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Abstract. We establish some new properties of remainders of metrizable spaces. In
particular, we show that if the weight of a metrizable space X does not exceed 2ω, then
any remainder of X in a Hausdorff compactification is a Lindelöf Σ-space. An example of
a metrizable space whose remainder in some compactification is not a Lindelöf Σ-space is
given. A new class of topological spaces naturally extending the class of Lindelöf Σ-spaces
is introduced and studied. This leads to the following theorem: if a metrizable space X
has a remainder Y with a Gδ-diagonal, then both X and Y are separable and metrizable.
Some new results on remainders of topological groups are also established.

1. Introduction. A compactification of a space X is any compact space
bX containing X as a subspace such that X is dense in bX.

Especially important are Hausdorff compactifications of a space X, that
is, those compactifications bX of X which satisfy the Hausdorff separation
axiom. It is well-known [10] that a space X has a Hausdorff compactification
if and only if X is Tikhonov.

By a remainder of a Tikhonov space X we understand the subspace
bX \X of a Hausdorff compactification bX of X. We study how properties
of a Tikhonov space X are related to properties of some or all remainders
of X.

A famous classical result in this direction is the following theorem of
M. Henriksen and J. Isbell [12]:

Theorem 1.1. A Tikhonov space X is of countable type if and only if
the remainder in any (or some) Hausdorff compactification of X is Lindelöf.

Recall that a space X is of countable type if every compact subspace P
of X is contained in a compact subspace F ⊂ X which has a countable
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base of open neighbourhoods in X [1]. All metrizable spaces and all locally
compact Hausdorff spaces, as well as all Čech-complete spaces, are of count-
able type [1]. It follows from the theorem of Henriksen and Isbell that every
remainder of a metrizable space is Lindelöf, and hence paracompact.

Very few results on remainders can compare in their importance with
Henriksen–Isbell’s Theorem.

In this paper we establish some new properties of remainders of metriz-
able spaces and of paracompact p-spaces. In this connection, a new class
of topological spaces naturally extending the class of Lindelöf Σ-spaces is
introduced and studied. This leads to some new results on remainders of
topological groups.

The next statement is easily obtained with the help of Henriksen and
Isbell’s Theorem:

Corollary 1.2. If a nowhere locally compact metrizable space X has a
metrizable remainder Y in some Hausdorff compactification bX of X, then
both X and Y are separable and metrizable.

Proof. Since X and Y are metrizable spaces, they are both of countable
type [1]. Therefore, by Theorem 1.1, X and Y are Lindelöf spaces, since
each of them is the remainder of the other one in bX. Hence, X and Y are
separable.

If γ is a family of subsets of a spaceX, and x∈X, then Stγ(x) =
⋃
{U ∈γ :

x ∈ U}.
Recall that paracompact p-spaces are preimages of metrizable spaces un-

der perfect mappings. A mapping is said to be perfect if it is continuous,
closed, and all fibers are compact. A Lindelöf p-space is the preimage of a
separable metrizable space under a perfect mapping.

A Tikhonov space X is a p-space [1] if for any (or some) compactification
bX of X there exists a countable family ξ = {γn : n ∈ ω} of families γn of
open subsets of bX such that x ∈

⋂
{Stγn(x) : n ∈ ω} ⊂ X for each x ∈ X.

Under these restrictions we automatically have X ⊂
⋃
γn, for each n ∈ ω.

It was shown in [1] that every p-space is of countable type, and that every
metrizable space is a p-space.

Clearly, every separable metrizable space has a separable metrizable re-
mainder. Here is a parallel result from [3]. We sketch a proof of it below for
the sake of completeness.

Theorem 1.3. If X is a Lindelöf p-space, then any remainder of X is
a Lindelöf p-space.

Proof. Fix a perfect mapping of X onto a separable metrizable space M ,
and let Z be some separable metrizable remainder of M . The Stone–Čech
remainder Y of X is mapped by a perfect mapping onto Z. Therefore, Y is
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a Lindelöf p-space. An arbitrary remainder Y1 of X is the image of Y under
a perfect mapping. Hence, Y1 is also a Lindelöf p-space, by a theorem of
V. V. Filippov [11].

