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Abstract. It is well-known that the set of buried points of a Julia set of a rational
function (also called the residual Julia set) is topologically “fat” in the sense that it is
a dense Gδ if it is non-empty. We show that it is, in many cases, a full-measure subset
of the Julia set with respect to conformal measure and the measure of maximal entropy.
We also address Hausdorff dimension of buried points in the same cases, and discuss
connectivity and topological dimension of the set of buried points. Finally, we present a
non-dynamical example of a plane continuum whose set of buried points is a dense and
hereditarily disconnected (components are points) Gδ, but not totally disconnected (not
all quasi-components are points).

1. Introduction. Let C∞ denote the Riemann sphere, and let R :
C∞ → C∞ be a rational function. Then C∞ decomposes into the disjoint
union of two sets: the Fatou set F (R), which is the maximal domain of nor-
mality of the family {Ri | i ≥ 0} of iterates of R, and the Julia set J(R),
which is a compact set upon which R exhibits chaotic behavior. The Fa-
tou set often consists of infinitely many components, which are called Fatou
domains. The Julia set J(R) is either all of C∞ or nowhere dense in C∞.
In this paper, we consider only the case where the Julia set is nowhere
dense in C∞. General references for studying Fatou and Julia sets include
[Bea91, Mil06, CG93]; any unreferenced facts can be found in any of these
sources.

We are particularly interested in the set of buried points of J(R), defined
to be the set of points of J(R) which are not on the boundary of any Fatou
domain of R. (Note that, while every point of J(R) will be on the boundary
of the Fatou set of R, it is not the case that every point of J(R) will be on the
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boundary of a component of the Fatou set.) For learning about buried points
of Julia sets (also called the residual Julia set), we recommend [CM10], and
especially [DF08] for transcendental functions.

The Julia set tends to be an interesting set, and its set of buried points
tends to be as interesting. In this paper, we will show that the Hausdorff
dimension of the residual Julia set is often equal to that of the Julia set
itself (Corollary 4.3), by showing that the conformal measure of the set of
non-buried points is zero (Theorem 4.1). We also show that the residual
Julia set supports the measure of maximal entropy. In terms of continuum
theory, we show that the set of buried points of a plane continuum reflects
the topological complexity of the continuum (Theorem 3.5). For example,
a locally connected continuum is Suslinian if and only if its buried point set
is Suslinian. Finally, we construct a non-dynamical example, inspired by one
of Lelek [L], of a continuum Z such that Z is locally connected, and Bur(Z)
is dense and hereditarily disconnected, but not totally disconnected.

2. Previous work. The notion of a buried point is purely topological;
we apply it in this paper to the case of Julia sets not equal to the Riemann
sphere.

Definition 2.1 (Buried points). Let X ⊂ C∞ be a nowhere dense con-
tinuum. A point of X is said to be buried if it does not belong to the
boundary of any component of C∞ \X. We denote the set of buried points
of X by Bur(X).

In case X is the Julia set of a rational function R, the set of all buried
points of J(R) is also called the residual Julia set and is denoted Bur(J(R)).
Julia sets of polynomials have no buried points, because the Fatou domain
containing∞ has the Julia set as its boundary. However, non-empty residual
Julia sets exist, with examples given by [McM88, Mor97, Mor00, MT93,
DLU05]. Singularly perturbed polynomials (i.e., complex polynomials plus
terms of the form λ(z − a)−d for a ∈ C and d ≥ 1) provide a rich family of
examples, as demonstrated in [BDGMR, BDGR, BlaDev06, D05, DRS07].

There are two classes of examples which are important for intuition. The
first are Julia sets which are homeomorphic to the Sierpiński carpet (Fig-
ure 1(a)) as first exhibited by Milnor and Tan [MT93] and with many exam-
ples in [BlaDev06]. The residual Julia set of such a map is one-dimensional,
and in fact arcwise connected (every pair of points in the residual Julia
set is contained in a homeomorphic image of the unit interval [0, 1], also
contained in the residual Julia set). Another important class of examples is
given in [BlaDev06] and particularly in [DRS07], where the Julia sets are
generalizations of the Sierpiński gasket (Figure 1(b)), and turn out to have
zero-dimensional residual Julia sets.
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(a) The Sierpiński carpet (b) The Sierpiński gasket

Fig. 1. Two prototypical examples of continua with buried points

Moreover, understanding buried points has figured significantly in the
partial solutions to a long-standing problem in complex dynamics called
the Makienko Conjecture [Qia97], [Mor00], [SY03], [CMMR09]. The best
partial solution thus far shows that the Julia set of a counter-example to
the Makienko Conjecture must be an indecomposable continuum, a level of
topological complexity we do not address in this paper.

