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Abstract. In 2005, the paper [KPT05] by Kechris, Pestov and Todorcevic provided
a powerful tool to compute an invariant of topological groups known as the universal
minimal flow. This immediately led to an explicit representation of this invariant in many
concrete cases. However, in some particular situations, the framework of [KPT05] does
not allow one to perform the computation directly, but only after a slight modification
of the original argument. The purpose of the present paper is to supplement [KPT05] in
order to avoid that twist and to make it suitable for further applications.

1. Introduction. The article [KPT05], published in 2005 by Kechris,
Pestov and Todorcevic, established a surprising correspondence between
structural Ramsey theory and topological dynamics. As an immediate conse-
quence, it triggered a new interest in structural Ramsey theory, as witnessed
by the papers [Neš07] by Nešetřil, [NVT10] by the present author, [Sok10],
[Sok12a], [Sok12b] by Sokić, and [Jas13] by Jasiński. More recently, it also
motivated a more detailed investigation of the connection between combi-
natorics and Polish group actions, an aspect which is visible in, for example,
[Bar11] by Bartošová, [BP11] by Bodirsky–Pinsker, [MT11] by Melleray–
Tsankov, and [Moo11] by Moore. Precisely, [KPT05] provided an extremely
powerful tool to compute an invariant known as the universal minimal flow,
and immediately led to an explicit representation of this invariant in many
concrete cases. However, in some particular situations, the framework of
[KPT05] does not allow one to perform the computation directly, but only
after a slight modification of the original argument. The purpose of the
present paper is to supplement [KPT05] in order to avoid that twist and to
make it suitable for further applications.
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In order to describe precisely in which sense [KPT05] is generalized, we
proceed to a synthetic overview of some of the main results it contains.
Our main reference here is [KPT05] itself. In what follows, N denotes the
set {0, 1, 2, . . .} of natural numbers, and for a natural number m, [m] will
denote the set {0, . . . ,m − 1}. We will assume that the reader is familiar
with the concepts of first order logic, first order structures, Fräıssé theory
(cf. [KPT05, Section 2]), reducts and expansions (cf. [KPT05, Section 5]).
If L is a first order signature and A and B are L-structures, we will write
A ≤ B when A embeds in B, A ⊂ B when A is a substructure of B, and
A ∼= B when A and B are isomorphic. If C is a subset of the universe of A
which supports a substructure of A, we will write A�C for the corresponding
substructure.

A Fräıssé class in a countable first order language L will be a countable
class of finite L-structures of arbitrarily large sizes, satisfying the hereditari-
ness, joint embedding and amalgamation properties, and a Fräıssé structure
(or Fräıssé limit) in L will be a countable, locally finite, ultrahomogeneous
L-structure. In [KPT05], two combinatorial properties of classes of finite
structures have a considerable importance. Those are the Ramsey property
and the ordering property.

In order to define the Ramsey property, let k, l ∈ N, and A,B,C be
L-structures. The set of all copies of A in B is written using the binomial
notation (

B

A

)
= {Ã ⊂ B : Ã ∼= A}.

We use the standard arrow partition symbol

C→ (B)Ak,l

to mean that for every map c :
(
C
A

)
→ [k], thought of as a k-coloring of the

copies of A in C, there is B̃ ∈
(
C
B

)
such that c takes at most l-many values

on
(
B̃
A

)
. When l = 1, this is written

C→ (B)Ak .

A class K of finite L-structures is then said to have the Ramsey property
when

∀k ∈ N ∀A,B ∈ K ∃C ∈ K C→ (B)Ak .

When K = Age(F), where F is a Fräıssé structure, this is equivalent, via
a compactness argument (detailed in Proposition 3), to

∀k ∈ N ∀A,B ∈ K F→ (B)Ak .

As for the ordering property, assume that < is a binary relation symbol
not contained in L, and that L∗ = L ∪ {<}. Let K be a Fräıssé class in L,



More on the KPT correspondence: Precompact expansions 21

and K∗ an order expansion of K in L∗. That means that all elements of K∗
are of the form A∗ = (A, <A), where A ∈ K and <A is a linear ordering
on the universe A of A (A is then the reduct of A∗ to L and is denoted
A∗�L), and that, conversely, any A ∈ K admits a linear ordering <A so that
(A, <A) ∈ Age(F∗). Then K∗ has the ordering property relative to K if, for
every A ∈ K, there exists B ∈ K such that

∀A∗,B∗ ∈ K∗ (A∗�L = A ∧B∗�L = B) ⇒ A∗ ≤ B∗.

Note that previously, the restriction symbol was also used to refer to
substructures as opposed to reducts. Because the context almost always
prevents the confusion between those two notations, we will use freely both
of them, without any further indication.

We now turn to topological groups and to dynamical properties of their
actions. Let G be a topological group. A G-flow is a continuous action of G
on a topological space X. We will often use the notation Gy X. The flow
G y X is compact when the space X is. It is minimal when every x ∈ X
has dense orbit in X:

∀x ∈ X G · x = X

Finally, it is universal when every compact minimal G y Y is a factor of
Gy X, which means that there exists π : X → Y continuous, onto, and so
that

∀g ∈ G ∀x ∈ X π(g · x) = g · π(x).

It turns out that when G is Hausdorff, there is, up to isomorphism of
G-flows, a unique G-flow that is both minimal and universal. This flow is
called the universal minimal flow of G, and is denoted G y M(G). When
the space M(G) is reduced to a singleton, the group G is said to be extremely
amenable. Equivalently, every compact G-flow G y admits a fixed point,
i.e. an element x ∈ X so that g ·x = x for every g ∈ G. We refer to [KPT05]
or [Pes06] for a detailed account of those topics. Let us just mention that,
concerning extreme amenability, it took a long time to even prove that such
groups exist, but several non-locally compact transformation groups are now
known to be extremely amenable (the most remarkable ones being proba-
bly the isometry groups of the separable infinite-dimensional Hilbert space
(Gromov–Milman [GM83]), and of the Urysohn space (Pestov [Pes02])). As
for universal minimal flows, prior to [KPT05], only a few cases were known to
be both metrizable and non-trivial, the most important examples being pro-
vided by the orientation-preserving homeomorphisms of the circle (Pestov
[Pes98]), S∞ (Glasner–Weiss [GW02]), and the homeomorphism group of the
Cantor space (Glasner–Weiss [GW03]). In that context, the paper [KPT05]
established a link between Ramsey property and extreme amenability. For
an L-structure A, we denote by Aut(A) the corresponding automorphism
group. When this group is trivial, we say that A is rigid.
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Theorem 1 (Kechris–Pestov–Todorcevic [KPT05, essentially Theo-
rem 4.8]). Let F be a Fräıssé structure, and let G = Aut(F). The following
are equivalent:

(i) The group G is extremely amenable.
(ii) The class Age(F) has the Ramsey property and consists of rigid el-

ements.

Because closed subgroups of S∞ are all of the form Aut(F), where F is
a Fräıssé structure, the previous theorem actually completely characterizes
those closed subgroups of S∞ that are extremely amenable. It also allows
the description of many universal minimal flows via combinatorial methods.
Indeed, when F∗ = (F, <∗) is an order expansion of F, one can consider the
space LO(F) of all linear orderings on F, seen as a subspace of [2]F×F. In
this notation, the factor [2]F×F = {0, 1}F×F is thought of as the set of all
binary relations on F. This latter space is compact, and G acts continuously
on it: if S ∈ [2]F×F and g ∈ G, then g · S is defined by

∀x, y ∈ F g · S(x, y) ⇔ S(g−1(x), g−1(y)).

It can easily be seen that LO(F) and X∗ := G ·<∗ are closed G-invariant
subspaces.

Theorem 2 (Kechris–Pestov–Todorcevic [KPT05, Theorem 7.4]). Let F
be a Fräıssé structure, and F∗ a Fräıssé order expansion of F. The following
are equivalent:

(i) The flow Gy X∗ is minimal.
(ii) Age(F∗) has the ordering property relative to Age(F).

The following result, which builds on the preceding two theorems, is then
obtained:

Theorem 3 (Kechris–Pestov–Todorcevic [KPT05, Theorem 10.8]). Let
F be a Fräıssé structure, and F∗ be a Fräıssé order expansion of F. The
following are equivalent:

(i) Gy X∗ is the universal minimal flow of G.
(ii) Age(F∗) has the Ramsey property as well as the ordering property

relative to Age(F).