The following partial converse to Theorem 1.3 holds:

Corollary 1.4. If X is a nowhere locally compact space with a remain-
der which is a Lindelöf p-space, then X is also a Lindelöf p-space.

Unfortunately, Theorem 1.3 cannot be generalized to paracompact p-
spaces, and it follows easily from Corollary 1.2 that not every metrizable
space has a metrizable remainder [3].

Some of the main results in this article concern topological groups. These
objects are much more sensitive to properties of their remainders, and vice
versa. See in this connection the papers [4], where a Dichotomy Theorem
for remainders of topological groups was proved, and [5], where in particular
some metrizability criteria for topological groups in terms of their remain-
ders are discussed, and some further references are given.

However, in this article we are mostly concerned with remainders of
spaces which are not necessarily topological groups, especially in Sections 2
and 3.

A “space” below stands for a Tikhonov topological space.
K. Nagami has defined the important class of Σ-spaces [13] which con-

tains the class of metrizable spaces and the class of spaces with a σ-discrete
network. Lindelöf Σ-spaces can be characterized as continuous images of
Lindelöf p-spaces. In particular, every Lindelöf p-space is in this class. Ev-
ery space with a countable network, and every σ-compact space is in this
class as well (recall that a space is σ-compact if it is the union of some
countable family of compacta).

2. Some basic facts on remainders of metrizable spaces. In this
section, we establish some basic properties of remainders of metrizable spaces
and of spaces closely related to metrizable spaces. It is well-known that every
metrizable space has a point-countable base.

The following general statement makes use of Mischenko’s Theorem on
metrizability of an arbitrary compact space with a point-countable base
(see [10]).

Theorem 2.1. If a nowhere locally compact space X with a point-count-
able base has a metrizable remainder Y , then X and Y are separable and
metrizable.

Proof. Every compact subspace F of X is separable and metrizable, by
Mischenko’s Theorem. Since X has a point-countable base, it follows that ev-
ery compact subspace F of X has a countable base of open neighbourhoods
in X. Thus, X is of countable type. Therefore, by Henriksen–Isbell’s Theo-
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rem, the remainder Y is Lindelöf. Since Y is metrizable, it follows that Y is
a Lindelöf p-space. Since X is nowhere locally compact, Corollary 1.4 now
implies that X is also a Lindelöf p-space. However, every Lindelöf p-space
with a point-countable base is separable and metrizable [14]. Hence, X is
separable and metrizable.

Let us fix some terminology. Let X and Y be subspaces of a space Z,
and γ be a family of subsets of Z. We consider the following two conditions:

(1) For any x ∈ X and any y ∈ Y where x 6= y, there is P ∈ γ such that
x ∈ P and y /∈ P .

(2) For any x ∈ X and any y ∈ Y where x 6= y, there are P1, P2 ∈ γ
such that x ∈ P1, y ∈ P2, and P1 ∩ P2 = ∅.

If condition (1) is satisfied, we say that γ is a T0-separator for the pair
(X,Y ).

If condition (2) is satisfied, we say that γ is a Hausdorff separator for
(X,Y ).

A T0-separator (respectively a Hausdorff separator) will be called open
(or closed) if all elements of it are open (respectively, closed) subsets of Z.

It is well-known that a Tikhonov space X is a Lindelöf Σ-space if and
only if, for any compactification bX of X, there is a countable T0-separator
γ for the pair (X, bX \X) such that every P ∈ γ is compact [13].

Recall that the i-weight iw(X) of a space X is the smallest infinite car-
dinal τ such that there exists a one-to-one continuous mapping of X onto a
space of weight ≤ τ .

In particular, the i-weight of X is countable if and only if X condenses
onto a separable metrizable space.

The next two statements look as technical results; we need them to prove
Theorem 2.4.

Lemma 2.2. Suppose that B is a compact space, and that a Lindelöf
Σ-space L is a subspace of B. Suppose further that iw(M) is countable for
the subspace M = B \ L. Then any subspace X of B with L ⊂ X is a
Lindelöf Σ-space.

Proof. There is a countable Hausdorff separator γ for the pair (M,M)
such that each P ∈ γ is open in M ; this is so, since M condenses onto a
separable metrizable space. Let η be the family of closures of elements of γ
in B. Then η is a countable family of compact subsets of B.