Since R|J(R) is topologically exact (that is, each non-empty open subset
of J(R) is eventually mapped onto J(R)), we see that the residual Julia set
is non-empty if and only if the boundary of each Fatou domain is nowhere
dense in J(R). As a consequence, the residual Julia set is a dense Gδ subset
of J(R) whenever it is non-empty, as there are only countably many Fa-
tou domains. It is also nowhere locally compact (because the union of the
boundaries of all Fatou domains is also dense in J(R)). The residual Julia
set and the union of the boundaries of the Fatou domains are each fully
invariant subsets of J(R).

3. Topology of buried points. In [CM10] we asked, among others, the
following two questions, to which we provide partial answers in this paper.
Other recent papers have addressed Question 1 from a continuum-theoretic
viewpoint [vMT, vMTTV].

Question 1. What can be said about the topological dimension of the
set of buried points [of a Julia set]? For example, if the set of buried points
is totally disconnected, is it zero-dimensional?

Question 2. What can be said about the Hausdorff dimension of the set
of buried points? For example, can a Julia set and its (non-empty) residual
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Julia set have different Hausdorff dimensions? In particular, what about a
Sierpiński gasket Julia set?

At that time, we did not distinguish between several inequivalent defini-
tions of “totally disconnected.” We do so now.

Definition 3.1 ([E, pp. 31 ff.]). Let X be a Hausdorff space. We say
that X is

(1) zero-dimensional if the topology of X has a basis of sets which are
both closed and open,

(2) totally disconnected if quasi-components of X are points,
(3) hereditarily disconnected if components of X are points, and
(4) punctiform if all subcontinua of X are points.

The list is presented in order of decreasing strength; for example, spaces
which are zero-dimensional are automatically totally disconnected, heredi-
tarily disconnected, and punctiform. However, these are truly different con-
cepts; for any two properties in the list, there is a one-dimensional planar
set which satisfies one but not the other. Nevertheless, these concepts are
all the same for locally compact spaces.

There is an applicable sufficient condition for the buried point set of a
plane continuum to be zero-dimensional. A continuum is said to be rim-finite
(or regular) if it has a basis of open sets with finite boundaries. The following
theorem applies to the topological example of the Sierpiński gasket above
and to all the “gasket-like” rational Julia sets described in [DRS07]. We
denote the boundary of a set A by ∂A and the closure of A by A.

Theorem 3.2. Let X be a planar rim-finite continuum. If non-empty,
the set Bur(X) of buried points of X is zero-dimensional.

Proof. According to [W, Corollary 3.12], for every x ∈ X and for every
ε > 0 there is a simple closed curve S ⊂ C∞ \ {x} such that S ∩X is finite
and the diameter of the component U of C∞ \S containing x is less than ε.
However, the finitely many open arcs comprising S \X serve to show that
∂X(U ∩X) consists of points accessible from C∞ \X, so S ∩ Bur(X) = ∅.
Hence, U ∩Bur(X) is a neighborhood of x in Bur(X) with empty boundary,
and whose diameter is less than ε.

How the boundaries of Fatou domains meet each other plays an impor-
tant role in the character of the set of buried points.

Theorem 3.3. Let X ⊂ C∞ be a continuum. If X \Bur(X) is not con-
nected, then a subcontinuum of Bur(X) separates X. In particular, Bur(X)
is not punctiform.

Proof. Because C∞ is unicoherent, there is a continuum Y ⊂ C∞, dis-
joint from X \Bur(X), which separates C∞ between some pair of points of
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X\Bur(X). If U is a complementary component ofX and Y ∩U 6= ∅, then the
connectedness of Y implies that Y ⊂ U since Y ∩∂U ⊂ Y ∩(X\Bur(X)) = ∅,
and therefore Y ∩ ∂U is empty. Hence, either Y is a subset of C∞ \ X, or
Y ⊂ Bur(X). In the first case, X is not connected, contrary to our as-
sumption, so we conclude that Y ⊂ Bur(X) is a non-degenerate continuum
separating C∞ between points of X.