A direct application of those results allowed finding a wealth of extremely
amenable groups and of universal minimal flows: see [KPT05, Sections 6
and 8], but also [Neš07], [NVT10], [Sok12a], [Sok12b] and [Jas13]. How-
ever, some cases, which are very close to those described above, cannot be
captured directly by those theorems. Precisely, some Fräıssé classes do not
have an order expansion with the Ramsey and the ordering property, but do
so when the language is enriched with additional symbols. Some examples
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already appear in [KPT05] (e.g. Theorem 8.4 dealing with equivalence re-
lations with the number of classes bounded by a fixed number). It is also
the case for equivalence relations whose classes have size bounded by a fixed
number, for subtournaments of the dense local order (see [LNVTS10], or
Section 7 of the present paper), as well as for several classes of finite posets
(see [Sok12b]). More recently, Jasiński [Jas13] showed that boron tree struc-
tures have the same property. For all those cases, a slight modification of the
original framework does allow one to describe the universal minimal flow.
The purpose of the present paper is to make this method explicit and to
illustrate how it can be applied in concrete situations.

Precisely, we will not deal with order expansions in the language L∗ =
L ∪ {<} only (those will be later on referred to as pure order expansions),
but with precompact relational expansions. For such expansions, we do not
require L∗ = L∪ {<}, but only L∗ = L∪ {Ri : i ∈ I}, where I is countable,
and every symbol Ri is relational and not in L. An expansion F∗ of F is then
called precompact when any A ∈ Age(F) only has finitely many expansions
in Age(F∗). Note that every A ∈ Age(F) has at least one expansion in
Age(F∗): simply take a copy of A in F, and consider the substructure of F∗

that it supports. The choice of the terminology is justified in Section 2. For
those expansions, the ordering property has a direct translation, which we
call the expansion property, and Theorems 2 and 3 turn into the following
versions:

Theorem 4. Let F be a Fräıssé structure, and F∗ a precompact rela-
tional expansion of F (not necessarily Fräıssé). The following are equivalent:

(i) Gy X∗ is minimal.
(ii) Age(F∗) has the expansion property relative to Age(F).

Theorem 5. Let F be a Fräıssé structure, and F∗ be a Fräıssé pre-
compact relational expansion of F. Assume that Age(F∗) consists of rigid
elements. The following are equivalent:

(i) Gy X∗ is the universal minimal flow of G.
(ii) Age(F∗) has the Ramsey property as well as the expansion property

relative to Age(F).

Another common point with pure order expansions is the following,
purely combinatorial, result, which can be thought of as the precompact
version of Theorem 10.7 from [KPT05].

Theorem 6. Let F be a Fräıssé structure, and F∗ be a Fräıssé pre-
compact relational expansion of F. Assume that Age(F∗) consists of rigid
elements, and has the Ramsey property. Then Age(F∗) admits a Fräıssé
subclass with the Ramsey property and the expansion property relative to
Age(F).
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Those results are proved in Sections 4, 5 and 6 respectively. To illus-
trate their use, the universal minimal flows of the automorphism groups
of the circular directed graphs S(2) and S(3) are computed in Sections 7
and 8.

Two aspects should be emphasized. First, the only reason for which the
original paper [KPT05] was not written in the general setting we present
here is that, at the time where it was developed, pure order expansions
covered almost all known applications of the method to compute universal
minimal flows (the cases that were left aside were computed easily with a
bit of extra work). Arguably, they consequently constituted the right setting
to establish a general correspondence.

Interestingly, the fact that the general picture is actually a bit bigger
could be an opportunity to change the way we think of structural Ramsey
theorems for Fräıssé classes. Indeed, when analyzing how the most famous
results of the field were obtained, it seems that two categories emerge. The
first one corresponds to those “natural” classes where the Ramsey property
holds: finite sets, finite Boolean algebras, finite vector spaces over a finite
field. The second one corresponds to those classes where the Ramsey prop-
erty fails but where this failure can be fixed by adjoining a linear ordering:
finite graphs, finite Kn-free graphs, finite hypergraphs, finite partial orders,
finite topological spaces, finite metric spaces. As for those classes where
more than a linear ordering is necessary, we have to admit that besides the
ones that appear in [KPT05] (finite equivalence relations with classes of size
bounded by n, or equivalence relations with at most n classes) or those, more
recent, that we mentioned previously (namely, subtournaments of S(2), sub-
tournaments of S(3), posets that are unions of at most n chains, posets that
are obtained as a totally ordered set of antichains of size at most n, and
boron tree structures), we are not aware of any additional case, but it would
be extremely surprising that nobody encountered such instance before. More
likely is the fact that the corresponding results were not considered as true
structural Ramsey results, and were therefore overlooked. However, in our
opinion, the results of the present paper seem to give the hint that some
valuable material may well be found there. For example, they allow one to
compute the universal minimal flow for every automorphism group com-
ing from countable ultrahomogeneous graphs, posets, and tournaments. In
fact, we are not aware of any example of a countable ultrahomogeneous
structure in a finite language (or, more generally, of a countable ultraho-
mogeneous ω-categorical structure) where this is not so. Of course, in order
to see whether this is a general phenomenon, a natural thing is to exam-
ine Cherlin’s class of directed graphs. This analysis will be carried out in
a forthcoming paper. More on the relevance of precompact expansions is
included in Section 9.
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Second, as far as the proofs are concerned, it would have been possible
to keep all the original arguments. We chose not to completely do so, and to
take advantage of the opportunity to make a slightly different, concise and
self-contained, exposition, somewhere between [KPT05] and [Pes06]. This
choice explains why the proofs of Theorems 4, 5, 6 and even 1 are included,
where the novelty really lies in the description of the universal minimal flows
Aut(S(2)) and Aut(S(3)) and takes place in Sections 7 and 8. Of course, for
a detailed exposition of the Kechris–Pestov–Todorcevic correspondence, the
reader is urged to consult the original article [KPT05], which contains far
more than what we chose to cover in the present paper.

2. Precompact relational expansions. In what follows, F is a Fräıssé
structure in some countable language L, and L∗ is an expansion of L such
that L∗rL = {Ri : i ∈ I} is countable and consists only of relation symbols.
For i ∈ I, the arity of the symbol Ri is denoted a(i). F∗ is an expansion
of F in L∗, which does not have to be Fräıssé at the moment. We write
F∗ = (F, (R∗i )i∈I), or (F, ~R∗). We also assume that F and F∗ have the set
N of natural numbers as universe.

The corresponding automorphism groups are denoted G and G∗ respec-
tively. The group G∗ will be thought of as a subgroup of G, and both are
closed subgroups of S∞, the permutation group of N equipped with the
topology generated by sets of the form

Ug,F = {h ∈ G : h�F = g�F},
where g runs over G and F runs over all finite subsets of N. This topology
admits two natural uniform structures, a left-invariant one, UL, whose basic
entourages are of the form

ULF = {(g, h) : g−1h ∈ Ue,F }, F ⊂ N finite,

and a right-invariant one, UR, whose basic entourages are of the form

URF = {(g, h) : (g−1, h−1) ∈ ULF }, F ⊂ N finite.

In fact, those two uniform structures are respectively generated by the
two following ultrametrics: dL, defined as

dL(g, h) = 1/2m, m = min{n ∈ N : g(n) 6= h(n)},
and dR, given by

dR(g, h) = dL(g−1, h−1).

In what follows, we will be interested in the set of all expansions of F
in L∗, which we view as the product

P ∗ :=
∏
i∈I

[2]F
a(i)
.
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In this notation, the factor [2]F
a(i)

= {0, 1}Fa(i)
is thought of as the

set of all a(i)-ary relations on F. Each factor [2]F
a(i)

is equipped with an
ultrametric di, defined by

di(Si, Ti) = 1/2m, m = min{n ∈ N : Si�[n] 6= Ti�[n]}
where Si�[m] (resp. Ti�[m]) stands for Si ∩ [m]a(i) (resp. Ti ∩ [m]a(i)). So
Si�[m] = Ti�[m] means that

∀y1 . . . ya(i) ∈ [m] Si(y1 . . . ya(i)) ⇔ Ti(y1 . . . ya(i)).

The group G acts continuously on each factor: if i ∈ I, Si ∈ [2]F
a(i)

and
g ∈ G, then g · Si is defined by

∀y1 . . . ya(i) ∈ F g · Si(y1 . . . ya(i)) ⇔ Si(g
−1(y1) . . . g

−1(ya(i))).

This allows us to define an action of G on the product P ∗, where g · ~S is
simply defined as (g · Si)i∈I whenever ~S = (Si)i∈I ∈ P ∗ and g ∈ G.

