′) is indeed enough
for the proofs in this section.

An example of a forcing which, with its usual notion of fusion, satisfies
condition (5′) but not condition (5) is Silver forcing.

Before showing that posets with diagonal fusion strongly preserve strong-
ly MAD families, we show that Miller and Sacks forcings have diagonal
fusion. We check the details only for Miller forcing, as it is the more difficult
case. The proof for the other case is very similar, but easier.
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Definition 42. Let T be a subtree of either ω<ω or 2<ω. If s ∈ T , we
write succT (s) to denote {s_〈n〉 : s_〈n〉 ∈ T}. If T ⊂ 2<ω, then split(T ) =
{s ∈ T : |succT (s)| = 2}, while if T ⊂ ω<ω, then split(T ) = {s ∈ T :
|succT (s)| = ω}. In both cases, split+(T ) =

⋃
{succT (s) : s ∈ split(T )}. If

n ∈ ω, splitn(T ) = {s ∈ split(T ) : |{t ( s : t ∈ split(T )}| = n}. Finally,
split+

n (T ) will denote
⋃
{succT (s) : s ∈ splitn(T )}.

Definition 43. Let T be a subtree of 2<ω. We say that T is perfect if
∀s ∈ T ∃t ∈ split(T ) [s ⊂ t]. If T is a subtree of ω<ω, we say that T is
superperfect if for each s ∈ T either |succT (s)| = 1 or |succT (s)| = ω and if
in addition to this ∀s ∈ T ∃t ∈ split(T ) [s ⊂ t].

Definition 44. M will denote Miller forcing, M = {T ⊂ ω<ω : T is
superperfect}, ordered by inclusion. S will denote Sacks forcing, S = {T ⊂
2<ω : T is perfect}, ordered by inclusion.

Several distinct notions of fusion can be defined on M. The strongest such
notion requires a ≤n extension to preserve all nth split nodes. However, this
is too strong for proving that M strongly preserves strongly MAD families
because in order to ensure that our extensions stay within the elementary
submodel M , we need to be able to get away with preserving only finitely
many nodes at a time. So we will use the weaker notion of fusion which
is sometimes known as diagonal fusion across the Miller tree T (hence the
terminology of Definition 40).

Definition 45. Let T ∈ M. As T is superperfect, there is a natural
bijection from ω<ω onto split(T ). If s ∈ ω<ω, we let T (s) denote the split
node of T corresponding to s under this bijection. If i ∈ ω, then T (s, i)
will denote the ith element of succT (T (s)) under the natural ordering on
succT (T (s)). Finally, if s ∈ T , we write Ts to denote {t ∈ T : s ⊂ t ∨ t ⊂ s}.

Given T ∈M, IT as a set will just be {Tt : t ∈ split+(T )}. But to ensure
that the conditions of Definition 40 are satisfied we must enumerate this set
in a very particular way.

Definition 46. We define a sequence of finite subsets of ω<ω as follows.
Σ0 = {〈〉}. Given Σn, Σn+1 = {s_〈i〉 : s ∈ Σn ∧ i ≤ n} ∪ {〈〉}. Notice that
Σn+1 ⊃ Σn and that

⋃
Σn = ω<ω.

Definition 47. Let T 1 ≤ T 0 ∈M. For any n ∈ ω, we will say T 1 ≤n T 0

if ∀s ∈ Σn [T 1(s) = T 0(s)].

Theorem 48. M has diagonal fusion.

Proof. We will show that 〈≤n : n ∈ ω〉 as defined above witnesses that
M has diagonal fusion. Indeed, it is clear that M has fusion with respect to
〈≤n : n ∈ ω〉. We will check that the other conditions hold. Fix T ∈ M. We
will define IT as follows. Set in = |Σn|−1. Now, let e : ω → (ω<ω \{〈〉}) be a
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one-to-one onto enumeration such that e′′[0, in) = Σn \{〈〉}. If i ∈ [in, in+1),
then e(i) ∈ Σn+1 \Σn. So there is a unique s ∈ Σn and a unique j ≤ n such
that e(i) = s_〈j〉. Let ti = T (s, j). We will set Ti = Tti . Now, it is clear that
IT = 〈Ti : i ∈ ω〉 = {Tt : t ∈ split+(T )}. Therefore, Ti ≤ T , and if T ′ ≤ T ,
then ∃∞i ∈ ω [T ′ 6⊥ Ti].

Now suppose that T 1 ≤n T 0 and let i < in. We must argue that T 1
i ≤ T 0

i .
Indeed, if n = 0, there is nothing to be proved. So suppose that n > 0. As
e(i) ∈ Σn \ {〈〉}, we can find (unique) s ∈ Σn−1 and j ≤ n − 1 so that
e(i) = s_〈j〉. Notice that T 1

i = T 1
t1i
, where t1i = T 1(s, j) and that T 0

i = T 0
t0i
,

where t0i = T 0(s, j). Since T 1 ≤n T 0, we know that T 1(s_〈j〉) = T 0(s_〈j〉).
It follows that t1i = t0i . But since T 1 ⊂ T 0, it is easy to see that T 1

t1i
= T 1

t0i

⊂ T 0
t0i
, whence T 1

i ≤ T 0
i .

Now it only remains to verify clause (5) of Definition 40. To this end,
fix n ∈ ω and T 0 ∈ M. Let 〈T ′i : i ∈ [in, in+1)〉 be a sequence such that
∀i ∈ [in, in+1) [T ′i ≤ T 0

i ]. We wish to amalgamate the T ′i into T0. It is clear
that any two distinct s 6= t ∈ Σn+1 \ Σn are incomparable nodes in ω<ω.
Therefore, if s = s̃_〈j〉 and if t = t̃_〈k〉, then T 0(s̃, j) and T 0(t̃, k) are
incomparable nodes in the tree T 0. Thus it follows that if i 6= i′ are distinct
elements in [in, in+1), then t0i and t0i′ are incomparable nodes in T 0. But
now, we can get T 1 ≤n T 0 simply by replacing T 0

t0i
in T 0 with T ′i for each

i ∈ [in, in+1). Now, T 1 is as required, and this finishes the proof.

We now show that if P has diagonal fusion, then P strongly preserves
all strongly MAD families. The steps are analogous to the steps for Cohen
forcing (Theorem 36). We first show that if P has diagonal fusion, then it is
Axiom A.

Lemma 49. If P has diagonal fusion, then P is Axiom A.

Proof. By assumption, there is a sequence 〈≤n : n ∈ ω〉 of partial order-
ings on P witnessing that P has fusion. We will check that this same sequence
also witnesses that P is Axiom A. To this end, suppose that x̊ is a P name such
that  x̊ ∈ V. Let p be any condition and let n ∈ ω. We build a sequence
〈pm : m ∈ ω〉 with p0 = p such that pm+1 ≤n+m pm as follows. Suppose
that at stage m + 1 we are given pm. Let Ipm = 〈pmi : i ∈ ω〉. For each i ∈
[in+m, in+m+1) choose rmi ≤ pmi and xmi such that rmi  x̊ = xmi . Now, we can
find a condition pm+1 ≤n+m pm such that ∀i ∈ [in+m, in+m+1) [pm+1

i ≤ rmi ],
where Ipm+1 = 〈pm+1

i : i ∈ ω〉. Let X = {xmi : m ∈ ω ∧ i ∈ [in+m, in+m+1)}
and let q ∈ P be such that ∀m ∈ ω [q ≤n+m pm]. X is clearly a countable
set. We will argue that q  x̊ ∈ X. Put Iq = 〈qi : i ∈ ω〉. Let r ≤ q. Find
m and i ∈ [in+m, in+m+1) such that r 6⊥ qi. Since q ≤n+m+1 p

m+1, we have
qi ≤ pm+1

i ≤ rmi . But then we can choose s ∈ P extending both r and rmi ,
whence s  x̊ = xmi ∈ X.
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Lemma 50. Let P be a poset with diagonal fusion. Let f̊ be a P name so
that  f̊ is an infinite partial function. Let {f̊l : l ∈ ω} be a set of P names
such that ∀l ∈ ω [ f̊l ⊂ f̊ is an infinite partial function]. Let p ∈ P and let
n ∈ ω. There is q ≤n p and an infinite partial function g such that :

(1) ∀l ∈ ω [q  |g ∩ f̊l| = ω].
(2) ∀k ∈ dom(g) ∃i [qi  k ∈ dom(f̊) ∧ f̊(k) = g(k)], where Iq = 〈qi :

i ∈ ω〉.

Proof. We will build g by induction as the union of an increasing sequence
of finite partial functions gj . In fact, we will build two sequences 〈gj : −1 ≤
j < ω〉 and 〈pj : j ∈ ω〉 ⊂ P such that:

(a) p0 = p and pj+1 ≤n+j p
j .