Put Y = X \ L. Since γ is a Hausdorff separator for (M,M), and each
P ∈ γ is open in M , the family η is a T0-separator for (Y,M \ Y ).

Denote by F the closure of L in B. Since L is a Lindelöf Σ-space, there
is a countable T0-separator ξ for (L,B \L) such that each P ∈ ξ is compact
(it may be necessary to include F in ξ).
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Clearly, M \ X = M \ Y and L ∪ Y = X. It follows that η ∪ ξ is a
countable T0-separator for (X,B\X), and that all elements of this separator
are compact.

Indeed, consider any x ∈ X and z ∈ B \X. Then z ∈ M \X ⊂ M \ Y .
If x ∈ Y , then we can use the fact that η is a T0-separator for (Y,M \Y ). If
x /∈ Y , then x ∈ L, and we can also refer to the fact that ξ is a T0-separator
for (L,B \L) (notice that z ∈ B \X ⊂ B \L). It follows that X is a Lindelöf
Σ-space.

Proposition 2.3. Suppose that B is a compact space, and that a Lin-
delöf Σ-space L is a subspace of B. Suppose further that M = B \ L is a
metrizable space of weight ≤ 2ω. Then any subspace X of B with L ⊂ X is
a Lindelöf Σ-space.

Proof. This follows from Lemma 2.2, since every metrizable space X of
cardinality ≤ 2ω admits a one-to-one continuous mapping onto a separable
metrizable space (see, for example, Lemma 2.20 in [7]). In fact, it is easy to
construct directly a countable open Hausdorff separator in a space X with
these properties.

Proposition 2.3 is crucial for the proof of the next statement which is
one of our main results on remainders of metrizable spaces.

Theorem 2.4. For every metrizable space X of weight ≤ 2ω and every
compactification bX, the remainder bX \X is a Lindelöf Σ-space.

Proof. Let M be the completion of X with respect to a metric on X gen-
erating the topology of X. Then M is a Čech-complete metrizable space [10].

Now let B = bM be any compactification of M , and put L = B\M . Then
L is σ-compact, since M is Čech-complete. It follows that L is a Lindelöf
Σ-space. Put Z = B \X. Observe that B = L ∪M and L ⊂ Z ⊂ B.

By Proposition 2.3 (with Z in the role of X), the subspace Z is a Lindelöf
Σ-space. However, B is also a compactification of X, and Z = B \ X is a
remainder of X. Since the class of Lindelöf Σ-spaces is invariant under
continuous mappings and is preserved when taking preimages under perfect
mappings [13], it follows that the remainder bX \ X is a Lindelöf Σ-space
for every compactification bX of X.

The domain covered by Theorem 2.4 can be extended in the following
way:

Corollary 2.5. For every paracompact p-space X with weight ≤ 2ω

and every compactification bX, the remainder bX \X is a Lindelöf Σ-space.

Proof. The space X can be mapped onto a metrizable space Y by a
perfect mapping [1]. Under the continuous extension of this mapping to the
Čech–Stone compactifications βX and βY , βX \X is mapped onto βY \ Y
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by a perfect mapping. The weight of Y is not greater than the weight of X,
since the weight cannot increase under onto perfect mappings.

Therefore, w(Y ) ≤ 2ω. Now Theorem 2.4 implies that βY \Y is a Lindelöf
Σ-space. Since βX \X is the preimage of βY \ Y under a perfect mapping,
it follows that βX \X is a Lindelöf Σ-space.

Every remainder of X is a continuous image of βX \ X. Hence, every
remainder of X is a Lindelöf Σ-space.

It would be very nice if Theorem 2.4 could be extended to all metriz-
able spaces: this result would become a basic tool in the further study of
remainders of metrizable spaces. However, this is impossible. Let us show
this.

Recall that if τ is a cardinal number, then τ+ is the smallest cardinal
number greater than τ .

Theorem 2.6. There is a locally separable metrizable nowhere locally
compact space X such that |X| ≤ (2ω)+ and no remainder of X is a Lindelöf
Σ-space.

Proof. Let M be a discrete space of cardinality τ = (2ω)+, and consider
I = [0, 1] × [0, 1] with the usual topology. The product space I × M is
metrizable, locally separable, and locally compact. For a ∈ M , put Ia =
I × {a}.