Definition 3.4. A space X is Suslinian if every pairwise disjoint col-
lection of non-degenerate continua in X is countable.

Note that the Sierpiński gasket is Suslinian, while the Sierpiński carpet is
not, and both are locally connected. The cone over the convergent sequence
{1/n}∞n=1∪{0} is Suslinian, while the cone over the middle-third Cantor set
is not, and both are non-locally connected. We prove the following theorem
which relates the topological complexity of the set of buried points to that of
the whole Julia set. After Moore [Moo29], we say a continuum is a triod if it is
the union of three continua such that the common part of all three is a proper
subcontinuum of each and is also the common part of any two of them.

Theorem 3.5. Let X be a plane continuum and suppose the boundary
of each component of C∞ \X is locally connected. If Bur(X) is Suslinian,
then X is Suslinian.

Proof. Suppose X is not Suslinian. Let C be an uncountable collection
of pairwise disjoint continua in X. Let C′ denote the subcollection C which
meets the set of non-buried points of X in at least three points. Because the
boundaries of complementary domains are locally connected, each point in
the boundary of each complementary domain is accessible. Hence, for each
C ∈ C′ there are three disjoint arcs A1

C , A2
C , and A3

C , each contained in the

complement of X except for one endpoint, which is in C. Then C ∪
⋃3
i=1A

i
C

is a triod. If one chooses the arcs AiC to be short and “conformally radial”
according to selected Riemann maps of the complementary domains, one can
ensure that any two added arcs in a given complementary domain are dis-
joint. Hence, the triods corresponding to distinct elements of C′ are disjoint.
By a theorem of Moore [Moo29], the plane does not contain uncountably
many disjoint triods. Hence, the collection C′ is countable.

Therefore, the collection C \ C′ is uncountable and consists of continua
which meet X \ Bur(X) in at most two points. There are only countably
many complementary domains of X, so there exist complementary domains
U1 and U2 (perhaps the same) such that uncountably many elements of C\C′
meet X \Bur(X) only in U1 ∪ U2. We can then find for each C ∈ C \ C′, by
an application of the Boundary Bumping Theorem [Nad92, p. 73], a non-
degenerate subcontinuum C ′′ ⊂ C such that C ′′ ∩ (X \ Bur(X)) = ∅. The
collection C′′ of such non-degenerate C ′′ is in one-to-one correspondence with
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C \ C′, so it is uncountable, and each element of C′′ is contained in Bur(X).
Therefore, Bur(X) is not Suslinian.

Corollary 3.6. Let R : C∞ → C∞ be a rational map. If J(R) has lo-
cally connected boundaries of Fatou domains, and Bur(J(R)) is punctiform,
then J(R) is Suslinian.

Proof. Suppose J(R) has locally connected boundaries of Fatou do-
mains, and the set Bur(J(R)) 6= ∅ is punctiform. Then, trivially, Bur(J(R))
is Suslinian. It follows from Theorem 3.5 that J(R) is Suslinian.

Remark 3.7. It follows that if the set of buried points of a Julia set has
any one of the properties (1)–(4) of Definition 3.1, and the boundaries of all
Fatou domains are locally connected, then the Julia set itself can be only
mildly complex: it must be Suslinian, even if it is not locally connected. The
generalized Sierpiński gasket Julia sets described in [DRS07] have punc-
tiform, in fact zero-dimensional, sets of buried points, and Fatou domain
boundaries are simple closed curves, so the Julia sets are Suslinian by the
above corollary. But these Julia sets are known, for dynamical reasons, to
be locally connected. It is not known if there is any rational Julia set whose
Fatou domain boundaries do not form a null sequence. If the boundaries do
form a null sequence, and are locally connected, then the Julia set is locally
connected. This leads to Question 4 below.

4. Measurable dynamics of the buried points. Our partial answer
to Question 2 turns on the measure theory of the Julia set. A rational
function R and its Julia set J(R) are said to be hyperbolic if the closure of the
forward orbit of all critical points is disjoint from the Julia set. Hyperbolic
Julia sets, for example, support a Borel probability measure µ which is
positive on non-empty open sets, invariant (that is, µ(R−1(A)) = µ(A) for
all BorelA), and for whichR sends sets of µ-measure 0 to sets of µ-measure 0.
These measure-theoretic properties, combined with the dynamical properties
of rational maps and the topological properties of Julia sets, are just what
is needed to prove the following theorem.