(b) g−1 = 0 and gj−1 ⊂ gj is a finite partial function.
(c) For each i ∈ [in+j , in+j+1) and for each l ≤ j there is a k(i, j, l) > j

and anm(i, j, l)∈ω such that [pj+1
i  k(i, j, l)∈dom(f̊l)∧ f̊l(k(i, j, l))

= m(i, j, l)], where Ipj+1 = 〈pj+1
i : i ∈ ω〉.

(d) gj = gj−1 ∪ {〈k(i, j, l),m(i, j, l)〉 : i ∈ [in+j , in+j+1) ∧ l ≤ j}.
Let q ∈ P be such that q ≤n+j p

j and let g =
⋃
gj . We will first argue that q

and g satisfy clauses (1) and (2). Put Iq = 〈qi : i ∈ ω〉. To verify (1), fix l ∈ ω.
Let r ≤ q and k ∈ ω be given. We know ∃∞i ∈ ω [r 6⊥ qi]. Choose j ≥ k, l
and i ∈ [in+j , in+j+1) such that r 6⊥ qi. As l ≤ j, there is a k(i, j, l) > j ≥ k
and an m(i, j, l) ∈ ω such that k(i, j, l) ∈ dom(g), g(k(i, j, l)) = m(i, j, l),
and pj+1

i  k(i, j, l) ∈ dom(f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l). But q ≤n+j+1 p
j+1.

Therefore, qi ≤ pj+1
i . Hence, we can find an s ∈ P extending both r and

pj+1
i , whence s  k(i, j, l) ∈ dom(f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l) = g(k(i, j, l)).

As k(i, j, l) > k, this verifies (1).
Next, to verify (2), suppose that k ∈ dom(g). By clause (d), k = k(i, j, l)

and g(k) = m(i, j, l) for some l ≤ j and i ∈ [in+j , in+j+1). Clause (c) implies
that pj+1

i  k ∈ dom(f̊l) ∧ f̊l(k) = m(i, j, l) = g(k). But since f̊l is forced to
be a subfunction of f̊ , pj+1

i  k ∈ dom(f̊) ∧ f̊(k) = g(k). As q ≤n+j+1 p
j+1,

qi ≤ pj+1
i . Therefore, qi  k ∈ dom(f̊) ∧ f̊(k) = g(k), which is as required.

Now, we describe the construction of 〈gj : −1 ≤ j < ω〉 and 〈pj : j ∈ ω〉.
We set g−1 = 0 and p0 = p. At stage j ≥ 0 suppose we are given gj−1

and pj . Put Ipj = 〈pji : i ∈ ω〉. Since gj−1 is a finite partial function, we
can set k = max(dom(gj−1)). As each f̊l is forced to be an infinite partial
function, we can find a sequence of conditions 〈rji : i ∈ [in+j , in+j+1)〉 and
two sequences of numbers 〈k(i, j, l) : i ∈ [in+j , in+j+1)∧l ≤ j〉 and 〈m(i, j, l) :
i ∈ [in+j , in+j+1) ∧ l ≤ j〉 satisfying:

(i) rji ≤ p
j
i and r

j
i  k(i, j, l) ∈ dom(f̊l) ∧ f̊l(k(i, j, l)) = m(i, j, l).
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(ii) k(i, j, l) > max({k, j}) and k(i, j, l) < k(i′, j, l′) whenever (i, l) <
(i′, l′) lexicographically.

By clause (5) of Definition 40, we can find pj+1 ≤n+j p
j such that for each

i ∈ [in+j , in+j+1), pj+1
i ≤ rji . Since the k(i, j, l) are distinct for distinct pairs

(i, l), we can set gj = gj−1 ∪{〈k(i, j, l),m(i, j, l)〉 : i ∈ [in+j , in+j+l)∧ l ≤ j}.
It is clear that gj and pj+1 are as required.

Lemma 51. Let A ⊂ ωω be a strongly MAD family and let P be a poset
with diagonal fusion. Let M ≺ H(θ) be countable with A ,P ∈ M . Suppose
f̊ ∈M is a P name such that  f̊ is an infinite partial function avoiding A .
Suppose h ∈ A coversM with respect to A . Let p ∈M be a condition and let
j ∈ ω. There is a r ≤ p such that r ∈M and ∃k > j [r  k ∈ dom(f̊)∧ f̊(k)
= h(k)].

Proof. We can apply Lemma 34 to f̊ to find a set of names {f̊l : l ∈ ω}
∈M that satisfy clauses (1) and (2) of Lemma 34. Notice that the hypotheses
of Lemma 50 are satisfied by P, f̊ , {f̊l : l ∈ ω}, and p. So we can find q ≤ p
with q ∈M and an infinite partial function g ∈M which satisfy clauses (1)
and (2) of Lemma 50. Put Iq = 〈qi : i ∈ ω〉. Notice that since q ∈M , Iq ∈M ,
and by elementarity, Iq ⊂M . Now, observe that clause (2) of Lemma 34 and
clause (1) of Lemma 50 together imply that g avoids A . Therefore, |h ∩ g|
= ω. Choose k > j such that k ∈ dom(g) and h(k) = g(k). By clause (2)
of Lemma 50, there is i ∈ ω such that qi  k ∈ dom(f̊) ∧ f̊(k) = g(k)
= h(k). As qi ∈ M and qi ≤ q, we can set r = qi. Clearly, r and k are as
required.

Theorem 52. Let A ⊂ ωω be a strongly MAD family. Let P be a poset
with diagonal fusion. Then P strongly preserves A .

Proof. Fix a countable elementary submodelM ≺ H(θ) with A ,P ∈M .
Let h ∈ A cover M with respect to A and let p ∈ M be a condition. We
must find a q ≤ p which is (M,P) generic such that q  h covers M [G̊]
with respect to A . We will use Lemma 49 to ensure that q is (M,P) generic
and use Lemma 51 to ensure that q  h covers M [G̊] with respect to A . Let
〈α̊n : n ∈ ω〉 enumerate all α̊ ∈ M ∩VP such that  α̊ is an ordinal. Let
〈f̊j : j ∈ ω〉 enumerate all f̊ ∈ M ∩VP such that  f̊ is an infinite partial
function avoiding A . We will build a sequence 〈pn : n ∈ ω〉 ⊂ P ∩M such
that the following hold:

(a) p0 = p and pn+1 ≤n pn.
(b) pn+1  α̊n ∈M .
(c) For each i ∈ [in, in+1) and for each j ≤ n there is a k(i, n, j) > n

such that pn+1
i  k(i, n, j) ∈ dom(f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j)).
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Let q ∈ P be a condition such that q ≤n pn for all n ∈ ω. We will
first argue that q is as required. Indeed, it is clear from (b) above that
q is (M,P) generic. We will argue that q  h covers M [G̊] with respect
to A . Let G be a (V,P) generic filter with q ∈ G and let f ∈ M [G]
be an infinite partial function avoiding A . By elementarity of M , there
is f̊ ∈ M with f̊ [G] = f such that  f̊ is an infinite partial function
avoiding A . Therefore, f̊ = f̊j for some j ∈ ω. It is enough to show
that q  |h ∩ f̊j | = ω. Fix r ≤ q and k ∈ ω. Put Iq = {qi : i ∈ ω}.
We know that ∃∞i ∈ ω [r 6⊥ qi]. So we can choose n ≥ max {j, k} and
i ∈ [in, in+1) such that r 6⊥ qi. Since j ≤ n, by (c) above, there is k(i, n, j) >
n such that pn+1

i  k(i, n, j) ∈ dom(f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j)). But
since q ≤n+1 pn+1, qi ≤ pn+1

i . So we may choose s ≤ r with the prop-
erty that s  k(i, n, j) ∈ dom(f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j)). This is as
required because k(i, n, j) > k.

We now describe how to construct 〈pn : n ∈ ω〉. Set p0 = p and sup-
pose that at stage n, pn ∈ M is given to us. We first apply Lemma 49
to pn and α̊n within M to find p̃n ≤n pn with p̃n ∈ M such that p̃n 
α̊n ∈M . Put Ip̃n = 〈p̃ni : i ∈ ω〉. Note that Ip̃n ⊂ M . Fix any i ∈
[in, in+1). Notice that p̃ni ∈ M . As 〈f̊j : j ≤ n〉 ⊂ M , we can apply
Lemma 51 to p̃ni n + 1 times to find rni ≤ p̃ni with rni ∈ M and num-
bers k(i, n, 0), . . . , k(i, n, n) ∈ ω, all of them greater than n, such that
∀j ≤ n [rni  k(i, n, j) ∈ dom(f̊j) ∧ f̊j(k(i, n, j)) = h(k(i, n, j))]. Now, 〈rni :
i ∈ [in, in+1)〉 is a finite sequence of things in M . Therefore 〈rni : i ∈
[in, in+1)〉 ∈ M . Hence, we can apply (5) of Definition 40 to p̃n to find
pn+1 ≤n p̃n with pn+1 ∈ M such that ∀i ∈ [in, in+1) [pn+1

i ≤ rni ]. It is clear
that pn+1 is as needed.

Putting Theorems 48 and 52 together, we get

Corollary 53. If A ⊂ ωω is a strongly MAD family , then M and S
strongly preserve A .