This action is continuous when P ∗ is equipped with the product topology
(it is then usually referred to as the logic action), but also when it is endowed
with the supremum distance dP

∗
of all the distances di. The corresponding

topology is finer than the product topology if I is infinite, but it is the
one we will be interested in below because of its connection to the quotient
G/G∗.

Proposition 1. The metric subspace G · ~R∗ ⊂ P ∗ is precompact iff
every element of Age(F) has finitely many expansions in Age(F∗).

Recall that a metric space X is precompact when its completion is com-
pact. Equivalently, it can be covered by finitely many balls of arbitrarily
small diameter. When the space is only uniform as opposed to metric, that
means that for every basic entourage V , there are finitely many x1, . . . , xn
so that the family of sets ({x ∈ X : (x, xi) ∈ V })i≤n covers X.

Proof of Proposition 1. Observe first that by ultrahomogeneity of F,
every expansion A∗ of any finite substructure A ⊂ F can be realized in the
following sense:

∃g ∈ G (F, g · ~R∗)�A ∼= A∗.

Suppose that G · ~R∗ is precompact. Fix m large enough so that A ⊂ [m].

It is possible to cover G · ~R∗ by finitely many balls of radius 1/2m, call them

B1, . . . , Bl. Note that if ~S, ~T belong to the same ball, then ~S�[m] = ~T �[m].

In particular, ~S�A = ~T �A. It follows that there are at most l non-isomorphic
structures of the form (F, g · ~R∗)�A, and therefore A has at most l expansions
in Age(F∗).

Conversely, suppose that every element of Age(F) has finitely many ex-

pansions in Age(F∗). Let m ∈ N. We are going to cover G · ~R∗ with finitely
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many balls of radius at most 1/2m. Let A be the substructure of F gener-
ated by [m], and let A∗1, . . . ,A

∗
l denote all the expansions of A in Age(F).

For j ≤ l, let
Bj = {~S ∈ G · ~R∗ : (F, ~S)�A ∼= A∗j}.

Then B1, . . . , Bl are balls of radius at most 1/2m and because A∗1, . . . ,A
∗
l

exhaust all expansions of A in Age(F∗), we also have

G · ~R∗ =
l⋃

j=1

Bj .

Definition 7. The expansion F∗ = (F, ~R∗) is a precompact relational
expansion of F when every element of Age(F) only has finitely many expan-

sions in Age(F∗). Equivalently, the metric subspace G · ~R∗ of P ∗ is precom-
pact. In that case, we denote by X∗ the corresponding completion, i.e.

X∗ = G · ~R∗ (where the closure in taken in P ∗, which is complete).

We will see now that when F∗ is Fräıssé, there is a close connection
between the metric space (P ∗, dP

∗
) and the quotient G/G∗. As a set, G/G∗

can be thought of as G · ~R∗, the orbit of ~R∗ in P ∗, by identifying [g], the

equivalence class of g, with g · ~R∗ (recall that ~R∗ is defined as F∗ = (F, ~R∗)).

With this identification, the logic action of G on G · ~R∗ coincides with the
natural action on G/G∗ by left translations. The two uniform structures on
G project onto uniform structures on G/G∗, but we will pay a particular
attention to the projection of UR, whose basic entourages are of the form

VF = {([g], [h]) : g−1�F = h−1�F}, F ⊂ N finite.

Proposition 2. If F∗ is Fräıssé, then the projection of UR on G/G∗ ∼=
G · ~R∗ coincides with the uniform structure induced by the restriction of dP

∗

on G · ~R∗.
Proof. The distance dP

∗
induces a uniform structure whose entourages

are generated by all sets of the form

Wm = {(~S, ~T ) : dP
∗
(~S, ~T ) < 1/2m} = {(~S, ~T ) : ~S�[m] = ~T �[m]},

where ~S�[m] = ~T �[m] means that

∀i ∈ I Si�[m] = Ti�[m].

Equivalently, because F is locally finite, this uniform structure is gener-
ated by all sets of the form

WF = {(~S, ~T ) : ~S�F = ~T �F},
where F is a finite subset of N supporting a substructure of F. Let F be
such a finite set. From the definition of VF and WF , it is clear that VF ⊂
WF ∩ G/G∗. We are going to show that WF ∩ G/G∗ ⊂ VF also holds. Let
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(~S, ~T ) ∈ WF ∩ G/G∗, and fix s, t ∈ G so that ~S = s · ~R∗ and ~T = t · ~R∗.
Then, for every i ∈ I and every y1 . . . ya(i) ∈ F ,

R∗i (s
−1(y1) . . . s

−1(ya(i))) ⇔ R∗i (t
−1(y1) . . . t

−1(ya(i))).

Therefore, the map s−1(F ) → t−1(F ) defined by s−1(n) 7→ t−1(n) for
every n ∈ F is an isomorphism between s−1(F ) and t−1(F ) seen as sub-
structures of F∗. By ultrahomogeneity of F∗ (it is here that we use that F∗

is Fräıssé), it is possible to extend this isomorphism to some element g ∈ G∗.
We then have

∀n ∈ F gs−1(n) = t−1(n).

Since gs−1 = (sg−1)−1, we obtain ([sg−1], [t]) ∈ VF . But [sg−1] = [s], so

([s], [t]) ∈ VF , i.e. (~S, ~T ) ∈ VF .

Therefore, in the following, when F∗ is Fräıssé, we will really think of
the uniform space G/G∗ as the metric subspace G · ~R∗ of P ∗.

Corollary 8. Assume that F∗ is Fräıssé. Then F∗ is a precompact
expansion of F iff the uniform space G/G∗ is precompact. In that case, we

can identify the compact spaces X∗ and Ĝ/G∗ as well as the flows Gy X∗

and Gy Ĝ/G∗.

In what follows, we will be interested in generalizing the theory of Kech-
ris–Pestov–Todorcevic to precompact relational expansions instead of pure
order expansions. However, before doing so, let us provide a few examples.
Taking F = N (the language L is then empty), we haveG = S∞ and a Fräıssé
expansion F∗ of F such that L∗rL is relational is simply a relational Fräıssé
structure. It is a precompact expansion of N exactly when F∗ only has finitely
many substructures up to isomorphism in each finite cardinality. The group
G∗ is then called oligomorphic. A classical case where this happens is when
the language L∗ is relational and has finitely many symbols in each arity
(e.g. graphs, directed graphs, . . . ).

On the other hand, there are also natural Fräıssé relational structures
which are not precompact expansions of N. Countable ultrahomogeneous
metric spaces with infinitely many distances fall into that category. The
appropriate language is made of binary relation symbols (Rα)α and Rα(x, y)
holds exactly when d(x, y) = α. One typical example is the rational Urysohn
space UQ, which is, up to isometry, the unique countable ultrahomogeneous
metric space with rational distances into which any finite metric space with
rational distances embeds.

3. Extreme amenability and Ramsey property. The purpose of
this section is to provide a proof of Theorem 1 (again, this is only done for
the sake of completeness):
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Theorem 1 (Kechris–Pestov–Todorcevic [KPT05, Theorem 4.8]). Let
F be a Fräıssé structure, and let G = Aut(F). The following are equivalent:

(i) The group G is extremely amenable.
(ii) The class Age(F) has the Ramsey property and consists of rigid

elements.

We first detail the argument according to which the Ramsey property
for Age(F) is equivalent to its infinite version with F.

Proposition 3. The class Age(F) has the Ramsey property iff

∀k ∈ N ∀A,B ∈ K F→ (B)Ak .

Proof. Because every C ∈ Age(F) embeds in F, it is clear that the
Ramsey property implies

∀k ∈ N ∀A,B ∈ K F→ (B)Ak .

Conversely, suppose that the Ramsey property does not hold. Then there
exist k ∈ N and A,B ∈ Age(F) so that no C ∈ Age(F) satisfies

C→ (B)Ak .

Equivalently, for every C ∈ Age(F), there exists χC :
(
C
A

)
→ [k] with no

monochromatic set of the form
(
B̃
A

)
. Consider a free ultrafilter U on the set

of finite non-empty subsets of N so that for every finite D ⊂ N,

{E ⊂ N : D ⊂ E ∧ F�E ∈ Age(F)} ∈ U.
Note that the local finiteness of F indeed guarantees that such an ultrafilter
exists. For Ã ∈

(
F
A

)
and ε ∈ [k], define

Kε
Ã

= {E ⊂ N : Ã ⊂ (F�E) ∧ χF�E(Ã) = ε}.

Then, define a coloring χ :
(
F
A

)
→ [k] by

χ(Ã) = ε ⇔ Kε
Ã
∈ U.