Theorem 4.1. Let R : C∞ → C∞ be a rational map with Julia set
J(R) and non-empty buried point set Bur(J(R)). Suppose J(R) supports an
invariant Borel probability measure µ, positive on non-empty open sets, and
R sends sets of µ-measure 0 to sets of µ-measure 0. Then µ(Bur(J(R))) = 1.

Remark 4.2. There are two measures to which this theorem immedi-
ately applies. The first is the measure of maximal entropy on a Julia set
constructed in [FMS]. The second is an invariant probability measure con-
structed in [R-LS], which is absolutely continuous with respect to an ergodic
conformal measure.
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Proof of Theorem 4.1. Since J(R) \Bur(J(R)), the union of the bound-
aries of all Fatou domains, is fully invariant under R, it suffices to show that
µ(∂U) = 0 for each Fatou domain U of the countably many Fatou domains.
In fact, we will show that the grand orbit of the boundary of each Fatou
domain has µ-measure 0.

By Sullivan’s Classification Theorem, every Fatou domain is eventually
periodic. Recall that the Julia set of R is also the Julia set of each iterate
of R. So without loss of generality, let U be a Fatou domain fixed by R and
let A =

⋃∞
k=0R

−k(∂U) be the grand orbit of ∂U . Since A is an increasing
union and ∂U ⊂ A, it follows from the invariance property of µ with respect
to R that µ(A \ ∂U) = 0.

Let z ∈ ∂U . We claim that z has a neighborhood V in A such that
µ(V ) = 0. If so, then by compactness ∂U is contained in the finite union of
such neighborhoods; hence, µ(∂U) = 0, from which it follows that µ(A) = 0,
as desired.

The backward orbit of z is dense in J(R) and ∂U 6= J(R), else there
are no buried points (since under our assumptions J(R) is at most one-
dimensional). Hence, there is a k ≥ 1 and w ∈ A \ ∂U such that Rk(w) = z.
Given any ε > 0, we can find a neighborhood W of w in A such that
Rk(W ) ⊂ B(z, ε). We may choose W so that W ∩∂U = ∅ and Rk(W )∩W =
∅. Let V = Rk(W ). Since A is fully invariant, and R is an open map on J(R),
R is open on A. Hence, V is a neighborhood of z in A. Since µ(W ) = 0,
and µ sends sets of measure 0 to sets of measure 0, we have µ(V ) = 0, as
claimed.

Even when a Julia set is locally connected, it often has complexity indi-
cated by a Hausdorff dimension (denoted HD J(R)) exceeding its topological
dimension. The above theorem, combined with [R-LS, Main Theorem], gives
the following corollary; see [R-LS] for the current state of the matter, as well
as for the definitions of terms left undefined in the result below.

Corollary 4.3. Let R be a rational map which is expanding away from
critical points. If Bur(J(R)) is non-empty, then its Hausdorff dimension is
the same as that of J(R). If, in addition, there are no critical points on the
boundary of the (necessarily hyperbolic) periodic Fatou domains of R, then
the set of non-buried points is of strictly smaller dimension.

Remark 4.4. Many good sorts of maps satisfy the hypotheses of the
above, including hyperbolic, geometrically finite, and topological Collett–
Eckmann maps (see [Prz07]). However, rational maps with parabolic points
are not addressed by this corollary.

Proof of Corollary 4.3. According to [R-LS, Main Theorem], such a ra-
tional function admits a unique conformal measure µ whose exponent is
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equal to HD J(R). The dimension of the measure is also HD J(R), meaning
that every full µ-measure set A ⊂ J(R) satisfies HDA = HDJ(R). Also,
we are guaranteed the existence of a measure η, absolutely continuous with
respect to µ, which is an invariant measure satisfying the requirements of
Theorem 4.1. Therefore, η(Bur(J(R))) = 1. We deduce by absolute conti-
nuity that µ(Bur(J(R))) is positive; that it is full follows from ergodicity
and the fact that Bur(J(R)) is fully invariant. Hence, HD Bur(J(R)) =
HD J(R).