Clearly, the cardinality of the set of all nowhere locally compact sub-
spaces of I which are dense in I is greater than 2ω. Therefore, there exists
a family P = {Am : m ∈ M} of subsets of I such that Ak 6= Am whenever
k 6= m.

Put Bm = Am × {m} for m ∈ M , and let X =
⋃
{Bm : m ∈ M},

a subspace of Z = I ×M . Clearly, X is dense in Z. We also put Y = Z \X.

Claim 1. Let γ = {P (i) : i ∈ ω} be an arbitrary sequence of closed
subsets of Z. Then γ is not a T0-separator for the pair (Y,X).

To prove this, for an arbitrary subset P of I ×M and for any m ∈ M ,
we denote by (P )m the subset of I such that (P )m ×{m} = P ∩ (I ×{m}).
Put (γ)m = {(P (i))m : i ∈ ω} for m ∈M . Then (γ)m is a sequence of closed
subsets of I.

Since the cardinality of the set of all sequences of closed subsets of I
does not exceed 2ω, and the cardinality of M is greater than 2ω, there are
distinct m, k ∈ M such that (γ)m = (γ)k, that is, (P (i))m = (P (i))k for
every i ∈ ω.

Observe that Am 6= Ak, since m 6= k. We may assume that Am \Ak 6= ∅;
fix c ∈ Am \ Ak. Put cm = (c,m) and ck = (c, k). Clearly, cm ∈ Bm ⊂ X
and ck /∈ Bk, ck /∈ X, that is, ck ∈ Y .
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Take any P (i)∈ γ such that ck ∈P (i). Then ck ∈ (P (i))k×{k}, which im-
plies that c ∈ (P (i))k. Hence, c ∈ (P (i))m, and therefore cm ∈ (P (i))m×{m},
which implies that cm ∈ P (i). Thus, γ is not a T0-separator for (Y,X).

Claim 2. No remainder of X in a compactification of X is a Lindelöf
Σ-space.

It is enough to show that some remainder of X in a compactification is
not a Lindelöf Σ-space. Let B be any compactification of Z = I ×M . Since
X is dense in Z, we can consider B as a compactification bX of X. Put
H = bX \X. Then H is a remainder of X in bX, and Y = Z \X ⊂ H.

Claim 3. H is not a Lindelöf Σ-space.

Assume the contrary. Then there exists a countable closed T0-separator
η in bX for the pair (H,X). Put γ = {P ∩ Z : P ∈ η}. Then, clearly, γ is
a countable closed T0-separator in Z for (Y,X). However, this contradicts
Claim 1. Claims 3 and 2 are established.

The proof of the last theorem uses an idea in the proof of Lemma 4.3
in [7].

3. Charming spaces. Since Theorem 2.4 does not extend to all metriz-
able spaces, we will try to identify weaker topological properties which are
common to all remainders of metrizable spaces. This leads us to a curious
class of spaces.

A space X will be called charming if there is a Lindelöf Σ-subspace Y
of X (called a Lindelöf Σ-kernel of X) such that, for each open neighbour-
hood U of Y in X, the subspace X \ U is a Lindelöf Σ-space.

This notion can be used to construct various new classes of spaces. A sim-
ilar idea was introduced in [8], where it had been applied to define some
natural extensions of certain classes of spaces.

Notice that every Lindelöf Σ-space is charming. Hence, all separable
metrizable spaces and all Lindelöf p-spaces are charming.

The class of charming spaces has some nice stability properties. Since the
proofs of the next three statements are almost obvious and quite standard,
we omit them.

Proposition 3.1. Any image of a charming space under a continuous
mapping is a charming space.

Proposition 3.2. Any preimage of a charming space under a perfect
mapping is a charming space.

Proposition 3.3. Every charming space is Lindelöf.

Since every compact space is charming, we see that not every subspace
of a charming space is charming.
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A motivation for the study of the class of charming spaces comes from
the following statement:

Theorem 3.4. For every metrizable space X and every compactification
bX of X, the remainder bX \X is a charming space.

Proof. Due to Propositions 3.2 and 3.1, it is enough to show that the
remainder bX \X in some compactification bX of X is a charming space.