Let B̃ be an arbitrary copy of B in F. We claim that
(
B̃
A

)
is not χ-

monochromatic. Towards a contradiction, assume the contrary, and let ε0
be the corresponding constant value of χ. Then the following set is in U :

{E ⊂ N : B̃ ⊂ F�E} ∩
⋂

Ã∈(B̃A)

Kε0
Ã
.

Therefore, it is not empty and contains some finite set, say E0. Then B ⊂
F�E0 and

(
F�E0

A

)
is χF�E0-monochromatic with color ε0. Hence,

(
B̃
A

)
is χF�E0-

monochromatic, a contradiction.

We now turn to the proof of Theorem 1.
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Proof of (i)⇒(ii). Assume that G is extremely amenable. We first prove
that elements of Age(F) are rigid. To do so, consider the set LO(F) of all
linear orderings, seen as a subspace of [2]F×F. The group G acts continuously
on this latter space via the logic action. The set LO(F) is then a G-invariant
compact subspace. Explicitly, G acts on LO(F) as follows: if ≺ ∈ LO(F) and
g ∈ G, then

∀x, y ∈ F x(g · ≺)y ⇔ g−1(x) ≺ g−1(y).

By extreme amenability of G, there is a G-fixed point in LO(F), call it <.
Consider now a finite substructure A ⊂ F, and let ϕ be an automorphism
of A. By ultrahomogeneity of F, ϕ extends to an automorphism φ of F.
Because < is G-fixed, it is preserved under φ. Thus, on A, < is preserved
by ϕ, which means that ϕ is trivial on A. This proves that A is rigid.

To prove that Age(F) has the Ramsey property, consider k ∈ N, A and
B in Age(F), and a coloring

c :

(
F

A

)
→ [k].

Consider the compact space [k](
F
A), on which G acts continuously by

shift: if χ ∈ [k](
F
A), g ∈ G and Ã ∈

(
F
A

)
, then

g · χ(Ã) = χ(g−1(Ã)).

The set G · c is a G-invariant compact subspace. By extreme amenability
ofG, there is aG-fixed point inG · c, say c0. The fact that c0 isG-fixed means
that c0 is constant. Consider now the finite set

(
B
A

)
. Because c0 ∈ G · c, there

is g ∈ G so that

g · c�
(

B

A

)
= c0�

(
B

A

)
.

So g ·c is constant on
(
B
A

)
, and c is constant on

(g−1(B)
A

)
. Because g−1(B)

is isomorphic to B, this proves that Age(F) has the Ramsey property.

Proof of (ii)⇒(i). Assume that Age(F) has the Ramsey property and
consists of rigid elements. For A ⊂ N finite and supporting a substructure
A ⊂ F, the rigidity of A implies that the setwise stabilizer of A in G is equal
to the pointwise stabilizer Stab(A) inG, and we can identifyG/Stab(A) with
a subset of

(
F
A

)
. Moreover, because F is ultrahomogeneous, we also have the

reverse inclusion. Thus, we can make the identification

G/Stab(A) =

(
F

A

)
.

Proposition 4. Let k ∈ N, A ⊂ N finite and supporting a substructure
A of F, and F ⊂ G finite. Let f̄ : G → [k] be constant on elements of
G/Stab(A). Then there exists g ∈ G such that f̄ is constant on gF .
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Proof. The map f̄ induces a map f : G/Stab(A) → [k], which we may
think of as a k-coloring of

(
F
A

)
. Consider the set {[h] : h ∈ F}. It is a finite

set of substructures of F, all isomorphic to A. Therefore, we can find a finite
substructure B ⊂ F large enough so that

{[h] : h ∈ F} ⊂
(

B

A

)
.

By the Ramsey property, find B̃ ∈
(
F
B

)
so that f is constant on

(
B̃
A

)
, with

value i < k. By ultrahomogeneity of F, find g ∈ G so that g(B) = B̃. We
claim that g is as required. Indeed, for h ∈ F , we have

[gh] = g([h]) ∈
(
g(B)

A

)
=

(
B̃

A

)
.

So f̄(gh) = f([gh]) = f(g[h]) = i.

Proposition 5. Let p ∈ N, f : G → Rp left uniformly continuous and
bounded (where Rp is equipped with its standard Euclidean structure), F ⊂ G
finite, and ε > 0. Then there exists g ∈ G such that

∀h, h′ ∈ F ‖f(gh)− f(gh′)‖ < ε.

Proof. Let m ∈ N. Note that as subsets of G, elements of G/Stab([m])
have diameter 1/2m+1 with respect to the left invariant metric dL on G.
Thus, by left uniform continuity of f , we can find m ∈ N large enough
so that f is constant up to ε/2 on each element of G/Stab([m]). By local
finiteness of F, let now A ⊂ N be finite, supporting a finite substructure
A of F, and such that [m] ⊂ A. Then f is also constant up to ε/2 on
each element of G/Stab(A). Because f is also bounded, we can also find
f̄ : G → Rp with finite range, constant on elements of G/Stab(A), and so
that ‖f − f̄‖∞ < ε/2. By Proposition 4, there exists g ∈ G such that f̄ is
constant on gF . Then f is ε-constant on gF .

We can now show that G is extremely amenable. Let G y X be a
continuous action, with X compact. For p ∈ N, φ : X → Rp uniformly
continuous and bounded, F ⊂ G finite, ε > 0, set

Aφ,ε,F = {x ∈ X : ∀h ∈ F ‖φ(h · x)− φ(x)‖ ≤ ε}.
Then (Aφ,ε,F )φ,ε,F is a family of closed subsets of X. We claim that it has
the finite intersection property. Indeed, if φ1, . . . , φl, ε1, . . . , εl, F1, . . . , Fl are
given, take

φ = (φ1, . . . , φl), ε = min(ε1, . . . , εl), F = F−11 ∪ · · · ∪ F−1l ∪ {e}.
Fix x ∈ X and consider the map f : G→ Rp1+...+pl defined by

∀g ∈ G f(g) = (φ1(g
−1 · x), . . . , φl(g

−1 · x))).
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Because the maps φi’s are uniformly continuous and the map g 7→ g−1 · x
is left uniformly continuous (cf. [Pes06, p. 40]), the map f is left uniformly
continuous. By Proposition 5, there exists g ∈ G so that

∀h, h′ ∈ F ‖f(gh)− f(gh′)‖ < ε.

Equivalently,

∀i ≤ l ∀h, h′ ∈ F ‖φi(h−1g−1 · x)− φi(h′−1g−1 · x)‖ ≤ εi.
Taking x0 = g−1 · x and h′ = e, we obtain

∀i ≤ l ∀h ∈ Fi ‖φi(h · x0)− φi(x0)‖ ≤ εi.
This proves the finite intersection property of (Aφ,ε,F )φ,ε,F . By compactness
of X, this family has a non-empty intersection. Consider any element x of
this intersection. We claim that x is fixed under the action of G: if not,
we would find g ∈ G so that g · x 6= x. Then there would be a uniformly
continuous function φ0 : X → [0, 1] so that φ0(x) = 0 and φ0(g · x) = 1.
That would imply x /∈ Aφ0,1/2,{g}, a contradiction.

4. Minimality and expansion property. The purpose of this section
is to prove Theorem 4.

Definition 9. Let F be a Fräıssé structure, and F∗ a precompact rela-
tional expansion of F. Say that Age(F∗) has the expansion property relative
to Age(F) when for every A ∈ Age(F), there exists B ∈ Age(F) such that

∀A∗,B∗ ∈ Age(F∗) (A∗�L = A ∧B∗�L = B) ⇒ A∗ ≤ B∗.

When A and B are as above, we say that B has the expansion property
relative to A. Note that because Age(F) has the joint embedding property,
the expansion property is equivalent to

∀A∗ ∈ Age(F∗) ∃B ∈ Age(F) ∀B∗ ∈ Age(F∗) (B∗�L = B)⇒ A∗ ≤ B∗.

For a fixed A∗ ∈ Age(F∗), any B ∈ Age(F) witnessing this property will
also be said to have the expansion property relative to A∗.

Here is a concrete example: consider the structure Q2 := (Q, Q0, Q1, <)
where Q denotes the rationals,< denotes the usual ordering on Q, andQ0,Q1

are dense subsets of Q. The appropriate language is (P0, P1, <), made of two
unary relation symbols and one binary relation symbol. The structure Q2

will play the role of F∗. For F, simply take the reduct (Q, Q0, Q1). Then
Age(F∗) is the class of all structures of the form A = (A,PA

0 , P
A
1 , <

A)
where PA

0 , P
A
1 partitions A and <A is a linear ordering on A. This age does

not have the expansion property relative to Age(F): if A∗ ∈ Age(F∗) is such
that some element of PA

1 is less than some element of PA
0 and B ∈ Age(F),

then there is an expansion B∗ of B such that all elements of PB
0 are less

than those of PB
1 . In particular, A∗ does not embed in B∗. Thus, B does not



More on the KPT correspondence: Precompact expansions 33

have the expansion property relative to A∗. However, if we consider only the
class K of those elements A∗ of Age(F∗) so that all elements of PA

0 are less
than those of PA

1 , then it is easy to see that the expansion property holds.