Now, suppose that no periodic Fatou domain of R has a critical point on
its boundary. Let X denote the union of the boundaries of all periodic Fatou
domains. (Note that, due to Sullivan’s No Wandering Domains Theorem,
all non-buried points eventually map into X.) We see that X is a non-
empty, compact, forward-invariant subset of J(R). Since X does not contain
any critical points and R is expanding away from critical points, X is a
hyperbolic subset of J(R).

We now use some concepts from the thermodynamical formalism. For a
forward-invariant subset K ⊂ J(R), it is fruitful to consider the topological
pressure P (t) of −t log |f ′| on J(R), where t is a real variable [U03]. Gen-
erally, the least zero of PK detects the Hausdorff dimension of a conformal
repeller. Specifically, the least zero tJ of PJ(R) is the hyperbolic dimension
of J(R), i.e. the supremum of the Hausdorff dimensions of hyperbolic sub-
sets of J(R) (cf. [P99]). Also, the least zero tX of PX is the Hausdorff
dimension of X (cf. [B79, R82]). By [PL11, Lemma 6.2], PX(t) < PJ(R)(t)
for all t, so we find that HDX < HD J(R). Since Hausdorff dimension is
not increased by countable unions and Lipschitz maps, we conclude that
HD

⋃∞
n=0 f

−n(X) = 0.

5. Example. In this section we describe the topological example to
which we referred in the Introduction. Our example is strongly inspired by
one of Lelek [L]. It bears a passing resemblence to the Sierpiński triangular
gasket (see Figure 1(b)) in that it is obtained from a triangle by removing
countably many triangles (with some identification afterward). However, our
end result will not have zero-dimensional buried point set; in fact, though its
buried points will have no non-degenerate components, some of the quasi-
components of the set of buried points will not be singletons.

Example. There is a locally connected plane continuum Z such that
Bur(Z) is a dense, hereditarily disconnected, though not totally discon-
nected, Gδ.

We construct the continuum in stages.

(1) We will first construct a non-locally connected (though Suslinian)
continuum W as a nested intersection of continua such that any
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subset of W separating W between points of Bur(W ) must either
contain one of a countable collection A of arcs, or intersect Bur(W )
in an uncountable set.

(2) We will add to W a null sequence of disjoint arcs to form a contin-
uum X so as to bury a dense subset of each of those countably many
arcs in A. Hence Bur(X) will be hereditarily disconnected but not
totally disconnected.

(3) We will add to X a null sequence of arcs to obtain a locally connected
continuum Y with Bur(Y ) = Bur(X).

(4) We will perform a finite identification on infinitely many comple-
mentary domains of Y to obtain a locally connected continuum Z
such that Bur(Z) is homeomorphic to Bur(Y ) and is a dense Gδ
in Z.

5.1. A continuum with strange separation properties. Here we
construct the continuum W mentioned above. In what follows, we use vector
arithmetic to specify various points used in the construction. If A, B, and C
are (non-collinear) points in the plane, then AB denotes the closed straight
line segment joining A and B, and ∆(A,B,C) denotes the closed triangle
with vertices A, B, and C.

Let τ be an ordered triple (T τ , Lτ , Rτ ) of non-collinear points in the
plane. Here we describe how to define the family of triples T (τ) correspond-
ing to subtriangles of ∆τ . The sequences pi, Li, Ri, and Qi in the following
depend, strictly speaking, upon τ ; for the moment we will suppress this, and
will indicate dependence with a superscript only when confusion may arise.

Choose a sequence (pi)
∞
i=1 of numbers in [1/3, 2/3] so that lim supi→∞ pi

= [1/3, 2/3]. Define the points

Li =
T + iL

i+ 1
, i ≥ 1,

Ri =
T + iR

i+ 1
, i ≥ 1,

Qi = piRi + (1− pi)Li, i ≥ 2.

Hence, Li converges to L, Ri converges to R, and the lim sup of Qi is the
closed middle-third interval of LR. Now define triples corresponding to sub-
triangles of ∆τ (see Figure 2 for an illustration):

T (τ) = {(T, L1, R1)} ∪
⋃
i≥1
{(Li, Li+1, Qi+1), (Ri, Qi+1, Ri+1)}.