6. Some preservation theorems for countable support iterations.
Our main goal in this section is to prove that the property of strongly pre-
serving a strongly MAD family is preserved by the countable support (CS)
iteration of proper posets. By the results of the last section, this will imply
that the countable support iterations of Sacks and Miller forcings strongly
preserve strongly MAD families.

We assume that the reader is familiar with the basic theory of iterated
forcing, including some preservation theorems, such as the preservation of
properness. The reader may consult [1], [7], [22] or [23] for a good intro-
duction. Our presentation will generally follow that of Abraham [1].
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En route to proving our main theorem, we answer a question of Kellner
and Shelah [16] by proving the following. Suppose γ is a limit ordinal and
that 〈Pα, Q̊α : α ≤ γ〉 is a countable support iteration of proper posets. If for
all α < γ, Pα does not add an eventually different real, then Pγ does not add
an eventually different real either. Since not adding an eventually different
real is known to be equivalent to not making V ∩ ωω meager (see [3]), our
result shows that a CS iteration of proper posets of limit length does not
make V∩ωω meager if no initial segment does. A partial result towards our
theorem was obtained by Kellner and Shelah [16], who proved it for the case
of Suslin forcings as well as some nep forcings. Shelah, Judah and Goldstern
(see [22]) have shown that the countable support iteration of posets which
preserve vC itself preserves vC (Definition 27). The property of preserving
vC is stronger than that of not adding eventually different reals (though
they are known to be equivalent for Suslin proper posets). On the other
hand, our result puts a condition on initial segments of the iteration, and
not on the iterands.

Before giving the proofs of our results, we collect together some basic
facts about countable support iterations which we will use.

Lemma 54 (see the proof of Lemma 2.8 in [1]). Let γ be a limit ordinal
and let 〈Pα, Q̊α : α ≤ γ〉 be a CS iteration. Let M ≺ H(θ) be countable
and suppose that 〈Pα, Q̊α : α ≤ γ〉 ∈ M . Put γ′ = sup(γ ∩ M) and let
〈γn : n ∈ ω〉 ⊂ γ ∩M be an increasing sequence that is cofinal in γ′. Suppose
that 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉 are two sequences such that the following
hold :

(1) qn ∈ Pγn and qn+1�γn = qn.
(2) p̊n ∈ VPγn and qn γn p̊n ∈M ∩ Pγ ∧ p̊n�γn ∈ G̊γn.
(3) qn+1 γn+1 p̊n+1 ≤ p̊n.

If q = (
⋃
qn)_1̊ ∈ Pγ , then ∀n ∈ ω [q γ p̊n ∈ G̊γ ].

Lemma 55 (see Lemma 2.8 of [1]). Let 〈Pα, Q̊α : α ≤ γ〉 be a CS it-
eration such that ∀α < γ [ α Q̊α is proper ]. Let M ≺ H(θ) be countable
and suppose that 〈Pα, Q̊α : α ≤ γ〉 ∈ M . Let γ0 ∈ γ ∩ M and suppose
that q0 ∈ Pγ0 is an (M,Pγ0) generic condition. Suppose p̊0 ∈ VPγ0 and
q0 γ0 p̊0 ∈ Pγ ∩M ∧ p̊0�γ0 ∈ G̊γ0. There is an (M,Pγ) generic condition
q ∈ Pγ such that q�γ0 = q0 and q γ p̊0 ∈ G̊γ.

Definition 56. Let P and Q be posets and suppose that π : Q → P is
an onto map. We say that π is a projection if the following hold:

(1) π is order preserving. That is, if q1 ≤ q0, then π(q1) ≤ π(q0).
(2) For every q0 ∈ Q if p ≤ π(q0), then ∃q1 ≤ q0 [π(q1) = p].
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Definition 57. Let (P,≤P) and (Q,≤Q) be posets and let π : Q → P
be a projection. If G ⊂ P is a (V,P) generic filter, then in V[G] we define
the poset Q/G = {q ∈ Q : π(q) ∈ G} ordered by ≤Q. In V, we let Q/G̊ be
a full P name for Q/G.

Lemma 58 (see Section 4 of [7]). Let P and Q be posets and let π : Q→ P
be a projection. There is a dense embedding i : Q → P ∗ Q/G̊ given by
i(q) = 〈π(q), q〉. Moreover , if 〈Pα, Q̊α : α ≤ γ〉 is an iteration, then for
each α ≤ γ the map πγα : Pγ → Pα given by πγα(p) = p�α is a projection.
Therefore, if α ≤ γ and if Gγ ⊂ Pγ is a (V,Pγ) generic filter , then there is
a (V[Gα],Pγ/Gα) generic filter H such that in V[Gγ ], Gγ = Gα ∗H holds.
In fact , this H is equal to Gγ.

Definition 59. Suppose 〈Pα, Q̊α : α ≤ γ〉 is an iteration and let α ≤ γ.
By Lemma 58, Pγ densely embeds into Pα ∗ Pγ/G̊α. Thus we may think of
any Pγ name as a Pα name for a Pγ/G̊α name. Thus, given a Pγ name x̊, we
use x̊[G̊α] to denote a canonical Pα name for a Pγ/G̊α name representing x̊.
If Gα is a (V,Pα) generic filter, we will write x̊[Gα] to denote the evaluation
of x̊[G̊α] by Gα. Therefore, if Gγ is a (V,Pγ) generic filter, then in V[Gγ ],
x̊[Gγ ] = x̊[Gα][H] holds, where H is a (V[Gα],Pγ/Gα) generic filter such
that Gγ = Gα ∗H. By Lemma 58, H = Gγ .

We are now ready to prove our main results. We will begin by show-
ing that a CS iteration of proper forcings of limit length does not add an
eventually different real if no initial segment does.

Lemma 60. Let V0 ⊂ V1 be transitive universes satisfying ZFC and
suppose that for every f ∈ ωω ∩ V1 there is a slalom S ∈ V0 such that
∃∞n ∈ ω [f(n) ∈ S(n)]. No f ∈ ωω∩V1 is eventually different from ωω∩V0.

Proof. Working in V0 partition ω into a sequence of intervals 〈In : n ∈ ω〉
∈ V0 such that ∀n ∈ ω [|In| = 2n]. Put X =

⋃
ωIn . Notice that for each

n ∈ ω, ωIn ∩ V1 = ωIn ∩ V0. Let f ∈ ωω ∩ V1. Working in V1 define a
function F : ω → X by stipulating that F (n) = f�In ∈ ωIn . By hypothesis,
we can find S ∈ V0 such that:

(1) S : ω → [X]<ω.
(2) ∀n ∈ ω [|S(n)| ≤ 2n].
(3) ∃∞n ∈ ω [F (n) ∈ S(n)].

We may assume that for all n ∈ ω, S(n) ⊂ ωIn and that |S(n)| = 2n because
we may modify S to make both of these things true without affecting the
truth of (3) above. Put S(n) = {σn0 , . . . , σn2n−1} and In = {in0 , . . . , in2n−1}.
For each n ∈ ω and for each 0 ≤ j < 2n define g(inj ) = σnj (inj ). This definition
makes sense because by assumption, σnj ∈ ωIn , and so σnj is defined at inj .
Clearly, g ∈ ωω ∩ V0. We will argue in V1 that ∃∞n ∈ ω [f(n) = g(n)].
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We know that A = {n ∈ ω : F (n) ∈ S(n)} is infinite. For each n ∈ A,
there is a 0 ≤ jn < 2n such that f�In = σnjn . Therefore, for each n ∈ A,
g(injn) = σnjn(injn) = f(injn). Since the In are disjoint, the set {injn : n ∈ A} is
infinite, and we are done.

Theorem 61. Let γ be a limit ordinal and let 〈Pα, Q̊α : α ≤ γ〉 be a CS
iteration such that ∀α < γ [α Q̊α is proper ]. Suppose that for all α < γ, Pα
does not add an eventually different real. Then Pγ does not add an eventually
different real either.

Proof. Let f̊ be a Pγ name such that γ f̊ ∈ ωω, and let p0 ∈ Pγ be a
condition. Fix a countable M ≺ H(θ) with 〈Pα, Q̊α : α ≤ γ〉, f̊ , p0 ∈ M .
Let S : ω → [ω]<ω be a slalom such that for all f ∈ ωω ∩M , ∀∞n ∈ ω
[f(n) ∈ S(n)]. We will find q ∈ Pγ such that q γ p0 ∈ G̊γ and q γ ∃∞n ∈ ω
[f̊(n) ∈ S(n)]. By Lemma 60, this is sufficient. Put γ′ = sup(M ∩ γ) and let
〈γn : n ∈ ω〉 ⊂M ∩ γ be an increasing sequence that is cofinal in γ′. We will
build two sequences 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉 such that the following
hold:

(1) qn ∈ Pγn , qn is (M,Pγn) generic, and qn+1�γn = qn.
(2) p̊0 = p0, p̊n ∈ VPγn , and qn γn p̊n ∈M ∩ Pγ ∧ p̊n�γn ∈ G̊γn .
(3) qn+1 γn+1 p̊n+1 ≤ p̊n.
(4) qn+1 γn+1 p̊n+1 Pγ/G̊γn+1

∃k ≥ n [f̊ [G̊γn+1 ](k) ∈ S(k)].