Fix a metric on X generating the topology of X, and take the completion
M of X with respect to this metric. Then M is a Čech-complete space
containing X as a dense subspace. Let B be any compactification of M .
Clearly, B is a compactification of X as well. We denote by Z the remainder
B \X of X in B.

The subspace L = B \M of Z is σ-compact, since M is Čech-complete.

Claim. L is a Lindelöf Σ-kernel of the space Z.

Indeed, take any open neighbourhood U of L in Z. Then, clearly, Z \ U
is a subspace of the metrizable space M . Therefore, Z \ U is metrizable.

On the other hand, Z \ U is a closed subspace of Z. Since X is metriz-
able (and therefore of countable type), the remainder Z of X is Lindelöf [12].
Hence, Z \U is also Lindelöf, which implies that Z \U is a separable metriz-
able space.

Thus, Z \U is a Lindelöf Σ-space, and L is a Lindelöf Σ-kernel of Z. It
follows that Z is charming.

Theorem 3.4 can be considerably extended.

Corollary 3.5. For every paracompact p-space X and every compact-
ification bX of X, the remainder bX \X is a charming space.

Proof. This obviously follows from Theorem 3.4 and Proposition 3.2.

The reader could have noticed that remainders of metrizable spaces and,
more generally, of paracompact p-spaces are charming spaces of a rather
special kind. To sharpen conclusions in some theorems above, we introduce
the following definitions.

Let P and Q be some classes of topological spaces. A space X will be
called (P,Q)-structured if there exists a subspace Y of X such that Y ∈ P

and, for every open neighbourhood U of Y in X, the subspace X \ U of X
belongs to Q. In this situation, we call Y a (P,Q)-shell of the space X.

Clearly, the class of charming spaces is the same as the class of (P,Q)-
structured spaces, where P = Q is the class of all Lindelöf Σ-spaces.

Let P0 be the class of σ-compact spaces, P1 be the class of separable
metrizable spaces, P2 be the class of spaces with a countable network, P3

be the class of Lindelöf p-spaces, and P4 be the class of Lindelöf Σ-spaces.
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Take some i, j ∈ {0, 1, 2, 3, 4}. A space X will be called (i, j)-structured
if it is (Pi,Pj)-structured.

I believe that each of the classes of spaces so defined is worth studying.
However, in this paper we are primarily interested in charming spaces, that
is, in spaces which are (4, 4)-structured.

Observe that our arguments and results in this section show that every
remainder of a metrizable space in a compactification is (0, 1)-structured.
The next theorem is obtained with the help of this result.

Theorem 3.6. Suppose that X is a paracompact p-space, and that the
remainder Y = bX \ X of X in some compactification bX of X has a
Gδ-diagonal. Then the space Y is (2, 1)-structured and (0, 1)-structured.

Proof. Indeed, Y is (0, 3)-structured—this is clear from the proof of The-
orem 3.4. Since every compact space with a Gδ-diagonal has a countable base
(see [10]), it follows that every σ-compact space with a Gδ-diagonal has a
countable network. Therefore, Y is (2, 3)-structured.

It remains to take into account that every Lindelöf p-space with a Gδ-
diagonal has a countable base [6]. Thus, Y is (2, 1)-structured.

4. Some further results involving charming spaces. We show be-
low that some very general restrictions on cardinal invariants of remainders
of metrizable spaces guarantee that the remainder is a Lindelöf Σ-space.
The main result in this section is the next theorem. It is well-known that
determining the cardinality of Lindelöf spaces with countable pseudochar-
acter is a very delicate question. Below we will see that for charming spaces
this problem gets a complete solution.

Theorem 4.1. The cardinality of every charming space X of countable
pseudocharacter does not exceed 2ω.

Proof. Case 1. Let us first assume that X is a Lindelöf Σ-space. Fix
a compactification B of X and a countable T0-separator S for the pair
(X,B \X) in B such that all members of S are compacta.

Put η = {
⋂
λ : λ ⊂ S,

⋂
λ ⊂ X}. Then, clearly, |η| ≤ 2ω, and

⋃
η = X.

For each P ∈ η we have |P | ≤ 2ω, since P is a first-countable compactum.
Therefore, |X| ≤ 2ω. Thus, if X is a Lindelöf Σ-space, then the conclusion
holds.