For the sake of definiteness, we set τ0 = ((1/2,
√

3/2), (0, 0), (1, 0)), i.e.,
the equilateral triangle in R2 whose base is [0, 1] × {0} and whose other
vertex is above the x-axis. We define a sequence of collections of triples,
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(a) Level 1 (b) Level 2

Fig. 2. Two levels of the construction of the continuum W

naturally viewed as simplicial complexes:

Sn =

{ {τ0} if n = 0,⋃
{T (τ ′) | τ ′ ∈ Sn−1} if n ≥ 1.

The solid triangles coming from Sn are therefore subsets of solid triangles
coming from Sn−1; if τ ′ ∈ Sn−1 and τ ∈ Sn are such that ∆τ ⊂ ∆τ ′, we
call τ a child of τ ′, and τ ′ the parent of τ . We will also speak of triangles
being ancestors (respectively, descendants) of other triangles, if they are
comparable with respect to the relation “is a child of” (respectively, “is
the parent of”). It will be convenient later to refer to left children, right
children, and top children, depending upon which edges of ∆τ are subsets
of ∂∆τ ′. By a left descendant (respectively, right descendant) of τ we mean
any descendant of τ which is a left (respectively, right) child of its parent.

For each n ≥ 0, we set

Wn =
⋃
{∆τ | τ ∈ Sn},

and let W =
⋂
n≥0Wn. In Figure 2, we have illustrated one possibility for

W1 and W2.

It is not difficult to see that W is a one-dimensional continuum, since
the intersection of a nest of continua is a continuum. To see that Bur(W ) is
zero-dimensional, consider the families of triangles defined by elements of Sn
and used in the construction of W . The diameters of the triples in Sn tend
uniformly to zero in n: the maximum height of ∆τ for τ ∈ Sn is 1/2n and the
maximum width is (2/3)n. Since ∂∆τ ⊂W \Bur(W ), the sets ∆τ∩Bur(W ),
for τ ∈

⋃∞
n=1 Sn, define a null local basis for every buried point. So Bur(W )

is zero-dimensional. Because every continuum in W must contain a vertex of
some triangle ∆τ , Bur(W ) contains no non-degenerate continua. Therefore,
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W is Suslinian by Theorem 3.5 (it is easy to observe this directly as well).
Since the property of being Suslinian is preserved by adding countably many
arcs and by monotone mappings, our future modifications of W will also be
Suslinian.

Though W is relatively tame, we can show that it is difficult to separate
points in the horizontal segments in W .

Lemma 5.1. If C ⊂ W is a closed subset of W which separates W
between two points in Lτ0Rτ0, then either C ∩ Bur(W ) is uncountable, or,
for some n ≥ 0 and τ ∈ T n(τ), C contains a subinterval of LτRτ .

Remark 5.2. Both types of separators are possible; containing an inter-
val would be a by-product of containing all but finitely many Qτ0i . On the
other hand, the separator obtained by intersecting the line x = 1/2 with W
would necessarily contain many buried points of W .

Proof of Lemma 5.1. Assume C contains no subintervals. It is evident
that a point is buried if and only if it is contained in infinitely many left
and in infinitely many right triangles. For brevity, let us say a triple τ ∈ Sn
is cut if C ∩∆τ separates ∆τ ∩W between points of its base LτRτ .

Claim. Let τ ∈ Sn be such that only finitely many of its left descendants
are cut. Then τ is not cut. (A symmetric proof shows the corresponding fact
for right descendants.)

Proof. Choose a sequence xi ∈ LτRτ so that xi → Rτ monotonically,
x0 = Lτ , x1 is in the middle third of the base LτRτ , xi /∈ C for all i, and

(5.1)
1

3
<
|xi+2 − xi+1|
|Rτ − xi+1|

<
2

3
for all i.

We now show inductively that W ∩ ∆τ is not separated between two
points of LτRτ . Note that by condition (5.1), xi+1 is in the middle third of
the interval xiRτ . Choose a sequence i1k so that Qi1k

→ x1. Since C is closed,

Qi1k
∈ C for at most finitely k. Let τi1k

∈ Sn+1 denote the left child of τ with

right vertex Qi1k
. Since at most finitely many τi1k

are cut, this serves to show

that W ∩∆τ is not separated between points of x0x1.