Before showing how to build such a sequence, we will argue that it is sufficient
to do so. Let q = (

⋃
qn)_1̊ ∈ Pγ . By Lemma 54, ∀n ∈ ω [q γ p̊n ∈ G̊γ ]. In

particular, q γ p0 ∈ G̊γ . We will argue that q γ ∃∞n ∈ ω [f̊(n) ∈ S(n)].
Indeed, let r ≤ q and let n ∈ ω. Fix a (V,Pγ) generic filter Gγ , with r ∈ Gγ .
By Lemma 58, we know that Gγ is (V[Gγn+1 ],Pγ/Gγn+1) generic and that
in V[Gγ ], Gγ = Gγn+1 ∗ Gγ holds. Notice that q ∈ Gγ and therefore qn+1 ∈
Gγn+1 . Also, since p̊n+1 is a Pγn+1 name, p̊n+1[Gγ ] = p̊n+1[Gγn+1 ]. It follows
from clauses (2) and (4) that p̊n+1[Gγ ] ∈ M ∩ Pγ , that p̊n+1[Gγ ]�γn+1 ∈
Gγn+1 , and that in V[Gγn+1 ], p̊n+1[Gγ ] Pγ/Gγn+1

∃k ≥ n [f̊ [Gγn+1 ](k) ∈
S(k)]. However, as observed above, Lemma 54 implies that p̊n+1[Gγ ] ∈ Gγ .
Therefore in V[Gγ ], there is a k ≥ n such that f̊ [Gγn+1 ][Gγ ](k) ∈ S(k). But
f̊ [Gγn+1 ][Gγ ] = f̊ [Gγ ]. So f̊ [Gγ ](k) ∈ S(k). Since r ∈ Gγ , we may find s ≤ r
such that s γ f̊(k) ∈ S(k). As k ≥ n, this finishes the proof.

We will now describe how to construct 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉.
p̊0 is just p0, the given condition. Since p0 ∈ M ∩ Pγ and since γ0 ∈ M ,
p0�γ0 ∈M∩Pγ0 . As Pγ0 is proper, we may find an (M,Pγ0) generic condition
q0 ≤ p0�γ0. Because q0 ≤ p0�γ0, q0 γ0 p0�γ0 ∈ G̊γ0 . Now suppose that qn
and p̊n are given to us. By clause (1), qn is (M,Pγn) generic, and by clause (2),
qn γn p̊n ∈M ∩ Pγ ∧ p̊n�γn ∈ G̊γn . Now this means that the hypothesis of
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Lemma 55 are satisfied by the iteration 〈Pα, Q̊α : α ≤ γn+1〉, the elementary
submodel M , the ordinal γn, the condition qn and by a Pγn name forced by
qn to equal p̊n�γn+1. So by Lemma 55, we can find an (M,Pγn+1) generic
condition qn+1 such that:

(a) qn+1�γn = qn.
(b) qn+1 γn+1 p̊n�γn+1 ∈ G̊γn+1 .

To find p̊n+1, we proceed as follows. Choose a (V,Pγn+1) filter Gγn+1 with
qn+1 ∈ Gγn+1 . Since p̊n is a Pγn name, p̊n[Gγn+1 ] = p̊n[Gγn ]. Therefore
p̊n[Gγn+1 ] ∈M ∩Pγ and by (b) above, p̊n[Gγn+1 ]�γn+1 ∈ Gγn+1 . Now, notice
that M [Gγn+1 ] ≺ H(θ)[Gγn+1 ], and that H(θ)[Gγn+1 ] is the same as H(θ) as
computed within the universe V[Gγn+1 ]. Observe also that both Pγ/Gγn+1

and f̊ [Gγn+1 ] are elements of M [Gγn+1 ]. Thus we conclude that p̊n[Gγn+1 ] ∈
Pγ/Gγn+1∩M [Gγn+1 ]. Moreover, we see that Pγ/Gγn+1

f̊ [Gγn+1 ] ∈ ωω. Thus
by elementarity, we can find a sequence of conditions 〈pi : i ∈ ω〉 ∈M [Gγn+1 ]
and a function f ∈ ωω ∩M [Gγn+1 ] such that the following hold:

(i) p0 = p̊n[Gγn+1 ] and ∀i ∈ ω [pi ∈ Pγ/Gγn+1 ].
(ii) pi+1 ≤ pi.
(iii) ∀i ∈ ω [pi Pγ/Gγn+1

f̊ [Gγn+1 ](i) = f(i)].

Recall that qn+1 is an (M,Pγn+1) generic condition. Therefore, M [Gγn+1 ] ∩
Pγ = M ∩ Pγ . It follows that 〈pi : i ∈ ω〉 ⊂ M (even though it is not an
element of M). Now, since Pγn+1 does not add eventually different reals, we
can find g ∈ ωω ∩M such that |f ∩ g| = ω. But we chose S so that ∀∞i ∈ ω
[g(i) ∈ S(i)]. Therefore, we can find k ≥ n such that f(k) ∈ S(k). Now by
(i)–(iii) above, pk has the following properties in V[Gγn+1 ]:

(+) pk ∈M ∩ Pγ and pk�γn+1 ∈ Gγn+1 .
(++) pk ≤ p̊n[Gγn+1 ].

(+++) pk Pγ/Gγn+1
∃k ≥ n [f̊ [Gγn+1 ](k) ∈ S(k)].

Since Gγn+1 was an arbitrary (V,Pγn+1) generic filter containing qn+1, we
can use the maximal principle in V to end the proof by finding a Pγn+1 name
p̊n+1 so that

(∗) qn+1 γn+1 p̊n+1 ∈M ∩ Pγ ∧ p̊n+1�γn+1 ∈ G̊γn+1 .
(∗∗) qn+1 γn+1 p̊n+1 ≤ p̊n.

(∗∗∗) qn+1 γn+1 p̊n+1 Pγ/G̊γn+1
∃k ≥ n [f̊ [G̊γn+1 ](k) ∈ S(k)].

We will use Theorem 61 to show that the property of strongly preserv-
ing a strongly MAD family is preserved. Our proof of this will proceed by
induction. However, just as in the case of the proof of the preservation of
properness, we will have to make an inductive assumption that is stronger
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than simply the thing we want to prove. We state it below for the case of a
two-step iteration.

Convention 62. In the context of the next lemma, in order to avoid
unnecessary repetitions, we adopt the convention that for any poset P, G̊P
is the canonical P name for a P generic filter.

Lemma 63. Let A ⊂ ωω be a strongly MAD family. Let P be a poset
which strongly preserves A and let Q̊ be a P name for a poset such that P Q̊
strongly preserves A . Suppose M ≺ H(θ) is countable with A ,P, Q̊ ∈ M .
Fix h ∈ A that covers M with respect to A . Let p ∈ P and let r̊ be a P name
such that :

(1) p is (M,P) generic.
(2) p P h covers M [G̊P] with respect to A .
(3) p P r̊ ∈ P ∗ Q̊ ∩M ∧ r̊(0) ∈ G̊P.

In this case, there is a q̊ ∈ dom(Q̊) such that :

(1+) 〈p, q̊〉 is (M,P ∗ Q̊) generic.
(2+) 〈p, q̊〉 P∗Q̊ h coversM [G̊P∗Q̊] with respect to A .
(3+) 〈p, q̊〉 P∗Q̊ r̊ ∈ G̊P∗Q̊.

Proof. Let GP be a (V,P) generic filter with p ∈ GP. Within V[GP ], form
M [GP] and notice thatM [GP] ≺ H(θ)[GP] and that H(θ)[GP] is the same as
H(θ) as computed within V[GP]. Now, by assumption, h covers M [GP] with
respect to A . Also, A , Q̊[GP] ∈ M [GP], and Q̊[GP] strongly preserves A .
Next, by assumption, r̊[GP] ∈ P ∗ Q̊ ∩ M . So there are p′ ∈ P ∩ M and
q̊′ ∈ dom(Q̊) ∩ M such that r̊[GP](0) = p′ and r̊[GP](1) = q̊′. Moreover,
p′ ∈ GP. It follows that q̊′[GP] ∈ Q̊[GP] ∩ M [GP]. Thus, we may find a
q ≤ q̊′[GP] such that in V[GP]:

(a) q ∈ Q̊[GP] is (M [GP], Q̊[GP]) generic.
(b) q Q̊[GP] h covers M [GP][G̊Q̊[GP]] with respect to A .
(c) q ≤ r̊[GP](1)[GP].