Theorem 4. Let F be a Fräıssé structure, and F∗ precompact relational
expansion of F. The following are equivalent:

(i) Gy X∗ is minimal.
(ii) Age(F∗) has the expansion property relative to Age(F).

Remark. The structure F∗ does not have to be Fräıssé for this result
to apply.

From now on, we fix a Fräıssé structure F and a precompact relational
expansion F∗ of F.

Proposition 6. Let ~S, ~T ∈ P ∗. Then

~S ∈ G · ~T iff Age(F, ~S) ⊂ Age(F, ~T ).

Proof. Assume ~S ∈ G · ~T . Because (F, g· ~T ) ∼= (F, ~T ) via g for any g ∈ G,
it suffices to show that for every finite set A ⊂ N supporting a substructure
of F, there exists g ∈ G so that

(F, g · ~T )�A = (F, ~S)�A.

But this is clearly implied by ~S ∈ G · ~T .

Conversely, consider a basic open neighborhood of ~S in P ∗. By refining
it, we may assume that it is given by a finite set A ⊂ N supporting a
substructure of F. Because Age(F, ~S) ⊂ Age(F, ~T ), we can find C ⊂ N
finite such that

(F, ~T )�C ∼= (F, ~S)�A.

Let g : C → A witness this isomorphism. In particular, g is an isomorphism
between finite substructures of F. It can therefore be extended to some
element ĝ of G. Then

∀i ∈ I ∀y1 . . . ya(i) ∈ A Si(y1 . . . ya(i))⇔ Ti(ĝ
−1(y1) . . . ĝ

−1(ya(i))).

Hence, (F, ĝ · ~T )�A = (F, ~S)�A.

As was the case for the Ramsey property, we now prove that the expan-
sion property can be witnessed on F, as opposed to some finite substructure:

Proposition 7. The class Age(F∗) has the expansion property relative

to Age(F) iff Age(F∗) ⊂ Age(F, ~S) for every ~S ∈ X∗.

Proof. Assume that Age(F∗) has the expansion property relative to
Age(F). Fix A∗ ∈ Age(F∗) and consider B ∈ Age(F) with the expansion
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property relative to A∗. Take now ~S ∈ X∗. By Proposition 6, (F, ~S)�B ∈
Age(F∗), and because B has the expansion property relative to A∗,

A∗ ≤ (F, ~S)�B.

Therefore, A∗ ≤ (F, ~S) and Age(F∗) ⊂ Age(F, ~S).

Conversely, assume that F∗ is Fräıssé and Age(F∗) ⊂ Age(F, ~S) for every
~S ∈ X∗. Let A∗ ∈ Age(F∗). For C ⊂ N finite and supporting a substructure
of F, let

XC = {~S ∈ X∗ : A∗ ∼= (F, ~S)�C}.
Then, because Age(F∗) ⊂ Age(F, ~S) for every ~S ∈ X∗, we have

X∗ =
⋃
C⊂N

XC .

Compactness of X∗ then allows us to find finite sets C1, . . . , Ck ⊂ N such
that

X∗ =

k⋃
j=1

XCj .

Let C denote the substructure of F generated by
⋃k
j=1Cj , and write C for

the finite subset of N supporting it. We claim that C has the expansion
property relative to A∗: Let C∗ be an expansion of C in Age(F∗). Consider
an embedding φ : C∗ → F∗. It induces an embedding between finite sub-
structures of F and can be extended to some element g ∈ G. Then, for every
i ∈ I and every y1 . . . ya(i) ∈ C,

RC∗
i (y1 . . . ya(i)) ⇔ R∗i (g(y1) . . . g(ya(i))) ⇔ g−1 ·R∗i (y1 . . . ya(i)).

Therefore, setting Si = g−1 · R∗i for every i ∈ I, we obtain C∗ ∼= (F, ~S)�C.

Now, ~S ∈ XCl
for some l ≤ k. So

A∗ ∼= (F, ~S)�Cl ⊂ (F, ~S)�C ∼= C∗.

We now turn to the proof of Theorem 4. Minimality of G y X∗ is

equivalent to ~R∗ ∈ G · ~S for every ~S ∈ X∗, which is in turn equivalent to
(cf. Proposition 6) Age(F∗) ⊂ Age(F, ~S) for every ~S ∈ X∗. Now, apply
Proposition 7.

5. Universal minimal flows. In this section, we prove Theorem 5:

Theorem 5. Let F be a Fräıssé structure, and F∗ be a Fräıssé pre-
compact relational expansion of F. Assume that Age(F∗) consists of rigid
elements. The following are equivalent:

(i) Gy X∗ is the universal minimal flow of G.
(ii) Age(F∗) has the Ramsey property as well as the expansion property

relative to Age(F).
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Proof of (ii)⇒(i). Let Gy X be a compact minimal G-flow. It induces
a continuous action G∗ y X. By Theorem 1, since Age(F∗) has the Ramsey
property and consists of rigid elements, G∗ is extremely amenable and the
flow G∗ y X has a G∗-fixed point, say ξ. Let p : G→ X be defined by

p(g) = g · ξ.
Then p is right-uniformly continuous (cf. [Pes06, p. 40]) and constant on
elements of G/G∗: if g−1h ∈ G∗, then g−1h · ξ = ξ so h · ξ = g · ξ, which
means p(h) = p(g). Therefore p induces a right-uniformly continuous map
q : G/G∗ → X, which can be extended continuously to π : X∗ → X (we
use here that X∗ is the completion of G/G∗ because F∗ is Fräıssé). This
map is G-equivariant: this follows from continuity and from the fact that q
is G-equivariant. It is also onto because its range is a compact subset of X
containing the dense subset G · ξ.

Proof of (i)⇒(ii). Because of minimality of Gy X∗, Theorem 4 ensures
that Age(F∗) has the expansion property relative to Age(F). To prove the
Ramsey property of Age(F∗), we are going to use the so-called Ramsey
degrees. Recall that the arrow relation

C→ (B)Ak,l

means that for every map c :
(
C
A

)
→ [k], there is B̃ ∈

(
C
B

)
such that c takes

at most l values on
(
B̃
A

)
.

Definition 10. For A ∈ Age(F), say that it has a finite Ramsey degree
in Age(F) when there exists l ∈ N such that for every k ∈ N and B ∈
Age(F), there is C ∈ Age(F) so that

C→ (B)Ak,l.

The least l is then the Ramsey degree of A in Age(F).

Here, we are going to show that every A ∈ Age(F) has a finite Ramsey
degree, whose value is at most the number t(A) of non-isomorphic expan-
sions of A in Age(F∗). By compactness, it is enough to show that for every
k ∈ N and B ∈ Age(F),

F→ (B)Ak,t(A).

Let c :
(
F
A

)
→ [k]. Then G · c is a compact subflow of G y [k](

F
A). As

such, it admits a minimal subflow X ⊂ G · c. By (i), there is a continuous
G-equivariant map π : X∗ � X.

Recall that because F∗ is Fräıssé, X∗ is the completion of Ĝ/G∗ and so
letting γ := π([e]), we infer that γ is G∗-fixed. This implies that all copies of
A in F that support isomorphic structures in F∗ have the same γ-color, and
that γ takes no more than t(A) values on

(
F
A

)
. Now, consider B. Because it
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is in Age(F), we may assume that it is supported by a finite subset B of N.
Since γ ∈ G · c, we can find g ∈ G such that

g · c�
(

B

A

)
= γ�

(
B

A

)
.

Hence g ·c takes ≤ t(A) values on
(
B
A

)
, and so does c on

(g−1(B)
A

)
. This proves

that A ∈ Age(F) has Ramsey degree in Age(F) at most t(A). To prove that
Age(F∗) has the Ramsey property, we will use the following general fact:

Proposition 8. Let K∗ be an expansion of Age(F) in L∗ satisfying the
hereditariness property, the joint embedding property, the expansion property
relative to Age(F), and such that every A ∈ Age(F) has a finite Ramsey
degree in Age(F) whose value is at most the number of non-isomorphic ex-
pansions of A in K∗. Then K∗ has the Ramsey property.