Correspondingly, let τ ′
i1k

be the sequence of right children of τ with ver-

tex Qi1k
. Let τi2k

be a left child of τ ′
i1k

which is not cut, with the sequence

chosen so that the right vertex converges to x2. (This can be done because
of (5.1).) Additionally, we can choose these triangles so that the index of
the left vertex of τi2k

in its parent is at least k. Consequently, the sequence

of left vertices of the τi2k
converge to x1. Thus, the sequence ∆τi2k

of trian-

gles converges to the interval x1x2, and W is not cut between two points of
x1x2.
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This serves to show that W is not separated between two points of x0x2
since x1 /∈ C. We would continue by setting τ ′

i2k
to be the right triples sharing

a vertex with τi2k
, and finding left subtriangles thereof converging to x2x3.

Proceeding inductively, we find that W is not separated between points of
x0xn \ C for all n, so τ is not cut. This concludes the proof of the Claim.

Suppose then that W is separated between points of Lτ0Rτ0 . Then in-
finitely many left and infinitely many right children of τ0 are cut. Every sep-
arated child has infinitely many left and infinitely many right cut children;
reasoning inductively, we see that there are therefore uncountably many se-
quences (τi)

∞
i=1, where τi is the parent of τi+1, that consist of infinitely many

left and infinitely many right triples which are cut. The corresponding in-
tersections

⋂
∆τi are buried points of W , and are contained in C since C is

closed.

5.2. Hereditarily disconnected but not totally disconnected sets
of buried points. We now describe a method for burying a dense Gδ subset
of points on bottom segments of triangles with a null sequence of arcs. This
can be achieved by gluing infinitely many copies of an auxiliary continuum
K to each of the bottom segments.

We define the auxilliary continuum K as follows. Let K−1 = [0, 1]×{0}.
Let K0 be the semicircle in the closed lower half-plane with center (2−1, 0)
and radius 2−1. Suppose Kn is defined. Let Kn+1 be the union of the 3n

semicircles in the closed lower half-plane with centers the midpoints of the
components of K−1 \

⋃n
i=0Ki and diameters half the length of the corre-

sponding component. Let K =
⋃∞
i=−1Ki. See Figure 3 for an illustration.

Let M denote the set of local cutpoints of K in K−1 (a dense Fσ in K−1 by
construction). It is easy to see that no point in K−1 \M is contained in a
bounded complementary domain of K.

It is evident that we can embed countably infinitely many copies {Ci}∞i=1

of K into R2 by Euclidean similarities {fi}∞i=1 so that the following condi-
tions are met:

(1) For any triple τ , each open subset of LτRτ meets at least one Ci.
(2) Ci ∩ Cj = ∅ whenever i 6= j.
(3) Ci ∩W = fi(K−1) for each i.

Note that by our construction, each horizontal edge of a triangle in W meets
countably infinitely many copies of K, as shown in Figure 3 bottom. Let
X be the continuum W ∪

⋃∞
i=1Ci. Then the points in

⋃∞
i=1 fi(K−1 \M)

corresponding to points in K−1 \M (which comprise a dense Gδ of every
horizontal edge in W ) are buried in X. Thus, Bur(X) consists of the set of
buried points of W together with the sets of newly buried points in each
horizontal edge in W .
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Fig. 3. The auxiliary continuum, and embeddings on an edge LτRτ of a typical comple-
mentary domain of X

It is now easy to see that the buried points of X are hereditarily discon-
nected. For let

F =
[ ⋃
n≥1

(⋃
Sn

)]
∪
[ ⋃
n≥1

fn(M)
]
⊂ X

be the union of all vertices of all triangles used in the construction together
with all embedded copies of M . Then F consists entirely of non-buried
points, and it is easy to verify that every connected subset of X intersects F .
It follows that Bur(X) is hereditarily disconnected. By Lemma 5.1, Bur(X)
is not totally disconnected.

5.3. Local connectivity and density of buried points. For a locally
connected example, we must perform some identifications. We will first em-
bed X in a locally connected plane continuum Y so that Bur(X) = Bur(Y ).
Enumerate the bounded complementary domains of X as (Ui)

∞
i=1, and let

the height of Ui be εi. It is then apparent that we can find finitely many
pairwise disjoint vertical arcs Ai1, . . . , A

i
ni in Ui such that
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(1) for each j, both endpoints of Aij are in ∂Ui;

(2) one endpoint of Aij is in the horizontal edge of ∂Ui, but not in⋃
i≥1Ci;

(3) for each j, the other endpoint of Aij is in a non-horizontal edge
of ∂Ui;

(4) the diameter of every component of U \(Ai1∪· · ·∪Aini) is at most 2εi.