Therefore, since GP was an arbitrary (V,P) generic filter containing p, we
may use the maximal principle in V to find q̊ ∈ dom(Q̊) such that:

(a′) p P q̊ ∈ Q̊ is (M [G̊P], Q̊) generic.
(b′) p P q̊ Q̊ h covers M [G̊P][G̊Q̊] with respect to A .
(c′) p P q̊ ≤ r̊(1)[G̊P].

We will argue that q̊ is as needed. Indeed, by (a′) above and by the fact that
p is (M,P) generic, it easily follows that 〈p, q̊〉 is (M,P ∗ Q̊) generic.

Next, we will argue that 〈p, q̊〉 P∗Q̊ h coversM [G̊P∗Q̊] with respect to A .
Let GP∗Q̊ be a (V,P ∗ Q̊) generic filter with 〈p, q̊〉 ∈ GP∗Q̊. Notice that there
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is a (V,P) generic filter GP and a (V[GP], Q̊[GP]) generic filter GQ̊[GP] such
that in V[GP∗Q̊], GP∗Q̊ = GP ∗GQ̊[GP]. Moreover, p ∈ GP and q̊[GP] ∈ GQ̊[GP].
Therefore in V[GP∗Q̊], h covers M [GP] [GQ̊[GP]] with respect to A . Now,
let f ∈ M [GP∗Q̊] be an infinite partial function avoiding A . We can find
a P ∗ Q̊ name f̊ ∈ M with f̊ [GP∗Q̊] = f . But we can think of f̊ as a P
name for a Q̊ name. So there is a P name f̊ [G̊P] ∈ M such that f̊ [GP]
[GQ̊[GP]] = f̊ [GP∗Q̊] = f . Thus f̊ [GP] is a Q̊[GP] name in M [GP] and so
f ∈M [GP] [GQ̊[GP]]. Therefore, |h ∩ f | = ω, as needed.

Finally, we must argue that 〈p, q̊〉 P∗Q̊ r̊ ∈ G̊P∗Q̊. Let GP∗Q̊, GP and
GQ̊[GP] be as in the last paragraph. Once again, notice that since 〈p, q̊〉 ∈
GP∗Q̊, we have p ∈ GP and q̊[GP] ∈ GQ̊[GP]. Notice also that since r̊ is a P
name, r̊[GP∗Q̊] = r̊[GP]. Within V[GP], we have r̊[GP] = 〈p′, q̊′〉 ∈ P∗Q̊, where
p′ ∈ P and q̊′ ∈ dom(Q̊). Also by (3) above, p′ ∈ GP, and so q̊′[GP] ∈ Q̊[GP].
Moreover, by (c′) above, q̊[GP] ≤ q̊′[GP]. Since q̊[GP] ∈ GQ̊[GP], q̊

′[GP] ∈
GQ̊[GP] as well. Therefore, in V[GP∗Q̊], it follows that 〈p′, q̊′〉 = r̊[GP∗Q̊] ∈
GP∗Q̊, as required.

We will now prove the same for iterations of arbitrary length. We will
make use of Theorem 61 in conjunction with the following, which is similar
to Lemma 34.

Lemma 64. Let A ⊂ ωω be an infinite a.d. family and let P be a poset
that does not add any eventually different reals. Suppose f̊ is a P name
such that  f̊ is an infinite partial function avoiding A . For each p ∈ P,
there is q ≤ p and an infinite partial function f avoiding A such that for
each n ∈ dom(f) there exists r ≤ q such that r  n ∈ dom(f̊) ∧ f̊(n)
= f(n).

Proof. We will use the well known fact that a poset which does not
add eventually different reals does not make V ∩ ωω meager (see proof of
Lemma 2.4.8 in [3]). By Lemma 34, there is a countable set {f̊i : i ∈ ω} of P
names such that:

(1)  f̊i ⊂ f̊ is an infinite partial function.
(2)  ∀g ⊂ ω × ω [if ∀i ∈ ω [|g ∩ f̊i| = ω], then g avoids A ].

Fix a condition p ∈ P. As P does not make V ∩ ωω meager, there are q ≤ p
and h ∈ ωω such that for each i ∈ ω, q  |h ∩ f̊i| = ω. Now, set X =
{n ∈ ω : ∃r ≤ q [r  n ∈ dom(f̊) ∧ h(n) = f̊(n)]} and set f = h�X. To
finish the proof, by (2) above, it is enough to check that for each i ∈ ω,
q  |f ∩ f̊i| = ω. Indeed, suppose r ≤ q and k ∈ ω. Since q  |h ∩ f̊i| = ω,
there are s ≤ r and n > k such that s  n ∈ dom(f̊i) ∧ h(n) = f̊i(n). But
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since  f̊i ⊂ f̊ , it follows that s  n ∈ dom(f̊) ∧ h(n) = f̊(n), which means
that n ∈ dom(f).

Theorem 65. Let A ⊂ ωω be a strongly MAD family. Let 〈Pα, Q̊α :
α ≤ γ〉 be a CS iteration such that ∀α < γ [ α Q̊α strongly preserves A ].
Let M ≺ H(θ) be countable with 〈Pα, Q̊α : α ≤ γ〉,A ∈ M . Let h ∈ A
cover M with respect to A . Suppose γ0 ∈ γ ∩ M and let q0 ∈ Pγ0 be an
(M,Pγ0) generic condition such that q0 γ0 h covers M [G̊γ0 ] with respect
to A . Let p̊0 be a Pγ0 name such that q0 γ0 p̊0 ∈ Pγ ∩M ∧ p̊0�γ0 ∈ G̊γ0.
There is a q ∈ Pγ with q�γ0 = q0, which is (M,Pγ) generic, such that q γ h

covers M [G̊γ ] with respect to A and q γ p̊0 ∈ G̊γ. In particular , Pγ strongly
preserves A .

Proof. Before proving the main claim of the theorem, we remark that
the last sentence of the theorem easily follows from the main claim. To see
this, suppose p0 ∈ Pγ ∩M is a condition. Now, apply the main claim of the
theorem with γ0 = 0, the trivial condition as q0, and p̊0 = p0.

The proof of the main claim is by induction on γ. Let us assume that the
theorem holds for all α < γ. The case when γ is a successor has already been
dealt with in Lemma 63. So we assume that γ is a limit ordinal. We observe
that it follows from our inductive hypothesis that no Pα adds eventually
different reals, for α < γ. As γ is a limit ordinal, it follows from Theorem 61
that Pγ does not add an eventually different real. We will make use of this
observation in what follows.

Put γ′ = sup(γ ∩M) and let 〈γn : n ∈ ω〉 ⊂ M ∩ γ be an increasing
sequence that is cofinal in γ′. Let 〈Dn : n ∈ ω〉 enumerate all the dense open
subsets of Pγ that are elements of M . Also, we let 〈f̊i : i ∈ ω〉 enumerate all
Pγ names in M such that γ f̊i is an infinite partial function avoiding A .
We will build two sequences 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉 such that the
following hold:

(1) q0 is given, qn ∈ Pγn , qn is (M,Pγn) generic, and qn+1�γn = qn.
(2) qn γn h covers M [G̊γn ] with respect to A .
(3) p̊0 = p0, p̊n ∈ VPγn , and qn γn p̊n ∈M ∩ Pγ ∧ p̊n�γn ∈ G̊γn .
(4) qn+1 γn+1 p̊n+1 ∈ Dn ∧ p̊n+1 ≤ p̊n.
(5) ∀i ≤ n [qn+1 γn+1 Φi], where Φi is this formula in Pγn+1 forcing lan-

guage: p̊n+1 Pγ/G̊γn+1
∃kni ≥ n [kni ∈ dom(f̊i[G̊γn+1 ])∧ f̊i[G̊γn+1 ](kni )

= h(kni )].

Before describing how to construct such sequences, we will argue that
it is enough to do so. Put q = (

⋃
qn)_1̊ ∈ Pγ . By Lemma 54, ∀n ∈ ω

[q γ p̊n ∈ G̊γ ]. We will first argue that q is (M,Pγ) generic. It suffices to
show that for each n ∈ ω, q γ Dn ∩M ∩ G̊γ 6= 0. But by clauses (3) and (4)
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and by Lemma 54, it is clear that q γ p̊n+1 ∈ Dn ∩M ∩ G̊γ . That q γ h

covers M [G̊γ ] with respect to A will be verified next.
We will first argue that it is sufficient to show that ∀i ∈ ω [q γ |h ∩ f̊i|

= ω]. Assume this and let Gγ be a (V,Pγ) generic filter with q ∈ Gγ . Let
f ∈ M [Gγ ] be an infinite partial function avoiding A . There is a Pγ name
f̊ ∈ M such that f̊ [Gγ ] = f . But by elementarity of M , we can find such
an f̊ with the additional property that γ f̊ is an infinite partial function
avoiding A . Thus, f = f̊i[Gγ ], for some i ∈ ω, and so |h ∩ f | = ω.