Proof. Fix k ∈ N and A∗,B∗ ∈ K∗. Consider D with the expansion
property with respect to A∗�L and to B∗ (finding such a structure is easy
thanks to the expansion property of K∗ relative to Age(F) and to the joint
embedding property of K∗). Consider also C ∈ Age(F) such that

C→ (D)Akt(A),t(A).

Let C∗ ∈ K∗ be any expansion of C, and fix c∗ :
(
C∗

A∗

)
→ [k]. Seeing

(
C∗

A∗

)
as a subset of

(
C
A

)
, extend c∗ to a coloring c :

(
C
A

)
→ [k], and define a

new coloring c̄ :
(
C
A

)
→ [k] × [t(A)] by c̄(Ã) = (c(Ã), i(Ã)), where i(Ã)

denotes the isomorphism type of Ã seen as substructure of C∗. Because
A has finite Ramsey degree at most t(A) in Age(F), there is a copy D̃ of

D in C with at most t(A) c̄-colors appearing on
(
D̃
A

)
. Because D has the

expansion property relative to A, all isomorphism types of A in Age(F∗)

appear in
(
D̃
A

)
. Therefore, exactly t(A) c̄-colors appear on

(
D̃
A

)
, and all copies

of A sharing the same isomorphism type receive the same c̄-color, hence the

same c-color. In particular, all copies of A∗ in
(
D̃
A

)
receive the same c∗-color.

Now, using the expansion property of D relative to B∗, D̃ contains a copy

B̃
∗

of B∗, and
(
B̃

∗

A∗

)
is c∗-monochromatic.

Applying the previous proposition to the class K∗ = Age(F∗) shows that
it has the Ramsey property. This completes the proof of (ii)⇒(i).

6. Subclasses of ages with the Ramsey property. The goal of this
section is to prove Theorem 6:

Theorem 6. Let F be a Fräıssé structure, and F∗ be a Fräıssé pre-
compact relational expansion of F. Assume that Age(F∗) consists of rigid
elements, and has the Ramsey property. Then Age(F∗) admits a Fräıssé
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subclass with the Ramsey property and the expansion property relative to
Age(F).

Proof. Let ~S ∈ G · ~R∗ be such that G y G · ~S is minimal. Note that

thanks to Proposition 6, Age(F, ~S) ⊂ Age(F∗) because ~S ∈ G · ~R∗. We

claim that Age(F, ~S) is as required.

The expansion property comes from the minimality of Gy G · ~S (The-
orem 4).

As for the Ramsey property, the proof follows the same pattern as the
proof of Theorem 5(i)⇒(ii): First, we use the Ramsey property for Age(F∗)
and the extreme amenability of G∗ to show that for every A,B ∈ Age(F),

and every k-coloring c of
(
F
A

)
, there is g ∈ G so that on

(
B
A

)
, the value of

g · c(Ã) depends only on the isomorphism type of Ã seen as a substruc-
ture of F∗. Observe however that choosing B so that the substructure it
supports in F∗ is equal to the substructure it supports in (F, ~S) (this is pos-

sible because Age(F, ~S) ⊂ Age(F∗)), and using the fact that ~S is G∗-fixed,

we can actually ensure that the value of g · c(Ã) depends only on the iso-

morphism type of Ã seen as a substructure of (F, ~S) (and not only of F∗).
It follows that every A ∈ Age(F) has a finite Ramsey degree less than or

equal to the number of non-isomorphic expansions of A in Age(F, ~S), and

not only in Age(F∗). The Ramsey property for Age(F, ~S) is then derived
from Proposition 8.

Finally, for classes consisting of rigid elements, the heredity, joint em-
bedding and Ramsey properties imply the amalgamation property. This
crucial fact was first noticed by Nešetřil, but we include it here for com-
pleteness (we repeat the argument given in [KPT05, first half of p. 129]. Fix

A,B,C ∈ Age(F, ~S) and embeddings f : A → C and g : A → C. By the

joint embedding property, find E ∈ Age(F, ~S) in which both B and C can

be embedded. Then, thanks to the Ramsey property, find D ∈ Age(F, ~S)
such that

D→ (E)A4 ,

and consider the coloring c :
(
D
A

)
→ {x : x ⊂ {B,C}} defined as follows:

given Ã ∈
(
D
A

)
, declare that B ∈ c(Ã) iff there is an embedding r : B→ D

so that r ◦ f(A) = Ã, and similarly for C. Let Ẽ be such that
(
Ẽ
A

)
is

c-monochromatic. Because both B and C embed in E, the corresponding

constant value of c is {B,C}. Now, for Ã ∈
(
Ẽ
A

)
, there are r : B → D and

s : C → D so that r ◦ f(A) = Ã and s ◦ g(A) = Ã. So r ◦ f and s ◦ g
are isomorphisms of A with Ã. Since A and Ã are rigid, it follows that
r ◦ f = s ◦ g, and D, r and s witness the amalgamation property. It follows
that Age(F, ~S) is Fräıssé.
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Here is an example to illustrate Theorem 6. Consider the structures
already described in Section 4: F∗ = Q2 = (Q, Q0, Q1, <), F = (Q, Q0, Q1).
Then Age(F∗) has the Ramsey property (this is proved, for example, in
[KPT05]), but we have seen that it does not have the expansion property
relative to Age(F). However, passing to K ⊂ Age(F∗) consisting of all those
A∗ ∈ Age(F∗) so that all elements of PA

0 are less than those of PA
1 , the

expansion property does hold. As for the Ramsey property, it holds thanks
to the classical product Ramsey theorem.

7. The universal minimal flow of the circular directed graph
S(2). The tournament S(2), called the dense local order, is defined as fol-
lows: let T denote the unit circle in the complex plane. Define an oriented
graph structure on T by declaring that there is an arc from x to y (in sym-

bols, y
T←− x) iff 0 < arg(y/x) < π. Denote by

−→
T the resulting oriented

graph. The dense local order is then the substructure S(2) of
−→
T whose ver-

tices are those points of T with rational argument. It is represented in the
picture below.

&%
'$r

rr ��	
C
C
C
CO

HH
Hj

Fig. 1. The tournament S(2)

This structure is one of the only three countable ultrahomogeneous tour-
naments (a tournament is a directed graph where every pair of distinct points
supports exactly one arc), the other two being the rationals (Q, <), seen as

a directed graph where x
Q←− y iff x < y, and the so-called random tourna-

ment. It is therefore a Fräıssé structure in the language L = {←} consisting
of one binary relation. More information about this object can be found in
[Woo76], [Lac84] or [Che98].

Our goal in this section is to describe the universal minimal flow of
its automorphism group. But before doing so, let us mention the following
simple fact, which shows why the technique developed in [KPT05] cannot
be applied:

Proposition 9. No pure order expansion of S(2) has an age with the
Ramsey property and the expansion property.

Proof. A simple way to prove this is to use Ramsey degrees. A general
fact is indeed that for every expansion of S(2) whose age K∗ has the Ram-
sey property and the expansion property, the Ramsey degree of any A in
Age(S(2)) is exactly the number of non-isomorphic expansions of A in K∗.
If S(2)∗ were a pure order expansion of S(2), the substructure of S(2) con-
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sisting of a single point would have only one expansion, and so its Ramsey
degree in Age(S(2)) would be 1. This, however, is false, because coloring
S(2) with two colors, corresponding to left half and right half, provides a
coloring with no monochromatic cyclic triangle.

However, in view of Theorem 5, it suffices to find a precompact rela-
tional expansion S(2)∗ of S(2) whose age has the Ramsey property and the
expansion property. It turns out that such an expansion essentially appears
in [LNVTS10], where the finite and the infinite Ramsey properties of S(2)
were analyzed. We now turn to a description of S(2)∗. The appropriate
language is

L∗ = L ∪ {Pj : j ∈ [2]},
every symbol Pj being unary. We expand S(2) as (S(2), P ∗0 , P

∗
1 ) in L∗, where

P ∗0 (x) holds iff x is in the right half-plane, and P ∗1 (x) iff it is in the left half-
plane. Quite clearly, S(2)∗ is a precompact relational expansion of S(2).

Proposition 10. The class Age(S(2)∗) has the Ramsey property and
the expansion property relative to Age(S(2)).