Let us now consider the general case. Take a Lindelöf Σ-kernel Y of X.
Then, by Case 1, |Y | ≤ 2ω. Since the pseudocharacter of X at every point
of Y is countable, it follows that there is a family γ of open subsets of X
which T0-separates Y from X \ Y and satisfies |γ| ≤ 2ω.
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Consider the family E = {
⋃
λ : λ ⊂ γ, |λ| ≤ ω, Y ⊂

⋃
λ}. Clearly, the

cardinality of E is not greater than 2ω, and
⋃
{X \U : U ∈ E} = X \Y (we

recall that every charming space is Lindelöf).
For each U ∈ E, X \ U is a Lindelöf Σ-space of countable pseudochar-

acter; therefore, by Case 1, |X \ U | ≤ 2ω. It follows that |X \ Y | ≤ 2ω, and
finally |X| ≤ 2ω.

Theorem 4.2. Suppose that X is a nowhere locally compact metriz-
able space, and that bX is a compactification of X such that the remainder
Y = bX \ X has locally a Gδ-diagonal. Then both X and Y are separable
metrizable spaces.

Proof. It follows from Theorem 3.4 that Y is a charming space. Observe
that every point of Y is a Gδ-point in Y , since Y has locally a Gδ-diagonal.
Therefore, by Theorem 4.1, the cardinality of Y does not exceed 2ω. Hence,
the Suslin number of Y does not exceed 2ω as well. The subspace Y is
dense in bX, since X is nowhere locally compact. It follows that the Suslin
number of bX does not exceed 2ω. Since X is dense in bX, we conclude
that the Suslin number of X does not exceed 2ω. Since X is metrizable, the
cardinality and the weight of X also do not exceed 2ω.

Now we can apply the basic Theorem 2.4 which implies that Y is a
Lindelöf Σ-space.

It is well-known that every Lindelöf Σ-space with a Gδ-diagonal has a
countable network ([13], see also [6]). Therefore, Y locally has a countable
network, since Y is regular and every closed subspace of Y is a Lindelöf
Σ-space. Since Y is Lindelöf, it follows that Y has a countable network.

Since Y is dense in bX, it follows that the Suslin number of bX is count-
able. Hence, the Suslin number of X is countable. Since X is metrizable, it
follows that it is separable. Thus, X is a separable metrizable space, and
hence a Lindelöf p-space. Therefore, by Theorem 1.3, Y is also a Lindelöf
p-space.

Since Y is a Lindelöf p-space with a Gδ-diagonal locally, it follows that
Y is separable and metrizable as well ([13], see also [6]).

Here is another result of similar kind. It has a similar proof and weaker
assumptions and conclusion.

Theorem 4.3. Suppose that X is a nowhere locally compact metrizable
space, and that bX is a compactification of X such that every point in the
remainder Y = bX \ X is a Gδ-point. Then Y is a Lindelöf Σ-space, and
the cardinality of X does not exceed 2ω.

Proof. By Theorem 3.4, Y is a charming space. Therefore, by Theo-
rem 4.1, the cardinality of Y does not exceed 2ω. Hence, the Suslin number
of Y does not exceed 2ω as well. The subspace Y is dense in bX, since X is
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nowhere locally compact. It follows that the Suslin number of bX does not
exceed 2ω. Since X is dense in bX, we conclude that the Suslin number of
X does not exceed 2ω. Since X is metrizable, it follows that the cardinality
and the weight of X also do not exceed 2ω. Now we can apply Theorem 2.4
which implies that Y is a Lindelöf Σ-space.

5. Remainders of topological groups and charming spaces. Us-
ing results in preceding sections, we characterize below topological groups
G such that some remainder of G is a charming space. To do that, we need
the Dichotomy Theorem proved in [4] which says that for every topologi-
cal group G, either every remainder of G in a compactification is Lindelöf,
or every remainder of G in a compactification is pseudocompact. It follows
from the Dichotomy Theorem that a remainder Y of a non-locally compact
topological group G is paracompact if and only if this remainder is Lindelöf,
which is the case if and only if the topological group G is a paracompact
p-space. Combining this result with Corollary 3.5, we come to the following
conclusion:

Corollary 5.1. For any topological group G, the following conditions
are equivalent:

• Some remainder of G is paracompact.
• Some remainder of G is Lindelöf.
• All remainders of G are charming spaces.