We will now check that ∀i ∈ ω [q γ |h ∩ f̊i| = ω]. Fix i ∈ ω. Let r ≤ q
and let m ∈ ω. Choose a (V,Pγ) generic filter with r ∈ Gγ . Choose n ∈ ω
with m, i ≤ n. By Lemma 58, we know that Gγ is (V[Gγn+1 ],Pγ/Gγn+1)
generic and that in V[Gγ ], Gγ = Gγn+1 ∗ Gγ holds. Notice that q ∈ Gγ ,
and therefore qn+1 ∈ Gγn+1 . Also, since p̊n+1 is a Pγn+1 name, p̊n+1[Gγ ] =
p̊n+1[Gγn+1 ]. It follows from clauses (3) and (5) that p̊n+1[Gγ ] ∈ M ∩ Pγ ,
that p̊n+1[Gγ ]�γn+1 ∈ Gγn+1 , and that in V[Gγn+1 ], p̊n+1[Gγ ] Pγ/Gγn+1

∃kni ≥ n [kni ∈ dom(f̊i[Gγn+1 ]) ∧ f̊i[Gγn+1 ](kni ) = h(kni )]. On the other hand,
we know from Lemma 54 that p̊n+1[Gγ ] ∈ Gγ . Therefore, in V[Gγ ], we
are able to find a kni ≥ n ≥ m such that kni ∈ dom(f̊i[Gγn+1 ][Gγ ]) and
f̊i[Gγn+1 ][Gγ ](kni ) = h(kni ). However, f̊i[Gγn+1 ][Gγ ] = f̊i[Gγ ]. As r ∈ Gγ ,
there is s ≤ r such that s γ k

n
i ∈ dom(f̊i) ∧ f̊i(kni ) = h(kni ). As kni ≥ m,

this is as needed.
Next we describe how to construct 〈qn : n ∈ ω〉 and 〈p̊n : n ∈ ω〉.

q0 and p̊0 are both given to us. Now assume that qn and p̊n are given. We
can apply the inductive hypothesis to the iteration 〈Pα, Q̊α : α ≤ γn+1〉, the
elementary submodel M , the ordinal γn, the condition qn and a Pγn name
forced by qn to equal p̊n�γn+1 to find an (M,Pγn+1) generic condition qn+1

such that:

(a) qn+1�γn = qn.
(b) qn+1 γn+1 h covers M [G̊γn+1 ] with respect to A .
(c) qn+1 γn+1 p̊n�γn+1 ∈ G̊γn+1 .

To find p̊n+1 we proceed as follows. Let Gγn+1 be a (V,Pγn+1) generic filter
with qn+1 ∈ Gγn+1 . We begin with some general observations. Note that
p̊n[Gγn+1 ] ∈ Pγ ∩M . Also, p̊n[Gγn+1 ]�γn+1 ∈ Gγn+1 . Thus we conclude that
p̊n[Gγn+1 ] is a condition in Pγ/Gγn+1 ∩ M [Gγn+1 ]. Moreover, Pγ/Gγn+1 ∈
M [Gγn+1 ].

Now, we will describe how to take care of the dense open set Dn. We
make use of the fact that if π : Q → P is a projection and D ⊂ Q is
dense, and if G ⊂ P is a (V,P) generic filter, then in V[G], D/G = D ∩
Q/G is dense in Q/G. Applying this to Pγ , Pγn+1 and Dn, we conclude
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that Dn ∩ Pγ/Gγn+1 is dense in Pγ/Gγn+1 . Since Dn, p̊n[Gγn+1 ] ∈M [Gγn+1 ],
we can find a p0 ∈ Dn ∩ Pγ/Gγn+1 ∩M [Gγn+1 ] such that p0 ≤ p̊n[Gγn+1 ].
We note here that since Dn is open, any further extension of p0 will stay
within Dn.

Next, we describe how to deal with f̊0[Gγn+1 ]. First of all, since in the
ground model V, γ f̊0 is an infinite partial function avoiding A , we see
that in V[Gγn+1 ], Pγ/Gγn+1

f̊0[Gγn+1 ] is an infinite partial function avoid-
ing A . Moreover, we have observed above that Pγ does not add eventu-
ally different reals. As Pγ is forcing equivalent to Pγn+1 ∗ Pγ/G̊γn+1 , it fol-
lows that Pγ/Gγn+1 does not add eventually different reals over V[Gγn+1 ].
As f̊0[Gγn+1 ] ∈ M [Gγn+1 ], we can apply Lemma 64 to Pγ/Gγn+1 to find a
p̃0 ∈ Pγ/Gγn+1 ∩ M [Gγn+1 ] with p̃0 ≤ p0 and an infinite partial function
f ∈M [Gγn+1 ] as in the lemma which avoids A . But by (b) above, h covers
M [Gγn+1 ] with respect to A . Therefore, |h ∩ f | = ω.

Choose kn0 ≥ n such that kn0 ∈ dom(f) and h(n) = f(n). By the lemma,
there is a p1 ≤ p̃0 in Pγ/Gγn+1 ∩M [Gγn+1 ] such that p1 Pγ/Gγn+1

kn0 ∈
dom(f̊0[Gγn+1 ]) ∧ f̊0[Gγn+1 ](kn0 ) = f(kn0 ) = h(kn0 ). Repeating this argument
another n times we get pn+1∈Pγ/Gγn+1 ∩M [Gγn+1 ] with pn+1 ≤ p̊n[Gγn+1 ]
as well as numbers kni ≥ n for each i ≤ n so that for each such i, we
have pn+1 Pγ/Gγn+1

kni ∈ dom(f̊i[Gγn+1 ])∧ f̊i[Gγn+1 ](kni ) = h(kni ). Now, we
note that since qn+1 is an (M,Pγn+1) generic condition and qn+1 ∈ Gγn+1 ,
M [Pγn+1 ] ∩ Pγ = M ∩ Pγ . Therefore, pn+1 is in fact in M .

Thus we have found a condition pn+1 with the following properties:

(i) pn+1 ∈ Pγ ∩M and pn+1�γn+1 ∈ Gγn+1 .
(ii) pn+1 ≤ p̊n[Gγn+1 ] and pn+1 ∈ Dn.
(iii) ∀i ≤ n [pn+1 Pγ/Gγn+1

Φi], where Φi is the formula

∃kni ≥ n [kni ∈ dom(f̊i[Gγn+1 ]) ∧ f̊i[Gγn+1 ](kni ) = h(kni )].

Since Gγn+1 was an arbitrary (V,Pγn+1) generic filter containing qn+1 we
can use the maximal principle in V to find a Pγn+1 name p̊n+1 such that:

(i′) qn+1 γn+1 p̊n+1 ∈ Pγ ∩M ∧ p̊n+1�γn+1 ∈ G̊γn+1 .
(ii′) qn+1 γn+1 p̊n+1 ≤ p̊n ∧ p̊n+1 ∈ Dn.
(iii′) ∀i ≤ n[qn+1 γn+1 Φi], where Φi is the formula

p̊n+1 Pγ/G̊γn+1
∃kni ≥ n [kni ∈ dom(f̊i[G̊γn+1 ]) ∧ f̊i[G̊γn+1 ](kni ) = h(kni )].

Corollary 66. Let A ⊂ ωω be a strongly MAD family. If 〈Pα, Q̊α :
α ≤ γ〉 is a CS iteration such that ∀α < γ [α Q̊α has diagonal fusion], then
Pγ strongly preserves A . In particular , if ∀α < γ [ α Q̊α = M ∨ Q̊α = S],
then Pγ strongly preserves A .
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7. It is consistent that there are no strongly MAD families of
size c. In this section we will show that it is consistent that there are
no strongly MAD families of size continuum. In fact, we will prove some-
thing more general. In Section 5 we showed that strongly MAD families are
Cohen-indestructible. It is possible to combine this fact with an elementary
submodel argument to show that there are no strongly MAD families of
size continuum in the Cohen model. Here by the Cohen model we mean the
model one gets by adding ℵ2 Cohen reals to a ground model satisfying CH.
Arguments like this are well known in the literature. For example, Kunen
used an argument of this sort to show that there are no well ordered chains
of length ω2 in P(ω)/Fin in the Cohen model (see Proposition 7.1 of [5]). To
apply such an argument to strongly MAD families, we proceed by contra-
diction. We fix Å , a nice Fn(ω2, 2) name for a strongly MAD family of size
ℵ2, and we take a countably closed elementary submodel M in the ground
model of size ℵ1 with Å ∈ M . Now, if δ = M ∩ ω2, then M ∩ Å is a nice
Fn(δ, 2) name for a strongly MAD family of size ℵ1. Since strongly MAD
families are Cohen-indestructible, M ∩ Å still names a MAD family in the
final model, a contradiction.