Proof. The crucial fact here is the link that S(2)∗ possesses with the
structure Q2, which we have already encountered. In general, when n ∈ N,
the structure Qn is defined as (Q, Q0, . . . , Qn−1, <) where Q denotes the
rationals, < denotes the usual ordering on Q, and every Qi is a dense subset
of Q. As before for Q, it is convenient to think of Qn as a directed graph
together with some partition, so Q2 can really be seen as a structure in the
language L∗. The link between S(2)∗ and Q2 is the following: the structure
Q2 is obtained from S(2)∗ by reversing all the arcs whose extremities do not
belong to the same part of the partition. The simple reason behind this fact

is that if x, y ∈ S(2) are such that P ∗0 (x) and P ∗1 (y), then x
T←− y iff −y T←− x,

where −y denotes the opposite of y. So one way to realize the transforma-
tion from S(2)∗ to Q2 is to consider S(2)∗, to keep the partition relation, but
to replace the arc relation by the relation obtained by symmetrizing all the
elements in the left half. Quite clearly, the new arc relation defines a total
order, which is dense in itself and without extremity point, and where both
parts of the partition are dense. Therefore, the resulting structure is Q2.
Similarly, applying the same transformation to Q2 gives rise to S(2)∗. For-
mally, S(2)∗ and Q2 are said to be first-order simply bi-definable. So, in some
sense, Q2 and S(2)∗ really can be thought of as the same structure. Using
this, it is easy to see that the Ramsey property holds for the Age(S(2)∗) iff
it holds for Age(Q2), a fact which is proved in [KPT05] (in fact, it is shown
that Age(Qn) has the Ramsey property for every n ≥ 1).

As for the expansion property, it is essentially proved in [LNVTS10,
Lemma 3], where the result is actually proved for structures called extensions
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of elements of Age(S(2)). By definition, an extension of A ∈ Age(S(2)) is
a substructure of Q2 obtained from A by first taking an expansion of A
in Age(S(2)∗), and then turning it into a substructure of Q2 by applying
the transformation we described above between S(2)∗ and Q2. Lemma 3 of
[LNVTS10] then asserts that for every A ∈ Age(S(2)), there exists B in
Age(S(2)) so that every extension of A embeds in every extension of B.
This result is equivalent to the expansion property of Age(S(2)∗) relative to
Age(S(2)).

Setting G = Aut(S(2)) and G∗ = Aut(S(2)∗), the universal minimal flow
of G is, by Theorem 5, the action G y X∗, where X∗ := G · (P ∗0 , P ∗1 ), the
closure of G · (P ∗0 , P ∗1 ) in [2]S(2)× [2]S(2). We are going to provide a concrete
description of that action. In the unit circle T, consider the set S supporting
S(2), the set −S of all its opposite points, and the set C = Tr (S ∪ (−S)).
Consider

T̂ = C ∪ ((S ∪ (−S))× [2]) .

Intuitively, it is obtained from the unit circle T by doubling the points in
S ∪ (−S). Next, for t ∈ T̂, define p(t) as the natural projection of t on T,

and for α, β ∈ S ∪ (−S) so that α
T←− β, define

[α, β] := {(α, 0)} ∪ {t ∈ T̂ : α
T←− p(t) T←− β} ∪ {(β, 1)}.

This set is represented in Figure 2 (as the right part of the circle, together
with the two black dots).
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Fig. 2. The set [α, β]

Proposition 11. Sets of the form [α, β] form a basis of open sets for a
topology on T̂, and the corresponding space is homeomorphic to X∗.

Proof. The group G acts naturally on (P ∗0 , P
∗
1 ) by moving (P ∗0 , P

∗
1 ). It

follows that any element (T0, T1) in the orbit of (P ∗0 , P
∗
1 ) partitions S(2) into

two halves whose extremity points are not S(2). Such an element is coded
by t := supT0 ∈ C (this supremum is justified by the fact that the directed
graph relation totally orders T0); see Figure 3.

The topology induced by [2]S(2) × [2]S(2) can be described as follows:
a basic open set around (T0, T1) is provided by a finite set F ⊂ S(2) and
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Fig. 3. The point t associated to (T0, T1)

defined by

(U0, U1) ∈ UF iff (T0, T1) and (U0, U1) partition F the same way.

We now turn to a description of the closure X∗ of the orbit of (P ∗0 , P
∗
1 ).

By Proposition 6, it consists of all those (T0, T1) ∈ [2]S(2) × [2]S(2) so that

Age(S(2), T0, T1) ⊂ Age(S(2)∗).

Therefore, those are partitions of S(2), and each of the parts has to be
totally ordered by the arc relation on S(2). The element t defined as before
may take any value in T because of the denseness of S(2). However, t or its
opposite −t can belong to S(2). Equivalently, we may have t ∈ S ∪ (−S).
When that happens, t does not suffice to characterize (T0, T1), as there are
two choices for (T0, T1): if t ∈ S, then either t ∈ T0, and in that case we
code (T0, T1) by (t, 0); or t ∈ T1, and we code (T0, T1) by (t, 1). If t ∈ (−S),
then either −t ∈ T0, and in that case we code (T0, T1) by (t, 1); or −t ∈ T1,
and we code (T0, T1) by (t, 0). It follows that as a set, we may think of X∗

as T̂, and that the group G acts naturally on X∗.
To finish the proof, it suffices to show that the sets of the form [α, β]

actually correspond to the basic open sets in X∗. We consider the case α ∈ S
and β ∈ (−S). The other cases are treated similarly. Let a = α and b = −β.
Those two points are in S(2). Consider now F = {a, b} and take t ∈ T̂ so
that

α
T←− p(t) T←− β.

It is then easy to see that [α, β] is equal to the basic open set O around t
based on F . In fact, it turns out that all basic open sets are of that form.
Indeed, consider now F ⊂ S(2) finite and t ∈ T̂. The set F∪(−F ) subdivides
T into intervals, and this subdivision gives rise to a unique partition of T̂ into
intervals. Let α, β denote the only elements of F ∪ (−F ) so that t ∈ [α, β].
Then observe that the basic open set O around t and based on F is actually
equal to [α, β].

This representation has at least two advantages. First, it is clear that
X∗ is homeomorphic to the Cantor space. Second, it allows one to visualize
pretty well the action of G on X∗, which is not so common when dealing
with universal minimal flows. Another remarkable instance where that hap-
pens is due to Pestov in [Pes98]. It deals with the orientation preserving
homeomorphisms of T, equipped with the pointwise convergence topology.
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That example provided the first known example of a metrizable, non-trivial,
universal minimal flow, which is, in that case, the natural action on the circle
by homeomorphisms.

8. The universal minimal flow of the circular directed graph
S(3). The technique used in the previous section in order to compute the
universal minimal flow of the dense local order also applies in the case of
another directed graph, called S(3). The notation suggests that S(3) is a

modified version of S(2), and it is indeed the case. Call
−→
D = (T, D←−) the

directed graph defined on T by declaring that there is an arc from x to y iff

0 < arg(y/x) < 2π/3. The directed graph S(3) is then the substructure of
−→
D

whose vertices are those points of T with rational argument. It is represented
in the picture below.
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Fig. 4. The directed graph S(3)

Like S(2), S(3) is Fräıssé structure in the language L = {←} consisting
of one binary relation. The main obvious difference with S(2) is that it is
not a tournament (that is, some pairs of points do not support any arc). For
more information about this object, we refer to [Che98].

For the same reason as in the case of S(2), no pure order expansion of
S(3) has an age with both the Ramsey property and the expansion property,
but there is a precompact expansion S(3)∗ which does. The appropriate
language is

L∗ = L ∪ {Pj : j ∈ [3]},

with every symbol Pi unary, and S(3)∗ is defined by S(3)∗ = (S(3), P ∗0 ,
P ∗1 , P

∗
2 ), where

P ∗j (x) ⇔ (2jπ/3 < arg(x) + π/6 < 2(j + 1)π/3)

The corresponding structure is described below:
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Fig. 5. The expansion S(3)∗
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Proposition 12. The class Age(S(3)∗) has the Ramsey property.

Proof. As in the case of S(2)∗, S(3)∗ is simply bi-definable with a struc-
ture from the family (Qn)n∈N, namely Q3. To see this, it will be convenient
to think that the relations P ∗0 , P

∗
1 , P

∗
2 are actually indexed by Z/3Z. The

transformation that allows going from S(3)∗ to Q3 is the following. Keep
the same partition relations. Let x, y ∈ S(3). If they belong to the same
part, do not change the arc relation. If P ∗j (x) and P ∗j+1(y), where j ∈ Z/3Z,

then either y
S(3)←−− x or there is no arc between x and y. In the first case,

reverse the arc. In the second one, create an arc from x to y. The resulting
structure is then Q3. Again, there is a simple geometric reason to explain
why that works: denote by r the rotation about the origin with angle −2π/3.