Hence, the continuum Y = X ∪
⋃∞
i=1

⋃ni
j=1A

i
j is locally connected, since

its complementary domain boundaries are locally connected and form a
null sequence. (For any ε, only finitely many complementary domains of
X have height exceeding ε.) Since only finitely many arcs are added in
each Ui, Bur(Y ) = Bur(X). Therefore, Y is a locally connected continuum
whose buried point set is hereditarily disconnected and not totally discon-
nected.

In order to obtain an example Z where the buried point set is a dense Gδ,
it is enough to notice that Y \W is the union of a null sequence of open
arcs whose closures are pairwise disjoint. Hence, the equivalence relation ∼
defined by “x ∼ y if and only if x = y or x and y are contained in the
closure of a free arc in Y ” is an upper semicontinuous equivalence relation
with connected, non-separating classes. (An open arc in Y is free if it is
an open set in Y .) The quotient R2/∼ is therefore homeomorphic to R2

by Moore’s Plane Decomposition Theorem, and the corresponding quotient
map π : R2 → R2 is a homeomorphism on Bur(Y ). Hence, Z = π(Y )
has buried point set homeomorphic to that of Y , so this set is hereditarily
disconnected but not totally disconnected, and a dense Gδ in Z.

6. Questions. We conclude with some questions related to the above
that remain open. We state the questions for Julia sets, but one is free to
phrase them for plane continua with appropriate topological (and perhaps
dynamical) properties.

Question 3. If the set Bur(J(R)) is totally disconnected (quasi-compo-
nents are points), is it zero-dimensional? What if J(R) is locally connected?

A Suslinian continuum is connected im kleinem at a dense set of points
(see [FL]). (A continuum X is connected im kleinem at a point x ∈ X
provided that x has arbitrarily small connected, but not necessarily open,
neighborhoods.) There are planar topological examples of such continua
which are not locally connected. This motivates the question below.

Question 4. If the Julia set J(R) of a rational function is Suslinian, is
it locally connected?

There are polynomial Julia sets which are connected im kleinem at a
dense set of points, are not locally connected, and are not Suslinian [BO09,
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BBCO]. As a start on finding a Suslinian but not locally connected Julia
set, one could consider the non-locally connected Julia sets of Sørensen [S]
and Roesch [R].

As we were completing this paper, we received a preprint from Jan
van Mill and co-authors ([vMTTV]) which shows that there is indeed a
locally connected continuum in the plane with a totally disconnected, one-
dimensional, dense Gδ set of buried points. The example is constructed by
“burying” a one-dimensional set originally constructed by Kuratowski ([E,
p. 19]). The example answers our Question 1 in the negative from a topolog-
ical viewpoint. Kuratowski’s set is uncountable, but one-dimensional only
on a countable set. They go on to prove that a totally disconnected, buried
one-dimensional set in a plane continuum, where the boundaries of comple-
mentary domains are locally connected, must be one-dimensional on only
a countable set, showing their topological example is sharp. The question
(Question 3) is still open for the set of buried points of a Julia set. It seems
likely that the increased local structure available in the Julia set case, com-
ing from the existence of the rational function under which the Julia set is
fully invariant, will result in an affirmative answer to the question for Julia
sets.

Acknowledgments. We thank the referee for useful remarks, in par-
ticular helping us improve the conclusion of Corollary 4.3.

The first and second authors were supported by conference grant NSF-
DMS-1005910, “Workshop on Recent Advances in Topological and Measure-
Theoretic Methods in Dynamical Systems” held at Nipissing University,
North Bay, Ontario, with support also from the Fields Institute. The work
of the third author was supported by NSERC grant NO:OGP0005616.

References

[Bea91] A. F. Beardon, Iteration of Rational Functions, Springer, New York, 1991.
[BDGMR] P. Blanchard, R. L. Devaney, A. Garjio, S. M. Marotta, and E. D. Russell,

The rabbit and other Julia sets wrapped in Sierpiński carpets, in: Complex
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