Juhász and others (for example, see [12], [11], [10], [6]) have introduced
a set of axioms that attempt to capture the combinatorics of P(ω) and
ωω in the Cohen model. These axioms fall into two categories. There are
axioms of the elementary submodel kind, which say that there are elementary
submodels of size ℵ1 that “capture” P(ω). The other kind are homogeneity
axioms, which say that given any sequence 〈rα : α < ω2〉 of reals, there are ℵ2

of them that “look alike”. It is of interest to see whether any of these axioms
imply the above mentioned result about strongly MAD families. It is natural
to try to do this from one of the elementary submodel axioms. We show in
this section that the weak Freese–Nation property of P(ω) (wFN(P(ω)))
implies that all strongly MAD families have size at most ℵ1. It is shown
in [6] that wFN(P(ω)) holds in any model gotten by adding fewer than
ℵω Cohen reals to a ground model satisfying CH. The usual definition of
wFN(P(ω)) is in terms of weak Freese–Nation maps. It is shown in [6] that
the definition we adopt below is equivalent to this usual definition.

Definition 67. Given B ⊂ P(ω), we write B ≤σ P(ω) to mean that for
all a ∈ P(ω), there is a countable set C ⊂ B ∩P(a) such that ∀b ∈ B ∩P(a)
∃c ∈ C [b ⊂ c ⊂ a].

Definition 68. wFN(P(ω)) is the following statement: Whenever θ is
a sufficiently large regular cardinal, and N ≺ H(θ) with ω1 ⊂ N , then
N ∩ P(ω) ≤σ P(ω).

While it is possible to prove our result by arguing only with strongly
MAD families of functions, the proof is a bit smoother if we argue instead
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with strongly MAD families of sets. The notion of a strongly MAD family
of subsets of ω was introduced in Malykhin [19]. It has been further studied
by Kurilić [18] and Hrušák and García Ferreira [9]. The definition of this
concept is identical to our Definition 2, but with ωω replaced everywhere
by [ω]ω, and with the additional requirement that the family be infinite.

Definition 69. Let X be a countable set. Two sets a, b ∈ [X]ω are a.d.
if a ∩ b is finite. A family A ⊂ [X]ω is a.d. if its members are pairwise a.d.
An a.d. family A ⊂ [X]ω is MAD if for every b ∈ [X]ω there is some a ∈ A
such that |a ∩ b| = ω. Note that we are allowing finite families to be MAD.

Definition 70. Let X be a countable set, and let A ⊂ [X]ω be an a.d.
family. We say b ∈ [X]ω avoids A if for every finite set {a0, . . . , ak} ⊂ A ,
|b \ (a0 ∪ · · · ∪ ak)| = ω. We say that A is strongly MAD in [X]ω if A is
an infinite family and if for any countable family {bi : i ∈ ω} ⊂ [X]ω of sets
avoiding A , there is a ∈ A such that ∀i ∈ ω [|a ∩ bi| = ω].

A connection between strongly MAD families of functions in ωω and
strongly MAD families of sets is given by the following.

Lemma 71. If there is a strongly MAD family in ωω, then there is a
strongly MAD family in [ω]ω which is of the same size.

Proof. Let A ⊂ ωω be strongly MAD. For each n ∈ ω, let Cn be the nth
vertical column of ω × ω. That is, Cn = {〈n,m〉 : m ∈ ω}. It is clear that
each Cn is a.d. from A . Thus A ∪ {Cn : n ∈ ω} is an infinite a.d. family
in [ω × ω]ω and it has the same cardinality as A . We will argue that it is
strongly MAD in [ω × ω]ω. Let {An : n ∈ ω} ⊂ [ω × ω]ω be a countable
family avoiding A ∪ {Cn : n ∈ ω}. We will find infinite partial functions
fn ⊂ An avoiding A . The argument is similar to the proof of Lemma 21.

We will first argue that An has infinite intersection with infinitely many
members of A . Suppose this is false. Fix {h0, . . . , hk} ⊂ A such that for
any h ∈ A , if |h ∩ An| = ω, then h = hi for some 0 ≤ i ≤ k. Put B =
An\(h0∪· · ·∪hk). Our assumption implies that B is a.d. from A . Therefore,
since strongly MAD families are van Douwen MAD, it follows that there is
no infinite partial function p ⊂ B. Thus for all but finitely many n ∈ ω,
Cn ∩ B = 0. But then there is n ∈ ω such that B ⊂ C0 ∪ · · · ∪ Cn, whence
An ⊂ h0 ∪ · · · ∪ hk ∪ C0 ∪ · · · ∪ Cn, contradicting our assumption that An
avoids A ∪ {Cn : n ∈ ω}.

Hence we can fix an infinite set {hi : i ∈ ω} ⊂ A such that ∀i ∈ ω
[|hi∩An| = ω]. Now, put pi = hi∩An. This is an infinite partial function. It
is possible to choose infinite partial functions gi ⊂ pi such that ∀i < j < ω
[dom(gi) ∩ dom(gj) = 0]. Put fn =

⋃
gi. This is an infinite partial function

and clearly fn ⊂ An. Moreover, fn has infinite intersection with infinitely
many members of A . So fn avoids A . Thus {fn : n ∈ ω} is a countable
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family of infinite partial functions avoiding A . So by Lemma 7 we can find
h ∈ A such that ∀n ∈ ω [|h∩ fn| = ω]. But since fn ⊂ An, we conclude that
∀n ∈ ω [|h ∩An| = ω].

We do not know if the converse is true:

Question 72. Suppose that there is a strongly MAD family in [ω]ω. Is
there a strongly MAD family in ωω?

Lemma 71 tells us that every strongly MAD family of functions in ωω

gives rise to a strongly MAD family of the same size in [ω]ω. Thus if we show
that wFN(P(ω)) implies that every strongly MAD family in [ω]ω has size at
most ℵ1, then the same will hold for strongly MAD families of functions as
well.

Given a strongly MAD family A ⊂ [ω]ω, we will apply wFN(P(ω)) to
an elementary submodel N ≺ H(θ) which is “A -covering” in the following
sense.

Definition 73. Let A ⊂ [ω]ω be a strongly MAD family, and let N ≺
H(θ) be an elementary submodel with A ∈ N . We will say that N is A -
covering if for every countable collection {bi : i ∈ ω} ⊂ N ∩ [ω]ω of sets
avoiding A , there is a ∈ N ∩A such that ∀i ∈ ω [|a ∩ bi| = ω].

Lemma 74. Let A ⊂ [ω]ω be a strongly MAD family. There is N ≺ H(θ)
with A ∈ N such that :

(1) |N | = ω1 and ω1 ⊂ N .
(2) N is A -covering.

Proof. We build N as the union of an elementary chain of length ω1 of
countable elementary submodels of H(θ). Thus we construct a chain N0 ≺
N1 ≺ · · · ≺ Nα ≺ · · · ≺ Nω1 = N ≺ H(θ), where |Nα| = ω, for all α < ω1.
To start with, we ensure A ∈ N0. Given Nα, we ensure that α ∈ Nα+1

and that there is a ∈ A ∩Nα+1 such that |a ∩ b| = ω for all b ∈ [ω]ω ∩Nα

avoiding A . It is possible to do this because A is strongly MAD and because
|Nα| = ω. Finally, if α is a limit, we set Nα =

⋃
β<αNβ . Now, it is clear that

N =
⋃
α<ω1

Nα is as required.

Theorem 75. wFN(P(ω)) implies that all strongly MAD families in [ω]ω

(and hence ωω) have size at most ℵ1. In particular , in the Cohen model , all
strongly MAD families in both [ω]ω and ωω have size at most ℵ1.

Proof. Let A ⊂ [ω]ω be a strongly MAD family. Let N ≺ H(θ) be A -
covering with ω1 ⊂ N and |N | = ℵ1. We claim that N ∩A = A . Suppose
for a contradiction that there is a ∈ A with a /∈ N . Put ā = ω \ a. Since
N ∩ P(ω) ≤σ P(ω), there is a countable set C ⊂ N ∩ P(ā) such that for all
b ∈ N ∩ P(ā), there is c ∈ C with b ⊂ c ⊂ ā. Notice that since A is an a.d.
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family, every b ∈ N ∩ A is almost contained in ā. It follows that for every
b ∈ N ∩A , there is c ∈ C such that b ⊂∗ c.

Now, we claim that for each c ∈ C, ω \ c avoids A . Indeed, suppose
not. Since c ∈ N , there is a finite set {a0, . . . , ak} ⊂ N ∩ A such that
ω \ c ⊂∗ a0 ∪ · · · ∪ ak. But c ⊂ ā, and so a ⊂ ω \ c ⊂∗ a0 ∪ · · · ∪ ak. But this
is impossible because a /∈ N and hence is a.d. from a0, . . . , ak.

Thus we conclude that {ω \ c : c ∈ C} is a countable subset of N ∩ [ω]ω

of sets avoiding A . Since N is A -covering, there is b ∈ N ∩ A such that
|b ∩ (ω \ c)| = ω for all c ∈ C. But we have argued above that b ⊂∗ c for
some c ∈ C. This a contradiction, which finishes the proof.

Remark 76. Since strongly MAD families in ωω are iterated Sacks and
iterated Miller indestructible (Corollary 66), we can modify the elementary
submodel argument alluded to at the beginning of this section to show that
all strongly MAD families have size ℵ1 in both the Sacks and Miller models.