Corollary 3.5 also allows us to characterize topological groups G with a
paracompact p-remainder. For that, we need two more results on charming
spaces.

Theorem 5.2. Every charming topological group G has a dense subgroup
that is a Lindelöf Σ-space.

Proof. Let L be a Lindelöf Σ-kernel of G. If L is dense in G, it remains
to take the smallest subgroup H of G such that L ⊂ H. It is well-known
that H is also a Lindelöf Σ-space (see, for example, [2]).

Now assume that L is not dense in G. Then there is a non-empty open
subset V of G such that V ∩L = ∅. Since U = G\V is an open neighbourhood
of L, it follows that V is a Lindelöf Σ-space.

According to Proposition 3.3, the space G is Lindelöf. Since V is open in
G and G is a topological group, the space G can be covered by a countable
family of subspaces homeomorphic to V . It follows that G is a Lindelöf
Σ-space.

Theorem 5.3. The Suslin number of an arbitrary charming topological
group G is countable.
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Proof. By Theorem 5.2, G has a dense subgroup H which is a Lindelöf
Σ-space. According to a theorem of V. V. Uspenskĭı [16], the Suslin number
of H is countable. Since H is dense in G, it follows that c(G) ≤ ω.

The next result was obtained in [3]:

Theorem 5.4. Suppose that G is a non-locally compact topological group,
and that bG is a compactification of G. Then the remainder bG \ G is a
p-space if and only if at least one of the following conditions holds:

(a) G is a Lindelöf p-space;
(b) G is σ-compact.

We now present an independent proof of a closely related result which
can be used to give an alternative proof of Theorem 5.4.

Theorem 5.5. A topological group G has a paracompact p-remainder if
and only if at least one of the following conditions holds:

(a) G is locally compact;
(b) G is a Lindelöf p-space.

Proof. If (a) holds, then G has a compact remainder. If (b) holds, then
G has a Lindelöf p-remainder. This takes care of the sufficiency.

Assume now that G is not locally compact, and fix a compactification
bG of G such that the remainder Y = bG \ G is a paracompact p-space.
Then Y is dense in bG, that is, bG is a compactification of Y as well, and
G is the remainder of Y in this compactification. By Corollary 3.5, G is a
charming space. By Theorem 5.3, the Suslin number of G is countable. Then
the Suslin number of bG is countable, and since Y is dense in bG, the Suslin
number of Y is countable as well. Since Y is paracompact, it follows that Y
is a Lindelöf p-space. Hence, G is also a Lindelöf p-space.

Now we are ready to prove the next theorem.

Theorem 5.6. If a Lindelöf topological group G has a compactification
B such that the remainder H = B \G is also homeomorphic to a topological
group, then both G and H are Lindelöf p-spaces.

Proof. Since G is Lindelöf, the remainder H is a space of countable
type. Since H is homeomorphic to a topological group, it follows that H is
a paracompact p-space. If H is not dense in B, then, obviously, G is locally
compact and H = B \G is compact. Thus, in this case, both G and H are
Lindelöf p-spaces.

Assume now that H is dense in B. Then G is the remainder of H in the
compactification B of H. By Corollary 3.5, the space G is charming. Since
G is a topological group, it follows that the Suslin number of G is countable,
by Theorem 5.3. Since G is dense in B, this implies that c(B) ≤ ω. Since
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H = B, it follows that c(H) ≤ ω. Since the space H is paracompact, we
conclude that it is Lindelöf. Thus, H is a Lindelöf p-space, which implies
that G is a Lindelöf p-space as well. Hence, in any case, G and H are Lindelöf
p-spaces.

The last theorem shows that if a compact space B is decomposed into
two dense disjoint subspaces homeomorphic to topological groups at least
one of which is Lindelöf, then these subspaces have to be of a very special
kind, namely Lindelöf p-spaces.

Clearly, the space Q of rational numbers has a separable metrizable
compactification B such that the complement B \ Q is not homeomorphic
to a topological group. Thus, there is no way to reverse the above theorem.

Theorem 5.7. If a Lindelöf nowhere locally compact space X has a
remainder homeomorphic to a topological group, then X is charming.

Proof. This is so, since every Lindelöf remainder of any topological group
is a charming space.
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