Then, if x, y ∈ S(3) are such that P ∗j (x) and P ∗j+1(y), then, in
−→
D , y

D←− x iff

x
D←− r(y). Therefore, one way to realize the transformation described above

is to preserve the partition relation, but to replace the arc relation by the
new arc relation obtained by applying r to all the elements of P ∗1 , and r−1

to all the elements of P ∗2 . This new arc relation provides a total order which
is dense in itself and without extremity points. Furthermore, all parts of the
partition are dense. It follows that the resulting structure is Q3. Because
Age(Q3) has the Ramsey property, so does Age(S(3)∗).

Consider now G = Aut(S(3)), as well as the flow Gy X∗ where

X∗ = G · (P ∗0 , P ∗1 , P ∗2 ) ⊂ ([2]S(2))3.

Proposition 13. The flow Gy X∗ is minimal.

Proof. Using the same analysis as in the previous section, it is easy to
see that the elements of X∗ are the partitions of S(3) into three parts, each
of them being totally ordered by the arc relation and therefore of angular
diameter 2π/3, with one of the extremity points possibly in S(3). Therefore,
all of them have age equal to Age(S(3)∗). By Proposition 7, it follows that
the class Age(S(3)∗) has the expansion property relative to Age(S(3)), and
by Theorem 4, the flow Gy X∗ is minimal.

As a result, every element in Age(S(3)) has a finite Ramsey degree
in Age(S(3)), equal to the number of its non-isomorphic expansions in
Age(S(3)∗). In fact, it turns out that computing the exact value of this num-
ber is possible thanks to the same method as the one used in [LNVTS10]
to compute Ramsey degrees in Age(S(2)). For a given A ∈ Age(S(3)), it is
equal to

3|A|/|Aut(A)|.
Another consequence is of course that Gy X∗ is the universal minimal

flow of G. As previously, a concrete realization of this action is available.
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The same kind of argument as in the previous section leads to the following
description: Recall that S denotes the underlying set of S(2) and S(3), and
r denotes the rotation about the origin with angle −2π/3. Let E denote
T r (S ∪ r(S) ∪ r−1(S)), and set

T̃ = E ∪
(
(S ∪ r(S) ∪ r−1(S))× [2]

)
.

As before, the right way to think about T̃ is as T with certain points
doubled. Let q be the natural projection from E onto T, and define

[α, β] := {(α, 0)} ∪ {t ∈ T̃ : α
D←− p(t) D←− β} ∪ {(β, 1)}.

The set X∗ can be identified with T̃ as follows. For ~T = (T0, T1, T2) ∈ X∗,
let t = supT0. Define a map φ : X∗ → T̃ by:

(1) If t ∈ E, φ(~T ) = t.

(2) If t ∈ S, φ(~T ) equals (t, 0) if t ∈ T0, and (t, 1) if t ∈ T2.
(3) If t ∈ r(S), φ(~T ) equals (t, 0) if r−1(t) ∈ T1, and (t, 1) if r−1(t) ∈ T0.
(4) If t ∈ r−1(S), φ(~T ) equals (t, 0) if r(t) ∈ T2, and (t, 1) if r(t) ∈ T1.

The map φ is a bijection, and it consequently allows G to act naturally T̃.
Then, as previously, one can prove that all sets of the form [α, β] are images
of basic open sets in X∗. Thus, for the corresponding topology, the action
Gy T̃ is continuous, and the map φ : X∗ → T̃ is an isomorphism of G-flows.
In other words:

Proposition 14. The action G y T̃ is the universal minimal flow of
Aut(S(3)).

9. The relevance of precompact relational expansions. The pur-
pose of this section is to discuss the status of precompact relational expan-
sions as the relevant framework for generalizing [KPT05].

Let us first explain why we only need to deal with relational expansions
(where L∗rL consists only of relation symbols), as opposed to more general
ones, where function symbols may be incorporated. The reason is that, given
a Fräıssé structure F, if one is able to find a Fräıssé expansion F∗ such that
Age(F) has the Ramsey property and consists of rigid elements, and such
that the quotient Aut(F)/Aut(F∗) is precompact, then there is a Fräıssé
relational expansion F∗,rel with the same properties. Indeed, the group G∗ =
Aut(F∗) is a closed subgroup of Aut(F), so there is a relational Fräıssé
expansion F∗,rel of F such that Aut(F∗,rel) = G∗. Then F∗,rel is as required.
Precompactness of Aut(F)/Aut(F∗,rel) is obvious. Next, the group G∗ is
extremely amenable by Theorem 1, and it follows, still by Theorem 1, that
Age(F∗,rel) consists of rigid elements and has the Ramsey property.
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Working with relational expansions is therefore enough. This is quite
fortunate because in the general case, many notions from [KPT05] do not
transfer as easily as they do in the relational setting.

Next, as for the role of the precompactness assumption, it is simply
because both Theorems 4 and 5 fail without it. On the other hand, in view
of the smooth transfer from Theorems 2 and 3 to Theorems 4 and 5, and
of the link it allows with the right uniform structure on the automorphism
group G and its quotient G/G∗, precompactness appears more naturally
than, say, finite relational expansions.

From the practical point of view, this intuition materializes with the
following example: consider the language made of a binary relation symbol <
together with countably many relational symbols En, n ≥ 1, with arity 2n.
Consider the class K of all finite structures in that language, where < is
interpreted as a linear order, and each En is interpreted as an equivalence
relation with at most two classes on the set of n-uples. Then K is the age
of a Fräıssé structure F, and its universal minimal flow can be computed
thanks to the expansion F∗ obtained from F by adding a unary relation
symbol for each equivalence class in F.

In other words, precompact relational expansions, as opposed to finite
ones, are sometimes really necessary. However, it could still be that finite
relational expansions do suffice when the structure F we start with has a
finite language. Future research will probably help decide whether this is a
general phenomenon or not.

Note that, as mentioned previously, our technique also allows one to
compute the universal minimal flow for all the groups coming from count-
able ultrahomogeneous graphs, tournaments and posets. For graphs, all the
results are essentially obtained in [KPT05]. The case of the disjoint union
of countably many disjoint copies of a fixed complete graph Kn is not ex-
plicitly treated there, but, as observed by Sokić in [Sok12b] in a slightly
different context, it can be obtained thanks to a simple description of the
automorphism group.

For tournaments, [KPT05] covers the case of (Q, <) and of the universal
tournament, and we presented in Section 7 the case of the dense local order.
For posets, all the results are included in [Sok12a] and [Sok12b].

Furthermore, some recent work in collaboration with Jakub Jasiński,
Claude Laflamme and Robert Woodrow suggests that finite relational expan-
sions are indeed sufficient in the case of all countable ultrahomogeneous di-
rected graphs, whose classification was made available by Cherlin in [Che98].

Finally, note that in fact, for a closed subgroup G of S∞, M(G) can
always be computed thanks to Theorem 5, provided M(G) is metrizable and
has a Gδ orbit. This result will appear in a subsequent paper in collaboration
with Todor Tsankov.
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[NVT10] L. Nguyen Van Thé, Structural Ramsey theory of metric spaces and topologi-

cal dynamics of isometry groups, Mem. Amer. Math. Soc. 206 (2010), no. 968,

x+140 pp.

[Pes98] V. G. Pestov, On free actions, minimal flows, and a problem by Ellis, Trans.

Amer. Math. Soc. 350 (1998), 4149–4165.

[Pes02] V. G. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and

extremely amenable groups, Israel J. Math. 127 (2002), 317–357.

http://dx.doi.org/10.1007/PL00012651
http://dx.doi.org/10.4064/fm176-3-6
http://dx.doi.org/10.2307/2374298
http://dx.doi.org/10.1007/s00039-005-0503-1
http://dx.doi.org/10.1090/S0002-9947-1984-0743728-1
http://dx.doi.org/10.1007/s00493-010-2445-y
http://dx.doi.org/10.4064/fm220-3-6
http://dx.doi.org/10.1016/j.ejc.2004.11.003
http://dx.doi.org/10.1090/S0002-9947-98-02329-0
http://dx.doi.org/10.1007/BF02784537


More on the KPT correspondence: Precompact expansions 47

[Pes06] V. G. Pestov, Dynamics of Infinite-Dimensional Groups. The Ramsey–Dvo-

retzky–Milman phenomenon, Univ. Lecture Ser. 40, Amer. Math. Soc., Prov-

idence, RI, 2006; rev. ed. of Dynamics of infinite-dimensional groups and

Ramsey-type phenomena, Inst. Mat. Pura Apl., Rio de Janeiro, 2005.
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