8. Miscellaneous results. We will gather together here some assorted
results that do not belong in any of the previous sections. Our first result grew
out of a conversation with Michael Hrušák. For the case of MAD families
in [ω]ω, the notion of strong MADness (see Definition 70) turns out to be
closely related to that of Cohen-indestructibility. It is shown in Hrušák and
García Ferreira [9] and Kurilić [18] that a MAD family of subsets of ω is
Cohen-indestructible iff it is “somewhere” strongly MAD. This led Hrušák
to suggest that a similar result is true for MAD families of functions as
well. We will show below that this is not the case. Indeed, we will show
that assuming CH, we can construct a Cohen-indestructible MAD family of
functions that is “nowhere” van Douwen MAD (and hence “nowhere” strongly
MAD). This shows that Cohen-indestructibility is somewhat different for
MAD families of functions.

Definition 77. Let A ⊂ ωω be an a.d. family. Let f ∈ ωω. We define
A ∩ f = {h∩ f : h ∈ A ∧ |h∩ f | = ω}. Note that this is an a.d. family on
the countable set f . The trace of A , written tr(A ), is {f ∈ ωω : A ∩ f is a
MAD family in [f ]ω}.

Definition 78. Let A ⊂ ωω be a MAD family. We say that A has
trivial trace if no member of tr(A ) avoids A .

Theorem 79. Assume CH. There is a Cohen-indestructible MAD family
A ⊂ ωω with trivial trace.

Proof. To ensure that our family is Cohen-indestructible, we will do a
construction similar to the one in Kunen [17]. Let P = Fn (ω, 2). Since we
are assuming CH, there are only ω1 nice P names for elements of ωω. Let
〈〈pα, f̊α〉 : α < ω1〉 enumerate all pairs 〈p, f̊〉 such that p ∈ P and f̊ is a
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nice P name for an element of ωω. Let 〈gα : α < ω1〉 enumerate ωω. An
ideal I of subset of ω is said to be dense if ∀a ∈ [ω]ω ∃b ∈ [a]ω [b ∈ I]. Fix
a proper, non-principal dense ideal on ω. Notice that for any such ideal I,
if {ai : i ∈ ω} ⊂ I is a countable collection of infinite sets, then there is
an infinite set b ∈ I such that ∀i ∈ ω [|b ∩ ai| < ω]. Now, we will build
two sequences 〈Aα : α < ω1〉 and 〈Bα : α < ω1〉 such that the following
hold:

(1) Aα ⊂ ωω is a countable a.d. family.
(2) Bα is a countable set of infinite partial functions.
(3) ∀f ∈ Bα [dom(f) ∈ I].
(4) ∀α < β < ω1 [Aα ⊂ Aβ ∧Bα ⊂ Bβ].
(5) ∀h ∈ Aα ∀f ∈ Bα [|h ∩ f | < ω].
(6) If gα avoids

⋃
{Aβ : β < α}, then there is f ⊂ gα such that f ∈ Bα.

(7) If pα  f̊α is a.d. from
⋃
{Aβ : β < α}, then ∃h ∈ Aα [pα  |h ∩ f̊α|

= ω].

Our MAD family A will be
⋃

Aα. It is clear from clauses (5) and (6) that
A has trivial trace, while it is easy to see that clause (7) implies that A is
Cohen-indestructible.

Assume that 〈Aβ : β < α〉 and 〈Bβ : β < α〉 have already been con-
structed. Set C =

⋃
Aβ and B =

⋃
Bβ . Then C ⊂ ωω is a countable a.d.

family and B is a countable family of infinite partial functions. Moreover,
∀f ∈ B ∀h ∈ C [|h ∩ f | < ω]. We will first define Bα, taking care of
clause (6). Consider gα. If gα does not avoid C , there is nothing to be done,
and we simply set Bα = B. Now, let us assume that gα avoids C . Since C
is countable, this assumption implies that C ∩ gα is neither a finite nor an
infinite MAD family on gα. So there is an infinite partial function p ⊂ gα
which is a.d. from C . Since I is a dense ideal, there is an infinite partial
function f ⊂ p with dom(f) ∈ I. As p is a.d. from C , f is also a.d. from C ,
and therefore we can set Bα = B ∪ {f}.

Next, we define Aα. Once again, if pα 1 f̊α is a.d. from C , there is
nothing to be done, and we set Aα = C . Now, assume that pα  f̊α is a.d.
from C . Put Bα = {fi : i ∈ ω} and C = {hi : i ∈ ω}. For each i ∈ ω,
put ai = dom(fi). Thus {ai : i ∈ ω} is a countable collection of infinite
sets in I. By our observation above, there is an infinite set b ∈ I such
that ∀i ∈ ω [|b ∩ ai| < ω]. We will define an infinite partial function h0 with
dom(h0) ⊂ b such that pα  |h0 ∩ f̊α| = ω. Observe that for any i ∈ ω, h0∩fi
will be finite. To get h0 we proceed as follows. Let {qi : i ∈ ω} enumerate
{q ∈ P : q ≤ pα}. We will build h0 as the union of an increasing sequence
of finite partial functions. We will build a sequence 〈h0

i : −1 ≤ i < ω〉 such
that:
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(a) h0
−1 = 0 and h0

i is a finite partial function with dom(h0
i ) ⊂ b.

(b) h0
i−1 ⊂ h0

i and ∀j ≤ i [h0
i ∩ hj ⊂ h0

i−1 ∩ hj ].
(c) ∃ki ≥ i ∃r ≤ qi [ki ∈ dom(h0

i ) ∧ r  h0
i (ki) = f̊α(ki)].

Put h0 =
⋃
h0
i . It is clear from clause (b) that h0 is a.d. from hi for all

i ∈ ω. Also, we see from clause (a) that dom(h0) ⊂ b. We will argue that
pα  |h0 ∩ f̊α| = ω. Let q ≤ pα and let n ∈ ω. There are infinitely many
conditions below q. Hence we can find i > n such that qi ≤ q. But now by
clause (c) there are ki ≥ i > n and r ≤ qi ≤ q such that ki ∈ dom(h0

i ) ⊂
dom(h0) and r  f̊α(ki) = h0

i (ki) = h0(ki).
We will now describe how to construct 〈h0

i : −1 ≤ i < ω〉. h0
−1 is 0.

At stage i ≥ 0, assume that h0
i−1 is given to us. We wish to define h0

i so
that clause (c) is satisfied. But we need to be sure that we introduce no new
agreements between h0

i and any of the members of {h0, . . . , hi}. We know
that qi  f̊α is a.d. from {h0, . . . , hi}. Hence, there is r̃ ≤ qi and l ∈ ω such
that r̃  ∀k > l [f̊α(k) /∈ {h0(k), . . . , hi(k)}]. Put m = max(dom(h0

i−1)).
Since b is an infinite set there is a ki ∈ b with ki > max {m, l, i}. Now, since
f̊α is a name for an element of ωω, we can find r ≤ r̃ and n ∈ ω such that r 
f̊α(ki) = n. Notice that our choice of r̃ entails that n /∈ {h0(ki), . . . , hi(ki)}.
Since ki > m, we can define h0

i = h0
i−1 ∪ {〈ki, n〉}. As ki ∈ b, this is as

required.
We are almost done. We just need to extend h0 to a total function. Since

both Bα and C are countable, there is a total function h′ ∈ ωω such that
∀i ∈ ω [|h′ ∩ fi| < ω ∧ |h′ ∩ hi| < ω]. Put X = dom(h0) and Y = ω \ X.
Put h1 = h′�Y and set h = h0 ∪ h1. It is clear that h is a.d. from both Bα

and C . So we may set Aα = C ∪ {h}, and this ends the proof.

Despite certain differences, there are close connections between the no-
tion of a strongly MAD family of functions and the notion of a strongly MAD
family of sets. Lemma 71 shows that the existence of the former implies the
existence of the latter. We also get a connection between the indestructibil-
ity properties of strongly MAD families in ωω and those of strongly MAD
families in [ω]ω.

Lemma 80. Let P be any poset. Suppose that any strongly MAD family in
[ω]ω is strongly P-indestructible (see Definition 26). Let A ⊂ ωω be strongly
MAD. Then A is strongly P-indestructible.

Proof. As in Lemma 71, let Cn be the nth vertical column of ω× ω. We
know from Lemma 71 that A ∪ {Cn : n ∈ ω} is a strongly MAD family
in [ω × ω]ω. Now, let G be a (V,P) generic filter. By assumption, in V[G],
A ∪ {Cn : n ∈ ω} remains a strongly MAD family in [ω × ω]ω. In V[G], let
{fi : i ∈ ω} ⊂ ωω be a countable family avoiding A . As each fi is a.d. from
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each Cn, it follows that {fi : i ∈ ω} ⊂ [ω × ω]ω still avoids A ∪{Cn : n ∈ ω}.
But then there must be h ∈ A such that ∀i ∈ ω [|h ∩ fi| = ω].
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